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Abstract

We characterize the Hardy spaces Hp (G) of a compact Lie group G by means of S-functions in analogy
with the theorem of Fefferman-Stein for W. We also characterize HP(G) by means of the g*-functions.

1991 Mathematics subject classification (Arner. Math. Soc): 43A15, 43A17,43A75.

1. Introduction

The characterization of HP(R") by means of 5-functions is a well-known result of
Fefferman-Stein [4, Theorem 8]. Using previously obtained atomic characterizations
of HP(G) [1], we prove an analogous result for compact connected semisimple Lie
groups G. As an application, we show that |g*( / ) | | < C ||/||W?(G) • This inequality
gives us another characterization of HP(G) by means of the g*-function.

The Hardy space HP(G) of distributions on a connected simply-connected compact
group G is defined to be HP(G) = {f e y(G) | u) e LP(G)} where u*(x) =
suP(j ner(x) \Pt * f(y)\> Pt is t n e Poisson kernel associated with the Casimir operator
of G, and r(jc) = {(v, t) e G x K+ | d(x, y) < t} is the cone with vertex x e G
defined by a bi-invariant metric d on G. For suitable radial functions <p on the Lie
algebra t of a maximal torus T of G (see (3.1) for a complete description), we define
the S -function by

Or \1/2

\(f*4><)(y)\2r{n+1)dydt) .
ru> /

Our main result concerning the S-function is:
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328 Brian E. Blank and Dashan Fan [2]

THEOREM 3.3. For f € y\G), f e HP(G) if and only if S+if) <= LP(G).

For / a distribution on G and A > 1, we define the g*k -function of / by

The g*-function characterization of HP(G) that we obtain in Section 4 is contained in
these two theorems:

THEOREM 4.1. Suppose that f € y'(G). For 0 < p < 1 and A. > 2/p, / e
HP(G) ifandonly if g{ ( /) e L'(G). Moreover flgj (/) | | ~ ||5* | |

p

THEOREM4.2. For p > 1 W A > 2/p, | ^ ( / ) | < C
p

In fact, in this paper we will show that these are characterizations of atomic Hardy
space Hp (G) as defined in Section 2. The authors have previously demonstrated the
equivalence of atomic Hardy space / / / (G) and Hp (G).

2. Notation and definitions

Let G be a connected simply-connected compact Lie group of dimension n. Let g
be the Lie algebra of G and let t be the Lie algebra of a fixed maximal torus T of G
of dimension t. Let A be a system of positive roots for the pair (g, t). Then Card(A)
= (n-£)/2. LetS = £ a e / 4 a / 2 .

If | | is the norm on g induced by the negative of the Killing form B on gc, the
complexification of g, then | | induces a bi-invariant metric d on G. Furthermore,
since B\tcxtc is non-degenerate, for each complex linear functional A 6 homc(tc, C)
there is a unique Hk e t c such that A(//) = B(H, Hx) for H e tc . The inner product
and norm on t give rise to an inner product (•, •) and norm |||| on homc(t, iW) by
means of this canonical isomorphism.

The weight lattice P is defined by P = {A e homc(t, /K) : X(X) e 2nil}. The
set A of dominant weights is defined by A = {A e P : (A, a) > 0 for a e A}. The set
G of equivalence classes of irreducible unitary representations of G is parameterized
by A : G = {[Uk]}k€A. The representation Uk has dimension dk and character
given by
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[3] 5 and g*-functions on compact Lie groups 329

where W is the Weyl group and s(w) is the signature of w. Let {Xu ..., Xn] be an
orthonormal basis of g. The Casimir operator

is an elliptic bi-invariant operator on G that is independent of the choice of basis. Let
W, and P, be the Gauss-Weierstrass and Poisson kernels defined on G+ = G x R+ =
G x (0, oo) by

W,(x) = J > - ' ^ 1 | 2 - w 2 W « (x, t) e G+

and

P,(x) = 2^-'Vii*+«ii ~m d^xxix) (x, t) e G+.
XeA

The solutions to the heat equation

— (x, t) = Aq>(x, t) <p(e,0+) =
dt

and the Poisson equation

for / e Ll(G) are given by W, * f and P, * / respectively. Here and elsewhere, Haar
measures on compact groups are normalized to have total mass one. All Lebesgue
spaces to be discussed will be with respect to such measures.

