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Definitions and Mathematical Knowledge 1

1 Introduction
Since antiquity, definitions have played a crucial role in the organization of
our rational inquiries. Many of Plato’s dialogues, to mention a familiar para-
digm, can be seen as excruciating quests for definitions. The more definite the
language and subject matter of our inquiries are, the more rigorous the treat-
ment of definitions will be. Mathematics is thus a privileged arena. Given the
exactness that mathematical contexts require, the study of definitions reached
a mature stage once formal tools became sophisticated enough. Hence, most
of the following discussion is indebted to the advancements that have occurred
since the mid nineteenth century in mathematics, logic, and philosophy. The
reliance on formal tools should not be overestimated though, for many theoret-
ical features of definitions bear relevance to mathematical practice even before
and beyond formalization.
As Euclid’s Elements and Aristotle’s Posterior Analytics emphasized, defi-

nitions are essential to any systematic inquiry. They are central to any project
of conceptual analysis, especially to foundational projects. If these are seen
as aiming at the attainment and organization of knowledge, definitions take
on a genuine epistemological function. This Element focuses on the ways in
which definitions may constitute, provide, or otherwise lead to mathematical
knowledge.
What follows is thought of as an initial guide to a vast debate, which has

nevertheless rarely been given a self-standing treatment (notable exceptions
are Robinson 1950; Suppes 1957, chapter 8; Dubislav 1981; Belnap 1993;
Antonelli 1998; Gupta and Mackereth 2023). We first rehearse the role of defi-
nitions in foundational projects (Section 2). We then discuss three major kinds
of definitions: explicit definitions (Section 3), implicit definitions (Section 4),
and implicit definitions of primitive terms (Section 5), the latter being divided
into axiomatic (Section 5.1) and abstractive (Section 5.2). After pausing on the
notions of elucidation and explication (Section 6), we eventually survey (Sec-
tion 7) a variety of epistemological issues concerning definitions. We’ll look
for a balance among historical context, formal tools, and philosophical investi-
gations, assuming some background but with the inexperienced reader in mind.
Most mathematical examples will be confined, for analogous reasons, to geom-
etry, arithmetic, and analysis. A consistent part of our discussion will concern
authors who pioneered the foundations ofmathematics (prominently Dedekind,
Frege, Hilbert, Peano, Russell, and Carnap), and proponents of major contem-
porary views. Logicist and structuralist views, and a comparison between the
two, will be given special attention, due to their role in foundational debates and
their reliance on two major sorts of definitions for mathematical primitives.
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2 The Philosophy of Mathematics

2 Definitions and Foundations
2.1 Foundations

A vivid outline of a foundational project for mathematics is offered by Quine
(1969), 69–70:

Studies in the foundations of mathematics divide symmetrically into two
sorts, conceptual and doctrinal. The conceptual studies are concerned with
meaning, the doctrinal with truth. The conceptual studies are concerned with
clarifying concepts by defining them, some in terms of others. The doctrinal
studies are concerned with establishing laws by proving them, some on the
basis of others. Ideally the more obscure concepts would be defined in terms
of the clearer ones so as to maximize clarity, and the less obvious laws would
be proved from the more obvious ones so as to maximize certainty. Ideally
the definitions would generate all the concepts from clear and distinct ideas,
and the proofs would generate all the theorems from self-evident truths.

Deductive proofs transfer (truth, justification, and) certainty from basic truths to
theorems, while definitions transfer (meaning and) clarity from basic to deriv-
ative concepts. This marks a distinctively epistemological enterprise, echoing
broader projects in the foundation of knowledge – Descartes’ on the ration-
alist side (see e.g. the Discourse on Method, Descartes 1637), or Hume’s on
the empiricist side (see e.g. Hume 1739–40). More generally, it shares ele-
ments with a traditional model for the systematization of a deductive science
(de Jong and Betti 2010), starting from Aristotle’s Posterior Analytics. But
what exactly is an epistemic foundation meant to provide?
On a strong reading, foundations deliver knowledge in the subject matter of

a target domain D that was previously precluded. A notable drawback is that
before foundations no one could genuinely be credited with knowledge of D.
If we follow a (debatable, but still traditional) tripartite definition of (propo-
sitional) knowledge as justified true belief, then since foundations secure true
beliefs, of which some, at least, were antecedently possessed, such beliefs can
fail to count as knowledge only because they were not justified either. Only a
foundation establishes that certain p’s in D are true, and provides reasons to
justifiedly believe in any (true) p in D. Such strong reading may have been
underlying projects like Descartes’, where hyperbolic doubt challenges both
truth and justification for all beliefs in order to attain those we cannot possibly
doubt; in our present case, the implication that mathematical beliefs could not
justifiedly be held true until the nineteenth century is obviously unpalatable.
On a more indulgent reading, foundations have an architectural purpose:

their aim is not (just) to question whether target statements are true, or whether
we have any good reasons to believe that they are, but to establish conclusively
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Definitions and Mathematical Knowledge 3

why they are true, to determine the ultimate grounds their truth depends on.
This approach often looks back at Euclid’s Elements as a paradigm. Descartes
himself (Discourse, II, 19) was moved by similar thoughts: “Those long chains
of utterly simple and easy reasonings that geometers commonly use to arrive
at their most difficult demonstrations had given me occasion to imagine that
all the things that can fall within human knowledge follow from one another in
the same way [… ].”
At the beginning of the modern debate on the foundation of mathematics,

Frege (1884) (along with Bolzano, Dedekind, and others, with due differences)
endorsed similar views:

The aim of proof is, in fact, not merely to place the truth of a proposi-
tion beyond all doubt, but also to afford us insight into the dependence of
truths upon one another. After we have convinced ourselves that a boulder
is immovable, by trying unsuccessfully to move it, there remains the further
question, what is it that supports it so securely? (§2)

