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Dual Creation Operators and a Dendriform
Algebra Structure on the Quasisymmetric
Functions

Darij Grinberg

Abstract. _e dual immaculate functions are a basis of the ring QSym of quasisymmetric functions
and form one of the most natural analogues of the Schur functions. _e dual immaculate function
corresponding to a composition is a weighted generating function for immaculate tableaux in the
same way as a Schur function is for semistandard Young tableaux; an immaculate tableau is deûned
similarly to a semistandardYoung tableau, but the shape is a composition rather than a partition, and
only the ûrst column is required to strictly increase (whereas the other columns can be arbitrary, but
each row has to weakly increase). Dual immaculate functions were introduced by Berg, Bergeron,
Saliola, Serrano, and Zabrocki in arXiv:1208.5191, and have since been found to possess numerous
nontrivial properties.

In this note, we prove a conjecture of M. Zabrocki that provides an alternative construction for
the dual immaculate functions in terms of certain “vertex operators”. _e proof uses a dendriform
structure on the ringQSym; we discuss the relation of this structure to known dendriform structures
on the combinatorial Hopf algebras FQSym and WQSym.

1 Introduction

_e three most well-known combinatorial Hopf algebras that are deûned over any
commutative ring k are the Hopf algebra of symmetric functions (denoted Sym), the
Hopf algebra of quasisymmetric functions (denoted QSym), and that of noncommu-
tative symmetric functions (denoted NSym). _e ûrst of these three has been studied
for several decades, while the latter two are newer; we refer the reader to [HaGuKi10,
Chapters 4 and 6] and [GriRei15, Chapters 2 and 5] for expositions of them.1 All three
of these Hopf algebras are known to carry multiple algebraic structures and have sev-
eral bases of combinatorial and algebraic signiûcance. _e Schur functions, forming
a basis of Sym, are probably the most important of these bases; a natural question is
thus to ask for similar bases for QSym and NSym.

Several answers to this question have been suggested, but the simplest one appears
to be given in a 2013 paper by Berg, Bergeron, Saliola, Serrano, and Zabrocki [BB-
SSZ13a], in which they deûne the immaculate (noncommutative symmetric) functions
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1Historically, the origin of the noncommutative symmetric functions is in [GKLLRT95], whereas

the quasisymmetric functions were introduced in [Gessel84]. See also [Stanle99, Section 7.19] speciû-
cally for the quasisymmetric functions and their enumerative applications (although the Hopf algebra
structure does not appear in this source).
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(which form a basis of NSym) and the dual immaculate (quasi-symmetric) functions
(which form a basis of QSym). _ese two bases are mutually dual and satisfy ana-
logues of various properties of the Schur functions. Among these are a Littlewood–
Richardson rule [BBSSZ13b], a Pieri rule [BSOZ13], and a representation-theoretical
interpretation [BBSSZ13c]. _e immaculate functions can be deûned by an analogue
of the Jacobi-Trudi identity (see [BBSSZ13a, Remark 3.28] for details), whereas the
dual immaculate functions can be deûned as generating functions for “immaculate
tableaux” in analogy to the Schur functions being generating functions for semistan-
dard tableaux (see Proposition 4.4).

_e original deûnition of the immaculate functions ([BBSSZ13a, Deûnition 3.2])
is arrived at by applying a sequence of so-called noncommutative Bernstein operators
to the constant power series 1 ∈ NSym. Around 2013, Mike Zabrocki conjectured that
the dual immaculate functions can be obtained by a similar use of “quasi-symmetric
Bernstein operators”. _e purpose of this note is to prove this conjecture (Corollary
5.5). Along the way, we deûne certain new binary operations on QSym; two of them
give rise to a structure of a dendriform algebra [EbrFar08], which seems to be inter-
esting in its own right.

_is note is organized as follows. In Section 2, we recall basic properties of qua-
sisymmetric (and symmetric) functions and introduce the notations that we will use.
In Section 3, we deûne two binary operations, ≺ and Á, on the power series ring
k[[x1 , x2 , x3 , . . . ]] and show that they restrict to operations on QSym that interact
with the Hopf algebra structure of QSym in a useful way. In Section 4, we deûne the
dual immaculate functions, and show that this deûnition agrees with the one given in
[BBSSZ13a, Remark 3.28]; we then give a combinatorial interpretation of dual immac-
ulate functions (which is not new, but has apparently never been explicitly stated). In
Section 5, we prove Zabrocki’s conjecture. In Section 6, we discuss how our binary
operations can be li�ed to noncommutative power series and restrict to operations
on WQSym, which are closely related to similar operations that have appeared in the
literature. In the ûnal Section 7, we ask some further questions.
An expanded version of this note is available on the arXiv (as ancillary ûle to

preprint arXiv:1410.0079 ); it contains more details in some of the arguments.

2 Quasisymmetric Functions

We assume that the reader is familiar with the basics of the theory of symmetric and
quasisymmetric functions (as presented, e.g., in [HaGuKi10, Chapters 4 and 6] and
[GriRei15, Chapters 2 and 5]). However, let us deûne all the notations that we need
(not least because they are not consistent across literature). We shall try to have our
notations match those used in [BBSSZ13a, Section 2] as much as possible.

We use N to denote the set {0, 1, 2, . . .}.
A compositionmeans a ûnite sequence of positive integers. For instance, (2, 3) and

(1, 5, 1) are compositions. _e empty composition (i.e., the empty sequence ( )) is de-
noted by ∅. We denote by Comp the set of all compositions. For every composition
α = (α1 , α2 , . . . , αℓ), we denote by ∣α∣ the size of the composition α; this is the non-
negative integer α1 + α2 + ⋅ ⋅ ⋅ + αℓ . If n ∈ N, then a composition of n simply means a
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composition having size n. A nonempty composition means a composition that is not
empty (or, equivalently, that has size > 0).

Let k be a commutative ring (which, for us, means a commutative ring with unity).
_is k will stay ûxed throughout the paper. We will deûne our symmetric and qua-
sisymmetric functions over this commutative ring k.2 Every tensor sign ⊗ without a
subscript should be understood to mean ⊗k.

Let x1 , x2 , x3 , . . . be countably many distinct indeterminates. We let Mon be the
free abelian monoid on the set {x1 , x2 , x3 , . . .} (written multiplicatively); it consists of
elements of the form xa1

1 xa2
2 xa3

3 ⋅ ⋅ ⋅ for ûnitely supported (a1 , a2 , a3 , . . . ) ∈ N∞ (where
ûnitely supportedmeans that all but ûnitely many positive integers i satisfy a i = 0). A
monomial will mean an element of Mon. _us, monomials are combinatorial objects
(without coeõcients), independent of k.

We consider the k-algebra k[[x1 , x2 , x3 , . . . ]] of (commutative) power series in
countably many distinct indeterminates x1 , x2 , x3 , . . . over k. By abuse of notation,
we shall identify every monomial xa1

1 xa2
2 xa3

3 ⋅ ⋅ ⋅ ∈ Mon with the corresponding ele-
ment xa1

1 ⋅ xa2
2 ⋅ xa3

3 ⋅ ⋅ ⋅ ⋅ of k[[x1 , x2 , x3 , . . . ]] when necessary (e.g., when we speak of
the sum of two monomials or when we multiply a monomial with an element of k);
however, monomials don’t live in k[[x1 , x2 , x3 , . . . ]] per se.3

_e k-algebra k[[x1 , x2 , x3 , . . . ]] is a topological k-algebra; its topology is the prod-
uct topology, which is deûned as follows (see also [GriRei15, Section 2.6]). We en-
dow the ring k with the discrete topology. To deûne a topology on the k-algebra
k[[x1 , x2 , x3 , . . . ]], we (temporarily) regard every power series in k[[x1 , x2 , x3 , . . . ]]
as the family of its coeõcients. _us, k[[x1 , x2 , x3 , . . . ]] becomes a product of inûn-
itely many copies of k (one for each monomial). _is allows us to deûne a product
topology on k[[x1 , x2 , x3 , . . . ]]. _is product topology is the topology that we will be
using whenever we make statements about convergence in k[[x1 , x2 , x3 , . . . ]] or write
down inûnite sums of power series. A sequence (an)n∈N of power series converges to
a power series a with respect to this topology if and only if for every monomialm, all
suõciently high n ∈ N satisfy

(the coeõcient ofm in an) = (the coeõcient ofm in a).

Note that this is not the topology obtained by completion of k[x1 , x2 , x3 , . . . ] with
respect to the standard grading (inwhich all x i have degree 1). Indeed, this completion
is not even the whole k[[x1 , x2 , x3 , . . . ]].

_e polynomial ring k[x1 , x2 , x3 , . . . ] is a dense subset of k[[x1 , x2 , x3 , . . . ]] with
respect to this topology. _is allows us to prove certain identities in the k-algebra
k[[x1 , x2 , x3 , . . . ]] (such as the associativity of multiplication, just to give a stupid ex-
ample) by ûrst proving them in k[x1 , x2 , x3 , . . . ] (that is, for polynomials), and then
arguing that they follow by density in k[[x1 , x2 , x3 , . . . ]].

2We do not require anything from k other than being a commutative ring. Some authors prefer to
work only over speciûc rings k, such as Z orQ (for example, [BBSSZ13a] always works overQ). Usually,
their results (and o�en also their proofs) are nevertheless just as valid over arbitrary k. We see no reason
to restrict our generality here.

3_is is a technicality. Indeed, the monomials 1 and x1 are distinct, but the corresponding elements
1 and x1 of k[[x1 , x2 , x3 , . . . ]] are identical when k = 0. So we could not regard the monomials as lying
in k[[x1 , x2 , x3 , . . . ]] by default.
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Ifm is a monomial, then Suppm will denote the subset

{i ∈ {1, 2, 3, . . .} ∣ the exponent with which x i occurs in m is > 0}

of {1, 2, 3, . . .}; this subset is ûnite. _e degree degm of a monomialm = xa1
1 xa2

2 xa3
3 ⋅ ⋅ ⋅

is deûned to be a1 + a2 + a3 + ⋅ ⋅ ⋅ ∈ N.
A power series P ∈ k[[x1 , x2 , x3 , . . . ]] is said to be bounded-degree if there exists

an N ∈ N such that every monomial of degree > N appears with coeõcient 0 in P.
Let k[[x1 , x2 , x3 , . . . ]]bdd denote the k-subalgebra of k[[x1 , x2 , x3 , . . . ]] formed by the
bounded-degree power series in k[[x1 , x2 , x3 , . . . ]].

_e k-algebra of symmetric functions over k is deûned as the k-subalgebra of
k[[x1 , x2 , x3 , . . . ]]bdd consisting of all bounded-degree power series that are invari-
ant under any permutation of the indeterminates. _is k-subalgebra is denoted by
Sym. (Notice that Sym is denoted Λ in [GriRei15].) As a k-module, Sym is known to
have several bases, such as the basis of complete homogeneous symmetric functions
(hλ) and that of the Schur functions (sλ), both indexed by the integer partitions.

Two monomials m and n are said to be pack-equivalent if they have the form
m = xα1

i1 x
α2
i2 ⋅ ⋅ ⋅ x

αℓ
iℓ and n = xα1

j1 x
α2
j2 ⋅ ⋅ ⋅ x

αℓ
jℓ for some ℓ ∈ N, some positive integers

α1, α2 , . . . , αℓ , some positive integers i1 , i2 , . . . , iℓ satisfying i1 < i2 < ⋅ ⋅ ⋅ < iℓ , and
some positive integers j1 , j2 , . . . , jℓ satisfying j1 < j2 < ⋅ ⋅ ⋅ < jℓ . A power series
P ∈ k[[x1 , x2 , x3 , . . . ]] is said to be quasisymmetric if any two pack-equivalent mono-
mials have equal coeõcients in P. _e k-algebra of quasisymmetric functions over k is
deûned as the k-subalgebra of k[[x1 , x2 , x3 , . . . ]]bdd consisting of all bounded-degree
power series that are quasisymmetric. It is clear that Sym ⊆ QSym.
For every composition α = (α1 , α2 , . . . , αℓ), the monomial quasisymmetric func-

tion Mα is deûned by

Mα = ∑
1≤i1<i2<⋅⋅⋅<iℓ

xα1
i1 x

α2
i2 ⋅ ⋅ ⋅ x

αℓ
iℓ ∈ k[[x1 , x2 , x3 , . . . ]]bdd .

One easily sees that Mα ∈ QSym for every α ∈ Comp. It is well known that
(Mα)α∈Comp is a basis of the k-module QSym; this is the so-calledmonomial basis of
QSym. Other bases of QSym exist as well, some of which we are going to encounter
below.