Let T(x) = {(>>, 0 e G+ | d(x, y) < t}. For a distribution / in y"(G), let

uf(x, t) = P<* f(x) and u*Ax) = sup \uf(y, t)\.
( r ) e r ( )

Then, for 0 < p < oo,

H"(G) = { / e J

The 'norm' \\f\\HP(G) of / in HP(G) is the Lebesgue norm |w^|| . Although ||-||//P(G)

is not a norm in general, it induces a complete metrizable topology on HP{G). Since
HP(G) = LP(G) for /? > 1, we will restrict our attention to the case 0 < p < 1.

We will also need the atomic Hardy spaces as originally defined by Coifman-
Weiss [3] in the context of spaces of homogeneous type. We will actually use the
modification for compact groups found in Clerc [2]. For each y in G, let Ly denote
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330 Brian E. Blank and Dashan Fan [4]

left translation by y in G. Let £1 and Si be positive numbers such that exp~' oLx-\ is
a diffeomorphism from the G-ball B(x, £]) into the ball B(0, 5,) of g for all x in G.
Let TX(G) be the tangent space of G at x. For a positive integer k and an element y
of G, let

^ ( j ) = {f : p = q o exp"1 oLy-< for some polynomial g on g of degree < Ic].

Let 0 < p < l < ( 7 < o o . Set k(p) = [n (l/p — 1)]. A regular (p, q) atom on G
is a function a(x) supported in some ball B(y, p) (0 < p < et) such that

(i) INI, < pn<l/i-[/p) (size condition);
(ii) fGa(x)P(x)dx = 0, P e ^k(P)iy) (cancellation condition).

An exceptional atom is a function bounded by 1. The atomic Hardy space
is the space of all / e y{G) of the form

/ =

the decomposition being in terms of regular (p, q) and exceptional atoms. The
'norm' | | / | |p , , ,a of / in Hpq(G) is defined to be inf I (J2k \ck\p)^lp \ taken over all
atomic decompositions of / . It is known in the more general context of spaces
of homogeneous type that for fixed p, identical atomic Hardy spaces arise for all
q e [1, oo]. We therefore need only consider the q = oo case. We denote Hpoc(G)

by HP(G). We will denote the norm of this space by || • \\pM.

3. The 5-function characterization of HP(G)

Let <p be a radial function in S?(R.e) which satisfies

(i) <K0) = 0

(3-D /•» S 2 d s / S _ c 0

Jo
We define a central function in C°°(G) by its restriction to T :

(3.2) $,{}
XeA

Let R be defined as in [2] and let /xR denote the number of singular positive roots (as
defined in [2, p. 87]). Let DR(H) = f\a s ina ( / / ) /2 , the product being over all pos-
itive non-singular roots. For a multi-index / = (j\,..., j n ) , let XJ = X{{ X£ • • • XJ

n"
and let | / | = jx H \-ja.
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[5] S and g* -functions on compact Lie groups 331

LEMMA 3.1. Suppose that x e G is conjugate to exp H for H € t. Then there is a
constant C independent of x and t such that for any multi-index J and m e N

(i) \xJ<p,(x)\<crmift>su

(3.3) (ii) \xJ(j>t{x)\ < cr^-\

aii) \xj4>,w\ < ctm (n//irm-"-|y| ' ) if\\H\\>t.

The proof of this lemma is the same as the proof of [2, Theorem 5.4]. We
will continue to denote unimportant constant by C, without distinguishing between
different constants, if they have no crucial dependence on objects under consideration.

For any / e S'(G), we define the S-function of / by

(3.4) S<pf{x) = (! \{f*(j),){y)\2r{n+X)dydt\

and the g -function of / by

(3.5)

LEMMA 3.2.

PROOF. Since \\g(f)\\2
2 = c(0)/o°°/G | ( / *<£,) (x)\2 dxdt/t, the lemma follows

from (3.1) and the Plancherel Theorem.

THEOREM 3.3. For / 6 y\G), u* e LP(G) if and only if S0(/) e LP(G).
Moreover, \\u}\\p= \\S+(f)\\p.