Rather than leading from lack to possession of knowledge, then, foundations
may be concerned with different kinds of justification. They would replace a
weaker, defeasible, possibly even a posteriori and inductive justification based
on successful applications, with the incontrovertible justification provided by
an explanation of the deductive relations connecting basic principles and theo-
rems. This architectural approach can then be accompanied, or even motivated,
by purely mathematical concerns as to how a mathematical theory is to be best
systematized.
On the epistemological side, foundations require establishing how basic prin-

ciples are themselves justified, or otherwise warranted, in a noninferential way.
On pain of regress, as Aristotle made clear, inferential justifications must come
to an end. Definitions must come to an end too. Basic terms cannot be defined
frommore elementary ones, and still their meaningmust be available somehow.
Foundations seem bound to feature both unprovable principles and indefinable
primitives. Both issues are especially pressing inmathematics, whose truths and
objects, on most conceptions, are inaccessible empirically or extratheoretically.
Within a foundational project, definitions can provide, or sustain, different

varieties of epistemic achievements. Surely they afford an understanding of
the meaning of the linguistic items that are being defined, or the concepts they
express, required to master them competently. They can sustain propositional
knowledge (knowledge that something is the case) with respect to both the
statements which are used to lay down the definition itself, and the theorems
that can be derived thanks to its introduction. They may even lead to objectual
knowledge, namely knowledge of the objects (if any, and of any variety) of a
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4 The Philosophy of Mathematics

mathematical theory. If at least some of the basic concepts F of a mathemati-
cal theoryM are concepts under which objects supposedly fall, by determining
when an object x is to fall under F a definition will show how to individuate
objects of kind F, and the truth of M will entail countenancing their existence.
In this respect, a foundation is also an ontological, and possibly metaphysi-
cal, enterprise. Its aim is to determine, according to a given theory, what kinds
of objects there are and what kinds of objects they are (what their nature, or
essence, is). It can also determine what kinds of objects there aren’t, if they can
be reduced to, or identified with, objects of other kinds. Accordingly, although
our main focus will be on epistemology, matters in both semantics and ontology
will also play a relevant role.
Foundationalism can come in many varieties (Shapiro 2004), some of which

emphasize the theoretical and scientific significance of systematizing, unifying,
and connecting mathematical theories over traditional epistemological con-
cerns with evidence, knowledge, and justification.Moreover, even granting that
foundations are possible at all, foundationalism does not exhaust the philoso-
phy of mathematics, nor, therefore, the epistemology of definitions. Various
issues concerning definitions arise when we look at phenomena like mathe-
matical explanation or understanding, when we consider why mathematicians
redefine already established notions, or when we discuss whether one definition
is more natural than another; these issues are partly independent of foundational
projects, may be influenced by cognitive, sociological, and pragmatic factors,
and are elicited by the study of past and current mathematical practice (see e.g.
Tappenden 2008; Frans, Coumans, and de Regt 2022; Coumans 2024). Some
of these will cursorily surface in what follows, although this more nuanced
investigation of definitions will be kept in the background while we attempt
to outline and systematize a debate which is closer to traditional foundational
concerns.
But what are definitions, and what guides their formulation? Definitions

are statements expressing, or establishing, a relation between (the meaning
of) some linguistic items and (the meaning of) other linguistic items. They
establish that the meaning of a hitherto undefined symbol or expression of a
given grammatical type, the definiendum, is to be determined on the basis of
the meaning of a combination of one or more previously known symbols or
expressions, the definiens. Relevant grammatical types in natural language are
singular terms, including proper names, and predicates, including relational
expressions. Within a formal system, relevant syntactic types are constants,
function symbols (including term-forming operators), and predicate and rela-
tional symbols. The way in which such a determination of meaning is effected
(e.g. whether there is some sort of semantic equivalence between definiens
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Definitions and Mathematical Knowledge 5

and definiendum, whether both have to be of the same syntactic or grammat-
ical type, and so on) varies, as we will see, according to the specific kind of
definition considered.
Formally, the effect of the definition is to assign the defined expression a

suitable syntactic and inferential behavior. Semantically, to a very first approx-
imation, it is to provide the definiendum with a set of one or more (individually
necessary and jointly sufficient) defining conditions determining its semantic
interpretation (usually, the individual they refer to for constants and singular
terms, the function they determine for functional symbols, or the set of indi-
viduals or n-tuples of such individuals they denote for predicate and relation
symbols). On some conceptions, definitions also target extralinguistic items
by individuating the essence, nature, or constitutive features of some object or
property.
Some definitions can be seen as arbitrary stipulations that a certain expres-

sion is to be given a certain meaning. In the most interesting cases, however,
definitions are guided by pretheoretical patterns of use of informal notions that
they aim at capturing (wholly or partially) and systematizing. This raises the
question of how to establish whether a definition is successful (and what it is,
in general, for a definition to be successful). Usually, this involves a process
of reflective equilibrium (Goodman 1954/1983) between evidence and theory:
we systematize patterns of use through defining conditions, then check whether
the definition thus obtained is too strict (leaves out cases we would like it to
cover) or too loose (it applies to cases we wouldn’t want it to apply to), and then
go back to adjusting the defining conditions so as to make the definition more
adequate and precise. The details and significance of this procedure depend, as
we will see, on different conceptions of conceptual analysis.