It is well known that the k-algebras Sym and QSym can be canonically endowed
with Hopf algebra structures such that Sym is a Hopf subalgebra of QSym. We refer
to [HaGuKi10, Chapters 4 and 6] and [GriRei15, Chapters 2 and 5] for the deûnitions
of these structures (and for a deûnition of the notion of a Hopf algebra); at this point,
let us merely state a few properties. _e comultiplication ∆ ∶ QSym→ QSym⊗QSym
of QSym satisûes

∆(Mα) =
ℓ

∑
i=0

M(α1 ,α2 , . . . ,α i) ⊗M(α i+1 ,α i+2 , . . . ,αℓ)

for every α = (α1 , α2 , . . . , αℓ) ∈ Comp. _e counit ε∶QSym→ k of QSym satisûes

ε(Mα) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if α = ∅,
0 if α /= ∅,

for every α ∈ Comp.
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Wewill always use the notation ∆ for the comultiplication of a Hopf lgebra, the no-
tation ε for the counit of a Hopf algebra, and the notation S for the antipode of a Hopf
algebra. Occasionally we will use Sweedler’s notation for working with coproducts of
elements of a Hopf algebra.4

If α = (α1 , α2 , . . . , αℓ) is a composition of an n ∈ N, then we deûne a subset D(α)
of {1, 2, . . . , n − 1} by

D(α) = {α1 , α1 + α2 , α1 + α2 + α3 , . . . , α1 + α2 + ⋅ ⋅ ⋅ + αℓ−1}.

_is subset D(α) is called the set of partial sums of the composition α; see [GriRei15,
Deûnition 5.10] for its further properties. Most importantly, a composition α of size
n can be uniquely reconstructed from n and D(α).

If α = (α1 , α2 , . . . , αℓ) is a composition of an n ∈ N, then the fundamental qua-
sisymmetric function Fα ∈ k[[x1 , x2 , x3 , . . . ]]bdd can be deûned by

(2.1) Fα = ∑
i1≤i2≤⋅⋅⋅≤in ;

i j<i j+1 if j∈D(α)

x i1x i2 ⋅ ⋅ ⋅ x in .

(_is is only one of several possible deûnitions of Fα . In [GriRei15, Deûnition 5.15],
the power series Fα is denoted by Lα and deûned diòerently, but [GriRei15, Proposi-
tion 5.17] proves the equivalence of this deûnition with ours.5) One can easily see that
Fα ∈ QSym for every α ∈ Comp. _e family (Fα)α∈Comp is a basis of the k-module
QSym as well; it is called the fundamental basis of QSym.

3 Restricted-product Operations

We shall now deûne two binary operations on k[[x1 , x2 , x3 , . . . ]].

Deûnition 3.1 We deûne a binary operation

≺∶k[[x1 , x2 , x3 , . . . ]] × k[[x1 , x2 , x3 , . . . ]] Ð→ k[[x1 , x2 , x3 , . . . ]]

(written in inûx notation6) by the requirements that it be k-bilinear and continuous
with respect to the topology on k[[x1 , x2 , x3 , . . . ]] and that it satisfy

(3.1) m ≺ n =

⎧⎪⎪
⎨
⎪⎪⎩

m ⋅ n if min(Suppm) < min(Suppn),
0 if min(Suppm) ≥ min(Suppn),

for any two monomials m and n.

4In a nutshell, Sweedler’s notation (or, more precisely, the special case of Sweedler’s notation that
we will use) consists in writing ∑(c) c(1) ⊗ c(2) for the tensor ∆(c) ∈ C ⊗ C, where c is an element
of a k-coalgebra C. _e sum ∑(c) c(1) ⊗ c(2) symbolizes a representation of the tensor ∆(c) as a sum
∑

N
i=1 c1, i⊗c2, i of pure tensors; it allows us tomanipulate ∆(c)without having to explicitly introduce the

N and the c1, i and the c2, i . For instance, if f ∶C → k is a k-linearmap, thenwe canwrite∑(c) f (c(1))c(2)
for ∑N

i=1 f (c1, i)c2, i . Of course, we need to be careful not to use Sweedler’s notation for terms that
do depend on the speciûc choice of the N and the c1, i and the c2, i ; for instance, we must not write
∑(c) c2(1)c(2).

5In fact, [GriRei15, (5.5)] is exactly our equality (2.1).
6By this we mean that we write a ≺ b instead of ≺ (a, b).
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Some clariûcations are in order. First, we are using≺ as an operation symbol (rather
than as a relation symbol as it is commonly used). 7 Second, we consider min∅ to
be ∞, and the symbol ∞ is understood to be greater than every integer.8 Hence,
m ≺ 1 = m for every nonconstant monomial m, and 1 ≺ m = 0 for every monomial m.

Let us ûrst see why the operation ≺ in Deûnition 3.1 is well deûned. Recall that the
topology on k[[x1 , x2 , x3 , . . . ]] is the product topology. Hence, if ≺ is to be k-bilinear
and continuous with respect to it, we must have

( ∑
m∈Mon

λmm) ≺ ( ∑
n∈Mon

µnn) = ∑
m∈Mon

∑
n∈Mon

λmµnm ≺ n

for any families (λm)m∈Mon ∈ kMon and (µn)n∈Mon ∈ kMon of scalars. Combined
with (3.1), this uniquely determines ≺. _erefore, the binary operation ≺ satisfying
the conditions of Deûnition 3.1 is unique (if it exists). But it also exists, because if we
deûne a binary operation ≺ on k[[x1 , x2 , x3 , . . . ]] by the explicit formula

( ∑
m∈Mon

λmm) ≺ ( ∑
n∈Mon

µnn) = ∑
(m,n)∈Mon×Mon ;

min(Suppm)<min(Suppn)

λmµnmn

for all (λm)m∈Mon ∈ kMon and (µn)n∈Mon ∈ kMon, then it clearly satisûes the condi-
tions of Deûnition 3.1 (and is well deûned).

_e operation ≺ is not associative; however, it is part of what is called a dendriform
algebra structure on k[[x1 , x2 , x3 , . . . ]] (and on QSym, as we shall see below). _e
following remark (which will not be used until Section 6, and thus can be skipped by
a reader not familiar with dendriform algebras) provides some details.

Remark 3.2 Let us deûne another binary operation⪰ on k[[x1 , x2 , x3 , . . . ]] similarly
to ≺ except that we set

m ⪰ n =

⎧⎪⎪
⎨
⎪⎪⎩

m ⋅ n if min(Suppm) ≥ min(Suppn),
0 if min(Suppm) < min(Suppn).

_en the structure (k[[x1 , x2 , x3 , . . . ]], ≺, ⪰) is a dendriformalgebra augmented to sat-
isfy [EbrFar08, (15)]. In particular, any three elements a, b, and c of k[[x1 , x2 , x3 , . . . ]]
satisfy

a ≺ b + a ⪰ b = ab, (a ≺ b) ≺ c = a ≺ (bc),
(a ⪰ b) ≺ c = a ⪰ (b ≺ c), a ⪰ (b ⪰ c) = (ab) ⪰ c.

Now, we introduce another binary operation.

Deûnition 3.3 We deûne a binary operation

Á∶k[[x1 , x2 , x3 , . . . ]] × k[[x1 , x2 , x3 , . . . ]] Ð→ k[[x1 , x2 , x3 , . . . ]]

7Of course, the symbol has been chosen because it is reminiscent of the smaller symbol in
“min(Suppm) < min(Suppn)”.

8but not greater than itself
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(written in inûx notation) by the requirements that it be k-bilinear and continuous
with respect to the topology on k[[x1 , x2 , x3 , . . . ]] and that it satisfy

mÁn =

⎧⎪⎪
⎨
⎪⎪⎩

m ⋅ n if max(Suppm) ≤ min(Suppn),
0 if max(Suppm) > min(Suppn),

for any two monomials m and n.

Here, max∅ is understood as 0. _e welldeûnedness of the operationÁ in Deûni-
tion 3.3 is proved in the same way as that of the operation ≺.

Let usmake a simple observation that will not be used until Section 6, but provides
some context.

Proposition 3.4 _e binary operationÁ is associative. It is also unital (with 1 serving
as the unity).

Proof of Proposition 3.4 We will only sketch the proof; see the detailed version for
more details.

To show that Á is associative, it suõces to prove that (mÁn)Áp = mÁ(nÁp) for
any three monomials m, n and p (since Á is bilinear). But this follows from observ-
ing that both (mÁn)Áp and mÁ(nÁp) are equal to mnp if the three inequalities
max(Suppm) ≤ min(Suppn), max(Suppm) ≤ min(Suppp), and max(Suppn) ≤

min(Suppp) hold, and are equal to 0 otherwise.
_e proof of the unitality of Á is similar.

Here is another property of Á that will not be used until Section 6.

Proposition 3.5 Every a ∈ QSym and b ∈ QSym satisfy a ≺ b ∈ QSym and aÁb ∈
QSym.

For example, we can explicitly describe the operation Á on the monomial basis
(Mγ)γ∈Comp of QSym. Namely, any two nonempty compositions α and β satisfy
MαÁMβ = M[α ,β] + Mα⊙β , where [α, β] and α ⊙ β are two compositions deûned
by

[(α1 , α2 , . . . , αℓ), (β1 , β2 , . . . , βm)] = (α1 , α2 , . . . , αℓ , β1 , β2 , . . . , βm),
(α1 , α2 , . . . , αℓ) ⊙ (β1 , β2 , . . . , βm) = (α1 , α2 , . . . , αℓ−1 , αℓ + β1 , β2 , β3 , . . . , βm).

If one of α and β is empty, then MαÁMβ = M[α ,β].
Proposition 3.5 can reasonably be called obvious; the following proof owes its

length mainly to the diõculty of formalizing the intuition.

Proof of Proposition 3.5. We will ûrst introduce more notation.
If m is a monomial, then the Parikh composition of m is deûned as follows. Write

m in the form m = xα1
i1 x

α2
i2 ⋅ ⋅ ⋅ x

αℓ
iℓ for some ℓ ∈ N, some positive integers α1, α2, . . . ,

αℓ , and some positive integers i1, i2, . . . , iℓ satisfying i1 < i2 < ⋅ ⋅ ⋅ < iℓ . Notice that
this way of writing m is unique. _en the Parikh composition of m is deûned to be
the composition (α1 , α2 , . . . , αℓ).
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We denote by Parikhm the Parikh composition of amonomialm. Now, it is easy to
see that the deûnition of a monomial quasisymmetric function Mα can be rewritten
as follows. For every α ∈ Comp, we have

(3.2) Mα = ∑
m∈Mon;

Parikhm=α

m.

(Indeed, for any given composition α = (α1 , α2 , . . . , αℓ), the monomials m satisfying
Parikhm = α are precisely the monomials of the form xα1

i1 x
α2
i2 ⋅ ⋅ ⋅ x

αℓ
iℓ with i1, i2, . . . , iℓ

being positive integers satisfying i1 < i2 < ⋅ ⋅ ⋅ < iℓ .)
Now, pack-equivalentmonomials can be characterized as follows. Twomonomials

m and n are pack-equivalent if and only if they have the same Parikh composition.
Next, we come to the proof of Proposition 3.5.
Let us ûrst ûx two compositions α and β. We will prove that Mα ≺ Mβ ∈ QSym.

Write the compositions α and β as α = (α1 , α2 , . . . , αℓ) and β = (β1 , β2 , . . . , βm). Let
S0 denote the ℓ-element set {0}×{1, 2, . . . , ℓ}. Let S1 denote them-element set {1}×
{1, 2, . . . ,m}. Let S denote the (ℓ+m)-element set S0 ∪S1. Let inc0∶ {1, 2, . . . , ℓ} → S

be the map that sends every p ∈ {1, 2, . . . , ℓ} to (0, p) ∈ S0 ⊆ S. Let inc1 ∶

{1, 2, . . . ,m} → S be the map that sends every q ∈ {1, 2, . . . ,m} to (1, q) ∈ S1 ⊆ S.
Deûne a map ρ∶S→ {1, 2, 3, . . .} by setting

ρ(0, p) = αp for all p ∈ {1, 2, . . . , ℓ},
ρ(1, q) = βq for all q ∈ {1, 2, . . . ,m}.