PROOF. If M* e LP(G), then / e HP(G) [1]. Therefore / has an atomic decom-

\ 1/2

g(f)(*) = [ I \(f*cp,)(x)\2dt/t\ .

position / = J2j cJaJ w i cj - C ||M/ ||P • Now

-(n+D/2 )
p/2

dx

[(
G \Jru)

P dx.

If we show that

(3.6) f ( f l(a **,) (y)l2 r<"+1)dydt) dx<c
JG \Jru) /
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for a constant C independent of the atom a, then

-r *c «/«;. *c i«;

[6]

1/2

As the proof of (3.6) for p e (0, 1) is the same as for the case p = 1, we will
assume that p = 1 for notational simplicity. The proof for exceptional atoms a is an
easy consequence of Holder's inequality and Lemma 3.2:

\\S,(a)l<C\\S,(.a)\\2

-(Iff \(a*4>l)(y)\1r("+l)dydtdx]
\JG J0 Jd(x,y)<t /

<C\\g(a)\\2<C\\a\\2<C.

Now let a(x) be a regular (1, oo) atom supported, without loss of generality, in
B(I, p). Using (i) of (3.3) we may assume that t < e0 for some fixed e0. We
break up fG \S,p(a)(x)\ dx into two pieces according to whether d(x, I) > SLp or
d(x, 1) < SLp where L is the largest root length. Then

Jdl
dx < Cpn/1 \\g(a)\\2 < Cpn/2 \\a\\2 < C.

d(x,l)<SLp

The remaining piece /
„ / ) > g L

t
|S0(a)(;t)| dx of is itself broken into two

pieces by partitioning each t(x) into rt(x) = {(y,t) : d(y, x) <t< 2Lp) and
T2(x) = {(y, t) : d(y, x) < t, 2Lp < t). We will show that each

',= [ [ (f aim
Jd(x,l)>%Lp JTiix) \JB(l,p)

r<"+» dydt

1/2

dx 0 = 1,2)
td(x,l)>»Lp

is bounded independently of a. For £, x and (y, t) in the integration in Ju

d{S, I) > d(x, I) - d(y, £) - d(x, y) > d(x, /)/4 > 2Lp > t.

Therefore, by (iii) of (3.3),

\J\\<C f \f sup d{I,^Y1{n+l)tx-n dydt) dx

+ C||a||00 f \ f ' f f D
JG [JO JG JG

The second summand is obviously bounded; for the first,

f i [ f2Lp | ' /2 r .Up i'/2

/ d{I, xYin+X) \ I / t'-"dydt\ dx<Cpx\\ tdt\ <C.
Jd(x,l)>2Lp [Jd(x.y)<t JO J [Jo \

dx.

https://doi.org/10.1017/S1446788700000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000410


[7] S and gj-functions on compact Lie groups

We estimate J2 by partitioning each V2(x) into two pieces

Yi(.x) = [(y,t):d(y,x)<t, d(y, B(I, p)) >4Lp, t > 2Lp)

and
Yi(x) = {(y, t) : d(y, x) < t, d(y, B(I, p)) < 4Lp, t > 2Lp].

Write J2 < I\ + h where

333

I i = f f (f a
Since a is a (1, oo)-atom,

r{n+l)dydt

1/2

dx (1 = 1,2).

<C||a||oop-+1 / ([ Jt<t>(y,t)t-*+X)dydt) dx
JBV.&LpY \JY2<.X) /

where
, t) = sup : § e B(y, p), 1 < j < nj .

If y e y2(x), then t > d(y, x) > d(x, I) - d(y, I) > d(x, /) /4. Therefore, by (ii)
and (iii) of (3.3), we have

\h\
r /.so 1/2

<Cp\ I r(2n+3)dt dx

+ Cp [ ( f012" I sup |r2*RDR(£)-2 : $ € B(y, p)\ dydt) dx.
JG \J2Lp Jd(x,y)<t l ' /

The first summand is easily seen to be bounded and the second is bounded by
C fc DR(y)-2 dy <C (cf. [2 , Lemma 6.4]).

