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Abstract

We are interested in a fragmentation process. We observe fragments frozen when their
sizes are less than ε (ε > 0). It is known (Bertoin and Martínez, 2005) that the empirical
measure of these fragments converges in law, under some renormalization. Hoffmann
and Krell (2011) showed a bound for the rate of convergence. Here, we show a central
limit theorem, under some assumptions. This gives us an exact rate of convergence.
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1. Introduction

1.1. Scientific and economic context

One of the main goals in the mining industry is to extract blocks of metallic ore and then
separate the metal from the valueless material. To do so, rock is fragmented into smaller and
smaller pieces. This is carried out in a series of steps, the first one being blasting, after which
the material goes through a sequence of crushers. At each step, the particles are screened, and if
they are smaller than the diameter of the mesh of a classifying grid, they go to the next crusher.
The process stops when the material has a sufficiently small size (more precisely, small enough
to enable physicochemical processing).

This fragmentation process is energetically costly (each crusher consumes a certain quantity
of energy to crush the material it is fed). One of the problems that faces the mining industry is
that of minimizing the energy used. The optimization parameters are the number of crushers
and their technical specifications.

In [4], the authors proposed a mathematical model of what happens in a crusher. In this
model, the rock pieces/fragments are fragmented independently of each other, in a random and
auto-similar manner. This is consistent with what is observed in the industry, and is supported
by [12, 19, 22, 25]. Each fragment has a size s (in R

+) and is then fragmented into smaller
fragments of sizes s1, s2, . . . such that the sequence (s1/s, s2/s, . . . ) has a law ν which does
not depend on s (which is why the fragmentation is said to be auto-similar). This law ν is called
the dislocation measure (each crusher has its own dislocation measure). The dynamic of the
fragmentation process is thus modeled in a stochastic way.

In each crusher, the rock pieces are fragmented repetitively until they are small enough to
slide through a mesh whose holes have a fixed diameter. So the fragmentation process stops
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1032 S. RUBENTHALER

for each fragment when its size is smaller than the diameter of the mesh, which we denote
by ε (ε > 0). We are interested in the statistical distribution of the fragments coming out of
a crusher. If we renormalize the sizes of these fragments by dividing them by ε, we obtain
a measure γ− log (ε), which we call the empirical measure (the reason for the index − log (ε)
instead of ε will be made clear later). In [4], the authors showed that the energy consumed by
the crusher to reduce the rock pieces to fragments whose diameters are smaller than ε can be
computed as an integral of a bounded function against the measure γ− log (ε) [5, 6, 24]. For each
crusher, the empirical measure γ− log (ε) is one of the only two observable variables (the other
one being the size of the pieces pushed into the grinder). The specifications of a crusher are
summarized in ε and ν.

1.2. State of the art

In [4], the authors showed that the energy consumed by a crusher to reduce rock pieces
of a fixed size into fragments whose diameter are smaller than ε behaves asymptotically like
a power of ε when ε goes to zero. More precisely, this energy multiplied by a power of ε

converges towards a constant of the form κ = ν(ϕ) (the integral of ν, the dislocation measure,
against a bounded function ϕ). They also showed a law of large numbers for the empirical
measure γ− log (ε). More precisely, if f is bounded continuous, γ− log (ε)(f ) converges in law,
when ε goes to zero, towards an integral of f against a measure related to ν (this result also
appears in [16, p. 399]). We set γ∞(f ) to be this limit (check (5.2), (2.5), and (2.2) to get an
exact formula). The empirical measure γ− log (ε) thus contains information relative to ν and we
could extract from it an estimation of κ or of an integral of any function against ν.

It is worth noting that by studying what happens in various crushers, we could study a
family (νi(fj))i∈I,j∈J (with an index i for the number of the crusher and the index j for the jth test
function in a well-chosen basis). Using statistical learning methods, we could from there make
a prediction for ν(fj) for a new crusher for which we know only the mechanical specifications
(shape, power, frequencies of the rotating parts, . . .). It would evidently be interesting to know
ν before even building the crusher.

In the same spirit, [14] studied the energy efficiency of two crushers used one after the other.
When the final size of the fragments tends to zero, [14] tells us whether it is more efficient
energywise to use one crusher or two crushers in a row (another asymptotic is also considered
there).

In [15], the authors proved a convergence result for the empirical measure similar to the
one in [4], the convergence in law being replaced by an almost sure convergence. In [16], the
authors gave a bound on the rate of this convergence, in an L2 sense, under the assumption that
the fragmentation is conservative. This assumption means there is no loss of mass due to the
formation of dust during the fragmentation process.

The state of the art as described is shown in Fig. 1. We have convergence results [4, 15] of
an empirical quantity towards constants of interest (a different constant for each test function
f ). Using some transformations, these constants could be used to estimate the constant κ . Thus,
it is natural to ask what the exact rate of convergence in this estimation is, if only to be able to
build confidence intervals. In [16], we only have a bound on the rate.

When a sequence of empirical measures converges to some measure, it is natural to study
the fluctuations, which often turn out to be Gaussian. For such results in the case of empirical
measures related to the mollified Boltzmann equation, see [7, 18, 23]. When interested in the
limit of an n-tuple as in (1.1), we say we are looking at the convergence of a U-statistic.
Textbooks deal with the case where the points defining the empirical measure are independent
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FIGURE 1. State of the art.

or have a known correlation (see [8, 13, 17]). The problem is more complex when the points
defining the empirical measure interact with each other as is the case here.

1.3. Goal of the paper

As explained above, we want to obtain the rate of convergence in γ− log (ε) when ε goes
to zero. We want to produce a central limit theorem of the form: for a bounded continuous
f , εβ (γ− log (ε)(f )− γ∞(f )) converges towards a non-trivial measure when ε goes to zero (the
limiting measure will in fact be Gaussian), for some exponent β. The techniques used will
allow us to prove the convergence towards a multivariate Gaussian of a vector of the form

εβ (γ− log (ε)(f1)− γ∞(f1), . . . , γ− log (ε)(fn)− γ∞(fn)) (1.1)

for functions f1, . . . , fn.
More precisely, if by Z1, Z2, . . . , ZN we denote the fragments sizes that go out from

a crusher (with mesh diameter equal to ε), we would like to show that, for a bounded
continuous f ,

γ− log (ε)(f ) :=
N∑

i=1

Zif (Zi/ε)−→ γ∞(f )

almost surely (a.s.) when ε→ 0, and that, for all n, and f1, . . . , fn bounded continuous function
such that γ∞(fi)= 0, εβ (γ− log (ε)(f1), . . . , γ− log (ε)(fn)) converges in law towards a multivariate
Gaussian when ε goes to zero.

The exact results are stated in Proposition 5.1 and Theorem 5.1.

1.4. Outline of the paper

We will state our assumptions along the way (Assumptions 2.1, 2.2, 2.3, and 3.1).
Assumption 3.1 can be found at the beginning of Section 3. We define our model in Section 2.
The main idea is that we want to follow tags during the fragmentation process. Let us imagine
the fragmentation is the process of breaking a stick (modeled by [0, 1]) into smaller sticks. We
suppose that the original stick has painted dots, and that during the fragmentation process we
take note of the sizes of the sticks supporting the painted dots. When the sizes of these sticks
get smaller than ε (ε > 0), the fragmentation is stopped for them and we call them the painted
sticks. In Section 3, we make use of classical results on renewal processes and of [21] to show
that the size of one painted stick has an asymptotic behavior when ε goes to zero and that we
have a bound on the rate with which it reaches this behavior. Section 4 is the most technical.
There we study the asymptotics of symmetric functionals of the sizes of the painted sticks
(always when ε goes to zero). In Section 5, we precisely define the measure we are interested
in (γT with T =− log (ε)). Using the results of Section 4, it is then easy to show a law of large

https://doi.org/10.1017/jpr.2022.114 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.114


1034 S. RUBENTHALER

numbers for γT (Proposition 5.1) and a central limit theorem (Theorem 5.1). Proposition 5.1
and Theorem 5.1 are our two main results. The proof of Theorem 5.1 is based on a simple
computation involving characteristic functions (the same technique was previously used in
[9–11, 20]).

1.5. Notation

For x in R, we set �x� = inf{n ∈Z : n≥ x}, 	x
 = sup{n ∈Z : n≤ x}. The symbol � means
‘disjoint union’. For n in N

∗, we set [n]= {1, 2, . . . , n}. For f an application from a set E to a
set F, we write f : E ↪→ F if f is injective and, for k in N

∗, if F= E, we set

f ◦k = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

.

For any set E, we set P(E) to be the set of subsets of E.

2. Statistical model

2.1. Fragmentation chains

Let ε > 0. As in [16], we start with the space

S↓ =
{

s= (s1, s2, . . . ), s1 ≥ s2 ≥ · · · ≥ 0,

+∞∑
i=1

si ≤ 1

}
.

A fragmentation chain is a process in S↓ characterized by

• a dislocation measure ν, which is a finite measure on S↓;

• a description of the law of the times between fragmentations.

A fragmentation chain with dislocation measure ν is a Markov process X = (X(t), t≥ 0)
with values in S↓. Its evolution can be described as follows: a fragment with size x lives for
some time (which may or may not be random) then splits and gives rise to a family of smaller
fragments distributed as xξ , where ξ is distributed according to ν(·)/ν(S↓). We suppose the
lifetime of a fragment of size x is an exponential time of parameter xαν(S↓), for some α. We
could make different assumptions here on the lifetime of fragments, but this would not change
our results. Indeed, as we are interested in the sizes of the fragments frozen as soon as they are
smaller than ε, the time they need to become this small is not important.

We denote by Pm the law of X started from the initial configuration (m, 0, 0, . . .) with m in
(0, 1]. The law of X is entirely determined by α and ν(·) [2, Theorem 3].

We make the same assumption as in [16].

Assumption 2.1. ν(S↓)= 1 and ν(s1 ∈ ]0; 1[)= 1.

Let U := {0} ∪⋃+∞n=1 (N∗)n denote the infinite genealogical tree. For u in U , we use the
conventional notation u= () if u= {0} and u= (u1, . . . , un) if u ∈ (N∗)n with n ∈N∗. This way,
any u in U can be denoted by u= (u1, . . . , un) for some u1, . . . , un and with n in N. Now, for
u= (u1, . . . , un) ∈ U and i ∈N∗, we say that u is in the nth generation and we write |u| = n;
we write ui= (u1, . . . , un, i), u(k)= (u1, . . . , uk) for all k ∈ [n]. For any u= (u1, . . . , un) and
v= ui (i ∈N∗), we say that u is the mother of v. For any u in U\{0} (U deprived of its root), u
has exactly one mother and we denote it by m(u). The set U is ordered alphanumerically:
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• If u and v are in U and |u|< |v| then u < v.

• If u and v are in U and |u| = |v| = n, u= (u1, . . . , un), and v= (v1, . . . , vn) with u1 =
v1, . . . , uk = vk, uk+1 < vk+1 then u < v.

Suppose we have a process X which has the law Pm. For all ω, we can index the fragments
that are formed by the process X with elements of U in a recursive way.

• We start with a fragment of size m indexed by u= ().

• If a fragment x, with a birth time t1 and a split time t2, is indexed by u in U , at time t2
this fragment splits into smaller fragments of sizes (xs1, xs2, . . . ) with (s1, s2, . . . ) of
law ν(·)/ν(S↓). We index the fragment of size xs1 by u1, the fragment of size xs2 by u2,
and so on.

A mark is an application from U to some other set. We associate a mark ξ... on the tree U to
each path of the process X. The mark at node u is ξu, where ξu is the size of the fragment
indexed by u. The distribution of this random mark can be described recursively as follows.

Proposition 2.1. (Consequence of Proposition 1.3 (p. 25) of [3].) There exists a family of inde-
pendent and identically distributed (i.i.d.) variables indexed by the nodes of the genealogical
tree

((̃
ξui
)

i∈N∗ , u ∈ U), where each
(̃
ξui
)

i∈N∗ is distributed according to the law ν(·)/ν(S↓),
and such that, given the marks (ξv, |v| ≤ n) of the first n generations, the marks at generation
n+ 1 are given by ξui = ξ̃uiξu, where u= (u1, . . . , un) and ui= (u1, . . . , un, i) is the ith child
of u.

2.2. Tagged fragments

From now on, we suppose that we start with a block of size m= 1. We assume that the total
mass of the fragments remains constant through time, as follows.

Assumption 2.2. (Conservation property.) ν
(∑+∞

i=1 si = 1
)= 1.

This assumption was already present in [16]. We observe that the Malthusian exponent
of [3, p. 27] is equal to 1 under our assumptions. Without this assumption, the link between
the empirical measure γ− log (ε) and the tagged fragments, (5.1), vanishes and our proofs of
Proposition 5.1 and Theorem 5.1 fail.