For every composition γ = (γ1 , γ2 , . . . , γn), we deûne a γ-smap to be a map f ∶S→
{1, 2, . . . , n} satisfying the following three properties:
● the maps f ○ inc0 and f ○ inc1 are strictly increasing;
● we have9 min( f (S0)) < min( f (S1));
● every u ∈ {1, 2, . . . , n} satisûes

∑
s∈ f −1(u)

ρ(s) = γu .

_ese three properties will be called the three deûning properties of a γ-smap.
Now, we make the following claim:

Claim 1: Let q be any monomial. Let γ be the Parikh composition of q. _e coeõcient
of q in Mα ≺ Mβ equals the number of all γ-smaps.

Proof of Claim 1 We will give a brief outline of this proof; for more details, we refer
to the detailed version of this note.

Write the composition γ in the form γ = (γ1 , γ2 , . . . , γn). Write the monomial q
in the form q = xγ1

k1
xγ2
k2
⋅ ⋅ ⋅ xγn

kn
for some positive integers k1, k2, . . . , kn satisfying k1 <

k2 < ⋅ ⋅ ⋅ < kn . (_is is possible because (γ1 , γ2 , . . . , γn) = γ is the Parikh composition
of q.) _en Supp q = {k1 , k2 , . . . , kn}.
From (3.2), we get

Mα = ∑
m∈Mon;

Parikhm=α

m.

9Keep in mind that we set min∅ = ∞.
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Similarly, Mβ = ∑ n∈Mon;
Parikhn=β

n. Hence,

Mα ≺ Mβ = ( ∑
m∈Mon;

Parikhm=α

m) ≺ ( ∑
n∈Mon;

Parikhn=β

n) = ∑
(m,n)∈Mon×Mon;

Parikhm=α ;
Parikhn=β;

min(Suppm)<min(Suppn)

mn

(by the explicit formula for ≺). _us, the coeõcient of q in Mα ≺ Mβ equals the
number of all pairs (m, n) ∈ Mon×Mon such that Parikhm = α, Parikhn = β,
min(Suppm) < min(Suppn), andmn = q. _ese pairs shall be called q-spairs.

Now, we construct a bijectionΦ from the set of all γ-smaps to the set of all q-spairs.
_is is a simple exercise in re-encoding data, so we leave the details to the reader (they
can be found in the detailed version of this note). Let us just state how the bijection
and its inverse are deûned.
● If f ∶S→ {1, 2, . . . , n} be a γ-smap, then the q-spair Φ( f ) is deûned to be

(
ℓ

∏
p=1

xαp
k f (0,p)

,
m

∏
q=1

xβq
k f (1,q)

) .

● If (m, n) is a q-spair, then the γ-smap Φ−1(m, n) is deûned as follows. Write the
monomial m in the form

m = xα1
ku1

xα2
ku2

⋅ ⋅ ⋅ xαℓkuℓ

for some elements 1 ≤ u1 < u2 < ⋅ ⋅ ⋅ < uℓ ≤ n. (_is is possible, since Suppm ⊆

Supp q = {k1 , k2 , . . . , kn} and Parikhm = α.) Similarly, write the monomial n in
the form

m = xβ1
kv1

xβ2
kv2
⋅ ⋅ ⋅ xβm

kvm

for some elements 1 ≤ v1 < v2 < ⋅ ⋅ ⋅ < vm ≤ n. Now, the γ-smap Φ−1(m, n) is deûned
as the map f ∶S → {1, 2, . . . , n}, which sends every f (0, p) to up and every f (1, q)
to vq .
_is bijection Φ shows that the number of all q-spairs equals the number of all γ-

smaps. Since the coeõcient of q in Mα ≺ Mβ equals the former number, it thus must
equal the latter number. _is proves Claim 1.

Claim 1 shows that the coeõcient of a monomial q in Mα ≺ Mβ depends not on
q but only on the Parikh composition of q. _us, any two pack-equivalent monomi-
als have equal coeõcients in Mα ≺ Mβ (since any two pack-equivalent monomials
have the same Parikh composition). In other words, the power series Mα ≺ Mβ is
quasisymmetric. Since Mα ≺ Mβ ∈ k[[x1 , x2 , x3 , . . . ]]bdd, this yields that Mα ≺ Mβ ∈

QSym.

Remark 3.6 At this point, let us observe that we can give an explicit formula for
Mα ≺ Mβ ; namely,

(3.3) Mα ≺ Mβ = ∑
γ∈Comp

s
γ
α ,βMγ ,

where sγα ,β is the number of all γ-smaps. Indeed, for everymonomial q, the coeõcient
of q on the le�-hand side of (3.3) equals sγα ,β where γ is the Parikh composition of q
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(because of Claim 1), whereas the coeõcient of q on the right-hand side of (3.3) also
equals sγα ,β (for obvious reasons). Hence, every monomial has equal coeõcients on
the two sides of (3.3), and so (3.3) holds. Of course, (3.3) again proves that Mα ≺

Mβ ∈ QSym, since the sum∑γ∈Comp s
γ
α ,βMγ has only ûnitely many nonzero addends

(indeed, γ-smaps can only exist if ∣γ∣ ≤ ∣α∣ + ∣β∣).

Now, let us forget that we ûxed α and β. We have thus shown that every two com-
positions α and β satisfy Mα ≺ Mβ ∈ QSym.

Since (Mα)α∈Comp is a basis of QSym (and since ≺ is k-bilinear), this shows that
a ≺ b ∈ QSym for every a ∈ QSym and b ∈ QSym. _e proof of aÁb ∈ QSym is
similar.10

Remark 3.7 _e proof of Proposition 3.5 given above actually yields a combinato-
rial formula for Mα ≺ Mβ whenever α and β are two compositions. Namely, let α and
β be two compositions. _en

(3.4) Mα ≺ Mβ = ∑
γ∈Comp

s
γ
α ,βMγ ,

where sγα ,β is the number of all smaps (α, β) → γ. Here a smap(α, β) → γ means
what was called a γ-smap in the above proof of Proposition 3.5.

_is is similar to the well-known formula for MαMβ (see, for example, [GriRei15,
Proposition 5.3]), which (translated into our language) states that

(3.5) MαMβ = ∑
γ∈Comp

t
γ
α ,βMγ ,

where tγα ,β is the number of all overlapping shuøes (α, β) → γ. Here, the overlapping
shuøes (α, β) → γ are deûned in the same way as the γ-smaps, the only diòerence be-
ing that the second of the three properties that deûne a γ-smap (namely, the property
min( f (S0)) < min( f (S1))) is omitted. Needless to say, (3.5) can be proved similarly
to our proof of (3.4) above.

Here is a somewhat nontrivial property of Á and ≺.

_eorem 3.8 Let S denote the antipode of the Hopf algebraQSym. Let us use Sweed-
ler’s notation∑(b) b(1) ⊗ b(2) for ∆(b), where b is any element of QSym. _en

∑
(b)

(S(b(1))Áa)b(2) = a ≺ b

for any a ∈ k[[x1 , x2 , x3 , . . . ]] and b ∈ QSym.

Proof of_eorem 3.8 Let a ∈ k[[x1 , x2 , x3 , . . . ]]. We can assume without loss of
generality that a is a monomial (because all operations in sight are k-linear and con-
tinuous). So assume this. _at is, a = n for some monomial n. Consider this n. Let
k = min(Suppn). Notice that k ∈ {1, 2, 3, . . .} ∪ {∞}.

10Alternatively, of course, aÁb ∈ QSym can be checked using the formula MαÁMβ = M
[α ,β] +

Mα⊙β (which is easily proved). However, there is no such simple proof for a ≺ b ∈ QSym.
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(Some remarks about ∞ are in order. We use∞ as an object that is greater than
every integer. We will use summation signs like ∑1≤i1<i2<⋅⋅⋅<iℓ≤k and ∑k<i1<i2<⋅⋅⋅<iℓ in
the sequel. Both of these summation signs range over (i1 , i2 , . . . , iℓ) ∈ {1, 2, 3, . . .}ℓ

satisfying certain conditions (1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < iℓ ≤ k in the ûrst case, and k < i1 <
i2 < ⋅ ⋅ ⋅ < iℓ in the second). In particular, none of the i1 , i2 , . . . , iℓ is allowed to be∞
(unlike k). So the summation∑1≤i1<i2<⋅⋅⋅<iℓ≤k is identical to∑1≤i1<i2<⋅⋅⋅<iℓ when k = ∞,
whereas the summation ∑k<i1<i2<⋅⋅⋅<iℓ is empty when k = ∞ unless ℓ = 0. (If ℓ = 0,
then the summation ∑k<i1<i2<⋅⋅⋅<iℓ ranges over the empty 0-tuple, no matter what k
is.)

We will also use an additional symbol ∞ + 1, which is understood to be greater
than every element of {1, 2, 3, . . .} ∪ {∞}.)

Using the deûnitions of ≺ andMα (and recalling that a = n has min(Suppn) = k),
it is now straightforward to check that every composition α = (α1 , α2 , . . . , αℓ) satisûes

(3.6) a ≺ Mα = ( ∑
k<i1<i2<⋅⋅⋅<iℓ

xα1
i1 x

α2
i2 ⋅ ⋅ ⋅ x

αℓ
iℓ ) ⋅ a.

Let us deûne a map Bk ∶k[[x1 , x2 , x3 , . . . ]] → k[[x1 , x2 , x3 , . . . ]] by

Bk(p) = p(x1 , x2 , . . . , xk , 0, 0, 0, . . . ) for every p ∈ k[[x1 , x2 , x3 , . . . ]]

(where p(x1 , x2 , . . . , xk , 0, 0, 0, . . . ) has to be understood as p(x1 , x2 , x3 , . . . ) = p
when k = ∞). _en Bk is an evaluation map (in an appropriate sense) and thus a
continuous k-algebra homomorphism. Clearly, any monomial m satisûes

Bk(m) =

⎧⎪⎪
⎨
⎪⎪⎩

m if max(Suppm) ≤ k,
0 if max(Suppm) > k.

Using this (and the deûnition of Á), we see that any p ∈ k[[x1 , x2 , x3 , . . . ]] satisûes

(3.7) pÁa = a ⋅Bk(p)

(indeed, this is trivial to check for p being a monomial, and thus follows by linearity
for all p). Also, every composition α = (α1 , α2 , . . . , αℓ) satisûes

(3.8) Bk(Mα) = ∑
1≤i1<i2<⋅⋅⋅<iℓ≤k

xα1
i1 x

α2
i2 ⋅ ⋅ ⋅ x

αℓ
iℓ

(as follows easily from the deûnitions ofBk and Mα).
Let us now notice that every f ∈ QSym satisûes

(3.9) a f = ∑
( f )

Bk( f(1))(a ≺ f(2)).

Proof of (3.9) Both sides of equality (3.9) are k-linear in f . Hence, it is enough to
check (3.9) on the basis (Mγ)γ∈Comp of QSym, that is, to prove that (3.9) holds when-
ever f = Mγ for some γ ∈ Comp. In other words, it is enough to show that

aMγ = ∑
(Mγ)

Bk((Mγ)(1)) ⋅ (a ≺ (Mγ)(2)) for every γ ∈ Comp .
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But this is easily done. Let γ ∈ Comp. Write γ in the form γ = (γ1 , γ2 , . . . , γℓ). _en

∑
(Mγ)

Bk((Mγ)(1)) ⋅ (a ≺ (Mγ)(2))

=
ℓ

∑
j=0

Bk(M(γ1 ,γ2 , . . . ,γ j))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∑1≤i1<i2<⋅⋅⋅<i j≤k x

γ1
i1
xγ2

i2
⋅⋅⋅x

γ j
i j

(by (3.8))

⋅ (a ≺ M(γ j+1 ,γ j+2 , . . . ,γℓ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(∑k<i1<i2<⋅⋅⋅<iℓ− j

x
γ j+1
i1

x
γ j+2
i2

⋅⋅⋅xγℓ
iℓ− j

)⋅a

(by (3.6))

(since ∑
(Mγ)

(Mγ)(1) ⊗ (Mγ)(2) = ∆(Mγ) =
ℓ

∑
j=0

M(γ1 ,γ2 , . . . ,γ j) ⊗M(γ j+1 ,γ j+2 , . . . ,γℓ))