In the first step in estimating Iu we also use (ii) and (iii) of (3.3) as well as [2 ,
Lemma 6.4] to obtain

\h\<Cp f \ f sup (t + \\$\\r2in+l)r(n+1)dydt\ dx + C.
JB(l,%LpY \-Jyi(x)$£B(y,p) J

For any)' e Ki(jc)and| € B(y, p),
0/4. Therefore

> d(y, I) and t + d(y, I) > (d(x, I) +

<Cpf \f (tl'\t + d(y,I

<Cp [ I [ ° r3/2 dt\ d{x,
JBU.SLpY \-J2Lp J

dx

C.
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This completes the proof that | S#(a) || { < C with C independent of the (1, oo)-atom
a.

We turn to the other direction of the equivalence, assuming that S^if) e LP(G).
Let * be a radial function in y'(E.e) that satisfies

(3.7)

(i) supp(*) c [9 : \6\ < 1}

(ii) / 9'tyi9)dO = 0 ( / € Me,

(iii)

2n(l/p- 1/2))

f
Jo

<f>(t)V(t)dt/t = 1.

By the Calderon reproducing formula on G, any / e y has a reproducing trans-
formation

f(x) = / ( / * </>,)(>>) %{xy~l) dy rl dt(3.8) f(x) = f
JG+

which we break up as the sum of I\ and I2 where

h(x)= f !if*<pt)iy)y<(xy-')dyt{dt, and
Jo JG

(3.9)

=/7
Je JG

if*4>,)iy)V<(xy-l)dyr
ldt

for a small e that will be determined later. For this fixed e, there is a constant Ce such
that

II/2II00 < [ y f \if*4>,)(y)\2r("+l)dydt\ .

Since G is compact, there are elements xit... ,xN (N = /V(G, E)) such that G is
covered by the open e/4-balls centered at these points. Let xt denote the characteristic
function of B(xiy s). Then

>(f)\\p
p

N /»oo

> # ~ ' / 5 Z x ' w / / l(/**f)(>')l2r("+1)rfyrfr Jx
JG , = i L^e Jd(x,y)<t J

JG

> cN,p I
JG

> cK,p [[
T. /
, = 1 Je JB<jCj,e

\if*<t>,)iy)\lr{n+l)dydt

XiM\if*<t><)(y)\2r("+l)dydt\
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[9] S and g*-functions on compact Lie groups 335

Thus, we can find a constant CPiE depending only on p and e such that I2 (x) = Cp,s a(x)
where a(x) is an exceptional atom and |CP>E| < C |S0( / ) | .

To estimate I\(x), we let xy~l be conjugate to exp# e T. Then D(xy~l) =
Y[aeA

 s m 2a(^)- There is a polynomial Pn(p) of degree In + 2 + «( l /p - 1/2) such
that

= c f f
\a(=A aeA 0£A

\ r1(3.10) D^iPWixy-1) (f * 4>t) (y) \ dy r 1 dt

+ C f f (f*4>.) (y)R(e)D-i(9)^l(xy-1)dyt'idt
J0 JG

where R(G) is a C°°(K{)-function such that R(8)D(0)-1 = O(||6>||"+3+"(1/''"1/2)) and
XiR(0)D(9)-1 = O(||6»||"+2+'l(1/''"1/2)). As a consequence of these estimates, we have

To complete the proof of Theorem 3.1, we will prove that each term in (3.10) has a
suitable atomic decomposition. There are two types of terms that we must deal with.
We will show that

= f
Jo

dyr1 dt
0 JG a<=A sma(V)

and

h(x) = f f (/ * 0,) (y)%(xy-l)R(9)D (9)-' dyr1 dt
Jo JG

have atomic decompositions

with each a7 a (p, 2)-atom, each bj an exceptional atom and £V A/-|
p <

and J2j \vj\P - ll^*(/)llp • All other terms in (3.10) are handled in the same way as

A,.-
Let Si be as in the definition of atoms. For a choice of s e (0, Si/32), the ball

B(x, 16e) is contained in a local coordinate chart {Vx, rj} with diam(Vj) < s{. Let
{*,,..., xN] be such that G — Uf=lB(xj, s). Let [/, = B(XJ, s), let xy(x) = Xuj(x)
and set ?y(x) = Xj(x)/12i=i Xj(x)- Let M(0) = M{xy~x)
Then /u(jr) = ^yl i Fj(*) and ^(-^) = E j l i Gj(x) w n e r e

Fy(x) = C I I |,-(y) (/ *0,) ( y ) * , ^ - 1 ) ^ ^ ) ^ - 1 rff
Jo JG
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and

Gj(x) = C I I t-j(y) (f * <)>,) (y)%(xy-l)R(6)D(9rl dyt~[ dt.
Jo JG

It suffices to show that each Fj and Gj has an atomic decomposition of the indicated
type. Henceforth we drop the index j .