We can now define tagged fragments. We use the representation of fragmentation chains
as random infinite marked trees to define a fragmentation chain with q tags. Suppose we have
a fragmentation process X of law P1. We take (Y1, Y2, . . . , Yq) to be q i.i.d. variables of law
U ([0, 1]). We set, for all u in U , (ξu, Au, Iu) with ξu defined as above. The random variables
Au take values in the subsets of [q]. The random variables Iu are intervals. These variables are
defined as follows.

• We set A{0} = [q], I{0} = (0, 1] (I{0} is of length ξ{0} = 1).

• For all n ∈N, suppose we are given the marks of the first n generations. Suppose that,
for u in the nth generation, Iu = (au, au + ξu] for some au ∈R (it is of length ξu). Then
the marks at generation n+ 1 are given by Proposition 2.1 (concerning ξ·) and, for all u
such that |u| = n and for all i in N

∗,

Iui =
(
au + ξu

(̃
ξu1 + · · · + ξ̃u(i−1)

)
, au + ξu

(̃
ξu1 + · · · + ξ̃ui

)]
,
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k ∈ Aui if and only if Yk ∈ Iui (Iui is then of length ξui). We observe that for all j ∈ [q],
u ∈ U , i ∈N∗,

P
(
j ∈ Aui | j ∈ Au, ξ̃ui

)= ξ̃ui. (2.1)

In this definition, we imagine having q dots on the interval [0, 1], and we impose that dot j has
the position Yj (for all j in [q]). During the fragmentation process, if we know that dot j is in
the interval Iu of length ξu, then the probability that this dot is on Iui (for some i in N

∗, Iui of
length ξui) is equal to ξui/ξu = ξ̃ui.

In the case q= 1, the branch {u ∈ U : Au �= ∅} has the same law as the randomly tagged
branch of [3, Section 1.2.3]. The presentation is simpler in our case because the Malthusian
exponent is 1 under Assumption 2.2.

2.3. Observation scheme

We freeze the process when the fragments become smaller than a given threshold ε > 0.
That is, we have the data (ξu)u∈Uε

, where Uε = {u ∈ U , ξm(u) ≥ ε, ξu < ε}.
We now look at q tagged fragments (q ∈N∗). For each i in [q], we call L(i)

0 = 1, L(i)
1 , L(i)

2 , . . .

the successive sizes of the fragment having the tag i. More precisely, for each n ∈N∗, there
is almost surely exactly one u ∈ U such that |u| = n and i ∈ Au; and so, L(i)

n = ξu. For each
i, the process S(i)

0 =− log
(
L(i)

0

)= 0≤ S(i)
1 =− log

(
L(i)

1

)≤ · · · is a renewal process without
delay, with waiting time following a law π (see [1, Chapter V] for an introduction to renewal
processes). The waiting times (for i in [q]) are S(i)

0 , S(i)
1 − S(i)

0 , S(i)
2 − S(i)

1 , . . . The renewal times

(for i in [q]) are S(i)
0 , S(i)

1 , S(i)
2 , . . . The law π is defined by the following:

For all bounded measurable f : [0, 1]→ [0,+∞),∫
S↓

+∞∑
i=1

sif (si)ν(ds)=
∫ +∞

0
f (e−x)π (dx) (2.2)

(see [3, Proposition 1.6, p. 34], or [16, (3) and (4), p. 398]). Under Assumptions 2.1 and 2.2,
[3, Proposition 1.6] is true, even without the Malthusian hypothesis of [3].

We make the following assumption on π .

Assumption 2.3. There exist a and b, 0 < a < b <+∞, such that the support of π is [a,b]. We
set δ= e−b.

We have added a comment about Assumption 2.3 in Remark 4.1. We believe that we could
replace it by the following.

Assumption 2.4. The support of π is (0,+∞).

However, this would lead to difficult computations.
We set

T =− log (ε). (2.3)

We set, for all i ∈ [q], t≥ 0,

N(i)
t = inf

{
j : S(i)

j > t
}
,

B(i)
t = S(i)

N(i)
t
− t, (2.4)

C(i)
t = t− S(i)

N(i)
t −1
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FIGURE 2. Process B(1) and C(1).

(see Fig. 2 for an illustration). The processes B(i), C(i), and N(i) are time-homogeneous Markov
processes [1, Proposition 1.5, p. 141]. All of them are càdlàg (i.e. right-continuous with a left-
hand-side limit). We call B(i) the residual lifetime of the fragment tagged by i. We call C(i)

the age of the fragment tagged by i. We call N(i) the number of renewals up to time t. In the
following, we treat t as a time parameter. This has nothing to do with the time in which the
fragmentation process X evolves.

We observe that, for all t,
(
B(1)

t , . . . , B(q)
t
)

is exchangeable, meaning that for all σ in the

symmetric group of order q,
(
B(σ (1))

t , . . . , B(σ (q))
t

)
has the same law as

(
B(1)

t , . . . , B(q)
t
)
. When

we look at the fragments of sizes (ξu, u ∈ Uε : Au �= ∅), we have almost the same information as
when we look at

(
B(1)

T , B(2)
T , . . . , B(q)

T

)
. We say almost because knowing

(
B(1)

T , B(2)
T , . . . , B(q)

T

)
does not give exactly the number of u in Uε such that Au is not empty.

In the remainder of Section 2 we define processes that will be useful when we describe the
asymptotics of our model (in Section 4).

2.4. Stationary renewal processes
(
B

(1)
, B

(1),v)
We define X̃ to be an independent copy of X. We suppose it has q tagged fragments.

Therefore it has a mark
(̃
ξ, Ã

)
and renewal processes

(̃
S(i)

k

)
k≥0 (for all i in [q]) defined in

the same way as for X. We let
(̃
B(1), B̃(2)

)
be the residual lifetimes of the fragments tagged by

1 and 2.
Let μ= ∫ +∞

0 xπ (dx), and let π1 be the distribution with density x �→ x/μ with respect to π .
We set C to be a random variable of law π1; U to be independent of C and uniform on (0, 1);
and S̃−1 =C(1−U). The process S0 = S̃−1, S1 = S̃−1 + S̃(1)

0 , S2 = S̃−1 + S̃(1)
1 , S2 = S̃−1 + S̃(1)

2 ,
. . . is a renewal process with delay π1 (with waiting times S0, S1 − S0, . . . all smaller than b

by Assumption 2.3). The renewal times are S0, S1, S2, . . . We set (B
(1)
t )t≥0 to be the residual

lifetime process of this renewal process,

B
(1)
t =

{
C(1−U)− t if t < S0,

infn≥0
{
Sn : Sn > t

}− t if t≥ S0;

we define (C
(1)
t )t≥0 as

C
(1)
t =

{
CU + t if t < S0,

t− supn≥0
{
Sn : Sn ≤ t

}
if t≥ S0

(we call it the age process of our renewal process); and we set N
(1)
t = inf

{
j : Sj > t

}
.
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FIGURE 3. Renewal process with delay.

Fact 2.1. Theorem 3.3 on p. 151 of [1] tells us that
(
B

(1)
t , C

(1)
t

)
t≥0 has the same transition as(

B(1)
t , C(1)

t
)

t≥0 defined above, and that
(
B

(1)
t , C

(1)
t

)
t≥0 is stationary. In particular, this means

that the law of B
(1)
t does not depend on t.

Figure 3 provides a graphic representation of B
(1)
· . It might be counter-intuitive to start with

B
(1)
0 having a law which is not π in order to get a stationary process, but [1, Corollary 3.6,

p. 153] is clear on this point: a delayed renewal process (with waiting time of law π ) is
stationary if and only if the distribution of the initial delay is η (defined below).

We define a measure η on R
+ by its action on bounded measurable functions:

For all bounded measurable f :

R
+→R, η(f )= 1

μ

∫
R+

E(f (Y − s)1{Y−s>0}) ds (Y ∼ π ). (2.5)

Lemma 2.1. The measure η is the law of B
(1)
t (for any t≥ 0). It is also the law of

(
C

(1)
t

)
(for

any t).

Proof. We show the proof for B
(1)
t only. Let ξ ≥ 0. We set f (y)= 1y≥ξ , for all y in R. We

have, with Y of law π ,

1

μ

∫
R+

E(f (Y − s)1Y−s>0) ds= 1

μ

∫
R+

( ∫ y

0
1y−s≥ξ ds

)
π (dy)

= 1

μ

∫
R+

(y− ξ )+π (dy)

=
∫ +∞

ξ

(
1− ξ

y

)
y

μ
π (dy)= P(C(1−U)≥ ξ ). �

We set η2 to be the law of
(
C

(1)
0 , B

(1)
0

)= (
CU, C(1−U)

)
. The support of η2 is C := {(u, v) ∈

[0, b]2 : a≤ u+ v≤ b}.
For v in R, we now want to define a process(

C
(1),v
t , B

(1),v
t

)
t≥v−2b having the same transition as(

C(1)
t , B(1)

t
)

and being stationary. (2.6)
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FIGURE 4. Processes B̂(1),v, B̂(2),v.

We set
(
C

(1),v
v−2b, B

(1),v
v−2b

)
such that it has the law η2. As we have given its transition, the process(

C
(1),v
t , B

(1),v
t

)
t≥v−2b is well defined in law. In addition, we suppose that it is independent of all

the other processes. By Fact 2.1, the process
(
C

(1),v
t , B

(1),v
t

)
t≥v−2b is stationary.

We define the renewal times of B
(1),v

by S
(1),v
1 = inf

{
t≥ v− 2b : B

(1),v
t+ �= B

(1),v
t−

}
, and,

by recurrence, S
(1),v
k = inf

{
t > S

(1),v
k−1 : B

(1),v
t+ �= B

(1),v
t−

}
. We also define, for all t, N

(1),v
t =

inf
{
j : S

(1),v
j > t

}
. As will be seen later, the processes B

(1),v
and B

(2),v
are used to define asymp-

totic quantities (see, for example, Proposition 4.1) and we need them to be defined on an

interval [v,+∞) with v possibly in R
−. The process B

(2),v
is defined below (Section 2.6).

2.5. Tagged fragments conditioned to split up
(
B̂(1),v, B̂(2),v)

For v in [0,+∞), we define a process
(̂
B(1),v

t , B̂(2),v
t

)
t≥0 such that

B̂(1),v = B(1) and, with B(1) fixed, B̂(2),v has the law of B(2) conditioned on

for all u ∈ U , 1 ∈ Au⇒ [2 ∈ Au⇔− log (ξu)≤ v], (2.7)

which reads as follows: the tag 2 remains on the fragment bearing the tag 1 until the size
of the fragment is smaller than e−v. We observe that, conditionally on B̂(1),v

v and B̂(2),v
v ,(̂

B(1),v

v+B̂(1),v
v +t

)
t≥0 and

(̂
B(2),v

v+B̂(2),v
v +t

)
t≥0 are independent. We also define Ĉ(1),v =C(1). There is

an algorithmic way to define B̂(1),v and B̂(2),v, which is illustrated in Fig. 4. Remember that
B̂(1),v = B(1), and the definition of the mark (ξu, Au, Iu)u∈U in Section 2.2. We call

(̂
S(i)

j

)
i=1,2;j≥1

the renewal times of these processes (as before, they can be defined as the times when the right-
hand-side and left-hand-side limits are not the same). If Ŝ(1)

j ≤ v then Ŝ(2)
j = Ŝ(1)

j . If k is such

that Ŝ(1)
k−1 ≤ v and Ŝ(1)

k > v, we remember that

exp
(̂
S(1)

k − Ŝ(1)
k−1

)= ξ̃ui (2.8)

for some u in U with |u| = k− 1 and some i in N
∗ (because B̂(1),v = B(1)). We have points

Y1, Y2 ∈ [0, 1] such that Y1 and Y2 are in Iu of length ξu. Conditionally on {Y1, Y2 ∈ Iu}, Y1
and Y2 are independent and uniformly distributed on Iu. The interval Iui, of length ξuξ̃ui, is a
sub-interval of Iu such that Y1 ∈ Iui, because of (2.8). Then, for r ∈N∗\{i}, we want Y2 to be in
Iur with probability ξ̃ur/

(
1− ξ̃ui

)
(because we want 2 /∈ Aui). So we take Ŝ(2)

k = Ŝ(1)
k−1 − log ξ̃ur

with probability ξ̃ur/
(
1− ξ̃ui

)
(r ∈N∗\{i}).
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FIGURE 5. B(1)
kb and C(1)

kb .

Fact 2.2.

(i) The knowledge of the couple
(̂
S(1)

N(1)
v −1

, B̂(1),v
v

)
is equivalent to the knowledge of the

couple
(
Ĉ(1),v

v , B̂(1),v
v

)
.

(ii) The law of B(1)
v knowing C(1)

v is π −C(1)
v , with π conditioned to be bigger than C(1)

v ;
we call it η1

( · · · |C(1)
v
)
. As B̂(1),v = B(1) and Ĉ(1),v =C(1), we also have that the law of

B̂(1),v
v knowing Ĉ(1),v

v is η1
( · · · | Ĉ(1),v

v
)
.