=
ℓ

∑
j=0

( ∑
1≤i1<i2<⋅⋅⋅<i j≤k

xγ1
i1 x

γ2
i2 ⋅ ⋅ ⋅ x

γ j
i j ) ( ∑

k<i1<i2<⋅⋅⋅<iℓ− j

xγ j+1
i1 xγ j+2

i2 ⋅ ⋅ ⋅ xγℓ
iℓ− j

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∑k<i j+1<i j+2<⋅⋅⋅<iℓ

x
γ j+1
i j+1

x
γ j+2
i j+2

⋅⋅⋅xγℓ
iℓ

⋅a

=
ℓ

∑
j=0

( ∑
1≤i1<i2<⋅⋅⋅<i j≤k

xγ1
i1 x

γ2
i2 ⋅ ⋅ ⋅ x

γ j
i j )( ∑

k<i j+1<i j+2<⋅⋅⋅<iℓ
xγ j+1
i j+1

xγ j+2
i j+2

⋅ ⋅ ⋅ xγℓ
iℓ ) ⋅ a

=
ℓ

∑
j=0

∑
1≤i1<i2<⋅⋅⋅<i j≤k

∑
k<i j+1<i j+2<⋅⋅⋅<iℓ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∑1≤i1<i2<⋅⋅⋅<iℓ ∑ j∈{0,1,. . . ,ℓ};

i j≤k<i j+1
(where i0 is to be understood as 1, and iℓ+1 as ∞+1)

(xγ1
i1 x

γ2
i2 ⋅ ⋅ ⋅ x

γ j
i j )(x

γ j+1
i j+1

xγ j+2
i j+2

⋅ ⋅ ⋅ xγℓ
iℓ )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=xγ1

i1
xγ2

i2
⋅⋅⋅xγℓ

iℓ

⋅a

= ∑
1≤i1<i2<⋅⋅⋅<iℓ

∑
j∈{0,1,. . . ,ℓ};
i j≤k<i j+1

xγ1
i1 x

γ2
i2 ⋅ ⋅ ⋅ x

γℓ
iℓ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
this sum has precisely one addend,

and thus equals xγ1
i1
xγ2

i2
⋅⋅⋅xγℓ

iℓ

⋅a = ∑
1≤i1<i2<⋅⋅⋅<iℓ

xγ1
i1 x

γ2
i2 ⋅ ⋅ ⋅ x

γℓ
iℓ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Mγ

⋅a

= Mγ ⋅ a = aMγ .

_us, (3.9) is proved.

Now every b ∈ QSym satisûes

∑
(b)

(S(b(1))Áa)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=a⋅Bk(S(b(1)))

(by (3.7), applied to p=S(b(1)))

b(2)

= ∑
(b)
a ⋅Bk(S(b(1)))b(2) = ∑

(b)
Bk(S(b(1))) ⋅ ab(2)

²
=∑(b(2))

Bk((b(2))(1))(a≺(b(2))(2))

(by (3.9), applied to f=b(2))

= ∑
(b)

Bk(S(b(1)))( ∑
(b(2))

Bk((b(2))(1))(a ≺ (b(2))(2)))
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= ∑
(b)
∑

(b(2))
Bk(S(b(1)))Bk((b(2))(1))(a ≺ (b(2))(2))

= ∑
(b)
∑

(b(1))
Bk(S((b(1))(1)))Bk((b(1))(2))(a ≺ b(2))

since the coassociativity of ∆ yields

∑
(b)
∑

(b(2))
b(1) ⊗ (b(2))(1) ⊗ (b(2))(2) = ∑

(b)
∑

(b(1))
(b(1))(1) ⊗ (b(1))(2) ⊗ b(2) .

SinceBk is a k-algebra homomorphism, this rewrites as

∑
(b)

(S(b(1))Áa)b(2)

= ∑
(b)

Bk( ∑
(b(1))

S((b(1))(1))(b(1))(2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ε(b(1))

(by one of the defining equations of the antipode)

)(a ≺ b(2))

= ∑
(b)

Bk(ε(b(1)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=ε(b(1))
(since Bk is a k-algebra
homomorphism, and
ε(b(1))∈k is a scalar)

(a ≺ b(2)) = ∑
(b)
ε(b(1)) ⋅ (a ≺ b(2))

= ∑
(b)
a ≺ (ε(b(1))b(2)) = a ≺ (∑

(b)
ε(b(1))b(2))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=b

= a ≺ b.

_is proves _eorem 3.8.

Let us connect the Á operation with the fundamental basis of QSym.

Proposition 3.9 For any two compositions α and β, deûne a composition α ⊙ β as
follows.
● If α is empty, then set α ⊙ β = β.
● Otherwise, if β is empty, then set α ⊙ β = α.
● Otherwise, deûne α⊙β as (α1 , α2 , . . . , αℓ−1 , αℓ+β1 , β2 , β3 , . . . , βm), where α is writ-

ten as α = (α1 , α2 , . . . , αℓ) and where β is written as β = (β1 , β2 , . . . , βm).
_en any two compositions α and β satisfy FαÁFβ = Fα⊙β .

Proof of Proposition 3.9. If either α or β is empty, then this is obvious (since Á is
unital with 1 as its unity, and since F∅ = 1). So let us assume without loss of generality
that neither is. Write α as α = (α1 , α2 , . . . , αℓ), and write β as β = (β1 , β2 , . . . , βm).
_us, ℓ and m are positive (since α and β are nonempty).

Let p = ∣α∣ and q = ∣β∣. _us, p and q are positive (since α and β are nonempty).
Recall that we use the notation D(α) for the set of partial sums of a composition α. If
G is a set of integers and r is an integer, then we letG+r denote the set {g+r ∣ g ∈ G}

of integers.
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Applying (2.1) to p instead of n, we obtain

(3.10) Fα = ∑
i1≤i2≤⋅⋅⋅≤ip ;

i j<i j+1 if j∈D(α)

x i1x i2 ⋅ ⋅ ⋅ x ip .

Applying (2.1) to q and β instead of n and α, we obtain

Fβ = ∑
i1≤i2≤⋅⋅⋅≤iq ;

i j<i j+1 if j∈D(β)

x i1x i2 ⋅ ⋅ ⋅ x iq = ∑
ip+1≤ip+2≤⋅⋅⋅≤ip+q ;
i j<i j+1 if j∈D(β)+p

x ip+1x ip+2 ⋅ ⋅ ⋅ x ip+q

(here, we renamed the summation index (i1 , i2 , . . . , iq) as (ip+1 , ip+2 , . . . , ip+q)). _is,
together with (3.10), yields

FαÁFβ

= ( ∑
i1≤i2≤⋅⋅⋅≤ip ;

i j<i j+1 if j∈D(α)

x i1x i2 ⋅ ⋅ ⋅ x ip)Á( ∑
ip+1≤ip+2≤⋅⋅⋅≤ip+q ;
i j<i j+1 if j∈D(β)+p

x ip+1x ip+2 ⋅ ⋅ ⋅ x ip+q)

= ∑
i1≤i2≤⋅⋅⋅≤ip ;

i j<i j+1 if j∈D(α)

∑
ip+1≤ip+2≤⋅⋅⋅≤ip+q ;
i j<i j+1 if j∈D(β)+p

(x i1x i2 ⋅ ⋅ ⋅ x ip)Á(x ip+1x ip+2 ⋅ ⋅ ⋅ x ip+q)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x i1x i2 ⋅ ⋅ ⋅ x ipx ip+1x ip+2 ⋅ ⋅ ⋅ x ip+q , if ip ≤ ip+1;
0, if ip > ip+1,

(by the definition of Á on monomials)

= ∑
i1≤i2≤⋅⋅⋅≤ip ;

i j<i j+1 if j∈D(α)

∑
ip+1≤ip+2≤⋅⋅⋅≤ip+q ;
i j<i j+1 if j∈D(β)+p

⎧⎪⎪
⎨
⎪⎪⎩

x i1x i2 ⋅ ⋅ ⋅ x ipx ip+1x ip+2 ⋅ ⋅ ⋅ x ip+q , if ip ≤ ip+1;
0, if ip > ip+1,

= ∑
i1≤i2≤⋅⋅⋅≤ip ;

i j<i j+1 if j∈D(α);
ip+1≤ip+2≤⋅⋅⋅≤ip+q ;

i j<i j+1 if j∈D(β)+p;
ip≤ip+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∑ i1≤i2≤⋅⋅⋅≤ip+q ;

i j<i j+1 if j∈D(α)∪(D(β)+p)

x i1x i2 ⋅ ⋅ ⋅ x ipx ip+1x ip+2 ⋅ ⋅ ⋅ x ip+q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=x i1 x i2 ⋅⋅⋅x i p+q

= ∑
i1≤i2≤⋅⋅⋅≤ip+q ;

i j<i j+1 if j∈D(α)∪(D(β)+p)

x i1x i2 ⋅ ⋅ ⋅ x ip+q .

On the other hand, α ⊙ β is a composition of p + q satisfying D(α ⊙ β) = D(α) ∪
(D(β) + p). _us, (2.1) (applied to α ⊙ β and p + q instead of α and n) yields

Fα⊙β = ∑
i1≤i2≤⋅⋅⋅≤ip+q ;

i j<i j+1 if j∈D(α⊙β)

x i1x i2 ⋅ ⋅ ⋅ x ip+q = ∑
i1≤i2≤⋅⋅⋅≤ip+q ;

i j<i j+1 if j∈D(α)∪(D(β)+p)

x i1x i2 ⋅ ⋅ ⋅ x ip+q

(sinceD(α⊙β) = D(α)∪(D(β)+p)). Comparedwith (3), this yields FαÁFβ = Fα⊙β .
_is proves Proposition 3.9.

For our goals, we need a certain particular case of Proposition 3.9. Namely, let us
recall that for every m ∈ N, the m-th complete homogeneous symmetric function hm is
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deûned as the element
∑

1≤i1≤i2≤⋅⋅⋅≤im
x i1x i2 ⋅ ⋅ ⋅ x im

of Sym. It is easy to see that hm = F(m) for every positive integer m. From this, we
obtain the following corollary.

Corollary 3.10 For any two compositions α and β, deûne a composition α ⊙ β as in
Proposition 3.9. _en every composition α and every positive integer m satisfy

(3.11) Fα⊙(m) = FαÁhm .

Remark 3.11 We can also deûne a binary operation

ź∶k[[x1 , x2 , x3 , . . . ]] × k[[x1 , x2 , x3 , . . . ]] Ð→ k[[x1 , x2 , x3 , . . . ]]

(written in inûx notation) by the requirements that it be k-bilinear and continuous
with respect to the topology on k[[x1 , x2 , x3 , . . . ]] and that it satisfy

mźn =

⎧⎪⎪
⎨
⎪⎪⎩

m ⋅ n if max(Suppm) < min(Suppn),
0 if max(Suppm) ≥ min(Suppn),

for any two monomials m and n. (Recall that max∅ = 0 and min∅ = ∞.)
_is operationź shares some of the properties ofÁ (in particular, it is associative

and has neutral element 1); an analogue of _eorem 3.8 says that

∑
(b)

(S(b(1))źa)b(2) = a ⪯ b

for any a ∈ k[[x1 , x2 , x3 , . . . ]] and b ∈ QSym, where a ⪯ b stands for b ⪰ a. (Of
course, we could also deûne ⪯ by changing the “<” into a “≤” and the “≥” into a “>” in
the deûnition of ≺.)

4 Dual Immaculate Functions and The Operation ≺

We will now study the dual immaculate functions deûned in [BBSSZ13a]. However,
instead of deûning them as was done in [BBSSZ13a, Section 3.7], we give a diòerent
(but equivalent) deûnition. First, we introduce immaculate tableaux (which we deûne
as in [BBSSZ13a, Deûnition 3.9]), which are an analogue of the well-known semistan-
dard Young tableaux (also known as “column-strict tableaux”).11

Deûnition 4.1 Let α = (α1 , α2 , . . . , αℓ) be a composition.
(i) _e Young diagram of α will mean the subset

{(i , j) ∈ Z2
∣ 1 ≤ i ≤ ℓ; 1 ≤ j ≤ α i}

of Z2. It is denoted by Y(α).
(ii) An immaculate tableau of shape α will mean a map T ∶Y(α) → {1, 2, 3, . . .}

that satisûes the following two axioms:

11See, e.g., [Stanle99, Chapter 7] for a study of semistandard Young tableaux. We will not use them
in this note; however, our terminology for immaculate tableaux will imitate some of the classical termi-
nology deûned for semistandard Young tableaux.
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(a) We have T(i , 1) < T( j, 1) for any integers i and j satisfying 1 ≤ i < j ≤ ℓ.
(b) We have T(i , u) ≤ T(i , v) for any integers i, u, and v satisfying 1 ≤ i ≤ ℓ and

1 ≤ u < v ≤ α i .
_e entries of an immaculate tableau T mean the images of elements ofY(α) under

T .
We will use the same graphical representation of immaculate tableaux (analogous

to the “English notation” for semistandard Young tableaux) that was used in [BB-
SSZ13a]. An immaculate tableau T of shape α = (α1 , α2 , . . . , αℓ) is represented as a
table whose rows are le�-aligned (but can have diòerent lengths), and whose i-th row
(counted from top) has α i boxes, which are respectively ûlled with the entries T(i , 1),
T(i , 2), . . . , T(i , α i) (from le� to right). For example, an immaculate tableau T of
shape (3, 1, 2) is represented by the picture

a1,1 a1,2 a1,3
a2,1

a3,1 a3,2

,

where a i , j = T(i , j) for every (i , j) ∈ Y((3, 1, 2)). _us, the ûrst of the above two
axioms for an immaculate tableau T says that the entries of T are strictly increasing
down the ûrst column of Y(α), whereas the second of the above two axioms says that
the entries of T are weakly increasing along each row of Y(α).