Since {16 • U, r)} is contained in a local coordinate chart, we may assume without
loss of generality that r)(U) is the open cube of side length e centered at 0 e K" and
that d(x, y) = \r)(x) — r)(y)\. We will write l(B) for the sidelength of a dyadic cube
in i)(U) and write |B| for |^"'(fi)|. Let

® = [IB : (y, t) e IB if and only if y e B and i(B)/2 < t < i(B)}.

For each IB e 38, we will write IB for (l(B)/2,1{B)) x r)~\B). If

(3.12) fB(x) --

and

(3.13) gB(x) = f Hy) ( / * *,) (yWixy-^RmDiO)-1 dyt~x dt
J IB

then

(3.14) F =

in 5'.
Observe first of all that fB and gB are C°°-functions supported in 4rj"'(B) since

* is C°° and the integrands in (3.13) and (3.14) vanish unless B D B(x, t) is not an

empty set for some t e/B. Also

(3.15) f fB(x)P(x)dx = 0
JG

for all po lynomia ls P with degree at mos t n[l/p —l] + n. In fact, if log is the inverse
of the local exponent ia l m a p , then

lfB{x)P{x)dx= f(f*4>,) (y)l-(y) [%(xy-l)M(xy-])P(log(xy-ly))dxdydt/t.
JG J/B JG

To prove (3.15), it therefore suffices to show that

%(x)M(x)P(log(xy))dx = 0L
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[11] S and gl -functions on compact Lie groups 337

for any fixed t < e and y e G. Since *, • M is a central function, we need only prove
that

r r

Vt(x)M(x)P(\og{zxz-xy))dxdz = 0
or

r r
, - i/ V,(x)M(x) I P(log(zxz-'y))dzdx = 0.

JG JG

But fG P(\og(zxz~]y)) dz is a class function that is a polynomial of 6 = logOc) with
degree at most n[l/p — 1] + n. Thus it suffices to show that

/ V,(x)M(x)(\og(x))Jdx = C [vi(exp0)M(exp0)6JD2(6)d0 = 0
JG Jt

for all multi-indices / with | / | < n[l/p — 1]+«. This follows by Poisson summation
in view of the choice of W,.

From the preceding observations, we know that each fB is a constant multiple of
a (p, oo)-atom. It does not yet follow, however, that the first equation of (3.14) is an
atomic decomposition of F since the norms of the fB 's do not sum properly. For each
IB e £8 we define

1/2a x 1/2

J(f*<P,)(y)\2dyrldt\ .

We claim that for all IB e 8$ and all multi-indices / ,

(i)

()

where C depends on / but not on B.
By Schwarz's inequality,

a x 1/2

^ \XJ(%(y-lx)M(yx~1))\2 dy rl dt\ .

Therefore ||*,M||^ <Ct~n < C \B\'\ | |Xy(*,M)|( x < C |Br1"|y | /",and WMW^ <
C; thus (i) of (3.16) follows. Similarly,

\gB(x)\ <CSB( I \*l(y-lx)D(y-lx)-lR(y-lx)\2 dy t~l dt)

< CSB |B|1/2sup {f^D-1/?!^ : l(B)/2 < t < l(B)}

<CSB\B\i/p+2/n

which completes the proof of (3.16).

https://doi.org/10.1017/S1446788700000410 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000410
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For each integer k, let Slk = {x : 5*/(x) > 2k} and let 38k be defined by

38k = {lB &38: \rf\B)<r\Q.k\ > \r)-l(B)/4\ and ^"'(fl) n S2i+1| < \rj-\B)/4\]

where B/2 is any one of the 2" subdyadic cubes of B. It is easy to see that £2*+! C £2*
and that each IB must belong to precisely one 38k. We claim that there is a C
independent of k such that

(3.17) S2
B < C22k \Qk\.