2.2 Names and Things
Traditionally, a distinction is drawn between nominal and real definitions, that
is, definitions of names (quid nominis) versus definitions of things (quid rei).
The distinction is examined in Aristotle’s remarks on definitions (Deslauriers
2007), especially in Posterior Analytics (CW, I), and has been later related to
definitions in Euclid’s Elements (e.g. by Saccheri; see Heath’s commentary to
Euclid 1926, I). To a first approximation, nominal definitions target linguistic
items, that is, they provide linguistic expressions with meaning (hence, the con-
cepts they express with content); real definitions target the objects themselves
and capture their essential properties.
On one reading of Aristotle, real definitions differ from nominal ones

because they reveal why an object is (what is the cause, or aitia, of their
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6 The Philosophy of Mathematics

existence) and give “a demonstration of the essence” (Posterior Analytics, II,
94a) of a thing. They provide a metaphysical explanation. On a weaker reading,
real definitions are nominal definitions together with the assumption that what
is being defined exists: so, while nominal definitions just answer the question
what a thing is (to esti) with no commitment to its existence, other definitions
also presuppose an answer to the question whether a thing is (ei esti) and claim
that it is (oti esti). As such, they are especially suited for primitive notions, the
existence of whose referents cannot be provedwithin the theory andmust hence
be presupposed. Nominal definitions simpliciter pertain to derivative notions,
the existence of whose objects has to be proved from general principles com-
mon to all sciences (common axioms, koinà axiomata) and from the postulates
and primitive notions of the relevant theory:

Now the things peculiar to the science, the existence of which must be
assumed, are the things with reference to which the science investigates the
essential attributes, e.g. arithmetic with reference to units, and geometry with
reference to points and lines. With these things it is assumed that they exist
and that they are of such and such a nature. . . .But, with regard to their essen-
tial properties, what is assumed is only the meaning of each term employed:
thus arithmetic assumes the answer to the question what is (meant by) ‘odd’
or ‘even’, ‘a square’ or ‘a cube,’ and geometry to the question what is (meant
by) ‘the irrational’ or ‘deflection’ or (the so-called) ‘verging’ (to a point); but
that there are such things is proved bymeans of the common principles and of
what has already been demonstrated. (Posterior Analytics I, 10, 76b3–76b9)

For instance, geometers must assume that there are points, but they define ‘tri-
angle’ nominally, leaving to demonstrations or geometrical constructions the
task of proving that triangles exist. As regards primitives, or “immediates,”
Aristotle further writes:

Of some things there is something else that is their explanation, of others
there is not. Hence it is clear that in some cases what a thing is is immediate
and a principle; and here one must suppose, or make apparent in some other
way, both that they are and what they are (which the arithmetician does; for
he supposes both what the unit is and that it is); but in those cases which have
a middle term [in a syllogism] and for which something else is explanatory
of their substance, one can, as we said, make them clear through a demon-
stration, but not by demonstrating what they are. (Posterior Analytics II, 9,
93b22–93b28)

Definitions of immediates are counted (with common axioms and postulates)
among the archai, the first indemonstrable principles of a deductive science.
What distinguishes immediates from other notions is that an explanation of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

10
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009091084


Definitions and Mathematical Knowledge 7

why they are – their aitia – is not “something else”: they cannot be explained
by reduction to simpler items. Here nominal definitions come to an end, and the
content of immediates must be made “apparent in some other way,” for they
provide the very subject matter of the theory itself, its genus (genos).
The distinction between nominal and real definitions has been preserved

and discussed in the history of philosophy (see e.g. Locke 1690, III, vi) and
has elicited varied responses. Within the analytic tradition, due to its inherent
skepticism toward traditional metaphysics, real definitions have been dis-
missed. To wit, in discussing Aristotle on definitions, Russell (1945, 223–225),
contends that the notion of essence, like that of substance, is “a hopelessly
muddle-headed notion . . . a metaphysical mistake, due to transference to the
world-structure of the structure of sentences composed of a subject and a
predicate.” Other earlier reactions were friendlier. Mill (1843, I, VIII, 7),
for instance, acknowledged that “definitions, though of names only, must be
grounded on knowledge of the corresponding things [… ]How to define a name
[… ]may involve considerations going deep into the nature of the things which
are denoted by the name. Such, for instance, are the inquiries which form the
subjects of the most important of Plato’s Dialogues.”
Aristotle’s concern for immediates as providing the genus of a theory is

indeed due to his reaction to Plato’s account of definitions. Many Platonic dia-
logues are driven by questions of the “What is X ?” form. These are best seen as
requests for real definitions of the essence of X (love, knowledge, etc.), rather
than nominal definitions of X-terms. In the Sophist (see also Phaedrus, 265d–
266b), Socrates applies the so-called method of collection and division: to find
a correct definition of X, the inquirer should first collect different examples
of what we take to be X, consider them as falling under some broader kind,
and then proceed, by a dichotomic process, by dividing the largest kind into
two, locating our target X into one smaller kind, to be then further divided, and
so on. The essence of the species (eidos) X is then individuated by giving its
genus and its differentia (diaphora), which distinguishes it from other species
under the same genus. This decompositional analysis of concepts distinguishes
proper definitions from lists of cases. When asked “What is knowledge?,” the
young mathematician Theaetetus (Theaetetus, 146c–d) initially offers a list of
familiar examples: geometry, cobblery, carpentry, and “the skills that belong
to other craftsmen.” Socrates is adamant that this is not what he is looking for.
He asks for what is common to all these examples and requires a general crite-
rion for establishing whether some yet unencountered item is or isn’t a case of
knowledge. In contemporary terminology, this requires a definition of a con-
ceptX to provide a set of individually necessary and jointly sufficient conditions
for the application for X, and, if it is a concept of objects, to determine when
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8 The Philosophy of Mathematics

two objects falling under the concept are distinct (conditions of identity), and
whether an object falls under the concept or not (conditions of application).
Aristotle does not reject definitions of this kind, but doubts we can rely on

them only. One objection is that the process of division by genera assumes
what it wants to prove – that is, assumes the existence of the objects that we
subsume progressively into broader genera. On the contrary, many definitions
can take the form of conclusions of syllogistic reasonings: since definitions are
a “demonstration of essences,” their statement can occur as the conclusion of
arguments (Posterior Analytics, II.3–10). This other form of definition is for
Aristotle much more suited to a general method of a demonstrative science,
while “division by genera is a small part” of such a method.
Although mathematical definitions are most of the time treated as nomi-

nal, they are still often (implicitly or explicitly) treated as real definitions and
may be conceived as ways to capture the nature of mathematical objects or to
determine the conditions for their existence (see Section 7.4.2).