(iii) Let β = (β1 , β2 , . . . , βk) be a composition of ∣α∣. An immaculate tableau T of
shape α is said to have content β if every j ∈ {1, 2, 3, . . .} satisûes

∣T−1
( j)∣ =

⎧⎪⎪
⎨
⎪⎪⎩

β j if j ≤ k,
0 if j > k.

Notice that not every immaculate tableau has a content (with this deûnition), because
we only allow compositions as contents. More precisely, if T is an immaculate tableau
of shape α, then there exists a composition β such that T has content β if and only if
there exists a k ∈ N such that T(Y(α)) = {1, 2, . . . , k}.

(iv) Let β be a composition of ∣α∣. _en Kα ,β denotes the number of immaculate
tableaux of shape α and content β.

For future reference, let us notice that if α is a composition, if T is an immaculate
tableau of shape α, and if (i , j) ∈ Y(α) is such that i > 1, then

(4.1) T(1, 1) < T(i , 1) ≤ T(i , j).

Deûnition 4.2 Let α be a composition. _e dual immaculate function S∗
α corre-

sponding to α is deûned as the quasisymmetric function

∑
β⊧∣α∣

Kα ,βMβ .

_is deûnition is equivalent but not identical to the deûnition ofS∗
α used in [BB-

SSZ13a], as the following proposition shows.
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Proposition 4.3 Deûnition 4.2 is equivalent to the deûnition ofS∗
α used in the paper

[BBSSZ13a].

Proof of Proposition 4.3. Let ≤ℓ denote the lexicographic order on compositions.
Let α be a composition. From [BBSSZ13a, Proposition 3.15 (2)], we know thatKα ,β = 0
for every β ⊧ ∣α∣ that does not satisfy β ≤ℓ α. Hence, in the sum∑β⊧∣α∣ Kα ,βMβ , only
the compositions β satisfying β ≤ℓ α contribute nonzero addends. Consequently,

∑
β⊧∣α∣

Kα ,βMβ = ∑
β⊧∣α∣;
β≤ℓα

Kα ,βMβ .

_e le�-hand side of this equality isS∗
α according to our deûnition, whereas the right-

hand side is S∗
α as deûned in [BBSSZ13a] (by [BBSSZ13a, Proposition 3.36]). Hence,

the two deûnitions are equivalent.

It is helpful to think of dual immaculate functions as analogues of Schur functions
obtained by replacing semistandard Young tableaux by immaculate tableaux. Deûni-
tion 4.2 is the analogue of the well-known formula sλ = ∑µ⊢∣λ∣ kλ ,µmµ for any parti-
tion λ, where sλ denotes the Schur function corresponding to λ, where mµ denotes
the monomial symmetric function corresponding to the partition µ, and where kλ ,µ
is the (λ, µ)-th Kostka number (i.e., the number of semistandard Young tableaux of
shape λ and content µ). _e following formula for the S∗

α (known to the authors of
[BBSSZ13a] but not explicitly stated in their work) should not come as a surprise:

Proposition 4.4 Let α be a composition. _en

S∗
α = ∑

Tis an immaculate
tableau of shape α

xT .

Here, xT is deûned as∏(i , j)∈Y(α) xT(i , j) when T is an immaculate tableau of shape α.

Before we prove this proposition, let us state a fundamental and simple lemma.

Lemma 4.5 (i) If I is a ûnite subset of {1, 2, 3, . . .}, then there exists a unique
strictly increasing bijection {1, 2, . . . , ∣I∣} → I. Let us denote this bijection by rI . Its
inverse r−1

I is obviously again a strictly increasing bijection.
Now, let α be a composition.
(ii) If T is an immaculate tableau of shape α, then r−1

T(Y(α)) ○ T (remember that
immaculate tableaux are maps from Y(α) to {1, 2, 3, . . .}) is an immaculate tableau of
shape α as well and has the additional property that there exists a unique composition
β of ∣α∣ such that r−1

T(Y(α)) ○ T has content β.
(iii) Let Q be an immaculate tableau of shape α. Let β be a composition of ∣α∣ such

that Q has content β. _en

(4.2) Mβ = ∑
Tis an immaculate
tableau of shapeα ;

r−1
T(Y(α))○T=Q

xT .

Proof of Lemma 4.5. (i) Lemma 4.5(i) is obvious.

https://doi.org/10.4153/CJM-2016-018-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-018-8


38 D. Grinberg

(ii) Let T be an immaculate tableau of shape α. _en r−1
T(Y(α))○T is an immaculate

tableau of shape α as well.12 Let

R = r−1
T(Y(α)) ○ T ∶Y(α) → {1, 2, . . . , ∣T(Y(α))∣}.

_en

R
®

=r−1
T(Y(α))○T

(Y(α)) = (r−1
T(Y(α)) ○ T)(Y(α))

= r−1
T(Y(α))(T(Y(α))) = {1, 2, . . . , ∣T(Y(α))∣}.

Hence, (∣R−1(1)∣, ∣R−1(2)∣, . . . , ∣R−1(∣T(Y(α))∣)∣) is a composition. _erefore, there
exists a unique composition β of ∣α∣ such that R has content β, namely,

β = ( ∣R−1
(1)∣, ∣R−1

(2)∣, . . . , ∣R−1( ∣T(Y(α))∣) ∣) .

In other words, there exists a unique composition β of ∣α∣ such that r−1
T(Y(α)) ○ T has

content β (since R = r−1
T(Y(α)) ○ T). _is completes the proof of Lemma 4.5(ii).

(iii) If T is a map Y(α) → {1, 2, 3, . . .} satisfying r−1
T(Y(α)) ○ T = Q, then T is

automatically an immaculate tableau of shape α.13 Hence, the summation sign

∑
T is an immaculate
tableau of shape α ;

r−1
T(Y(α))○T=Q

on the right-hand side of (4.2) can be replaced by

∑
T∶Y(α)→{1,2,3,. . .};

r−1
T(Y(α))○T=Q

.

Hence,
∑

T is an immaculate
tableau of shape α ;

r−1
T(Y(α))○T=Q

xT = ∑
T∶Y(α)→{1,2,3,. . .};

r−1
T(Y(α))○T=Q

xT .

Now, let us write the composition β in the form (β1 , β2 , . . . , βℓ). _en we have

(4.3) ∣Q−1
(k)∣ =

⎧⎪⎪
⎨
⎪⎪⎩

βk if k ≤ ℓ,
0 if k > ℓ,

for every positive integer k

(since Q has content β). Hence, Q(Y(α)) = {1, 2, . . . , ℓ}. As a consequence, the
maps T ∶Y(α) → {1, 2, 3, . . .} satisfying r−1

T(Y(α)) ○T = Q are in 1-to-1 correspondence
with the ℓ-element subsets of {1, 2, 3, . . .} (the correspondence sends a map T to the

12_is is because the map r−1
T(Y(α)) is strictly increasing, and the inequality conditions that decide

whether a map Y(α) → {1, 2, 3, . . .} is an immaculate tableau of shape α are preserved under compo-
sition with a strictly increasing map.

13Proof. Let T be a map Y(α) → {1, 2, 3, . . .} satisfying r−1
T(Y(α)) ○ T = Q. _us, T = rT(Y(α)) ○Q.

Since Q is an immaculate tableau of shape α, this shows that T is an immaculate tableau of shape α
(since the map rT(Y(α)) is strictly increasing, and the inequality conditions that decide whether a map
Y(α) → {1, 2, 3, . . .} is an immaculate tableau of shape α are preserved under composition with a
strictly increasing map).
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ℓ-element subset T(Y(α)), and the inverse correspondence sends an ℓ-element sub-
set I to the map rI ○Q). But these latter subsets, in turn, are in 1-to-1 correspondence
with the strictly increasing length-ℓ sequences (i1 < i2 < ⋅ ⋅ ⋅ < iℓ) of positive integers
(the correspondence sends a subset G to the sequence (rG(1), rG(2), . . . , rG(ℓ)); of
course, this latter sequence is just the list of all elements of G in increasing order).
Composing these two 1-to-1 correspondences, we conclude that the maps T ∶Y(α) →
{1, 2, 3, . . .} satisfying r−1

T(Y(α)) ○ T = Q are in 1-to-1 correspondence with the strictly
increasing length-ℓ sequences (i1 < i2 < ⋅ ⋅ ⋅ < iℓ) of positive integers (the correspon-
dence sends a map T to the sequence (rT(Y(α))(1), rT(Y(α))(2), . . . , rT(Y(α))(ℓ))),
and this correspondence has the property that xT = xβ1

i1 x
β2
i2 ⋅ ⋅ ⋅ x

βℓ
iℓ whenever some

map T gets sent to some sequence (i1 < i2 < ⋅ ⋅ ⋅ < iℓ) (because if some map T gets
sent to some sequence (i1 < i2 < ⋅ ⋅ ⋅ < iℓ), then

(i1 , i2 , . . . , iℓ) = (rT(Y(α))(1), rT(Y(α))(2), . . . , rT(Y(α))(ℓ)),

so that every k ∈ {1, 2, . . . , ℓ} satisûes ik = rT(Y(α))(k), and now we have

xT = ∏
(i , j)∈Y(α)

xT(i , j) =
ℓ

∏
k=1

∏
(i , j)∈Y(α);
Q(i , j)=k

xT(i , j)
´¹¹¹¹¹¸¹¹¹¹¶

=xrT(Y(α))(Q(i , j))

(since T(i , j)=rT(Y(α))(Q(i , j))
(because r−1

T(Y(α))○T=Q
and thus T=rT(Y(α))○Q))

(since Q(Y(α)) = {1, 2, . . . , ℓ})

=
ℓ

∏
k=1

∏
(i , j)∈Y(α);
Q(i , j)=k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∏(i , j)∈Q−1(k)

xrT(Y(α))(Q(i , j))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=xrT(Y(α))(k)

(since Q(i , j)=k)

=
ℓ

∏
k=1

∏
(i , j)∈Q−1(k)

xrT(Y(α))(k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=x
∣Q−1(k)∣
rT(Y(α))(k)

=x
∣Q−1(k)∣
ik

(since rT(Y(α))(k)=ik )

=
ℓ

∏
k=1

x ∣Q
−1
(k)∣

ik
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

=x βkik
(since ∣Q−1

(k)∣=βk
(by (4.3)))

=
ℓ

∏
k=1

xβk
ik = xβ1

i1 x
β2
i2 ⋅ ⋅ ⋅ x

βℓ
iℓ ).

Hence,
∑

T∶Y(α)→{1,2,3,. . .};
r−1
T(Y(α))○T=Q

xT = ∑
1≤i1<i2<⋅⋅⋅<iℓ

xβ1
i1 x

β2
i2 ⋅ ⋅ ⋅ x

βℓ
iℓ = Mβ

(by the deûnition of Mβ). Altogether, we thus have

∑
T is an immaculate
tableau of shape α ;

r−1
T(Y(α))○T=Q

xT = ∑
T∶Y(α)→{1,2,3,. . .};

r−1
T(Y(α))○T=Q

xT = Mβ .

_is proves Lemma 4.5(iii).

Proof of Proposition 4.4. For every ûnite subset I of {1, 2, 3, . . .}, we use the no-
tation rI introduced in Lemma 4.5(i). Recall Lemma 4.5(ii); it says that if T is an
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immaculate tableau of shape α, then r−1
T(Y(α)) ○ T is an immaculate tableau of shape

α as well, and has the additional property that there exists a unique composition β of
∣α∣ such that r−1

T(Y(α)) ○ T has content β.
Now,

(4.4) S∗
α = ∑

β⊧∣α∣
Kα ,βMβ
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

=∑Q is an immaculate
tableau of shape α
and content β

Mβ

(by the definition of Kα ,β)

= ∑
β⊧∣α∣

∑
Q is an immaculate
tableau of shape α
and content β

Mβ .