To see this, let MHL denote the Hardy-Littlewood maximal function and let Qk =

{x : MHL(xnt)(x) > 4""}. Observe that Qk c &k and that
Hardy-Littlewood maximal theorem. These imply that

< C\Qk\ by the

(3.18)

Let

Notice that

Jak\nk+l

\S*f(x)\2dx<2 2k+2 <C2Zk\Qk\.

(y, 0 = :d(x,y)

\S*f(x)\2dx= ^ f \(f*<t>,)(y)\2vk(y,t)dyrl~"dt
nk\nk+i Jo JG

and therefore

\S*f(x)\2dx>

In view of this and (3.18), in order to obtain (3.17), it suffices to show that there is a
constant C independent of k such that

(3.19) vk (y, t) > Ct" for all IB e 38k and (y, t) e IB.

Let IB € 38k and (y,t) eIB. Since \r}-1(B)nQk\ > \t]-l(B)/4\, it follows that
MHL(xak)(x) > 4~n for x e r}~l(B). Therefore r)~\B) c £2t. Also, since
r}-\B)nQ.k+l\ < |??-1(fi)/4|,itfollowsthat|?j-1(B)\£2i+1| > \3r)~l(B)/4\. Thus,

: d(x, y) : d(x, y)
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It follows that

5 and gl -functions on compact Lie groups

vk(y,t)>

339

> Ct"

proving (3.19) and, as noted, (3.17).
We can define a partial ordering on 3\ by inclusion. Let [B'} be an enumeration

of the maximal elements of 3Sk. Each B e f t satisfies B c B' for some i; for every
B 6 S)k we choose s^ch an / = i(B). For every i, let 3&k = {B e 9Sk : i{B) = i}.
Thus, 38k = | J . S , disjoint. Define

We claim that there exists a C independent of k and / such that

« \vi\L^cY:SB\Z\yP+2">

(3.20)

The first estimate of (3.20) is immediate from (3.16). For the second estimate, we let
B], B2,... be an enumeration of 3§[ ordered so that \Br\ > \Bs\ if r < s. In the proof
of this estimate, we will write fr and Sr for fB, and SBr- Then

r<i f frfs-
JG

Now || fr\\\ = f4r, {B) \fj\ <C \4Bj \\Bj\ Sj. To estimate the cross terms, we need
only consider r and s such that ABr (~)4BS ^ <f>, for frfs vanishes identically otherwise.
Therefore we suppose that r < s and \Br n 4BS ^ </>. We let ^ be the center of Bs

and let Pr,s be the Taylor polynomial of fr at xs of degree a = n[l/p — 1] + n/2 .
Then, by (3.15) we have

fr(x)fs(x)dx (fr(x)-Prs(x))fs(x)dx

$(y)(f *<*>,) dt-Prs(x))fs(x)dx

<C I Y. \XJfr\ooWfAoOd{x,X,y+ldx
J4n-HB,)\j\<a+i

<C J^ \Bs\
i+(a+l)/n \Br\-

l/2-(a+i)/n

\J\<a+\

<C(\Bs\/\Br\y
/2+ia+u/nSrSs.

SrSs
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For these indices we set firs = (|B,| / |Sr|)
1/2+(a+1)/" and we set Brs = 0 otherwise.

We must show that E r i PrsSrSs < C E s S
2 for some C. To do this it suffices to show

that there is a constant C such that

(3.21) Y,As < C for all s and E,0™ < Q for all r.

If so, £ r ( £ , BnS,)2 < Er (E, Pn) (E, /W2) < C E , S? and therefore

E,^5r5, < (EA2)1/2

We turn to (3.21). For each m e N there are at most W2mn values of 5 such that
15,1 = 2~mn \Br\ and 4Br n 4BS ^ 0. For each 5 there are at most 16" values of r
such that \Br\ = 2mn \BS\ and ABr n 4BS # 0. Therefore

E z> ^ /^V^°° omn-)-(mn/2)—m(a+\) ^ /^V^0 0 'jrn(n/2—a—\) ^ s~*
rPrs 22 <-Z^m=0Z Z — ̂  Z^m=0Z — C

and E,/k < C E : = O 2 - < " ^ + 1 ) < C.