2.3 The Euclidean Paradigm
Both Plato’s and Aristotle’s views on definitions were plausibly influenced by
Greek geometry, and themselves have influenced the reception of its later pres-
entation in Euclid’s Elements. Since the latter have long been a paradigm of
foundational theories, recalling even a much simplified outline will help (for
more, see Euclid 1926, introduction; Mueller 1981).
Book I of the Elements (in Heidberg’s edition) contains twenty-three

definitions ( ), five postulates ( ), and five common notions
( ). A sample of the first seven definitions (with emphasis added
on the term being introduced) is:

E೭೮’ D೯ (೫೯)
D1 A point is that which has no part.
D2 A line is breadthless length.
D3 The extremities of a line are points.
D4 A straight line is a line which lies evenly with the points on itself.
D5 A surface is that which has length and breadth only.
D6 The extremities of a surface are lines.
D7 A plane surface is a surface which lies evenly with the straight lines

on itself.

In Aristotle’s terms, we find both immediates and nominal definitions of deriv-
ative notions. ‘Point,’ ‘line,’ and ‘surface’ are among the former. They identify

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
09

10
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009091084


Definitions and Mathematical Knowledge 9

the subject matter (genus) of the theory, whose existence – according to Aris-
totle – must be posited, and whose explanation does not depend on “something
else.” Other notions are derived from them. For instance, D7 defines ‘plane
surface’ through the already available notions of surface and straight line,
the latter being itself introduced in D4 in terms of line and point. Remain-
ing expressions – ‘part,’ ‘breadth,’ ‘extremities,’ ‘inclination,’ ‘meet,’ ‘lies
evenly,’ ‘containing’, and so on – may be seen as part of an antecedently shared
language (note that extremities could be taken as primitives and used to define
other notions in D3 and D6, although this would violate Aristotle’s concern
not to “explain the prior by the posterior”; Aristotle CW, Topics, I, 4, 141b.15
ff.). Following this taxonomy, statements introducing primitives (D1, D2, etc.)
would not properly count as definitions, but rather illustrations or elucidations
(Section 6.1) of notions whose basic grasp is antecedently and pretheoretically
guaranteed (for instance by spatial intuition). So much so that they are actu-
ally never used in proofs in the Elements, a feature that takes them apart from
other proper definitions (and raises both exegetical issues on the composition of
Euclid’s work – Russo 1998 – and conceptual questions as to their theoretical
role as purported definitions – see Section 3.3).
The five postulates are:

E೭೮’ P೫೯
P1 To draw a straight line from any point to any point.
P2 To produce a finite straight line continuously in a straight line.
P3 To describe a circle with any centre and distance.
P4 That all right angles are equal to one another.
P5 That, if a straight line falling on two straight lines make the interior

angles on the same side less than two right angles, the two straight lines,
if produced indefinitely, meet on that side on which are the angles less
than the two right angles.

Postulates are not proved from anything else, and are supposed to use only
primitive notions and notions already defined through them (e.g. ‘straight line’
is defined in D4 via D2 and D1). Differently from modern presentations of
mathematical axioms, some of Euclid’s postulates (e.g. P1–P3) are not properly
assertions (declarative descriptions of geometrical facts supposed to hold), but
rather prescriptions or instructions on how certain figures can be constructed
(through ruler and compass). Also, we now call ‘axioms’ the principles of a
theory, but ancient usage displays a subtle variety of uses for the term (Euclid
1926, Introduction, IX, §3).
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10 The Philosophy of Mathematics

Definitions and Postulates are supplemented with common notions:

E೭೮’ C N
C1 Things which are equal to the same thing are also equal to one

another.
C2 If equals be added to equals, the wholes are equal.
C3 If equals be subtracted from equals, the remainders are equal.
C4 Things which coincide with one another are equal to one another.
C5 The whole is greater than the part.

These are general principles concerning quantity and magnitude, and offer
the theoretical scaffolding for a derivation of geometrical theorems. Notice
that proofs in the Elements heavily rely on actually constructed diagrams
of geometrical figures. A proper separation between their propositional and
visual aspects may be hard to draw and diagrams may contribute to the
justification of theorems as ingredients of their derivation (Giaquinto 2007;
Manders 2008).
Several other definitions of great mathematical value are found in the later

books. Worth mentioning are at least those concerning ratios of magnitudes in
Book V, systematizing Eudoxus’ theory of proportions, which will underlie
later characterizations of real numbers; and those, in Books VII–IX, illus-
trating the notion of unit (“that by virtue of which each of the things that
exist is called one”) and defining number as “a multitude composed of units”
(also introducing other notions like multiple, even, odd, prime, etc.). Possibly
because arithmetic, on this conception, requires no proper construction proce-
dures (apart from the addition of one unit to other units), no proper arithmetical
postulates are provided, so no axiomatic treatment of arithmetic is advanced.
This was to change only in the nineteenth century.
This brief outline not only shows that Aristotle’s taxonomy of definitions

applies (being itself inspired by geometrical practice) to the definitions in the
Elements. It also shows – once significant idealizations or simplifications are
conceded – why the Elements have been the paradigm model of foundations,
where certain truths lead to theorems via proof, and clear notions lead to
derivative ones via definition. Whether such a paradigm is still adequate for
modern conceptions of mathematical knowledge is something we will touch
upon and that can variously be disputed (Paseau and Wrigley 2024). Finally,
it emphasizes the irreducible role of postulates – which must be noninferen-
tially justified – and primitives – whose meaning cannot be given in simpler
terms.
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Definitions and Mathematical Knowledge 11

3 Explicit Definitions
The previous section foreshadowed a distinction between derivative notions
and indefinable primitives. Definitions of derivative notions were traditionally
modeled on definitions per genus et differentiam. Modern treatment rather dis-
tinguishes two major varieties of definition, explicit and implicit. Here we will
discuss the former.