But (4.2) shows that every composition β of ∣α∣ satisûes

∑
Q is an immaculate
tableau of shape α
and content β

Mβ = ∑
Q is an immaculate
tableau of shape α
and content β

∑
T is an immaculate
tableau of shape α ;

r−1
T(Y(α))○T=Q

xT = ∑
T is an immaculate
tableau of shape α

such that r−1
T(Y(α))○T

has content β

xT

(because for every immaculate tableau T of shape α, the map r−1
T(Y(α)) ○ T is an im-

maculate tableau of shape α as well). Substituting this into (4.4), we obtain

S∗
α = ∑

β⊧∣α∣
∑

Q is an immaculate
tableau of shape α
and content β

Mβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∑ T is an immaculate

tableau of shape α
such that r−1

T(Y(α))○T
has content β

xT

= ∑
β⊧∣α∣

∑
T is an immaculate
tableau of shape α

such that r−1
T(Y(α))○T

has content β

xT

= ∑
T is an immaculate
tableau of shape α

xT

(because for every immaculate tableau T of shape α, there exists a unique composition
β of ∣α∣ such that r−1

T(Y(α)) ○ T has content β), whence Proposition 4.4 follows.

Corollary 4.6 Let α = (α1 , α2 , . . . , αℓ) be a composition with ℓ > 0. Let α denote the
composition (α2 , α3 , . . . , αℓ) of ∣α∣ − α1. _en S∗

α = hα1 ≺ S∗
α . Here, hn denotes the

n-th complete homogeneous symmetric function for every n ∈ N.

Proof of Corollary 4.6. Proposition 4.4 shows that

(4.5) S∗
α = ∑

T is an immaculate
tableau of shape α

xT = ∑
Q is an immaculate
tableau of shape α

xQ

(here, we have renamed the summation index T as Q).
Let n = α1. If i1 , i2 , . . . , in are positive integers satisfying i1 ≤ i2 ≤ ⋅ ⋅ ⋅ ≤ in , and if T

is an immaculate tableau of shape α, then

(x i1x i2 ⋅ ⋅ ⋅ x in) ≺ xT

=

⎧⎪⎪
⎨
⎪⎪⎩

x i1x i2 ⋅ ⋅ ⋅ x inxT if min(Supp(x i1x i2 ⋅ ⋅ ⋅ x in)) < min(Supp(xT)),
0 if min(Supp(x i1x i2 ⋅ ⋅ ⋅ x in)) ≥ min(Supp(xT)),
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(by the deûnition of ≺ on monomials )

=

⎧⎪⎪
⎨
⎪⎪⎩

x i1x i2 ⋅ ⋅ ⋅ x inxT if i1 < min(T(Y(α))),
0, if i1 ≥ min(T(Y(α))),

(4.6)

(since min(Supp(x i1x i2 ⋅ ⋅ ⋅ x in)) = i1 and Supp(xT) = T(Y(α)) ).
But from n = α1, we obtain hn = hα1 , so that

hα1 = hn = ∑
i1≤i2≤⋅⋅⋅≤in

x i1x i2 ⋅ ⋅ ⋅ x in and S∗
α = ∑

T is an immaculate
tableau of shape α

xT

(by Proposition 4.4). Hence,

hα1 ≺S∗
α = ( ∑

i1≤i2≤⋅⋅⋅≤in
x i1x i2 ⋅ ⋅ ⋅ x in) ≺ ( ∑

T is an immaculate
tableau of shape α

xT)(4.7)

= ∑
i1≤i2≤⋅⋅⋅≤in

∑
T is an immaculate
tableau of shape α

(x i1x i2 ⋅ ⋅ ⋅ x in) ≺ xT

= ∑
i1≤i2≤⋅⋅⋅≤in ;

T is an immaculate
tableau of shape α ;
i1<min(T(Y(α)))

x i1x i2 ⋅ ⋅ ⋅ x inxT (by (4.6)).

We need to check that this equals

S∗
α = ∑

Q is an immaculate
tableau of shape α

xQ .

Now, let us deûne a map Φ from

{((i1 , i2 , . . . , in), T) ∣ 0 < i1 ≤ i2 ≤ ⋅ ⋅ ⋅ ≤ in and T is an immaculate
tableau of shape α satisfying i1 < min(T(Y(α))) }

to the set of all immaculate tableaux of shape α.
Namely, we deûne the image of a pair ((i1 , i2 , . . . , in), T) under Φ to be the im-

maculate tableau obtained by adding a new row, ûlled with the entries i1 , i2 , . . . , in
(from le� to right), to the top14 of the tableau T . 15

_is map Φ is a bijection,16 and has the property that if Q denotes the image of a
pair ((i1 , i2 , . . . , in), T) under the bijection Φ, then xQ = x i1x i2 ⋅ ⋅ ⋅ x inxT . Hence,

∑
Q is an immaculate
tableau of shape α

xQ = ∑
i1≤i2≤⋅⋅⋅≤in ;

T is an immaculate
tableau of shape α ;
i1<min(T(Y(α)))

x i1x i2 ⋅ ⋅ ⋅ x inxT .

14Here, we are using the graphical representation of immaculate tableaux introduced in Deûnition
4.1.

15Formally speaking, this means that the image of ((i1 , i2 , . . . , in), T) is the map Y(α) →

{1, 2, 3, . . .} that sends every (u, v) ∈ Y(α) to iv if u = 1, or to T(u − 1, v) if u /= 1. Proving that
this map is an immaculate tableau is easy.

16Proof. _e injectivity of the map Φ is obvious. Its surjectivity follows from the observation that
if Q is an immaculate tableau of shape α, then the ûrst entry of its top row is smaller than the smallest
entry of the immaculate tableau formed by all other rows of Q. (_is is a consequence of (4.1), applied
to Q instead of T.)
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In light of (4.5) and (4.7), this can be rewritten as S∗
α = hα1 ≺S∗

α .

Corollary 4.7 Let α = (α1 , α2 , . . . , αℓ) be a composition. _en

S∗
α = hα1 ≺ (hα2 ≺ (⋅ ⋅ ⋅ ≺ (hαℓ ≺ 1) ⋅ ⋅ ⋅)) .

Proof of Corollary 4.7. SinceS∗
∅ = 1, this follows by induction from Corollary 4.6.

5 An Alternative Description of hm ≺

In this section, we will also use the Hopf algebra of noncommutative symmetric func-
tions. _is Hopf algebra (a noncommutative one, for a change) is denoted by NSym
and has been discussed in [GriRei15, Section 5] and [HaGuKi10, Chapter 6]; all we
need to know about it are the following properties:

● _ere is a nondegenerate pairing between NSym and QSym, that is, a nondegener-
ate k-bilinear formNSym×QSym→ k. We will denote this bilinear form by ( ⋅ , ⋅ ).
_is k-bilinear form is a Hopf algebra pairing, i.e., it satisûes

(ab, c) = ∑
(c)

(a, c(1))(b, c(2))(5.1)

for all a ∈ NSym , b ∈ NSym and c ∈ QSym;
(1, c) = ε(c) for all c ∈ QSym;

∑
(a)

(a(1) , b)(a(2) , c) = (a, bc)

for all a ∈ NSym , b ∈ QSym and c ∈ QSym;
(a, 1) = ε(a) for all a ∈ NSym;

(S(a), b) = (a, S(b)) for all a ∈ NSym and b ∈ QSym

(where we use Sweedler’s notation).
● _ere is a basis of the k-module NSym that is dual to the fundamental basis

(Fα)α∈Comp of QSym with respect to the bilinear form ( ⋅ , ⋅ ). _is basis is called
the ribbon basis and will be denoted by (Rα)α∈Comp.

Both of these properties are immediate consequences of the deûnitions of NSym
and of (Rα)α∈Comp given in [GriRei15, Section 5] (although other sources deûne these
objects diòerently, and then the properties no longer are immediate). _e notations
we are using here are the same as the ones used in [GriRei15, Section 5] (except that
[GriRei15, Section 5] calls Lα what we denote by Fα), and only slightly diòer from
those in [BBSSZ13a] (namely, [BBSSZ13a] denotes the pairing ( ⋅ , ⋅ ) by ⟨ ⋅ , ⋅ ⟩ instead).

We need some more deûnitions. For any g ∈ NSym, let Lg ∶NSym→ NSym denote
the le� multiplication by g on NSym (that is, the k-linear map NSym → NSym, f ↦
g f ). For any g ∈ NSym, let g⊥∶QSym → QSym be the k-linear map adjoint to
Lg ∶NSym→ NSym with respect to the pairing (⋅, ⋅) between NSym and QSym. _us,
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for any g ∈ NSym, a ∈ NSym and c ∈ QSym, we have

(a, g⊥c) = ( Lg a
±
=ga

, c) = (ga, c).

_e following fact is well known (and also is an easy formal consequence of the deû-
nition of g⊥ and of (5.1)).

Lemma 5.1 Every g ∈ NSym and f ∈ QSym satisfy

(5.2) g⊥ f = ∑
( f )

(g , f(1)) f(2) .

Proof of Lemma 5.1. See the detailed version of this note.

For any composition α, we deûne a composition ω(α) as follows. Let n = ∣α∣, and
write α as α = (α1 , α2 , . . . , αℓ). Let rev α denote the composition (αℓ , αℓ−1 , . . . , α1)

of n. _en ω(α) shall be the unique composition β of n that satisûes

D(β) = {1, 2, . . . , n − 1} ∖ D(rev α).

(_is deûnition is identical with that in [GriRei15, Deûnition 5.22]. Some authors
denote ω(α) by α′ instead.) We notice that ω(ω(α)) = α for any composition α.

_e notion of ω(α) gives rise to a simple formula [GriRei15, Proposition 5.23] for
the antipode S of the Hopf algebra QSym in terms of its fundamental basis.

Proposition 5.2 Let α be a composition. _en S(Fα) = (−1)∣α∣Fω(α).

We now state the main result of this note.

_eorem 5.3 Let f ∈ QSym and let m be a positive integer. For any two compositions
α and β, deûne a composition α ⊙ β as in Proposition 3.9. _en

hm ≺ f = ∑
α∈Comp

(−1)∣α∣Fα⊙(m)R⊥ω(α) f .

(Here, the sum on the right hand side converges, because all but ûnitely many composi-
tions α satisfy R⊥ω(α) f = 0 for degree reasons.)

_e proof is based on the following simple lemma.

Lemma 5.4 Let a ∈ QSym and f ∈ QSym. _en

∑
α∈Comp

(−1)∣α∣(FαÁa)R⊥ω(α) f = a ≺ f .

Proof of Lemma 5.4. _e basis (Fα)α∈Comp of QSym and the basis (Rα)α∈Comp of
NSym are dual bases. _us,

(5.3) ∑
α∈Comp

Fα(Rα , g) = g for every g ∈ QSym .
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Let us use Sweedler’s notation. _e map Comp→ Comp, α ↦ ω(α) is a bijection
(since ω(ω(α)) = α for any composition α). Hence, we can substitute ω(α) for α in
the sum∑α∈Comp(−1)∣α∣(FαÁa)R⊥ω(α) f . We thus obtain

∑
α∈Comp

(−1)∣α∣(FαÁa)R⊥ω(α) f

= ∑
α∈Comp

(−1)∣ω(α)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(−1)∣α∣

(since ∣ω(α)∣=∣α∣)

(Fω(α)Áa) R⊥ω(ω(α))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=R⊥α
(since ω(ω(α))=α)

f

= ∑
α∈Comp

(−1)∣α∣(Fω(α)Áa) R⊥α f
±

=∑( f )(Rα , f(1)) f(2)
(by (5.2))

= ∑
α∈Comp

(−1)∣α∣(Fω(α)Áa)∑
( f )

(Rα , f(1)) f(2)

= ∑
( f )

∑
α∈Comp

(−1)∣α∣(Fω(α)Áa)(Rα , f(1)) f(2)

= ∑
( f )

(( ∑
α∈Comp

(−1)∣α∣Fω(α)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=S(Fα)
(by Proposition 5.2)

(Rα , f(1)))Áa) f(2)

= ∑
( f )

(( ∑
α∈Comp

S(Fα)(Rα , f(1)))Áa) f(2)

= ∑
( f )

(S( ∑
α∈Comp

Fα(Rα , f(1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= f(1)

(by (5.3), applied to g= f(1))

)Áa) f(2) = ∑
( f )

(S( f(1))Áa) f(2) = a ≺ f

(by _eorem 3.8, applied to b = f ). _is proves Lemma 5.4.