Recall that FW = E / . ^ / s W = E , * ^ « - Let X' = | |^ | 2 / |4B'|1/2-1/p

and a[(x) - <p[(x)/^. Then, by [5, p. 240], F(x) = J2ikKaUx) i s m atomic
decomposition in which each a\ is a (/>, 2)-atom and E,-* |^*|P - Il5(/)||p. Thus,
(3.11) is finally proved.

Now let v[ = C E f i 6 ^ 5B \B\l/p+2/n and let Aj(jc) = Cy^(x)/vi
k. By (3.20), 6j(*)

is an exceptional atom. Moreover, for K = 2/(2 — p) > 1,

\

/

p/

Since there are, for each B', at most 2mn cubes fl€^t such that | 5 | = 2~mn \B[ | we
conclude that

C\B'\.

Thus,

ik

and the required atomic decomposition lR(x) = E,-* v'kK^x) n a s ' 5 e e n proved.
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4. The characterization of HP(G) by the g*-function

For / € y'{G) and \ > 1, we define the g£-function of f(x) by

gl(f)M = ( i°° f \—-£—-1 \(f*<t>,)(y)\2r(l+")dydt] .
\Jo JGU +d{x,y)\ f

THEOREM 4.1. Suppose that f e y'(G). For 0 < p < 1 and A > 2/p, f e
H»(G) if and only ifg*k ( / ) e L»{G). Moreover | g ' ( / ) | p ~ ||S^ ( / ) | p ~ |«; | | p .

PROOF. Suppose that 0 < p < 1 and X > 2/p. By Theorem 3.1 we need only
check that | ^ ( / ) | ~ \\u*\\ . Since S0 (/) (x) < Cg*k(f)(x), only the estimate

\\g*k (/) || < C || 50 (/) I requires further proof. As in the proof of Theorem 3.3, it
suffices to show that there is a constant C such that for any atom a(x),

(4.1) / ( / / | r | \(a*cj>t){y)\lr(l+n)dydt\ dx
JG \JO

li- \ p/2

Jclt+d(x,y).

We will supply details only for the case p = 1. If a(x) is an exceptional atom, then

dx= c [ if" f \—-^—-1 \(a*<t>l)(y)\2r(i+n)dydt)
JG\JO JaU + d(x,y)j )

JG\\JO Jd(x,y)<t Jo Jd(x,y)>Ju+d(x,

\{a*(f>,){y)\2t-(X+n)dydt\dx.

By Theorem 3.3, the first summand is bounded by C \\a\\2 < C. The second summand
is bounded by

1 / / l(a*0f)
JG JO

(y)\z r ' dtdy<C ||g(fl)||2 < C \\a\\2 < C.

For a regular (1, oo)-atom a, we may assume that the support of a is contained in
B{1, p) with p sufficiently small. Our analysis will be based on Lemmas 2.4 and 6.4
of [2].

We write

»ll, = f \gl(a)(x)\ dx + [ \gt(a)(x)\ dx = h + I2.
Jd(x,l)>Sp Jd(x,I)<Sp
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By Schwarz's inequality,

/ r r°° r r t lkn \1/2

\h\<Cp"/2[ l—TT, T Ka*^)^)!2^1^^^^)
\JGJO JG U +d(x,y)j J

and therefore | /2 | < Cpn/2 \\a\\2 < C as in the case of exceptional atoms. To estimate
/i, note that

r 2 V2

| / i | < / [ / I |(a * (pi) (y)| t (1+n) dydt ) dx<[ (f \—rr(—
+ C\\S4>{a)\\x.