(iii) The law of B̂(2),v
v knowing

(
Ĉ(1),v

v , B̂(1),v
v

)
does not depend on v and we denote it by

η′
( · · · | Ĉ(1),v

v , B̂(1),v
v

)
.

The subsequent waiting times Ŝ(1)
k+1 − Ŝ(1)

k , Ŝ(2)
k+1 − Ŝ(2)

k , . . . are chosen independently of
each other, each of them having the law π . For j equal to 1 or 2 and t in [0,+∞), we
define N̂(j)

t = inf{i : Ŝ(j)
i > t}. We observe that, for t≥ 2b, N̂(1)

t is bigger than 2 (because of
Assumption 2.3).

2.6. Two stationary processes after a split-up (B
(1),v

, B
(2),v

)

Let k be an integer, k≥ 2, such that

k× (b− a)≥ b. (2.9)

Now we state a small lemma that will be useful in what follows. Remember that the process(
C

(1),v
t , B

(1),v
t

)
t≥v−2b is defined in (2.6). The process

(
Ĉ(1),v

t , B̂(1),v
t

)
t≥0 is defined in the previous

section.

Lemma 2.2. Let v be in R. The variables
(
C

(1),v
v , B

(1),v
v

)
and

(
Ĉ(1),kb

kb , B̂(1),kb
kb

)
have the same

support (and it is C, defined below Lemma 2.1).

Proof. The law η2 is the law of
(
C

(1)
0 , B

(1)
0

)
(η2 is defined below Lemma 2.1). As previously

stated, the support of η2 is C; so, by stationarity, the support of
(
C

(1),v
v , B

(1),v
v

)
is C.

Keep in mind that B̂(1),v = B(1), Ĉ(1),v =C(1). By Assumption 2.3, the support of S(1)
k is [ka,

kb] and the support of S(1)
k+1 − S(1)

k is [a, b]. If S(1)
k+1 > kb then B(1)

kb = S(1)
k+1 − S(1)

k − (
kb− S(1)

k

)
and C(1)

kb = kb− S(1)
k (see Fig. 5).

The support of S(1)
k is [ka, kb] and kb− ka≥ b (see (2.9)), so, as S(1)

k and S(1)
k+1 − S(1)

k

are independent, we get that the support of
(
C(1)

kb , S(1)
k+1 − S(1)

k

)
includes {(u, w) ∈ [0; b]2 : w≥

https://doi.org/10.1017/jpr.2022.114 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.114


Central limit theorem in fragmentation 1041

sup (a, u)}. Hence, the support of
(
C(1)

kb , B(1)
kb

)= (
C(1)

kb , S(1)
k+1 − S(1)

k −C(1)
kb

)
includes C. As this

support is included in C, we have proved the desired result. �

For v in R, we define a process
(
B

(2),v
t

)
t≥v. We start with:

B
(2),v
v has the law η′

( · · · |C(1),v
v , B

(1),v
v

)
(2.10)

(remember that η′ is defined in Fact 3.1). This conditioning is correct because the law

of
(
C

(1),v
v , B

(1),v
v

)
is the law η2, whose support is included in the support of the law of(

Ĉ(1),kb
kb , B̂(1),kb

kb

)
, which is η2 (see the lemma above, and below (2.6)). We then let the pro-

cess
(
B

(1),v
t , B

(2),v
t

)
t≥v run its course as a Markov process having the same transition as(̂

B(1),kb
t−v+kb, B̂(2),kb

t−v+kb

)
t≥v. This means that, after time v, B

(1),v
t and B

(2),v
t decrease linearly (with

slope −1) until they reach 0. When they reach 0, each of these two processes makes a jump of
law π , independently of the other one. After that, they decrease linearly, and so on.

Fact 2.3. The process
(
B

(1),v
t , B

(2),v
t

)
t≥v is supposed independent from all the other processes

(until now, we have defined its law and said that that B
(1),v

is independent from all the other
processes).

3. Rate of convergence in the key renewal theorem

We need the following regularity assumption.

Assumption 3.1. The probability π (dx) is absolutely continuous with respect to the Lebesgue
measure (we will write π (dx)= π (x) dx). The density function x �→ π (x) is continuous on
(0;+∞).

Fact 3.1. Let θ > 1 (θ is fixed in the rest of the paper). The density π satisfies
lim supx→+∞ exp (θx)π (x) <+∞.

For ϕ a non-negative Borel-measurable function on R, we set S(ϕ) to be the set of complex-
valued measures ρ (on the Borelian sets) such that

∫
R

ϕ(x)|ρ|(dx) <∞, where |ρ| stands for
the total variation norm. If ρ is a finite complex-valued measure on the Borelian sets of R, we
define T ρ to be the σ -finite measure with the density

v(x)=
{

ρ((x,+∞)) if x≥ 0,

−ρ((−∞, x]) if x < 0.

Let F be the cumulative distribution function of π .
We set Bt = B(1)

t (see (2.4) for the definition of B(1), B(2), . . .). By [1, Theorem 3.3, p. 151,
and Theorem 4.3, p. 156], we know that Bt converges in law to a random variable B∞ (of law
η) and that Ct converges in law to a random variable C∞ (of law η). The following theorem is
a consequence of [21, Theorem 5.1, p. 2429]. It shows there is actually a rate of convergence
for these convergences in law.

Theorem 3.1. Let ε′ ∈ (0, θ ), M ∈ (0,+∞), and

ϕ(x)=
{

e(θ−ε
′)x if x≥ 0,

1 ifx < 0.
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If Y is a random variable of law π , then

sup
α : ‖α‖∞≤M

∣∣∣∣E(α(Bt))− 1

μ

∫
R+

E(α(Y − s)1{Y−s>0}) ds

∣∣∣∣= o

(
1

ϕ(t)

)
(3.1)

as t approaches +∞ outside a set of Lebesgue measure zero (the supremum is taken on α in
the set of Borel-measurable functions on R), and

sup
α : ‖α‖∞≤M

∣∣∣∣E(α(Ct))− 1

μ

∫
R+

E(α(Y − s)1{Y−s>0}) ds

∣∣∣∣= o

(
1

ϕ(t)

)
(3.2)

as t approaches +∞ outside a set of Lebesgue measure zero (the supremum is taken on α in
the set of Borel-measurable functions on R).

Proof. We give the proof of (3.1); the proof of (3.2) is very similar.
Let ∗ stand for the convolution product. We define the renewal measure U(dx)=∑+∞
n=0 π∗n(dx) (where π∗0(dx)= δ0, the Dirac mass at 0, and π∗n = π ∗ π ∗ · · · ∗ π , n times).

We take i.i.d. variables X, X1, X2, . . . of law π . Let f : R→R be a measurable function such
that ‖f‖∞ ≤M. We have, for all t≥ 0,

E(f (Bt))=E

( +∞∑
n=0

f (X1 + X2 + · · · + Xn+1 − t)1{X1+···+Xn≤t<X1+···+Xn+1}

)

=
∫ t

0
E(f (s+ X − t)1{s+X−t>0})U(ds).

We set

g(t)=
{
E(f (X − t)1{X−t>0}) if t≥ 0,

0 if t < 0.

We observe that ‖g‖∞ ≤M. We have, for all t≥ 0,

|E(f (X − t)1{X−t>0})| ≤ ‖f‖∞P(X > t)≤ ‖f‖∞e−(θ−ε
′
/2)t

E
(
e(θ−ε

′
/2)X).

We have, by Fact 3.1, E
(
e(θ−ε

′
/2)X

)
<∞. The function ϕ is sub-multiplicative and is such

that

lim
x→−∞

log (ϕ(x))

x
= 0≤ lim

x→+∞
log (ϕ(x))

x
= θ − ε′.

The function g is in L1(R), and the function g.ϕ is in L∞(R). We have g(x)ϕ(x)→ 0 as
|x|→∞,

ϕ(t)
∫ +∞

t
|g(x)| dx −→

t→+∞ 0, ϕ(t)
∫ t

−∞
|g(x)| dx −→

t→−∞ 0,

and T ◦2(π ) ∈ S(ϕ).
Let us now take a function α such that ‖α‖∞ ≤M. We set

α̂(t)=
{
E
(
α(X − t)1{X−t≥0}

)
if t≥ 0,

0 if t < 0.

Then we have ‖α̂‖∞ ≤M and, computing as above for f , E(α(Bt))= α̂ ∗U(t).
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In the case where f is a constant equal to M, we have ‖g‖∞ =M. So, by [21, Theorem 5.1]
(applied to the case f ≡M), we have proved the desired result. �

Corollary 3.1. There exists a constant �1 bigger than 1 such that, for any bounded measurable
function F on R such that η(F)= 0, for t outside a set of Lebesgue measure zero,

|E(F(Bt))| ≤ ‖F‖∞ × �1

ϕ(t)
, (3.3)

|E(F(Ct))| ≤ ‖F‖∞ × �1

ϕ(t)
. (3.4)

for t outside a set of Lebesgue measure zero.

Proof. We provide the proof of (3.3) only; the proof of (3.4) is very similar.
We take M = 1 in Theorem 3.1. Keep in mind that η is defined in (2.5). By the above

theorem, there exists a constant �1 such that, for all measurable functions α such that
‖α‖∞ ≤ 1,

|E(α(Bt))− η(α)| ≤ �1

ϕ(t)
(for t outside a set of Lebesque measure zero). (3.5)

Let us now take a bounded measurable F such that η(F)= 0. By (3.5), we have, for t outside a
set of Lebesgue measure zero,∣∣∣∣E( F(Bt)

‖F‖∞
)
− η

(
F

‖F‖∞
)∣∣∣∣≤ �1

ϕ(t)

|E(F(Bt))| ≤ ‖F‖∞ × �1

ϕ(t)
. �

4. Limits of symmetric functionals

4.1. Notation

We fix q ∈N∗, and set Sq to be the symmetric group of order q. A function F : Rq→R is
symmetric if, for all σ ∈ Sq and all (x1, . . . , xq) ∈Rq,

F(xσ (1), xσ (2), . . . , xσ (q))= F(x1, x2, . . . , xq).

For F : Rq→R, we define a symmetric version of F by

Fsym(x1, . . . , xq)= 1

q!
∑
σ∈Sq

F(xσ (1), . . . , xσ (q)) for all (x1, . . . , xq) ∈Rq. (4.1)

We set Bsym(q) to be the set of bounded, measurable, symmetric functions F on R
q, and we

set B0
sym(q) to be the F of Bsym(q) such that∫

x1

F(x1, x2, . . . , xq)η(dx1)= 0 for all (x2, . . . , xq) ∈Rq−1.
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FIGURE 6. Example tree and marks.

Suppose that k is in [q] and l≥ 1. For t in [0, T], we consider the following collections of
nodes of U (remember that T =− log ε, and U and m(·) are defined in Section 2.1):

T1 = {u ∈ U\{0} : Au �= ∅, ξm(u) ≥ ε} ∪ {0},
S(t)= {u ∈ T1 : − log (ξm(u))≤ t, − log (ξu) > t} = Ue−t , (4.2)

Lt =
∑

u∈S(t) : Au �=∅
(#Au − 1). (4.3)

We set L1 to be the set of leaves in the tree T1. For t in [0, T] and i in [q], there exists one
and only one u in S(t) such that i ∈ Au. We call it u{t, i}. Under Assumption 2.3, there exists a
constant bounding the numbers of vertices of T1 almost surely.

Let us consider the example in Fig. 6. Here, we have a graphical representation of a real-
ization of T1. Each node u of T1 is written above a rectangular box in which we read Au; the
right side of the box has the coordinate − log (ξu) on the x-axis. For simplicity, the node (1,1)
is designated by 11, the node (1,2) by 12, and so on. In this example:

T1 = {(0), (1), (2), (1, 1), (2, 1), (1, 2), (1, 1, 1), (2, 1, 1), (1, 1, 1, 1), (1, 2, 1)},
L1 = {(2, 1, 1), (1, 1, 1, 1), (1, 2, 1)},

A(1) = {1, 2, 3}, A(1,2) = {1, 2}, . . . ,

S(t)= {(1, 2), (1, 1), (2, 1)},
u{t, 1} = (1, 2), u{t, 2} = (1, 2), u{t, 3} = (1, 1), u{t, 4} = (2, 1).

For k, l ∈N and t ∈ [0, T], we define the event

Ck,l(t)=
{ ∑

u∈S(t)

1#Au=1 = k,
∑

u∈S(t)

(#Au − 1)= l

}
.

For example, in Fig. 6, we are in the event C2,1(t).
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We define T2 = {u ∈ T1\{0} : #Am(u) ≥ 2} ∪ {0}, m2 : u ∈ T2 �→ (ξu, inf{i, i ∈ Au}). For exam-
ple, in Fig. 6, T2 = {(0), (1), (2), (1, 1), (1, 2), (1, 2, 1)}. Let α be in (0, 1).

Fact 4.1. We can always suppose that (1− α)T > b because we are interested in T going to
infinity. So, in the following, we suppose (1− α)T > b.