3.1 Outline
In natural language, explicit definitions often correlate definiens and definien-
dum by means of the verb ‘to be.’ A traditional – nonmathematical – example
is the definition of ‘Human’ as ‘Rational Animal’ effected by saying that to
be human is to be animal and rational. These uses of the verb ‘to be’ must be
distinguished not only from its uses as a copula (“2 is a prime number”), but
also from uses in (formal or informal renditions of) identity statements which
are not definitions (“2 is (equal to)

√
4”). For our purposes, those uses which

are relevant in the context of definitions will be interpreted as shorthands for
logical expressions like ‘is identical to’ (‘=’) or, on some occurrences, ‘if and
only if’ (iff, ‘↔’).
The preceding definition can then be seen as elliptic for the quantified state-

ment: “For any x, x is Human iff x is Animal and x is Rational.” If generalizable,
this obviates to the need for definitions as identities, reducing all definitions
to stipulations that a sentence in which the definiendum occurs is equivalent
to a given condition free of it: ∀x(Human(x) ↔ (Animal(x) & Rational(x)).
Whether this generalization is available depends on the formal language
adopted. Consider the following example (Suppes 1957).
Take an arithmetical language having as primitive symbols two individual

constants, ‘0’ and ‘1’, the operation symbols ‘+’ and ‘×’, and the relation sym-
bol ‘<’. Assuming the meaning of these symbols as known, we could define
‘2’ by the following stipulation: 2 = 1 + 1. We could turn this definition by
identity into a biconditional definition as follows: 2 = y ↔ y = 1 + 1. If we
drop ‘0’ and ‘1’ from our primitives, we could still define them via the follow-
ing conditions: 0 = y ↔ ∀x(x + y = x), 1 = y ↔ ∀x(x × y = x). However,
we could not define them via identities: there would be nothing to be added to
anything in order to stipulate that 0 = x + y; and in stipulating that 1 = 0 + 1
the definiendum would circularly occur in the definiens. Circumventing these
limitations requires complicating the background language, for example by
including a description operator ‘the object x such that…’, (‘ ↿ x′), and then
defining ‘0’ by identity as follows: 0 = (↿ x)[∀x(x + y = x)]. Alternatively,
one can take ‘0’ as the only primitive constant, and add the successor function,
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12 The Philosophy of Mathematics

Suc(x), as primitive, defining every numerical constant from ‘0’ and successor:
1 = Suc(0); 2 = Suc(Suc(0)), and so on. As this simple example makes clear,
the availability of one or another kind of definition for the same symbol may
depend on the logic underlying the formal rendition of a theory and on a specific
choice of primitive symbols. More generally, there is a strict interconnection
between what is considered as logical and adopted as a background language in
which a mathematical theory is cashed out, what mathematical notions can be
defined, and how they can be defined. We’ll see some more familiar examples
in discussing Peano Arithmetic in Section 5.1.1.
As a general characterization of explicit definitions we follow Boolos,

Burgess, and Jeffrey (2007), 266 (see also Lésniewski 1931; Suppes 1957;
Antonelli 1998; Gupta and Mackereth 2023; Šikić 2022; for a model-theoretic
characterization, see Hodges 1993, 302). Where ‘α’ and ‘β1, . . . , βn’ are non-
logical symbols of the language L of some theory T and α is not among the βi,
then, depending on the syntactic type:

In the case of a (k + 1)-place predicate, such a definition is a sentence of the
form

∀x0,∀x1, . . . ,∀xk(α(x0,x1, . . . ,xk) ↔ B(x0,x1, . . . ,xk))
and in case of a k-place function symbol, such a definition is a sentence of
the form

∀x0,∀x1, . . . ,∀xk(x0 = α(x1, . . . ,xk) ↔ B(x0,x1, . . . ,xk)),
where in either caseB is a formula whose only nonlogical symbols are among
the βi. (Constants may be regarded as 0-place function symbols [… ]. In this
case the right side of the biconditional would simply be x0 = α.) The general
form of a definition may be represented as

∀x0, . . .∀xk(— α,x0, . . . ,xk —↔ B(x0, . . . ,xk)).

In formal systems, definitions are singled out by appropriate notational devices,
tags like ‘(Df.)’ or subscripts like ‘=df’. This became standard through the
Peano school (Burali-Forti 1894, 120–121).Whitehead and Russell (1910–13),
I, 11, use ‘(Df.)’ and clarify that “It is to be understood that the sign ‘=’ and
the letters ‘Df’ are to be regarded as together forming one symbol.” Frege too
adopted specific notational devices in his Begriffschrift – by flanking his judg-
ment stroke ( ), which signals, in that system, that the content following it
expresses a judgment, by an additional vertical stroke ( ).
This is not merely a notational remark. If not for a given relation of prior-

ity between the symbols flanking identity or biconditional, nothing formally
distinguishes definitions (e.g. ‘2 = Suc(1)’) from other formulae of similar
form (e.g. ‘2 =

√
4’). Crucially, nothing formally distinguishes the definition

‘2 = 1 + 1’ from the theorem ‘2 = 1 + 1’. As Boolos et al. (2007), 266, claim,
explicit definitions:
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Definitions and Mathematical Knowledge 13

embod[y] the idea that a theory defines a concept in terms of others when
‘a definition of that concept in terms of the others is a consequence of the
theory’. [… ] we say that α is explicitly definable in terms of the βi in T if a
definition of α from the βi is one of the sentences in T.