It suffices, then, to estimate the double integral above. We do this by breaking it into

three pieces:

U =[ If [—£ -1 \(a*cP,)(y)\2r^+n)dydt) dx,
Jd(x,n>sp V/A,., \_t+d(x,y)\ f

L3=

where

\{a*<t>,)(y)\2r'x+n)dydt\ dx,

f
f IT I \—l—-1 \{a*<pt)(y)\2r(X+n)dydt\ dx
Jd{x,n>ip \Jp Jd(x,y)>t V + d(x, y) J J

A,,* - {{y, t) : d(y, x) > t, 0 < t < p, d(y, B(I, p)) > 2p] and

A2,, = {(>, 0 : d(y, x) > t, 0 < t < p, d(y, B(I, p)) < 2p].

We start with L2. Notice that for any (y, t) e A2,x and x £ B(I, 8p), d(x, y) >

d(x,I) — d(y,I) > d(x,I)/2. Combine this with the estimate 110*0,1100 <

Halloo U,h < C Halloo and [2, Lemma 3.4] to get

L2 < Cp~n I d(x, I)-Xn/2 ( f"tkn-"-1 I dydt) dx + C
Jd(x,I)>Sp \Jo Jd(y,I)<Ap /

< Cp~"~ln/2+npn/2p~n/2+kn/2 + C.

To estimate Lu note that for (y, t) e Ahx and § e B(y, p), d(%, I) > d(y, I) -

d{ii, I) > d{y, I)/2. Let
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By Lemma 3.1, we conclude that

2 \ ' / 2

i)>sP \Jo

+ C

r * -(l+«)
sup r

where

]L,,, = / (f f G(x,y,t)dydt] dx

Lx,i= f ( I t G(x,y,t)dydt) dx.

Jd(x,l)>%p \J0 Jr(x)cnB(/,p)cn{y:d(y,l)<d(x,I)/2) /

Clearly

Lu<c! d(x,irin+l)dx( ftdt) <C.
Jd(x,I)>ip \Jo /

ForZ>12, note that in the region of integration d(x, y) > d(x, I)—d(y, I) > d(x, I)/2.

Therefore,

r tkn-"+x I d(y,I)-2n-2dydt) dx
o Jd(y,I)>p /

[
d(x,l)>$p

< £p-kn/2+n kn/2-n/2+\ -\-n/2 < Q

This completes the estimate of L \.

It remains to estimate L3. We divide the domain [(y, t) : d(x, y) > t,t > p] into

two pieces

,,, = {(>, t) : d(y, x)>t,t> p, d(y, B(I, p)) > 2p}

x.2 = Ky, 0 : <*(>, Jt) > ' . t > p, d(y, B(I, p)) < 2p\

and the integral L3 into two terms LX\ and LX2 accordingly. For the latter, we argue

as in Theorem 3.1 that

LX2<Cp[ d{x,iyXnll( f r2"-3-" f tXndtdt) dx + C
Jd(x,I)>Sp \Jp Jd(y,I)<3p )

< Cp~kn/2+n+1 pXr>l2-"l2-"-\ Q"/2 < Q

Only L3, remains. Let 0A,i = {(y, t) e SlxA : d(y, I) > p, d(y, I) > d(x, I)/2]

and0 j 2 = {(y,0 e &x,i '• d(y, I) > p, d{y,I) < d(x, /)/2}. Again using Lemmas
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3.4 and [2, 6.4] we get

]I.3.1 <C + Cp I (I 2_f(J;/* S(*. y, 0 dydt] dx
JBU.SPY Vie,, t2 + d(y, I)2 )

f ( 7 7TTJ7^7vG(x'y't)dCpf (7 ^ )
The first of these integral summands is bounded by

\ 1/2
Cp I d(x, I)-"-1'2 ( f tkr-n-2 [ d(x,y)-Xndydt) dx

JBU,8P)C \Jp Jd(x,y)>t )

ao
/>oo \ 1/2

< Cp"2 '
\j p

and the second one is bounded by

Cp f d{x, iyXl"2 (f t
x"-2n-2 f d(y,I)"+ldydt) dx<C.

JBV.&PY \Jp JB(I,P)C )

Therefore, ||g*(fl)|, < C for any atom a(x), completing the proof of Theorem 4.1.

By an argument in [6], it is easy to prove that | |g*(/) | < C | |/ | |p for p > 2 and
k > 2/p. Interpolation (Theorem E of [3]) then gives

THEOREM4.2. For p > 1 andk > 2/p, \\g*k(f)\\ < C
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