For any t, we can compute
∑

u∈S(t) (#Au − 1) if we know
∑

u∈S(t) 1#Au=1 and #S(t). As
T − αT > b, any u in S(αT) satisfies #Au ≥ 2 if and only if u is the mother of some v in T2. So
we deduce that Ck,l(αT) is measurable with respect to (T2, m2). We set, for all u in T2,

Tu =− log (ξu). (4.4)

For any i in [q], t �→ u{t, i} is piecewise constant and the ordered sequence of its jump times

is S(i)
1

< S(i)
2 < · · · (the S(i)

... are defined in Section 2.3). We simply have that 1, e−S(i)
1 , e−Si)

2 , . . .

are the successive sizes of the fragment supporting the tag i. For example, in Fig. 6, we have

S(1)
1 =− log (ξ1), S(1)

2 =− log (ξ(1,2)), S(1)
3 =− log (ξ(1,2,1)), . . . (4.5)

Let L2 be the set of leaves u in the tree T2 such that the set Au has a single element nu. For
example, in Fig. 6, L2 = {(2), (1, 1)}. We observe that #L1 = q⇔ #L2 = q, and thus

{#L1 = q} ∈ σ (L2). (4.6)

We summarize the definition of nu:

#Au = 1⇒ Au = {nu}. (4.7)

For q even (q= 2p) and for all t in [0, T], we define the events

Gt = {for all i ∈ [p], there exists ui ∈ U : ξui < e−t, ξm(ui) ≥ e−t, Aui = {2i− 1, 2i}},
for all i ∈ [p], Gi,i+1(t)= {there exists u ∈ S(t) : {2i− 1, 2i} ⊂ Au}.

We set, for all t in [0, T], FS(t) = σ (S(t), (ξu, Au)u∈S(t)).

4.2. Intermediate results

The reader must keep in mind that T =− log (ε), (2.3), and that δ is defined in
Assumption 2.3. The set B0

sym(q) is defined in Section 4.1.

Lemma 4.1. We suppose that F is in B0
sym(q) and that F is of the form F= (f1 ⊗ f2 ⊗ · · · ⊗

fq)sym, with f1, f2, . . . , fq ∈B0
sym(1). Let A be in σ (L2). For any α in ]0, 1[, k in [q], and l in

{0, 1, . . . , (q− k− 1)+}, we have

∣∣E(1Ck,l(αT)1AF
(
B(1)

T , B(2)
T , . . . , B(q)

T

)
)
∣∣≤ ‖F‖∞�

q
1Ctree(q)

(
1

δ

)q

εq/2

(for a constant Ctree(q) defined in the proof, and �1 defined in Corollary 3.1), and

ε−q/2
E
(
1Ck,l(αT)1AF

(
B(1)

T , B(2)
T , . . . , B(q)

T

))−→
ε→0

0.
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Proof. Let A be in σ (L2). We have

E
(
1Ck,l(αT)1AF

(
B(1)

T , B(2)
T , . . . , B(q)

T

))
=E

(
1A

∑
f : T2→P([q]) s.t. . . .

E
(
F
(
B(1)

T , B(2)
T , . . . , B(q)

T

)
1Au=f (u), for all u∈T2 |L2, T2, m2

))

(P defined in Section 1.5), where we sum on the f : T2→P([q]) such that⎧⎨⎩f (u)=�v : m(v)=uf (v) for all u in T2,∑
u∈S(αT) 1#f (u)=1 = k and

∑
u∈S(αT) (#f (u)− 1)= l.

(4.8)

We remind the reader that � is defined in Section 1.5 (disjoint union), m(·) is defined in Section
2.1 (mother), and S( . . .) is defined in (4.2). Here, we mean that we sum over the f compatible
with a description of tagged fragments.

If u ∈L2 and Tu < T , then, conditionally on T2 and m2, B(nu)
T is independent of all the other

variables and has the same law as B(1)
T−Tu

(Tu is defined in (4.4), nu in (4.7)). Thus, using
Theorem 3.1 and Corollary 3.1, we get, for any ε′ ∈ (0, θ − 1), u ∈L2,∣∣E(fnu

(
B(nu)

T

)|L2, T2, m2
)∣∣≤ �1‖fnu‖∞e−(θ−ε

′)(T−Tu)+

for T − Tu /∈ Z0, where Z0 is of Lebesgue measure zero.

Thus, we get

|E(1Ck,l(αT)1AF
(
B(1)

T , B(2)
T , . . . , B(q)

T

))|
‖F‖∞�

q
1

⎧⎪⎨⎪⎩
(since F is of the form F= (f1 ⊗ · · · ⊗
fq)sym, since, conditionally on u ∈L2, the
distribution of Tu is absolutely continuous
with respect to the Lebesgue measure)

≤E

( ∑
f :T2→P([q]) s.t. . . .

[ ∏
u∈L2

e−(θ−ε
′)(T−Tu)+1AE

(
1Au=f (u),for all u∈T2 |L2, T2, m2

)])

(because of Assumption 2.3, and because θ − ε′ > 1)

≤E

( ∑
f : T2→P([q]) s.t. . . .

[ ∏
u∈L2

e−(T−Tm(u))−log (δ)1AE
(
1Au=f (u),for all u∈T2 |L2, T2, m2

)])

(because of (2.1); see full proof in Section A)

≤E

( ∑
f : T2→P([q]) s.t. . . .

1A

[ ∏
u∈L2

e−(T−Tm(u))−log (δ)
∏

u∈T2\{0}
e−(#f (u)−1)(Tu−Tm(u))

])
.

For a fixed ω and a fixed f , we have

∏
u∈L2

e−(T−Tm(u))−log (δ)
∏

u∈T2\{0}
e−(#f (u)−1)(Tu−Tm(u)) =

(
1

δ

)#L2

exp

(
−
∫ T

0
a(s) ds

)
,
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where, for all s,

a(s)=
∑

u∈L2\{0} : Tm(u)≤s<T

1#f (u)=1 +
∑

u∈T2\{0} : Tm(u)≤s≤Tu

(#f (u)− 1)

(if u ∈ T2\L2, 1#f (u)=1 = 0)

=
∑

u∈T2\{0} : Tm(u)≤s<T

1#f (u)=1 +
∑

u∈T2\{0} : Tm(u)≤s≤Tu

(#f (u)− 1)

(S(·) defined in (4.2))

≥
∑

u∈S(s)

1#f (u)=1 +
∑

u∈S(s)

(#f (u)− 1).

We observe that, under (4.8),

a(t)≥
⌈q

2

⌉
for all t, a(αT)≥ k+ l,

and, if t is such that
∑

u∈S(t) 1#f (u)=1 = k′ and
∑

u∈S(t) (#f (u)− 1)= l′ for some integers k′, l′,
then, for all s≥ t,

a(s)≥ k′ +
⌈

q− k′

2

⌉
.

We observe that, under Assumption 2.3, there exists a constant which bounds #T2 almost
surely (because, for all u in U\{0}, − log (ξu)+ log (ξm(u))≥ a), and so there exists a constant
Ctree(q) which bounds #{f : T2→P([q])} almost surely. So, we have∣∣E(1AF(B(1)

T , B(2)
T , . . . , B(q)

T )
)∣∣

≤ ‖F‖∞�
q
1E

( ∑
f : T2→P([q]) s.t. . . .

1A

(
1

δ

)#L2

e−�q/2�αT exp

{
−
(

k+
⌈

q− k

2

⌉ )
(T − αT)

})

≤ ‖F‖∞�
q
1Ctree(q)

(
1

δ

)q

e−�q/2�αT exp

{
−
(

k+
⌈

q− k

2

⌉ )
(1− α)T

}
. (4.9)

Since k≥ 1, k+ �(q− k)/2�> q/2, and so we have proved the desired result (remember
that T =− log ε). �

Remark 4.1. If we replaced Assumption 2.3 by Assumption 2.4, we would have difficulties
adapting the above proof. In the second line of (4.9), the 1/δ becomes eTu−Tm(u) . In addition,
the tree T2 is no longer a.s. finite. So, the expectation on the second line of (4.9) could certainly
be bounded, but for a high price (a lot more computations, maybe assumptions on the tails of
π , and so on). This is why we stick with Assumption 2.3.

Remember that Lt (t≥ 0) is defined in (4.3).
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Lemma 4.2. Let k be an integer, k≥ q/2, and let α ∈ [q/(2k), 1]. Then we have P(LαT ≥ k)≤
K1(q)εq/2, where

K1(q)=
∑
i∈[q]

q!
(q− i)! × iq−i.

Let k be an integer, k > q/2, and let α ∈ (q/(2k), 1). Then

ε−q/2
P(LαT ≥ k)−→

ε→0
0.

(We remind the reader that T =− log (ε).)

Proof. Let k be an integer, k≥ q/2, and let α ∈ [q/(2k), 1]. Remember that S(·) is
defined in (4.2). Observe that #S(αT)= i if and only if LαT = q− i (see (4.3)). We use the
decomposition

{LαT ≥ k} = {LαT ∈ {k, k+ 1, . . . , q− 1}}
= ∪i∈[q−k]{#S(αT)= i}
= ∪i∈[q−k] ∪m:[i]↪→[q] (F(i, m)∩ {#S(αT)= i})

(remember that ‘↪→’ means we are summing on injections; see Section 1.5), where

F(i, m)= {i1, i2 ∈[i] with i1 �= i2⇒
there exists u1, u2 ∈ S(αT), u1 �= u2, m(i1) ∈ Au1 , m(i2) ∈ Au2}.

(To make the above equations easier to understand, observe that if #S(αT)= i, we have, for
each j ∈ [i], an index m(j) in Au for some u ∈ S(αT), and we can choose m such that we are in
the event F(i, m)). Suppose we are in the event F(i, m). For u ∈ S(αT) and for all j in [i] such
that m(j) ∈ Au, we define (remember |u| and m are defined in Section 2.1)

T (j)
|u| = − log (ξu), T (j)

|u|−1 =− log (ξm(u)), . . . , T (j)
1 =− log (ξm◦(|u|−1)(u)), T (j)

0 = 0,

with l(j)= |u|, v(j)= u. We have

P(LαT ≥ k)≤
∑

i∈[q−k]

∑
m:[i]↪→[q]

P(F(i, m)∩ {#S(αT)= i})

=
∑

i∈[q−k]

∑
m : [i]↪→[q]

E
(
1F(i,m)E

(
1#S(αT)=i | F(i, m),

(
T (j)

p

)
j∈[i],p∈[l(j)], (v(j))j∈[i]

))
(below, we sum over the partitions B of [q]\m([i]) into i subsets B1,B2, . . . ,Bi)

=
∑

i∈[q−k]

∑
m : [i]↪→[q]

∑
B

E

(
1F(i,m)E

(∏
j∈[i]

∏
r∈Bj

1r∈Av(j) | F(i, m),
(
T (j)

p

)
j∈[i],p∈[l(j)], (v(j))j∈[i]

))

(as Y1, . . . , Yq defined in Section 2.2 are independent)
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=
∑

i∈[q−k]

∑
m : [i]↪→[q]

∑
B

E

(
1F(i,m)

∏
j∈[i]

∏
r∈Bj

E
(
1r∈Av(j) | F(i, m),

(
T (j)

p

)
j∈[i],p∈[l(j)], (v(j))j∈[i]

))

(because of (2.1) and (4.4))

=
∑

i∈[q−k]

∑
m : [i]↪→[q]

∑
B

E

(
1F(i,m)

∏
j∈[i]

∏
r∈Bj

l(j)∏
s=1

exp
(−T (j)

s + T (j)
s−1

))
(as v(j) ∈ S(αT))

≤
∑

i∈[q−k]

∑
m : [i]↪→[q]

∑
B

∏
j∈[i]

∏
r∈Bj

e−αT

=
∑

i∈[q−k]

∑
m : [i]↪→[q]

∑
B

e−α(q−i)T

≤
∑

i∈[q−k]

∑
m : [i]↪→[q]

∑
B

e−kαT ≤ e−kαT
∑
i∈[q]

q!
(q− i)! i

q−i.

If we suppose that k > q/2 and α ∈ (q/(2k), 1), then

exp

(
qT

2

)
exp (−kαT) −→

T→+∞ 0. �

Immediate consequences of the two lemmas above are the following corollaries.

Corollary 4.1. If q is odd and if F ∈B0
sym(q) is of the form F= (f1 ⊗ · · · ⊗ fq)sym, then

ε−q/2
E
(
F
(
B(1)

T , . . . , B(q)
T

)
1#L1=q

)−→
ε→0

0.

(B0
sym and L1 are defined in Section 4.1.)