Still, something must set definitions apart from other statements. One reason
for this is that the linguistic act of stipulating something is essentially different
from the linguistic act of asserting that something is the case. Frege, for one,
concurred:

I should like to divide up the totality of mathematical propositions into
definitions and all the remaining propositions (axioms, fundamental laws,
theorems). Every definition contains a sign (an expression, a word) which
had no meaning before and which is first given a meaning by the defini-
tion. Once this has been done, the definition can be turned into a self-evident
proposition which can be used like an axiom. But we must not lose sight of
the fact that a definition does not assert anything but lays down something.
(Letter to Hilbert, 27.12.1899, Frege 1980, 36)

And he adds elsewhere that “It is absolutely essential for the rigor of mathemat-
ical investigations, not to blur the distinction between definitions and all other
propositions” (Frege 1971, 24–25). The notational aids help formalizing a prag-
matic ingredient that goes beyond content, namely that the relevant formulae
are not being advanced as assertions, but as definitions, this being a precondi-
tion for asserting any formula in which the definienda occur, including the very
same formulae giving their definition. If not the form, then, it is the role of defi-
nitions that singles them out. In Frege, this role also depends on, and reflects,
the kind of illocutionary force with which formulae are put forward, and hence
the linguistic act that is being effected. Whitehead and Russell (1910–13), I,
11, claim that “a definition [ . . . ] is not true or false, being the expression of a
volition, not a proposition.” Defining and asserting (to mimic Austin’s motto)
are different ways of doing things with words.

3.2 Roles
Explicit definitions require definiens and definiendum to be semantically equiv-
alent. As a consequence, in any statement of a theory, definiens and definiendum
can be replaced without change in truth (salva veritate). This is limited to
nonopaque contexts (context other than belief ascriptions, modal contexts, etc.)
which are nevertheless negligible in the formal reconstruction of mathemati-
cal theories (although possibly not in their development, where for example
establishing belief in hitherto unproved identities has a significant cognitive
import).
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14 The Philosophy of Mathematics

Explicit definitions, therefore, essentially work as helpful notational abbre-
viations: they do not introduce any new content, nor allow the derivation of any
new consequence, with respect to the original theory. Both Frege and White-
head and Russell shared this view. In the Foreword to Grundgesetze (Frege
1893–1903, I, vi) we read:

Definitions themselves are not creative, and in my view must not be; they
merely introduce abbreviative notations (names), which could be dispensed
with were it not for the insurmountable external difficulties that the resulting
prolixity would cause.

Elsewhere Frege stresses that “No definition extends our knowledge. It is only
a means for collecting a manifold content into a brief word or sign, thereby
making it easier to handle” (Frege 1971, 24). Similarly, in the Introduction
to Principia Mathematica (Whitehead and Russell 1910–13, I, 11) we read:
“‘definition’ does not appear among our primitive ideas, because the definitions
are not part of our subject, but are, strictly speaking, mere typographical con-
veniences. Practically, of course, if we introduced no definitions, our formulae
would very soon become so lengthy as to be unmanageable; but theoretically,
all definitions are superfluous.”
The same conception is found in the Peano school (Burali-Forti 1894, 123)

and has been shared subsequently. Nonetheless, there are several ways in which
explicit definitions have philosophical roles to play.

3.2.1 Salience

Whitehead and Russell (1910–13), I, 11, themselves acknowledge that: “in
spite of the fact that definitions are theoretically superfluous [… ] a definition
usually implies that the definiens is worthy of careful consideration. Hence the
collection of definitions embodies our choice of subjects and our judgement as
to what is most important.”
Different combinations of expressions can be used as definienta for abbrevi-

ation, and we are at liberty to pick. Often, in the course of a proof, abbreviations
are given for convenience. But other abbreviations can encode salient or cru-
cial notions. For instance, the fact that in a given set-theory we choose to use
‘{∅, {∅}, {∅, {∅}}}’ as a definiens for ‘3’ points to the fact that that particular
expression, possibly opposed to other available choices, plays a meaningful
role in our attempt to recover arithmetic set-theoretically. We can abbreviate
anything, but some abbreviations are more important than others.

3.2.2 Conceptual Analysis

Salience pertains to definienda too. In mathematics, definienda will often be
inherited from a varied, partly symbolic and partly informal tradition, and a
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Definitions and Mathematical Knowledge 15

possibly unsystematic practice. Explicit definitions may then be the final step of
a process of conceptual analysis. Whitehead and Russell (1910–13), Introduc-
tion, 12, mention Cantor’s analysis of the notion of continuum as “the statement
that what he is defining is the object which has the properties commonly asso-
ciated with the word ‘continuum,’ though what precisely constitutes these
properties had not before been known.” A definition aims at “making definite”
(coherentlywith the greek term ‘ ’, meaning ‘boundary’): “it gives definite-
ness to an idea which had previously been more or less vague.” Countless
examples could be mentioned, starting from definitions of simple geometri-
cal figures in Euclidean geometry. In general, rigorous (possibly formalized)
definitions will provide informal notions with a sharp meaning by determining
the extent and limits of their application. Here, definiendum and analysan-
dum coincide: the explanatory direction of the definition within the theory,
from definiens to definiendum, reverses the prior process of analysis from an
insufficiently clear notion back to its basic constituents. Conceptual analysis
has a long history both within and outside mathematics (Otte and Panza 1997;
Beaney 2021), is a central ingredient to foundational projects, and can be given
different readings, some of which will be discussed in what follows.