Proof of_eorem 5.3. We have

∑
α∈Comp

(−1)∣α∣ Fα⊙(m)

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=FαÁhm
(by (3.11))

R⊥ω(α) f = ∑
α∈Comp

(−1)∣α∣(FαÁhm)R⊥ω(α) f = hm ≺ f

(by Lemma 5.4, applied to a = hm). _is proves _eorem 5.3.

As a consequence, we obtain the following result, conjectured byM. Zabrocki (pri-
vate correspondence).

Corollary 5.5 For every positive integer m, deûne a k-linear operatorWm ∶QSym→
QSym by

Wm = ∑
α∈Comp

(−1)∣α∣Fα⊙(m)R⊥ω(α)
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(where Fα⊙(m) means le� multiplication by Fα⊙(m)). _en every composition α =

(α1 , α2 , . . . , αℓ) satisûes

S∗
α = (Wα1 ○Wα2 ○ ⋅ ⋅ ⋅ ○Wαℓ)(1).

Proof of Corollary 5.5. For every positive integer m and every f ∈ QSym, we have

Wm f = ∑
α∈Comp

(−1)∣α∣Fα⊙(m)R⊥ω(α) f = hm ≺ f (by _eorem 5.3).

Hence, by induction, for every composition α = (α1 , α2 , . . . , αℓ), we have

Wα1(Wα2( ⋅ ⋅ ⋅ (Wαℓ(1)) ⋅ ⋅ ⋅)) = hα1 ≺ (hα2 ≺ ( ⋅ ⋅ ⋅ ≺ (hαℓ ≺ 1) ⋅ ⋅ ⋅)) =S∗
α

(by Corollary 4.7). In other words,

S∗
α =Wα1(Wα2( ⋅ ⋅ ⋅ (Wαℓ(1)) ⋅ ⋅ ⋅)) = (Wα1 ○Wα2 ○ ⋅ ⋅ ⋅ ○Wαℓ)(1).

_is proves Corollary 5.5.

Let us ûnish this section with two curiosities: two analogues of _eorem 5.3, one
of which can be viewed as an “m = 0 version” and the other as a “negativem version”.
We begin with the “m = 0 one”, as it is the easier one to state.

Proposition 5.6 Let f ∈ QSym. _en

ε( f ) = ∑
α∈Comp

(−1)∣α∣FαR⊥ω(α) f .

Proof of Proposition 5.6. _is proof can be found in the detailed version of this
note; it is similar to the proof of _eorem 5.3.

_e “negative m” analogue is less obvious.17

Proposition 5.7 Let f ∈ QSym and let m be a positive integer. For any composition
α = (α1 , α2 , . . . , αℓ), we deûne an element F∖m

α of QSym as follows.
● If ℓ = 0 or αℓ < m, then F∖m

α = 0.
● If αℓ = m, then F∖m

α = F(α1 ,α2 , . . . ,αℓ−1).
● If αℓ > m, then F∖m

α = F(α1 ,α2 , . . . ,αℓ−1 ,αℓ−m).
(Here, any equality or inequality in which αℓ is mentioned is understood to include

the statement that ℓ > 0.)
_en

(−1)m
∑

α∈Comp
(−1)∣α∣F∖m

α R⊥ω(α) f = ε(R
⊥
(1m) f ).

Here, (1m) denotes the composition (1, 1, . . . , 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m times

).

Proof of Proposition 5.7. See the detailed version of this note.

17Proposition 5.7 does not literally involve a negative m, but it involves an element F∖m
α that can be

viewed as “something like F
(α)⊙(−m)

”.
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6 Lifts to WQSym and FQSym

We have so far been studying the Hopf algebras Sym, QSym, and NSym. _ese are
merely the tip of an iceberg; dozens of combinatorial Hopf algebras are currently
known, many of which are extensions of these. In this ûnal section, we will discuss
how (and whether) our operations ≺ and Á as well as some similar operations can
be li�ed to the bigger Hopf algebras WQSym and FQSym. We will give no proofs, as
these are not diõcult and the whole discussion is tangential to this note.

Let us ûrst deûne these two Hopf algebras (which are discussed, for example, in
[FoiMal14]).

We start with WQSym. (Our deûnition of WQSym follows the papers of the
Marne-la-Vallée school, such as [AFNT13, Section 5.1];18 it will diòer from that in
[FoiMal14], but we will explain why it is equivalent.)

Let X1 , X2 , X3 , . . . be countably many distinct symbols. _ese symbols will be
called letters. We deûne a word to be an ℓ-tuple of elements of {X1 , X2 , X3 , . . .} for
some ℓ ∈ N. _us, for example, (X3 , X5 , X2) and (X6) are words. We denote the
emptyword () by 1, andwe o�en identify the one-letter word (X i)with the symbol X i
for every i > 0. For any twowordsu = (X i1 , X i2 , . . . , X in) and v = (X j1 , X j2 , . . . , X jm),
we deûne the concatenation uv as the word (X i1 , X i2 , . . . , X in , X j1 , X j2 , . . . , X jm).
Concatenation is an associative operation and the empty word 1 is a neutral element
for it; thus, the words form amonoid. We letWrd denote this monoid. _ismonoid is
the free monoid on the set {X1 , X2 , X3 , . . .}. Concatenation allows us to rewrite any
word (X i1 , X i2 , . . . , X in) in the shorter form X i1X i2 ⋅ ⋅ ⋅X in .

Notice that Mon (the set of all monomials) is also a monoid under multiplication.
We can thus deûne amonoid homomorphism π∶Wrd→Mon by π(X i) = x i for all i ∈
{1, 2, 3, . . .}. _is homomorphism π is surjective. We deûne k⟪X⟫ to be the k-module
kWrd; its elements are all families (λw)w∈Wrd ∈ kWrd. We deûne a multiplication on
k⟪X⟫ by

(6.1) (λw)w∈Wrd ⋅ (µw)w∈Wrd = ( ∑
(u ,v)∈Wrd2 ; uv=w

λuµv)
w∈Wrd

.

_is makes k⟪X⟫ into a k-algebra, with unity (δw ,1)w∈Wrd. _is k-algebra is called
the k-algebra of noncommutative power series in X1 , X2 , X3 , . . . . For every u ∈ Wrd,
we identify the word u with the element (δw ,u)w∈Wrd of k⟪X⟫. 19 _e k-algebra k⟪X⟫

becomes a topological k-algebra via the product topology (recalling that k⟪X⟫ =

kWrd as sets). _us, every element (λw)w∈Wrd of k⟪X⟫ can be rewritten in the form
∑w∈Wrd λww. _is turns the equality (6.1) into a distributive law (for inûnite sums),
and explains why we refer to elements of k⟪X⟫ as “noncommutative power series”.
We think of words as noncommutative analogues of monomials.

18WQSym is denoted byWQSym in this reference.
19_is identiûcation is harmless, since the map Wrd → k⟪X⟫, u ↦ (δw ,u)w∈Wrd is a monoid ho-

momorphism from Wrd to (k⟪X⟫, ⋅ ). (However, it fails to be injective if k = 0.)
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_e degree of a word w will mean its length (i.e., the integer n for which w is an
n-tuple). Let k⟪X⟫bdd denote the k-subalgebra of k⟪X⟫ formed by the bounded-
degree noncommutative power series20 in k⟪X⟫. _e surjective monoid homomor-
phism π∶Wrd→Mon canonically gives rise to surjective k-algebra homomorphisms
k⟪X⟫ → k[[x1 , x2 , x3 , . . . ]] and k⟪X⟫bdd → k[[x1 , x2 , x3 , . . . ]]bdd, which we also de-
note by π. Notice that the k-algebra k⟪X⟫bdd is denoted R⟨X⟩ in [GriRei15, Section
8.1].

If w is a word, then we denote by Suppw the subset

{ i ∈ {1, 2, 3, . . .} ∣ the symbol X i is an entry of w}

of {1, 2, 3, . . .}. Notice that Suppw = Supp(π(w)) is a ûnite set.
A word w is said to be packed if there exists an ℓ ∈ N such that Suppw =

{1, 2, . . . , ℓ}.
For each word w, we deûne a packed word packw as follows. Replace the smallest

letter21 that appears in w by X1, the second-smallest letter by X2, etc..22 _is word
packw is called the packing of w. For example, pack(X3X1X6X1) = X2X1X3X1.
For every packed word u, we deûne an element Mu of k⟪X⟫bdd by

Mu = ∑
w∈Wrd;
packw=u

w .

(_is element Mu is denoted Pu in [AFNT13, Section 5.1].) We denote by WQSym
the k-submodule of k⟪X⟫bdd spanned by theMu for all packed words u. It is known
that WQSym is a k-subalgebra of k⟪X⟫bdd, which can furthermore be endowed with
a Hopf algebra structure (the so-called Hopf algebra of word quasisymmetric func-
tions) such that π restricts to a Hopf algebra surjection WQSym → QSym. Notice
that π(Mu) = MParikh(π(u)) for every packed word u, where the Parikh composition
Parikhm of any monomial m is deûned as in the proof of Proposition 3.5.

_e elementsMu withu ranging over all packedwords formabasis of thek-module
WQSym, which is usually called the monomial basis.23 Furthermore, the product of
two such elements can be computed by the well-known formula24

(6.2) MuMv = ∑
w is a packed word;

pack(w[∶ℓ])=u; pack(w[ℓ∶])=v

Mw ,

where ℓ is the length of u, and where we use the notation w [∶ ℓ] for the word formed
by the ûrst ℓ letters of w and we use the notation w [ℓ ∶] for the word formed by the

20A noncommutative power series (λw)w∈Wrd ∈ k⟪X⟫ is said to be bounded-degree if there is an
N ∈ N such that every word w of length > N satisûes λw = 0.

21We use the total ordering on the set {X1 , X2 , X3 , . . .} given by X1 < X2 < X3 < ⋅ ⋅ ⋅.
22Here is a more pedantic way to restate this deûnition: Write w as (X i1 , X i2 , . . . , X iℓ ), and let

I = Suppw (so that I = {i1 , i2 , . . . , iℓ}). Let rI be the unique increasing bijection {1, 2, . . . , ∣I∣} → I.
_en packw denotes the word (Xr−1

I (i1) , Xr−1
I (i2) , . . . , Xr−1

I (iℓ)
).

23Sometimes it is parametrized not by packed words but instead by set compositions (i.e., ordered
set partitions) of sets of the form {1, 2, . . . , n} with n ∈ N. But the packed words of length n are in a
1-to-1 correspondence with set compositions of {1, 2, . . . , n}, so this is merely a matter of relabelling.

24_is formula appears in [MeNo_11, Proposition 4.1].
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remaining letters of w. _is equality (which should be considered a noncommuta-
tive analogue of (3.5), and can be proven similarly) makes it possible to give an al-
ternative deûnition of WQSym, by deûning WQSym as the free k-module with basis
(Mu)u is a packed word and deûning multiplication using (6.2). _is is precisely the ap-
proach taken in [FoiMal14, Section 1.1].

_e Hopf algebra WQSym has also appeared under the name NCQSym (“qua-
sisymmetric functions in noncommuting variables”) in [BerZab05, Section 5.2] and
other sources.

We now deûne ûve binary operations ≺, ○,≻, Á, andź on k⟪X⟫.