Proof. We take α ∈ ((q/2)�q/2�−1, 1). We observe that, for k in [q], t in (0, T),∑
u∈S(t)

1#Au=1 = k⇒
∑

u∈S(t)

(#Au − 1) ∈ {0, 1, . . . , (q− k− 1)+},

and (Lt is defined in (4.3))
∑

u∈S(t) 1#Au=1 = 0⇒ Lt ≥ �q/2�. So, we can use the decomposition

ε−q/2
∣∣E(F(B(1)

T , . . . , B(q)
T

)
1#L1=q

)∣∣
=
∣∣∣∣∣ε−q/2

∑
k∈[q]

∑
l∈{0,1,...,(q−k−1)+}

E
(
1Ck,l(αT)1#L1=qF

(
B(1)

T , . . . , B(q)
T

))

+ ε−q/2
E
(
1LαT≥�q/2�1#L1=qF

(
B(1)

T , . . . , B(q)
T

))∣∣∣∣∣−→ε→0
0 (4.10)

(by (4.6) and Lemmas 4.1 and 4.2).
(L1 and L2 are defined in Section 4.1.) �
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Corollary 4.2. Suppose F ∈B0
sym(q) is of the form F= (f1 ⊗ · · · ⊗ fq)sym. Let A ∈ σ (L2).

Then ∣∣E(F(B(1)
T , . . . , B(q)

T

)
1A
)∣∣≤ ‖F‖∞εq/2

{
K1(q)+ �

q
1Ctree(q)

(
1

δ

)q

(q+ 1)2
}

.

Proof. We get, as in (4.10),∣∣E(F(B(1)
T , . . . , B(q)

T

)
1A
)∣∣

=
∣∣∣∣∣E
(

F
(
B(1)

T , . . . , B(q)
T

)
1A

(
1LαT≥q/2 +

∑
k′∈[q]

∑
0≤l≤(q−k′−1)+

1C
k
′
,l

(αT)

))∣∣∣∣∣
(from Lemmas 4.1 and 4.2)

≤ ‖F‖∞εq/2

{
K1(q)+ �

q
1Ctree(q)

(
1

δ

)q ∑
k′∈[q]

1+ (q− k′ − 1)+

}
,

and
∑

k′∈[q] 1+ (q− k′ − 1)+ ≤ (q+ 1)2 (see Section B for a detailed proof). �

We now want to find the limit of ε−q/2
E
(
1LT≤q/21#L1=qF

(
B(1)

T , . . . , B(q)
T

))
when ε goes to

0, for q even. First we need a technical lemma.
For any i, the process

(
B(i)

t
)

has a stationary law (see [1, Theorem 3.3 p. 151]). Let B∞ be
a random variable having this stationary law η (it has already appeared in Section 3). We can
always suppose that it is independent of all the other variables.

Fact 4.2. From now on, when we have an α in (0, 1), we suppose that αT − log (δ) < (T +
αT)/2 and (T + αT)/2− log (δ) < T (this is true if T is large enough). (The constant δ is
defined in Assumption 2.3.)

Lemma 4.3. Let f1, f2 be in B0
sym(1). Let α belong to (0, 1), and ε′ belong to (0, θ − 1) (θ is

defined in Fact 3.1). We have∫ − log (δ)

−∞
e−v

∣∣E(f1(B(1),v
0

)
f2
(
B

(2),v
0

))∣∣ dv <∞, (4.11)

and, almost surely, for T large enough,∣∣∣∣eT−αT−B(1)
αTE

(
f1 ⊗ f2

(
B(1)

T, B(2)
T

)
1G1,2(T)c |FS(αT), GαT

)
−
∫ − log (δ)

−∞
e−v

E
(
1

v≤B
(1),v
0

f1
(
B

(1),v
0

)
f2
(
B

(2),v
0

))
dv

∣∣∣∣
≤ �2‖f1‖∞‖f2‖∞ exp

(
−(T − αT)

(
θ − ε′ − 1

2

))
,

where

�2 = �2
1

δ2+2(θ−ε
′)(2(θ − ε′)− 1)

+ �1

δθ−ε
′ +

�2
1

δ2(θ−ε
′)(2(θ − ε′)− 1)

.

(The processes B(1), B(2), B
(1),v

, and B
(2),v

are defined in Sections 2.3, 2.4, and 2.6.)
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Proof. We have, for all s in
[
αT + B(1)

αT , T
]

(because of (2.1) and (4.4)),

P
(
u{s, 2} = u{s, 1} |FS(αT), GαT ,

(
S(1)

j

)
j≥1

)= exp
[−(s+ B(1)

s − (
αT + B(1)

αT

))]
(we remind the reader that u{s, 1}, G1,2, are defined in Section 4.1, below (4.3)). Let us
introduce the breaking time τ1,2 between 1 and 2 as a random variable having the following
property: conditionally on FS(αT), GαT , and

(
S(1)

j

)
j≥1, τ1,2 has the density

s ∈R �→ 1
[αT+B(1)

αT ,+∞)
(s)e−(s−(αT+B(1)

T ))

(this is a translation of an exponential law). We have the equalities αT + B(1)
αT = S(1)

j0
for some j0,

and T + B(1)
T = S(1)

i0
for some i0. Here, we need to comment on the definitions of Section 4.1.

In Fig. 6 we have − log (ξ(1,2))= S(1)
2 (as in (4.5)), S(S(1)

2 )= {(1, 2, 1), (1, 1, 1), (2, 1)}, and
u{−log (ξ(1,2)), 1} = {(1, 2, 1)}. It is important to understand this example before reading what
follows. The breaking time τ1,2 has the following interesting property (for all k≥ j0):

P
(
u
{
S(1)

k , 2
} �= u

{
S(1)

k , 1
} |FS(αT), GαT ,

(
S(1)

j

)
j≥1

)
= P

(
τ1,2 ∈

[
αT + B(1)

αT , S(1)
k

] |FS(αT), GαT ,
(
S(1)

j

)
j≥1

)
.

Just because we can, we impose, for all k≥ j0, conditionally on FS(αT), GαT , and
(
S(1)

j

)
j≥1,

{
u
{
S(1)

k , 2
} �= u

{
S(2)

k , 1
}}= {

τ1,2 ∈
[
αT + B(1)

αT , S(1)
k

]}
.

Now, let v be in
[
αT + B(1)

αT , T + B(1)
T

]
. We observe that, for all v in

[
αT + B(1)

αT , T + B(1)
T

]
,

E
(
f1 ⊗ f2

(
B(1)

T, B(2)
T

)
1G1,2(T)c |FS(αT), GαT ,

(
S(1)

j

)
j≥1, τ1,2 = v

)
=E

(
f1 ⊗ f2

(̂
B(1),v

T, B̂(2),v
T

) |FS(αT), GαT ,
(
S(1)

j

)
j≥1

)
(because of (2.7)).

And so,

E
(
f1 ⊗ f2

(
B(1)

T, B(2)
T

)
1G1,2(T)c |FS(αT), GαT

)
=E

(
E
(
f1 ⊗ f2

(
B(1)

T, B(2)
T

)
1G1,2(T)c |FS(αT), GαT ,

(
S(1)

j

)
j≥1

) |FS(αT), GαT
)

=E
(
E
(
E
(
f1 ⊗ f2

(
B(1)

T, B(2)
T

)
1G1,2(T)c |FS(αT), GαT ,

(
S(1)

j

)
j≥1, τ1,2

) |FS(αT), GαT ,
(
S(1)

j

)
j≥1

)
|FS(αT), GαT

)
(keep in mind that B̂(1),v = B(1) for all v)
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=E

(
E

(∫ T+B(1)
T

αT+B(1)
αT

e−
(

v−αT−B̂(1),v
αT

)
E
(
f1⊗ f2

(
B(1)

T, B(2)
T

)
1G1,2(T)c |FS(αT),GαT ,

(
S(1)

j

)
j≥1,τ1,2 = v

)
dv

|FS(αT), GαT ,
(
S(1)

j

)
j≥1

)
|FS(αT), GαT

)

=E

(
E

( ∫ T+B(1)
T

αT+B(1)
αT

e−(v−αT−B̂(1),v
αT )

E

(
f1
(̂
B(1),v

T

)
f2
(̂
B(2),v

T

) |FS(αT), GαT ,
(
S(1)

j

)
j≥1

)
dv

|FS(αT), GαT ,
(
S(1)

j

)
j≥1

)
|FS(αT), GαT

)

=E

( ∫ T+B(1)
T

αT+B(1)
αT

e−(v−αT−B̂(1),v
αT )f1

(̂
B(1),v

T

)
f2
(̂
B(2),v

T

)
dv |FS(αT), GαT

)
.

Let us split the above integral into two parts and multiply them by eT−αT−B(1)
αT . For the first

part:

∣∣∣∣eT−αT−B(1)
αTE

( ∫ (T+αT)/2

αT+B(1)
αT

e−
(

v−αT−B̂(1),v
αT

)
f1
(̂
B(1),v

T

)
f2
(̂
B(2),v

T

)
dv |FS(αT), GαT

)∣∣∣∣
= eT−αT−B(1)

αT

∣∣∣∣E( ∫ (T+αT)/2

αT+B(1)
αT

e−
(

v−αT−B̂(1),v
αT

)
E
(
f1
(̂
B(1),v

T

)
f2
(̂
B(2),v

T

)|̂B(1),v
v , B̂(2),v

v ,FS(αT),GαT
)
dv

|FS(αT), GαT

)∣∣∣∣
(using the fact that B̂(1),v

T and B̂(2),v
T are independent conditionally on{

B̂(1),v
v , B̂(2),v

v ,FS(αT), GαT
}

if T ≥ v− log (δ), we get,

by Theorem 3.1, Corollary 3.1, and Fact 4.2)

≤ eT−αT−B(1)
αTE

( ∫ (T+αT)/2

αT+B(1)
αT

e−(v−αT−B̂(1)
αT )

(
�1‖f1‖∞e−(θ−ε

′)(T−v−B̂(1),v
v )+�1‖f2‖∞e−(θ−ε

′)(T−v−B̂(2),v
v )+) dv |FS(αT), GαT

)
(using Assumption 2.3)

≤ �2
1‖f1‖∞‖f2‖∞e(T−αT−log (δ))

∫ (T+αT)/2

αT
e−(v−αT+log (δ))e−2(θ−ε

′)(T−v+log (δ)) dv

= �2
1‖f1‖∞‖f2‖∞
δ2+2(θ−ε

′) e(T−2(θ−ε
′)T)

[
e(2(θ−ε

′)−1)v

2(θ − ε′)− 1

](T+αT)/2

αT
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≤ �2
1‖f1‖∞‖f2‖∞
δ2+2(θ−ε

′)
exp (−(2(θ − ε′)− 1)T + (2(θ − ε′)− 1)(T + αT)/2)

2(θ − ε′)− 1

= �2
1‖f1‖∞‖f2‖∞
δ2+2(θ−ε

′)
exp (−(2(θ − ε′)− 1)((T − αT)/2))

2(θ − ε′)− 1
. (4.12)

For the second part, minus some other terms:∣∣∣∣∣∣∣∣
eT−αT−B(1)

αTE

( ∫ T+B(1)
T

(T+αT)/2
e−(v−αT−B(1)

αT )f1
(̂
B(1),v

T

)
f2
(̂
B(2),v

T

)
dv |FS(αT), GαT

)
︸ ︷︷ ︸

second part

−
∫ T−log (δ)

(T+αT)/2
e−(v−T)

E

(
1

v≤T+B
(1),v
T

f1
(
B

(1),v
T

)
f2
(
B

(2),v
T

))
dv︸ ︷︷ ︸

(♥)

∣∣∣∣∣∣∣
=
∣∣∣∣eT−αT−B(1)

αTE

( ∫ T−log (δ)

(T+αT)/2
e−(v−αT−B(1)

αT )1
v≤T+B(1)

T
f1
(̂
B(1),v

T

)
f2
(̂
B(2),v

T

)
dv |FS(αT), GαT

)

− eT−αT−B(1)
αTE

( ∫ T−log (δ)

(T+αT)/2
e−(v−αT−B(1)

αT )1
v≤T+B

(1),v
T

f1
(
B

(1),v
T

)
f2
(
B

(2),v
T

)
dv

)∣∣∣∣
= eT−αT−B(1)

αT

∣∣∣∣ ∫ T−log (δ)

(T+αT)/2
e−(v−αT−B(1)

αT )
E
(
E
(
1

v≤T+B(1)
T

f1
(̂
B(1),v

T

)
f2(̂B(2),v

T )

| Ĉ(1),v
v ,FS(αT), GαT

) |FS(αT), GαT
)

dv

−
∫ T−log (δ)

(T+αT)/2
e−(v−αT−B(1)

αT )
E
(
E
(
1

v≤T+B
(1),v
T

f1
(
B

(1),v
T

)
f2
(
B

(2),v
T

) |C(1),v
v

))
dv

∣∣∣∣. (4.13)

We observe that, for all v in [(T + αT)/2, T − log (δ)], once Ĉ(1),v
v is fixed, we can make

a simulation of B̂(1),v
T = B(1)

T and B̂(2),v
T (these processes are independent of FS(αT), GαT

conditionally on Ĉ(1),v
v ). Indeed, we draw B̂(1),v

v conditionally on Ĉ(1),v
v (with law η1

( · | Ĉ(1),v
v

)
defined in Fact 2.2), then we draw B̂(2),v

v conditionally on B̂(1),v
v and Ĉ(1),v

v (with law
η′
( · | B̂(1),v

v , Ĉ(1),v
v

)
, see Fact 2.2). Then,

(̂
B(1),v

t
)

t≥v and
(̂
B(2),v

t
)

t≥v run their courses as

independent Markov processes, until we get B̂(1),v
T , B̂(2),v

T .
In the same way (for all v in [(T + αT)/2, T − log (δ)]), we observe that the process(

C
(1),v

, B
(1),v)

starts at time v− 2b and has the same transition as
(
C(1), B(1)

)
(see (2.6)).