3.2.3 Ontological Reduction: Identification

Explicit definitions may be a tool for ontological reduction. Suppose we have
a translation procedure from an F-theory to a G-theory, allowing – via some
suitable mapping – to translate talk of F’s (e.g. natural numbers) into talk of
G’s (e.g. sets, or categories). By itself, this only tells us that G-talk can be
used – possibly even only for practical purposes – to express things about F’s.
Many cases of mathematical modeling in the sciences behave this way. But one
can also take the translation to provide the real content of F-statements, hence
entailing that to be an F is to be aG, that we need not consider F’s as additional
entities with respect to G’s, for they simply are some of the G’s under different
names.
Part of the process of arithmetization of analysis which, during the nine-

teenth century, led to ultimately base analysis on arithmetic, can be interpreted
along these lines. The stepwise introduction of higher number systems from
lower ones mirrors a process of ontological identification of higher numbers
with set-theoretical constructions out of lower ones, thus combining concep-
tual analysis and ontological reduction. Following Hilbert, this is called the
genetic method – although Hilbert thought only axiomatic presentations could
offer proper foundations, and attributed to this method primarily an heuristic
function (Hilbert 1900; Landry 2013). A sketch of this process is given here.
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16 The Philosophy of Mathematics

D೯ೱ N೯೭೫ Sഃ೯ G೯೯೭೫ഃ
Let a two-place relation R(x,y) be an equivalence relation if it is:

• reflexive: R(x,x)
• symmetric: R(x,y) → R(y,x)
• transitive: R(x,y) ∧ R(y, z) → R(x, z)
Given a domain D, an equivalence relation R partitions D in equivalence
classes containing all and only the elements of D such that R(x,y). Every
object is assigned to one and only one equivalence class. An object awhich
does not stand in R with any other object is assigned, given reflexivity, to
a class containing only itself.
Consider numerical systems C (complex numbers), R (real numbers,

including irrationals), Q (rational numbers), Z (integers), and N (natural
numbers).
Let us define the objects of Q in terms those of Z. Take the equivalence

R1 = ⟨a,b⟩ ∼ ⟨c,d⟩ between two ordered pairs of integers such that a × d =
b × c, b and d being different from 0. For example, ⟨1,2⟩ and ⟨2,4⟩ satisfy
R1, since 1 × 4 = 2 × 2, and the same holds for each of them and ⟨4,8⟩.
The equivalence class containing all such pairs, {⟨1,2⟩, ⟨2,4⟩, ⟨4,8⟩, . . .},
identifies (is) a given rational number. Intuitively, any pair is a represen-
tative of the rational whose numerator is the first element of the pair and
whose denominator is the second element of the pair: 1

2 =
2
4 =

4
8 = . . . .

Negative rationals are obtained by taking negative integers in the relevant
pairs: {⟨1,2⟩, ⟨−2,−4⟩, . . .} is − 1

2 = − 2
4 , … .

Integers in Z are obtained as equivalence classes of ordered pairs of nat-
urals in N satisfying R2 = ⟨a,b⟩ ∼ ⟨c,d⟩ such that a+ d = b+ c. Intuitively,
each pair represents the integer obtained by subtracting the second ele-
ment of the pair from the first. For instance, the class {⟨2,1⟩, ⟨3,2⟩, . . .}
identifies (is) the positive integer 1, while {⟨1,2⟩, ⟨2,3⟩, . . .} is the negative
integer −1.
These definitions reduce the rationals to (classes of pairs of) integers,

and the integers to (classes of pairs of) naturals. Complex numbers in C are
easily reduced to the real numbers in R, since they can be expressed as the
sum a + ib, the first addendum (the real part) being a real number a, and
the second (the imaginary part) being the product of a real number b by the
imaginary unit i (which is such that i2 = −1).
The reduction of R to Q was provided in two alternative ways by Cantor

(1872) and Dedekind (1872). Let us briefly sketch Dedekind’s. Take the
set of all rational numbers. For expository purposes, this can be pictured as
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Definitions and Mathematical Knowledge 17

a rational line (containing points constructible as ratios from a given unit
length). Divide the rationals in two classes,A1 andA2, such that all numbers
a1 in A1 are less than numbers a2 in A2. Designate such division, called a
cut (Schnitt), by ‘(A1, A2)’. If the cut is produced by a rational a, this can
be either the greatest number in A1, or the smallest number in A2. However,
there are infinitely many ai which are neither in A1 nor in A2. For instance,
if A1 contains all numbers whose square is less than 2, and A2 all numbers
whose square is greater than 2, (A1, A2) will not be a rational number and
hence not an element of either A1 or A2 – it corresponds to

√
2. Cuts (A1,

A2) which belong neither to A1 nor to A2 are irrational numbers. Each (term
for an) irrational number can thus be explicitly defined as (the term for) the
set containing the pair of sets of (infinitely many) rational numbers which
are, respectively, less than and greater than the cut.