Deûnition 6.1 (a) Wedeûne a binary operation≺∶k⟪X⟫×k⟪X⟫ → k⟪X⟫ (writ-
ten in inûx notation) by the requirements that it be k-bilinear and continuous with
respect to the topology on k⟪X⟫ and that it satisfy

u ≺ v =
⎧⎪⎪
⎨
⎪⎪⎩

uv if min(Suppu) < min(Supp v),
0 if min(Suppu) ≥ min(Supp v),

for any two words u and v.
(b) We deûne a binary operation ○∶k⟪X⟫ × k⟪X⟫ → k⟪X⟫ (written in inûx no-

tation) by the requirements that it be k-bilinear and continuous with respect to the
topology on k⟪X⟫ and that it satisfy

u ○ v =
⎧⎪⎪
⎨
⎪⎪⎩

uv if min(Suppu) = min(Supp v),
0 if min(Suppu) /= min(Supp v),

for any two words u and v.
(c) We deûne a binary operation ≻∶k⟪X⟫ × k⟪X⟫ → k⟪X⟫ (written in inûx no-

tation) by the requirements that it be k-bilinear and continuous with respect to the
topology on k⟪X⟫ and that it satisfy

u ≻ v =
⎧⎪⎪
⎨
⎪⎪⎩

uv if min(Suppu) > min(Supp v),
0 if min(Suppu) ≤ min(Supp v),

for any two words u and v.
(d) We deûne a binary operation Á∶k⟪X⟫ × k⟪X⟫ → k⟪X⟫ (written in inûx no-

tation) by the requirements that it be k-bilinear and continuous with respect to the
topology on k⟪X⟫ and that it satisfy

uÁv =
⎧⎪⎪
⎨
⎪⎪⎩

uv if max(Suppu) ≤ min(Supp v),
0 if max(Suppu) > min(Supp v),

for any two words u and v.
(e) We deûne a binary operation ź∶k⟪X⟫ × k⟪X⟫ → k⟪X⟫ (written in inûx no-

tation) by the requirements that it be k-bilinear and continuous with respect to the
topology on k⟪X⟫ and that it satisfy

uźv =
⎧⎪⎪
⎨
⎪⎪⎩

uv if max(Suppu) < min(Supp v),
0 if max(Suppu) ≥ min(Supp v),

for any two words u and v.
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_eûrst three of these ûve operations are closely related to those deûned byNovelli
and_ibon in [No_i05]; themain diòerence is the use of minima instead of maxima
in our deûnitions.

_e operations ≺, Á and ź on WQSym li� the operations ≺, Á and ź on QSym.
More precisely, any a ∈ k⟪X⟫ and b ∈ k⟪X⟫ satisfy

π(a) ≺ π(b) = π(a ≺ b) = π(b ≻ a),
π(a)Áπ(b) = π(aÁb),
π(a)źπ(b) = π(aźb)

(and similar formulas would hold for ○ and ≻ had we bothered to deûne such opera-
tions on QSym). Also, using the operation ⪰ deûned in Remark 3.2, we have

π(a) ⪰ π(b) = π(a ≻ b + a ○ b) for any a ∈ k⟪X⟫ and b ∈ k⟪X⟫.

We now have the following analogue of Proposition 3.5.

Proposition 6.2 Every a ∈ WQSym and b ∈ WQSym satisfy a ≺ b ∈ WQSym,
a ○ b ∈WQSym, a ≻ b ∈WQSym, aÁb ∈WQSym, and aźb ∈WQSym.

_e proof of Proposition 6.2 is easier than that of Proposition 3.5; we omit it here.
In analogy to Remark 3.7 and to (6.2), let us give explicit formulas for these ûve op-
erations on the basis (Mu)u is a packed word of WQSym:

Remark 6.3 Let u and v be two packed words. Let ℓ be the length of u. _en we
have

Mu ≺ Mv = ∑
w is a packed word;

pack(w[∶ℓ])=u; pack(w[ℓ∶])=v ;
min(Supp(w[∶ℓ]))<min(Supp(w[ℓ∶]))

Mw ,(a)

Mu ○Mv = ∑
w is a packed word;

pack(w[∶ℓ])=u; pack(w[ℓ∶])=v ;
min(Supp(w[∶ℓ]))=min(Supp(w[ℓ∶]))

Mw ,(b)

Mu ≻ Mv = ∑
w is a packed word;

pack(w[∶ℓ])=u; pack(w[ℓ∶])=v ;
min(Supp(w[∶ℓ]))>min(Supp(w[ℓ∶]))

Mw ,(c)

MuÁMv = ∑
w is a packed word; pack(w[∶ℓ])=u; pack(w[ℓ∶])=v ;

max(Supp(w[∶ℓ]))≤min(Supp(w[ℓ∶]))

Mw .(d)

_e sum on the right-hand side consists of two addends (unless u or v is empty),
namelyMuv+h−1 andMuv+h , where h = max(Suppu), and where v+ j denotes the word
obtained by replacing every letter Xk in v by Xk+ j .

(e) We have

MuźMv = ∑
w is a packed word;

pack(w[∶ℓ])=u; pack(w[ℓ∶])=v ;
max(Supp(w[∶ℓ]))<min(Supp(w[ℓ∶]))

Mw .
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_e sum on the right-hand side consists of one addend only, namely Muv+h .

Let us now move on to the combinatorial Hopf algebra FQSym, which is known
as theMalvenuto-Reutenauer Hopf algebra or theHopf algebra of free quasi-symmetric
functions. We shall deûne it as a Hopf subalgebra of WQSym. _is is equivalent to
but not identical to the deûnition in [GriRei15, Section 8.1].
For every n ∈ N, we let Sn be the symmetric group on the set {1, 2, . . . , n}. (_is

notation is identical with that in [GriRei15]. It has nothing to do with the Sα from
[BBSSZ13a].) We letS denote the disjoint union⊔n∈NSn . We identify permutations
inSwith certain words; namely, every permutation π ∈S is identiûed with the word
(Xπ(1) , Xπ(2) , . . . , Xπ(n)), where n is such that π ∈Sn . _ewords thus identiûedwith
permutations inS are precisely the packed words that do not have repeated elements.
For every word w, we deûne a word stdw ∈ S as follows. Write w in the form

(X i1 , X i2 , . . . , X in). _en stdw shall be the unique permutation π ∈ Sn such that,
whenever u and v are two elements of {1, 2, . . . , n} satisfying u < v, we have (π(u) <
π(v) if and only if iu ≤ iv). Equivalently (and less formally), stdw is the word that is
obtained by

● replacing the le�most smallest letter of w by X1, and marking it as “processed”;
● then replacing the le�most smallest letter of w that is not yet processed by X2, and

marking it as “processed”;
● then replacing the le�most smallest letter of w that is not yet processed by X3, and

marking it as “processed”;
● etc., until all letters of w are processed.

For instance, std(X3X5X2X3X2X3) = X3X6X1X4X2X5 (which, regarded as per-
mutation, is the permutation written in one-line notation as (3, 6, 1, 4, 2, 5)).

We call stdw the standardization of w.
Now, for every σ ∈S, we deûne an element Gσ ∈WQSym by

Gσ = ∑
w is a packed word;

stdw=σ

Mw = ∑
w∈Wrd;
stdw=σ

w .

(_e second equality sign can easily be checked.) _en the k-submodule of WQSym
spanned by (Gσ)σ∈S turns out to be a Hopf subalgebra, with basis (Gσ)σ∈S. _is
Hopf subalgebra is denoted by FQSym. _is deûnition is not identical with the one
given in [GriRei15, Section 8.1]; however, it gives an isomorphic Hopf algebra, as our
Gσ correspond to the images of the Gσ introduced in [GriRei15, Section 8.1] under
the embedding FQSym→ R⟨{X i}i∈I⟩ also deûned therein.

Only two of the ûve operations ≺, ○, ≻, Á, and ź deûned in Deûnition 6.1 can be
restricted to binary operations on FQSym.

Proposition 6.4 Every a ∈ FQSym and b ∈ FQSym satisfy a ≻ b ∈ FQSym and
aÁb ∈ FQSym.

Moreover, we have the following explicit formulas on the basis (Gσ)σ∈S.
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Remark 6.5 Let σ ∈ S and τ ∈ S. Let ℓ be the length of σ (so that σ ∈ Sℓ). We
have

Gσ ≻ Gτ = ∑
π∈S;

std(π[∶ℓ])=σ ; std(π[ℓ∶])=τ;
min(Supp(π[∶ℓ]))>min(Supp(π[ℓ∶]))

Gπ ,(a)

GσÁGτ = ∑
π∈S;

std(π[∶ℓ])=σ ; std(π[ℓ∶])=τ;
max(Supp(π[∶ℓ]))≤min(Supp(π[ℓ∶]))

Gπ .(b)

_e sum on the right-hand side consists of one addend only, namely Gστ+ℓ .

_e statements of Remark 6.5 can be easily derived from Remark 6.3. _e proof
for (a) rests on the following simple observations:
● Every word w satisûes std(packw) = stdw.
● Every n ∈ N, every word w of length n and every ℓ ∈ {0, 1, . . . , n} satisfy

std((stdw)[∶ ℓ]) = std(w[∶ ℓ]) and std((stdw)[ℓ ∶]) = std(w[ℓ ∶]).

● Every n ∈ N, every word w of length n and every ℓ ∈ {0, 1, . . . , n} satisfy the equiv-
alence

(min(Supp(w[∶ ℓ])) > min(Supp(w[ℓ ∶])))

⇐⇒ (min(Supp((stdw)[∶ ℓ])) > min(Supp((stdw)[ℓ ∶]))) .

_e third of these three observations would fail if the greater sign were to be re-
placed by a smaller sign; this is essentially why FQSym ⊆ WQSym is not closed un-
der ≺.

_e operation ≻ on FQSym deûned above is closely related to the operation ≻ on
FQSym introduced by Foissy in [Foissy07, Section 4.2]. Indeed, the latter diòers from
the former in the use of max instead of min.

7 Epilogue

We have introduced ûve binary operations ≺, ○, ≻,Á, andź on k[[x1 , x2 , x3 , . . . ]] and
their restrictions to QSym; we have further introduced ûve analogous operations on
k⟪X⟫ and their restrictions to WQSym (as well as the restrictions of two of them to
FQSym). We have used these operations (speciûcally, ≺ and Á) to prove a formula
(Corollary 5.5) for the dual immaculate functions S∗

α . Along the way, we have found
that the S∗

α can be obtained by repeated application of the operation ≺ (Corollary
4.7). A similar (but much more obvious) result can be obtained for the fundamental
quasisymmetric functions: For every α = (α1 , α2 , . . . , αℓ) ∈ Comp, we have

Fα = hα1źhα2ź ⋅ ⋅ ⋅źhαℓź1

(we do not use parentheses here, sinceź is associative). _is shows that the k-algebra
(QSym,ź) is free. Moreover,

Fω(α) = eαℓÁeαℓ−1Á ⋅ ⋅ ⋅Áeα1Á1,
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where em stands for the m-th elementary symmetric function; thus, the k-algebra
(QSym,Á) is also free.25 (Incidentally, this shows that S(aźb) = S(b)ÁS(a) for any
a, b ∈ QSym. But this does not hold for a, b ∈WQSym.)

One might wonder what “functions” can be similarly constructed using the oper-
ations ≺, ○,≻, Á, andź in WQSym, using the noncommutative analogues

Hm = ∑
i1≤i2≤⋅⋅⋅≤im

X i1X i2 ⋅ ⋅ ⋅X im = G(1,2,. . . ,m) ,

Em = ∑
i1>i2>⋅⋅⋅>im

X i1X i2 ⋅ ⋅ ⋅X im = G(m ,m−1,. . . ,1)

of hm and em . (_ese analogues actually live in NSym, where NSym is embedded into
FQSym as in [GriRei15, Corollary 8.14], but the operations do not preserveNSym, and
only two of them preserve FQSym.) However, it seems somewhat tricky to ask the
right questions here; for instance, the k-linear span of the ≻-closure of {Hm ∣ m ≥ 0}
is not a k-subalgebra of FQSym (since H2H1 is not a k-linear combination of H3,
H1 ≻ (H1 ≻ H1), (H1 ≻ H1) ≻ H1, H1 ≻ H2 and H2 ≻ H1).

On the other hand, one might also try to write down the set of identities satisûed
by the operations ⋅, ≺, ○, ⪰, Á andź on the various spaces (k[[x1 , x2 , x3 , . . . ]], QSym,
k⟪X⟫, WQSym, and FQSym), or by subsets of these operations; these identities could
then be used to deûne new operads, i.e., algebraic structures comprising a k-module
and some operations on it that imitate (some of) the operations ⋅, ≺, ○, ⪰, Á, and ź.
For instance, apart from being associative, the operations Á and ź on k⟪X⟫ satisfy
the identity

(7.1) (aÁb)źc + (aźb)Ác = aÁ(bźc) + aź(bÁc)

for all a, b, c ∈ k⟪X⟫. _is follows from the (easily veriûed) identities

(aÁb)źc − aÁ(bźc) = ε(b)(aźc − aÁc),
(aźb)Ác − aź(bÁc) = ε(b)(aÁc − aźc),

where ε∶k⟪X⟫ → k is the map that sends every noncommutative power series to its
constant term. Equality (7.1) (along with the associativity of Á and ź(k⟪X⟫,Á,ź)
into what is called an As⟨2⟩-algebra (see [Zinbie10, p. 39]). Is QSym or WQSym a
free As⟨2⟩-algebra? What if we add the existence of a common neutral element for the
operations Á andź to the axioms of this operad?
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