By Assumption 2.1, the following time exists: S= sup
{
t : v− b≤ t≤ v , C

(1),v
t = 0

}
.

We then have v− S=C
(1),v
v . When C

(1),v
v is fixed, this entails that B

(1),v
v has the law

η1
( · |C(1),v

v

)
. We have B

(2),v
v of law η′

( · |C(1),v
v , B

(1),v
v

)
(by (2.10)). As before, we then let
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the process
(
B

(1),v
t , B

(2),v
t

)
t≥v run its course as a Markov process having the same transition as(̂

B(1),kb
t−v+kb, B̂(2),kb

t−v+kb

)
t≥v until we get B

(1),v
T , B

(2),v
T .

So we get that (for all v in [(T + αT)/2, T − log (δ)])

E
(
1

v≤T+B(1)
T

f1
(̂
B(1),v

T

)
f2
(̂
B(2),v

T

) | Ĉ(1),v
v ,FS(αT), GαT

)=�
(
Ĉ(1),v

v

)
,

E
(
1

v≤T+B
(1),v
T

f1
(
B

(1),v
T

)
f2
(
B

(2),v
T

) |C(1),v
v

)=�
(
C

(1),v
v

) law= �(C∞)

for some function �, the same in both lines, such that ‖�‖∞ ≤ ‖f1‖∞‖f2‖∞ (where C∞ is
defined in Section 3). So, by Theorem 3.1 and Corollary 3.1 applied on the time interval[
αT + B(1)

αT , v
]
, the quantity in (4.14) can be bounded (remember that Ĉ(1),v =C(1),

Section 2.5) by

eT−αT−B(1)
αT

∫ T−log (δ)

(T+αT)/2
e−(v−αT−B(1)

αT )�1‖f1‖∞‖f2‖∞e−(θ−ε
′)(v−αT−B(1)

αT ) dv.

(Coming from Corollary 3.1 there is an integral over a set of Lebesgue measure zero in the
above bound, but this term vanishes.) The above bound can in turn be bounded by

�1‖f1‖∞‖f2‖∞δ−(θ−ε
′)eT

∫ T−log (δ)

(T+αT)/2
e(θ−ε

′)αTe−(θ−ε
′+1)v dv

(as θ − ε′ + 1 > 1)

≤ �1‖f1‖∞‖f2‖∞δ−(θ−ε
′)eT+αT(θ−ε

′) exp

[
−(θ − ε′ + 1)

(
T + αT

2

)]

= �1‖f1‖∞‖f2‖∞δ−(θ−ε
′) exp

[
−(θ − ε′ − 1)

(
T − αT

2

)]
. (4.14)

We have∫ T−log (δ)

T+αT
2

e−(v−T)
E
(
1

v≤T+B
(1),v
T

f1
(
B

(1),v
T

)
f2
(
B

(2),v
T

))
dv

(as
(
B

(1),v
T , B

(2),v
T

)
and

(
B

(1),v−T
0 , B

(2),v−T
0

)
have same law)

=
∫ T−log (δ)

T+αT
2

e−(v−T)
E
(
1

v−T≤B
(1),v−T
0

f1
(
B

(1),v−T
0

)
f2
(
B

(2),v−T
0

))
dv

(change of variable v′ = v− T)

=E

( ∫ − log (δ)

−( T−αT
2

) e−v′1
v′≤B

(1),v
′

0

f1
(
B

(1),v′
0

)
f2
(
B

(1),v′
0

)
dv′

)
(4.15)
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and∫ − (T−αT)
2

−∞
e−v

∣∣E(f1(B(1),v
0

)
f2
(
B

(2),v
0

))∣∣ dv

(since B
(1),v
0 and B

(2),v
0 are independent conditionally on B

(1),v
v , B

(2),v
v if v− log (δ)≤ 0;

using Theorem 3.1 and Corollary 3.1)

≤
∫ − (T−αT)

2

−∞
e−v�2

1‖f1‖∞‖f2‖∞E
(
e−(θ−ε

′)(−v−B
(1),v
v )+e−(θ−ε

′)(−v−B
(2),v
v )+) dv

(again, coming from Corollary 3.1 there is an integral over a set of

Lebesgue measure zero in the above bound, but this term vanishes)

≤
∫ − (T−αT)

2

−∞
e−v�2

1‖f1‖∞‖f2‖∞e−2(θ−ε
′)(−v+log (δ)) dv

= �2
1‖f1‖∞‖f2‖∞

δ2(θ−ε
′)

exp (−(2(θ − ε′)− 1)(T − αT)/2)

2(θ − ε′)− 1
. (4.16)

Equations (4.16) and (4.17) give us (4.11). Equations (4.13) and (4.15)–(4.17) give us the
desired result (see below to understand the puzzle).

eT−αT−B(1)
αTE

(
f1 ⊗ f2

(
B(1)

T, B(2)
T

)
1G1,2(T)c |FS(αT), GαT

)
↙ ↓

First part Second part (in (4.14))
(in (4.13)) ↓

↓ Close to some term (♥) (see (4.14), (4.15))
Small ↓

(♥) close to

− ∫ − log (δ)
−∞ e−v

E
(
1

v≤B
(1),v
0

f1
(
B

(1),v
0

)
f2
(
B

(2),v
0

))
dv

(see (4.16), (4.17)) �

Lemma 4.4. Let k ∈ {0, 1, 2, . . . , p}. We suppose that q is even and q= 2p. Let α ∈ (q/(q+
2), 1). We suppose that F= f1 ⊗ f2 ⊗ · · · ⊗ fq, with f1, . . . , fq in B0

sym(1). Then,

ε−q/2
E
(
F
(
B(1)

T, . . . ,B(q)
T

)
1GαT 1#L1=q

)
−→
ε→0

p∏
i=1

∫ − log (δ)

−∞
e−v

E
(
1

v≤B
(1),v
0

f2i−1
(
B

(1),v
0

)
f2i
(
B

(2),v
0

))
dv. (4.17)

(Remember that T =− log ε.)

Proof. By Fact 4.1, we have T > αT − log (δ). We have (remember the definitions just
before Section 4.2)

GαT ∩ {#L1 = q} =GαT ∩
⋂

1≤i≤p

G2i−1,2i(T)c.
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We have (remember T =− log (ε))

ε−q/2
E
(
F
(
B(1)

T, . . . , B(q)
T

)
1GαT 1#L1=q

)
= epT

E

(
1GαTE

( p∏
i=1

f2i−1 ⊗ f2i
(
B(2i−1)

T , B(2i)
T

)
1G2i−1,2i(T)c |FS(αT), GαT

))

(as
(
B(1)

T , B(2)
T , 1G1,2(T)

)
,
(
B(3)

T , B(4)
T , 1G3,4(T)

)
, . . . are independent

conditionally on FS(αT), GαT due to Fact 4.2)

=E

(
1GαT

p∏
i=1

eT
E
(
f2i−1 ⊗ f2i

(
B(2i−1)

T , B(2i)
T

)
1G2i−1,2i(T)c |FS(αT), G2i−1,2i(αT)

))

(by Lemma 4.3 and as
(
B(1), . . . , B(q)

)
is exchangeable)

=E

(
1GαT

p∏
i=1

eαT+B(2i−1)
αT

( ∫ − log (δ)

−∞
e−v

E
(
1

v≤B
(1),v
0

f2i−1
(
B

(1),v
0

)
f2i
(
B

(2),v
0

))
dv+ R2i−1,2i

))
,

(4.18)

with (a.s.)

|R2i−1,2i| ≤ �2‖f2i−1‖∞‖f2i‖∞e−(T−αT)(θ−ε
′−1)/2. (4.19)

We introduce the events (for t ∈ [0, T], with u{·} defined below (4.3))

Ot = {#{u{t, 2i− 1}, 1≤ i≤ p} = p},
and the tribes (for i in [q], t ∈ [0, T]) Ft,i = σ (u{t, i}, ξu{t,i}). As GαT =OαT ∩⋂

1≤i≤p{u{αT, 2i− 1} = u{αT, 2i}}, we have

E

(
1GαT

p∏
i=1

eB(2i−1)
αT +αT

)

=E

(
1OαT

p∏
i=1

eB(2i−1)
αT +αT

E

( p∏
i=1

1u{αT,2i−1}=u{αT,2i} | ∨1≤i≤pFαT,2i−1

))

(by Proposition 2.1 and (2.1))

=E(1OαT ). (4.20)

We then observe that

Oc
αT =∪i∈[p] ∪j∈[p],j �=i {u{αT, 2i− 1} = u{αT, 2j− 1}},

and, for i �= j,

P(u{αT, 2i− 1} = u{αT, 2j− 1})=E
(
E
(
1u{αT,2i−1}=u{αT,2j−1} |FαT,2i−1

))
=E

(
e−αT−B(2i−1)

αT
)

(by Proposition 2.1 and (2.1))

≤ e−αT−log (δ). (because of Assumption (2.3))

So, P(OαT )−→
ε→0

1. This gives us enough material to finish the proof of (4.18).

https://doi.org/10.1017/jpr.2022.114 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.114


Central limit theorem in fragmentation 1057

Indeed, starting from (4.19), we have

ε−q/2
E
(
F
(
B(1)

T, . . . , B(q)
T

)
1GαT 1#L1=q

)
=E

(
1GαT

p∏
i=1

eαT+B(2i−1)
αT

) p∏
i=1

( ∫ − log (δ)

−∞
e−v

E(1
v≤B

(1),v
0

f2i−1
(
B

(1),v
0

)
f2i
(
B

(2),v
0

)
) dv

)

+E

(
1GαT

p∏
i=1

eαT+B(2i−1)
αT R2i−1,2i

)
=: (I)+ (II).

By (4.21),

(I)= P(Oαt)
p∏

i=1

( ∫ − log (δ)

−∞
e−v

E
(
1

v≤B
(1),v
0

f2i−1
(
B

(1),v
0

)
f2i
(
B

(2),v
0

))
dv

)

−→
ε→0

p∏
i=1

( ∫ − log (δ)

−∞
e−v

E
(
1

v≤B
(1),v
0

f2i−1
(
B

(1),v
0

)
f2i
(
B

(2),v
0

))
dv

)
.

And, by (4.20),

(II)≤ P(Oαt)
p∏

i=1

(
�2‖f2i−1‖∞‖f2i‖∞e−(T−αT)(θ−ε

′−1)/2)−→
ε→0

0. �

4.3. Convergence result

For f and g bounded measurable functions, we set

V(f , g)=
∫ − log (δ)

−∞
e−v

E
(
1

v≤B
(1),v
0

f
(
B

(1),v
0

)
g
(
B

(2),v
0

))
dv. (4.21)

For q even, we set Iq to be the set of partitions of [q] into subsets of cardinality 2. We have

#Iq = q!
(q/2)!2q/2

. (4.22)

For I in Iq and t in [0, T], we introduce

Gt,I = {for all {i, j} ∈ I, there exists u ∈ U such that ξu < e−t, ξm(u) ≥ e−t, Au = {i, j}}.
For t in [0, T], we define Pt =∪I∈Iq Gt,I . The above event can be understood as ‘at time

t, the dots are paired on different fragments’. As before, the reader has to keep in mind that
T =− log (ε), see (2.3).

Proposition 4.1. Let q be in N
∗. Let F= (f1 ⊗ · · · ⊗ fq)sym with f1, . . . , fq in B0

sym(1) ((·)sym
defined in (4.1)). If q is even (q= 2p) then

εq/2
E
(
F
(
B(1)

T , . . . , B(q)
T

)
1#L1=q

)−→
ε→0

∑
I∈Iq

∏
{a,b}∈I

V(fa, fb). (4.23)
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Proof. Let α be in (q/(q+ 2), 1). We have

ε−q/2
E
(
F
(
B(1)

T , . . . , B(q)
T

)
1#L1=q

)= ε−q/2
E
(
F
(
B(1)

T , . . . , B(q)
T

)
1#L1=q(1PαT + 1Pc

αT
)
)
.

Remember that the events of the form Ck,l(t), Lt are defined in Section 4.1. The set Pc
αT is a

disjoint union of sets of the form Ck,l(αT) (with k≥ 1) and {LαT > q/2} (this can be understood
heuristically by: ‘if the dots are not paired on fragments then some of them are alone on their
fragment, or none of them is alone on a fragment and some are a group of at least three on a
fragment’). As before, the event {#L1 = q} is measurable with respect to L2 (see (4.6)). So, by
Lemmas 4.1 and 4.2,

lim
ε→0

ε−q/2
E
(
F
(
B(1)

T , . . . , B(q)
T

)
1#L1=q1Pc

αT

)= 0.

We compute:

ε−q/2
E
(
F
(
B(1)

T , . . . , B(q)
T

)
1#L1=q1PαT

)= ε−q/2
E

(
F
(
B(1)

T , . . . , B(q)
T

)
1#L1=q

∑
Iq∈Iq

1GαT,Iq

)

(as F is symmetric and
(
B(1)

T , . . . , B(q)
T

)
is exchangeable)

= q!
2q/2(q/2)!ε

−q/2
E
(
F
(
B(1)

T , . . . , B(q)
T

)
1#L1=q1GαT

)
= q!ε−q/2

2q/2(q/2)!
1

q!
∑
σ∈Sq

E
(
(fσ (1) ⊗ · · · ⊗ fσ (q))

(
B(1)

T , . . . , B(q)
T

)
1#L1=q1GαT

)
(by Lemma 4.4)

−→
ε→0

1

2q/2(q/2)!
∑
σ∈Sq

p∏
i=1

V(fσ (2i−1), fσ (2i))=
∑
I∈Iq

∏
{a,b}∈I

V(fa, fb). �

5. Results

We are interested in the probability measure γT defined by its action on bounded measurable
functions F : [0, 1]→R by

γT (F)=
∑
u∈Uε

ξuF

(
ξu

ε

)
.

We define, for all q ∈N∗ and F from [0, 1]q to R,

γ
⊗q
T (F)=

∑
a : [q]→Uε

ξa(1) · · · ξa(q)F

(
ξa(1)

ε
, . . . ,

ξa(q)

ε

)
,

γ
�q
T (F)=

∑
a : [q]↪→Uε

ξa(1) · · · ξa(q)F

(
ξa(1)

ε
, . . . ,

ξa(q)

ε

)
,
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where the last sum is taken over all the injective applications a from [q] to Uε. We set

�(F) : (y1, . . . , yq) ∈R+ �→ F(e−y1, . . . , e−yq ).

The law γ⊗q is the law of q fragments picked in Uε with replacement. For each fragment, the
probability of being picked is its size. The measure γ�q is not a law: γ�q(F) is an expectation
over q fragments picked in Uε with replacement (for each fragment, the probability of being
picked is its size); in this expectation, we multiply the integrand by zero if two fragments are
the same (and by one otherwise). The definition of Section 2.2 says that we can define the
tagged fragment by painting colored dots on the stick [0, 1] (q dots of different colors, these
are the Y1, . . . , Yq) and then by looking on which fragments of Uε we have these dots. So, we
get (remember T =− log ε)

E
(
γ
⊗q
T (F)

)=E
(
�(F)

(
B(1)

T , . . . , B(q)
T

))
,

E
(
γ
�q
T (F)

)=E
(
�(F)

(
B(1)

T , . . . , B(q)
T

)
1#L1 = q

)
. (5.1)

We define, for all bounded continuous f : R+→R,

γ∞(f )= η(�(f )). (5.2)

Proposition 5.1. (Law of large numbers.) We remind the reader that we have Fact 3.1, and
that we are under Assumptions 2.1, 2.2, 2.3, and 3.1. Let f be a continuous function from [0, 1]
to R. Then

γT (f )
a.s.−→

T→+∞ γ∞(f ).

(Remember T =− log ε.)

Proof. We take a bounded measurable function f : [0, 1]→R. We define f = f − η(�(f )).
We take an integer q≥ 2. We introduce the notation

for all g : R+→R and all (x1, . . . , xq) ∈Rq, g⊗q(x1, . . . , xq)= g(x1)g(x2) . . . g(xq).

We have

E((γT (f )− η(�(f )))q)=E
((

γT
(
f
))q)

=E
(
γ
⊗q
t

(
f
⊗q))

(as
(
B(1), . . . , B(q)

)
is exchangeable)

=E
(
γ
⊗q
t

((
f
⊗q)

sym

))
≤ ‖f‖q∞εq/2

{
K1(q)+ �

q
1Ctree(q)

(
1

δ

)q

(q+ 1)2
}

.

(by Corollary 4.2)

We now take sequences (Tn = log (n))n≥1, (εn = 1/n)n≥1. We then have, for all n and for all
ι > 0,

P([γTn(f )− η(�(f ))]4 ≥ ι)≤ ‖f‖
4∞

ιn2

{
K1(4)+ �4

1Ctree(4)

(
1

δ

)4

× 25

}
.
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So, by the Borell–Cantelli lemma,

γTn(f )
a.s.−→

n→+∞ η(�(f )). (5.3)

We now have a little more work to do to get to the result. Let n be in N
∗. We use the

decomposition (where Uε is defined in Section 2.3 and � stands for ‘disjoint union’, defined
in Section 1.5) Uεn = U (1)

εn � U (2)
εn , where U (1)

εn = Uεn ∩ Uεn+1 = Uεn+1 , U (2)
εn = Uεn\Uεn+1 . For u in

Uεn\Uεn+1 , we set d(u)= {v : u=m(v)} (m is defined in Section 2.1) and we observe that, for
all u (Tu defined in (4.4)), ∑

v∈d(u)

ξv = ξu. (5.4)

We can then write ∑
u∈Uεn

ξuf

(
ξu

εn

)
=

∑
u∈U (1)

εn

ξuf (nξu)+
∑

u∈U (2)
εn

ξuf (nξu).

There exists n1 such that, for n bigger than n1, e−a < εn+1/εn (remember Assumption 2.3).
We suppose n≥ n1; we then have, for all u in U (2)

εn , εn > ξu ≥ εn+1 and, for any v in d(u),
ξv ≤ εne−a, ξv < εn+1. So we get

∑
u∈Uεn+1

ξuf

(
ξu

εn+1

)
=

∑
u∈U (1)

εn

ξuf ((n+ 1)ξu)+
∑

u∈U (2)
εn

∑
v∈d(u)

ξvf ((n+ 1)ξv). (5.5)

Thus we have, for n≥ n1,∣∣∣∣∣ ∑
u∈U (2)

εn

∑
v∈d(u)

ξvf ((n+ 1)ξv)−
∑

u∈U (2)
εn

ξuf (nξu)

∣∣∣∣∣
≤ |γTn+1 (f )− γTn (f )| +

∣∣∣∣∣ ∑
u∈U (1)

εn

ξuf ((n+ 1)ξu)−
∑

u∈U (1)
εn

ξuf (nξu)

∣∣∣∣∣. (5.6)

If we take f = Id, the terms in the equation above can be bounded:∣∣∣∣∣ ∑
u∈U (2)

εn

∑
v∈d(u)

ξvf ((n+ 1)ξv)−
∑

u∈U (2)
εn

ξuf (nξu)

∣∣∣∣∣
≥
∣∣∣∣∣ ∑

u∈U (2)
εn

(
ξuf (nξu)−

∑
v∈d(u)

ξvf (nξv)

)∣∣∣∣∣−
∣∣∣∣∣ ∑

u∈U (2)
εn

∑
v∈d(u)

(ξvf (nξv)− ξvf ((n+ 1)ξv))

∣∣∣∣∣
(by Assumption 2.3)

≥
∑

u∈U (2)
εn

(
ξuf (nξu)−

∑
v∈d(u)

ξvf (nξu)e−a

)
−
∣∣∣∣∣ ∑

u∈U (2)
εn

∑
v∈d(u)

(ξvf (nξv)− ξvf ((n+ 1)ξv))

∣∣∣∣∣
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≥
∑

u∈U (2)
εn

ξu(1− e−a)
n

n+ 1
−

∑
u∈U (2)

εn

∑
v∈d(u)

ξv
1

n+ 1
, (5.7)

(by (5.4))

|γTn+1 (f )− γTn(f )| +
∣∣∣∣∣ ∑

u∈U (1)
εn

ξuf ((n+ 1)ξu)−
∑

u∈U (1)
εn

ξuf (nξu)

∣∣∣∣∣
≤ |γTn+1 (f )− γTn (f )| +

∑
u∈U (1)

εn

ξu
1

n
. (5.8)

Let ι > 0. We fix ω in �. By (5.3), almost surely, there exists n2 such that, for n≥ n2,
|γTn+1 (f )− γTn(f )|< ι. For n≥ n1 ∨ n2, we can then write∑

u∈U (2)
εn

ξu ≤ n+ 1

n(1− e−a)

(
ι+

∑
u∈U (2)

εn

∑
v∈d(u)

ξv
1

n+ 1
+

∑
u∈U (1)

εn

ξu
1

n

)

(by (5.6), (5.7), and (5.8))

≤ n+ 1

n(1− e−a)

(
ι+ 1

n

)
. (5.9)

(by (5.4))

Let n≥ n1 ∨ n2 and t ∈ (Tn, Tn+1). We can use the decomposition

Uεn = U (1)
εn

(t) � U (2)
εn

(t), where U (1)
εn

(t)= Uεn ∩ Ue−t = Ue−t , U (2)
εn

(t)= Uεn\Ue−t . (5.10)

For u in Uεn\U (1)
εn (t), we set d(u, t)= {v ∈ Ue−t : u=m(v)}. As n≥ n1, d(u, t)= d(u) and we

have ∑
v∈d(u,t)

ξv = ξu. (5.11)

Similar to (5.5), we have∑
u∈Ue−t

ξuf
(
etξu

)= ∑
u∈U (1)

εn (t)

ξuf
(
etξu

)+ ∑
u∈U (2)

εn (t)

∑
v∈d(u,t)

ξvf
(
etξv

)
.

We fix f continuous from [0, 1] to R; there exists n3 ∈N∗ such that, for all x, y ∈ [0, 1],
|x− y| ≤ 1/n3⇒|f (x)− f (y)|< ι. Suppose that n≥ n1 ∨ n2 ∨ n3. Then, using (5.10) and
(5.11), we have, for all t ∈ [Tn, Tn+1],

|γt(f )− γTn(f )| =
∣∣∣∣∣ ∑

u∈Ue−t

ξuf
(
etξu

)− ∑
u∈U (1)

εn (t)

ξuf (nξu)−
∑

u∈U (2)
εn (t)

ξuf (nξu)

∣∣∣∣∣
=
∣∣∣∣∣ ∑

u∈U (1)
εn (t)

ξuf
(
etξu

)+ ∑
u∈U (2)

εn (t)

∑
v∈d(u,t)

ξvf
(
etξv

)− ∑
u∈U (1)

εn (t)

ξuf (nξu)−
∑

u∈U (2)
εn (t)

ξuf (nξu)

∣∣∣∣∣

https://doi.org/10.1017/jpr.2022.114 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.114


1062 S. RUBENTHALER

≤
∣∣∣∣∣ ∑

u∈U (1)
εn (t)

ξuf
(
etξu

)− ∑
u∈U (1)

εn (t)

ξuf (nξu)

∣∣∣∣∣+ 2
∑

u∈U (2)
εn (t)

ξu‖f‖∞

≤
∑

u∈U (1)
εn (t)

ξuι+ 2
∑

u∈U (2)
εn (t)

ξu‖f‖∞

≤ ι+ 2‖f‖∞ n+ 1

n(1− e−a)

(
ι+ 1

n

)
. (5.12)

(using (5.9), and since U (2)
εn (t)⊂ U (2)

εn )

Equations (5.3) and (5.12) prove the desired result. �

The set B0
sym(1) is defined in Section 4.1.

Theorem 5.1. (Central limit theorem.) We remember we have Fact 3.1, and we are under
Assumptions 2.1, 2.2, 2.3, and 3.1. Let q ∈N∗. For functions f1, . . . , fq that are continuous
and in B0

sym(1), we have

ε−q/2(γT (f1), . . . , γT (fq))
law−→

T→+∞N (0, (K(fi, fj))1≤i,j≤q) (ε= e−T ).

(K is given in (5.13).)

Proof. Let f1, . . . , fq,B0
sym(1), v1, . . . , vq ∈R.

First, we develop the following product (remember that for u ∈ Uε, ξu/ε < 1 a.s.):∏
u∈Uε

(
1+√ε

ξu

ε
(iv1f1 + · · · + ivqfq)

(
ξu

ε

))

= exp

( ∑
u∈Uε

log

[
1+√ε Id×(iv1f1 + · · · + ivqfq)

(
ξu

ε

)])

(for ε small enough)

= exp

( ∑
u∈Uε

∑
k≥1

(−1)k+1

k
εk/2(Id×(iv1f1 + · · · + ivqfq))k

(
ξu

ε

))

= exp

(
1√
ε

γT (iv1f1 + · · · + ivqfq)+ 1

2
γT (Id×(v1f1 + · · · + vqfq)2)+ Rε

)
,

where

Rε =
∑
k≥3

∑
u∈Uε

(−1)k+1

k
εk/2−1ξu

(
ξu

ε

)k−1

(iv1f1 + · · · + ivqfq)k
(

ξu

ε

)

=
∑
k≥3

(−1)k+1

k
εk/2−1γT ((Id )k−1(iv1f1 + · · · + ivqfq)k),

|Rε| ≤
∑
k≥3

εk/2−1

k
(|v1|‖f1‖∞ + · · · + |vq|‖fq‖∞)k =O(

√
ε).
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We have, for some constant C (using x ∈R⇒|eix| = 1),

E

(∣∣∣∣ exp

(
1√
ε

γT (iv1f1 + · · · + ivqfq)+ 1

2
γT (Id×(v1f1 + · · · + vqfq)2)+ Rε

)

− exp

(
1√
ε

γT (iv1f1 + · · · + ivqfq)+ 1

2
η(�(Id×(v1f1 + · · · + vqfq)2))

)∣∣∣∣)

≤E

(
C

∣∣∣∣12γT (Id×(v1f1 + · · · + vqfq)2)− 1

2
η(�(Id×(v1f1 + · · · + vqfq)2))+ Rε

∣∣∣∣)
−→
ε→0

0. (by Proposition 5.1)

Second, we develop the same product in a different manner. We have (the order on U is
defined in Section 2.1),

∏
u∈Uε

(
1+√ε

ξu

ε
(iv1f1 + · · · + ivqfq)

(
ξu

ε

))

=
∑
k≥0

ε−k/2ik
∑

1≤j1,...,jk≤q

vj1 · · · vjk

∑
u1,...,uk∈Uε
u1<···<uk

ξu1 · · · ξuk fj1

(
ξu1

ε

)
· · · fjk

(
ξuk

ε

)

(a detailed proof can be found in Section D)

=
∑
k≥0

ε−k/2ik
∑

1≤j1,...,jk≤q

vj1 · · · vjk
1

k!γ
�k
T (fj1 ⊗ · · · ⊗ fjk ).

We have, for all k,∣∣∣∣∣ε−k/2
∑

1≤j1,...,jk≤q

vj1 · · · vjk
1

k!E
(
γ�k

T (fj1 ⊗ · · · ⊗ fjk )
)∣∣∣∣∣

≤ ε−k/2 × qk sup (|v1|, . . . , |vq|)k sup (‖f1‖∞, . . . , ‖fq‖∞)k

k! .

So, by Corollary 4.1, Proposition 4.1, and (5.1), we get

E

( ∏
u∈Uε

(
1+√ε

ξu

ε
(iv1f1 + · · · + ivqfq)

(
ξu

ε

)))

−→
ε→0

∑
k≥0

k even

(−1)k/2
∑

1≤j1,...,jk≤q

1

k!
∑
I∈Ik

∏
{a,b}∈I

V(vja fja, vjb fjb )

(a detailed proof can be found in Section C)
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=
∑
k≥0

k even

(−1)k/2

2k/2(k/2)!
∑

1≤j1,...,jk≤q

V(vj1 fj1, vj2 fj2 ) · · · V(vjk−1 fjk−1, vjk fjk )

(using (4.23))

=
∑
k≥0

k even

(−1)k/2

2k/2(k/2)!

( ∑
1≤j1,j2≤q

vj1 vj2 V(fj1 , fj2 )

)k/2

= exp

(
−1

2

∑
1≤j1,j2≤q

vj1 vj2 V(fj1, fj2 )

)
.

In conclusion, we have

E

(
exp

(
1√
ε

γT (iv1f1 + · · · + ivqfq)

))

−→
ε→0

exp

(
− 1

2
η(�(Id×(v1f1 + · · · + vqfq)2))− 1

2

∑
1≤j1,j2≤q

vj1 vj2 V(fj1, fj2 )

)
.

So we get the desired result with, for all f , g,

K(f , g)= η(�(Id×fg)+ V(f , g)) (5.13)

(V is defined in (4.22)). �

Appendix A. Detailed proof of a bound appearing in the proof of Lemma 4.1

Lemma A.1. We have, for any f appearing in the proof of Lemma 4.1,

E(1Au=f (u), for all u∈T2 |L2, T2, m2)≤
∏

u∈T2\{0}
e−(#f (u)−1)(Tu−Tm(u)).

Proof. We want to show this by recurrence on the cardinality of T2.
If #T2 = 1, then T2 = {0} and the claim is true.
Suppose now that #T2 = k and the claim is true up to the cardinality k− 1. There exists

v in T2 such that (v, i) is not in T2, for any i in N
∗. We set T2

′ = T2\{v}, L2
′ =L2\{v},

m2
′ : u ∈ T2

′ → (ξu, inf{i, i ∈ Au}). We set f (v)= {i1, . . . , ip} (with i1 < · · ·< ip), f (m(v))=
{i1, . . . , ip, ip+1, . . . , iq} (with ip+1 < · · ·< iq). We suppose that m2(v)= (ξv, i1), because if
m2(v)= (ξv, j) with j �= i1 then Av �= f (v) for all ω, and then the left-hand side of the inequality
above is zero. We have,

E(1Au=f (u), for all u∈T2 |L2, T2, m2)

=E(1Au=f (u), for all u∈T2
′E(1Av=f (v) |L2, T2, m2, (Au, u ∈ T2

′)) |L2, T2, m2)
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=E(1Au=f (u), for all u∈T2
′E(1i1,...,ip∈Av 1ip+1,...,iq /∈Av |L2, T2, m2, (Au, u ∈ T2

′)) |L2, T2, m2)

(remember we condition on m2, so the 1i1,...,ip can be replaced by 1i2,...,ip )

=E(1Au=f (u), for all u∈T2
′E(1i2,...,ip∈Av 1ip+1,...,iq /∈Av |L2, T2, m2, (Au, u ∈ T2

′)) |L2, T2, m2)

≤E(1Au=f (u), for all u∈T2
′E(1i2,...,ip∈Av |L2, T2, m2, (Au, u ∈ T2

′)) |L2, T2, m2)

(because the (Yj) introduced in Section 2.2 are independent)

=E

(
1Au=f (u), for all u∈T2

′
p∏

r=2

E(1ir∈Av |L2, T2, m2, (Au, u ∈ T2
′)) |L2, T2, m2

)

(because of (2.1); if v ∈L2 then
∏p

r=2 . . . is empty and thus = 1)

=E

(
1Au=f (u), for all u∈T2

′
p∏

r=2

ξ̃v |L2, T2, m2

)
(by (4.4) and Proposition 2.1)

= e−(#f (v)−1)(Tv−Tm(v))E(1Au=f (u), for all u∈T2
′ |L2, T2, m2)

= e−(#f (v)−1)(Tv−Tm(v))E(E(1Au=f (u), for all u∈T2
′ |L2

′, T2
′, m2

′) |L2, T2, m2)

(by recurrence)

≤
∏

u∈T2\{0}
e−(#f (u)−1)(Tu−Tm(u)). �

Appendix B. Detailed proof of a bound appearing in the proof of Corollary 4.2

Lemma B.1. Let q be in N. Then
∑

k′∈[q] 1+ (q− k′ − 1)+ ≤ (q+ 1)2.

Proof. We have

∑
k′∈[q]

1+ (q− k′ − 1)+ = q+
∑

k′∈[q−2]

(q− k′ − 1)= q+
q−2∑
i=1

i≤ q(q+ 1)

2
≤ (q+ 1)2. �

Appendix C. Detailed proof of an equality appearing in the proof of Theorem 5.1

Lemma C.1. Let q ∈N∗. Suppose we have q functions g1, . . . , gq in B0
sym(1). Then, for all k

even (k in N),∑
1≤j1,...,jk≤q

∑
I∈Ik

∏
{a,b}∈I

V(gja , gjb )= k!
2k/2(k/2)!

∑
1≤j1,...,jk≤q

V(gj1 , gj2 ) · · · V(gjk−1 , gjk ).

Proof. We set∑
1≤j1,...,jk≤q

∑
I∈Ik

∏
{a,b}∈I

V(gja , gjb )= (I),
∑

1≤j1,...,jk≤q

V(gj1 , gj2 ) · · · V(gjk−1 , gjk )= (II).
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Suppose, for some k, we have i1, . . . , ik ∈ [q], all distinct. There exist N1 and N2 such that:

• the term (I) has N1 terms V(gi1 , gi2 ) · · · V(gik−1 , gik ) (up to permutations; that is, we con-
sider that V(gi3 , gi4 )V(gi2, gi1 ) · · · V(gik−1 , gik ) and V(gi1 , gi2 ) · · · V(gik−1 , gik ) are the
same term);

• the term (II) has N2 terms V(gi1 , gi2 ) · · · V(gik−1 , gik ) (again, up to permutations).

These numbers N1 and N2 do not depend on i1, . . . , ik. In the case where the indexes i1, . . . , ik
are not distinct, we can easily find the number of terms equal to V(gi1 , gi2 ) · · · V(gik−1 , gik ) in
terms (I) and (II). For example, if i2 = i1 and i1, i3, . . . , ik are distinct, then

• the term (I) has 2N1 terms V(gi1 , gi2 ) · · · V(gik−1 , gik );

• the term (II) has 2N2 terms V(gi1 , gi2 ) · · · V(gik−1 , gik )

(we multiply simply by the number of σ in Sk such that (i1, i2, . . . , ik)=
(iσ (1), iσ (2), . . . , iσ (k))). We do not need to know N1 and N2, but we need to know N1/N2. By
taking V(g, f ) to be 1 for all g, f , we see that N1/N2 = #Ik = k!/(2k/2(k/2)!). �

Appendix D. Detailed proof of an equality appearing in the proof of Theorem 5.1

Lemma D.1. We have f1, . . . , fq, B0
sym(1), k ∈N, and v1, . . . , vq ∈R. Then

∑
1≤j1,...,jk≤q

vj1 · · · vjkγ
�k
T (fj1 ⊗ · · · ⊗ fjk )

= k!
∑

1≤j1,...,jk≤q

vj1 · · · vjk

∑
u1,...,uk∈Uε
u1<···<uk

ξu1 · · · ξuk fj1

(
ξu1

ε

)
· · · fjk

(
ξuk

ε

)
.

Proof. We have∑
1≤j1,...,jk≤q

vj1 · · · vjkγ
�k
T (fj1 ⊗ · · · ⊗ fjk )

=
∑

1≤j1,...,jk≤q

vj1 · · · vjk

∑
a:[k]↪→Uε

ξa(1) · · · ξa(k)fj1

(
ξa(1)

ε

)
· · · fjk

(
ξa(k)

ε

)
(for all injections a, there is exactly one σa ∈ Sk such that a(σa(1)) < · · ·< a(σa(k)))

=
∑

1≤j1,...,jk≤q

vj1 · · · vjk

∑
a:[k]↪→Uε

ξa(σa(1)) · · · ξa(σa(k))fjσa(1)

(
ξa(σa(1))

ε

)
· · · fjσa(k)

(
ξa(σa(k))

ε

)
(for τ ∈ Sk, we set E(τ )= {a : [k] ↪→ Uε : σa = τ })

=
∑

1≤j1,...,jk≤q

vj1 · · · vjk

∑
τ∈Sk

∑
a∈E(τ )

ξa(τ (1)) · · · ξa(τ (k))fjτ (1)

(
ξa(τ (1))

ε

)
· · · fjτ (k)

(
ξa(τ (k))

ε

)

=
∑
τ∈Sk

∑
1≤j1,...,jk≤q

vj1 · · · vjk

∑
a∈E(τ )

ξa(τ (1)) · · · ξa(τ (k))fjτ (1)

(
ξa(τ (1))

ε

)
· · · fjτ (k)

(
ξa(τ (k))

ε

)
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=
∑
τ∈Sk

∑
1≤j1,...,jk≤q

vjτ (1) · · · vjτ (k)

∑
a∈E(τ )

ξa(τ (1)) · · · ξa(τ (k))fjτ (1)

(
ξa(τ (1))

ε

)
· · · fjτ (k)

(
ξa(τ (k))

ε

)

=
∑
τ∈Sk

∑
1≤j1,...,jk≤q

vjτ (1) · · · vjτ (k)

∑
u1,...,uk∈Uε
u1<···<uk

ξu1 · · · ξuk fjτ (1)

(
ξu1

ε

)
· · · fjτ (k)

(
ξuk

ε

)
.

The application (‘↪→’ means that an application is injective)

(a : [k]→ [q], τ : [k] ↪→ [k])
�−→ a ◦ τ

is such that, for all b : [k]→ [q], #�−1({b})= k!. So the above quantity is equal to

k!
∑

1≤j1,...,jk≤q

vj1 · · · vjk

∑
u1,...,uk∈Uε
u1<···<uk

ξu1 · · · ξuk fj1

(
ξu1

ε

)
· · · fjk

(
ξuk

ε

)
.

�
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