3.2.4 Ontological Reduction: Elimination

Explicit definitions can be used to show that reference to a kind of objects can be
dispensed with. This can be motivated by a principle of ontological parsimony,
or by epistemological concerns with the disputed objects.
One leading conception of the subject matter of mathematics is mathemat-

ical platonism. According to platonists, mathematical theories (their axioms
and theorems) describe facts holding of domains of sui generis mathematical
objects. These are conceived as abstract, that is, noncausal, nonspatiotempo-
rally located, and possibly necessarily existent objects, whose existence is inde-
pendent of the mental and linguistic activities of human subjects (Hale 1988;
Dummett 1991, chapter 18; Falguera, Martínez-Vidal, and Rosen 2022). The
opposing view, rejecting the existence of (some or all) abstract mathematical
objects, is called (respectively local or global) nominalism (Burgess and Rosen
1997). Platonism immediately raises the worry of how we can have knowledge
of such objects, especially if one demands such knowledge to fall within the
limits of the broadly empirical ways in which we access objects in the natu-
ral world. This epistemological problem of access traces back to Plato’s times,
but was then emphasized by Benacerraf (1973) (Linnebo 2006; Liggins 2010;
Panza and Sereni 2013; Linnebo 2023; Nutting 2024). It heavily hinges on the
theory of knowledge being assumed in the background. Benacerraf initially
endorsed a causal theory of knowledge (Goldman 1967) requiring a causal
connection between a (true) belief that p and the fact that p, something which
is obviously precluded for facts involving abstract objects. In an attempt to
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18 The Philosophy of Mathematics

avoid reliance on any epistemological assumption, Field (1989) reformulated
the challenge as the request for an explanation of mathematicians’ reliability in
their belief-forming processes, apparently making the challenge even stronger
(but see Sereni 2016). In what follows, we’ll encounter several ways in which
definitions can contribute an answer to Benacerraf’s challenge, by providing
mathematical knowledge or facilitating assess to mathematical objects.
One way (among others) to argue for platonism goes through semantic

analysis of mathematical language. To take Bencerraf’s example, consider the
sentences (A) ‘There are at least three large cities older than New York’, and
(B) ‘There are at least three perfect numbers greater than 17’. Provided we take
the surface-grammar of sentences at face value and as conducive of their logi-
cal form, (A) and (B) share the same logical form, that is, that there are at least
mutually distinct objects x, y, and z which stand in a relation R with an object
a which is such that F(a) and G(a). Under a standard (referential, Tarskian)
semantics, singular terms and constants denote first-order objects. For (A) and
(B) to be true, the objects being the referent of ‘a’ and the values of x, y, zmust
exist.
The referential import of numerical expressions may not be evident at first.

In the applied arithmetical statement:

There are two moons of Mars. (Ma)

‘two’ occurs in adjectival position and, as any predicate, it should denote a
property (being two). However, one can follow Frege in believing that the
grammatical form of Ma is misleading, its proper logical form being that
of an identity statement where numerical expressions occur in substantival
position:

The number of the concept ⌜Moons of Mars⌝ = 2. (M s)

Since M s, if true, entails (in a non-free logic and in negative free logic) by
existential generalization that the referents of the terms flanking the identity
sign exist, then – assuming numerical objects are abstract – the truth of M s

entails a form of platonism.
To avoid this conclusion, a nominalist may want to explain the meaning of

M s while doing away with reference to objects. This can be done by reverting
toMa and defining it explicitly in non-arithmetical language:

∃x∃y[M(x) ∧M( y) ∧ x , y ∧ ∀z(M(z) → z = x ∨ z = y)]. (M nq)

M nq tells us that x and y are distinctM’s and anything which is anM is either x
or y – expressing in non-arithmetical terms what we say arithmetically withM s

(substantivally) and Ma (adjectivally). The occurrence of ‘n’ in any sentence
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of the form “There are n F’s” should be seen as a meaningless syntactic string
in a complex unstructured predicate, while the whole sentence gets replaced
by a corresponding application of a numerical quantifier explicitly defined in
non-arithmetical language (Frege 1884, §§55–56; Field 1980/2016, 21–23), for
example:

∃0xF(x) =df ¬∃xF(x), (∃nq
0 )

∃1xF(x) =df ∃xF(x) ∧ ∀y(F(y) → y = x). (∃nq
1 )

These numerical quantifiers are explicitly (and recursively) definable. Elimina-
tive definitions of this kind restrict or simplify the language of a theory through
the elimination of symbols, and logical analysis is used to dispense with the
apparent commitments to disputed objects.

3.2.5 Reduction, Elimination, and Multiple Realizability

A challenge to using explicit definitions for ontological reduction is raised by
Benacerraf (1965). Suppose we want to reduce arithmetic to set-theory, explic-
itly defining numerical terms via set-theoretical ones. To claim that natural
numbers are sets, we must be able to tell which sets they are: given a numer-
ical term ‘n’ and terms referring to distinct sets s1 and s2, then either n = s1
or n = s2, but not both. To reconstruct arithmetic, a subject will need to iden-
tify a subset of the set-theoretical universe of the same cardinality as N (ℵ0),
a set as initial element (i.e. to play the role of 0), and an injective function on
sets which behaves as the successor function on naturals. This delivers a set
of sets isomorphic to the natural numbers, whose sequence is called progres-
sion, or ω-sequence (two theories S and S∗ are isomorphic if there is a bijection
mapping their domains and vocabularies which is structure-preserving, that is,
such that all theorems of S about S-objects are mapped, or translated, into the-
orems of S∗ about S∗-objects, and vice versa). The subject will then need to
explain how numbers can be used not only to count intransitively, that is, to list
numerals in the correct order, but also transitively, that is, to state how many
objects are in a given collection or set. Two procedures are available. One sub-
ject (Ernie, in Beancerraf’s story) follows von Neumann, starting with ∅ and
applying a function which provides sets which are the union set of their prede-
cessors: ∅, {∅},{∅, {∅}},{∅, {∅}, {∅, {∅}}}…Another subject (Johnny) follows
Zermelo, using the singleton function instead, delivering sets which are sin-
gletons of their predecessor: ∅, {∅}, {{∅}}, {{{∅}}}, … These sequences are
provably different, since for any two nonconsecutive sets a and b, ‘a ∈ b’
will be true for Ernie (von Neumann’s sets contain all their predecessors),
and false for Johnny (the unique member of singleton sets is their imme-
diate predecessor). However, since both set-theoretical reconstructions are
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isomorphic to the natural numbers, arithmetic can be translated into either. But
which is which? Is 2 = {∅, {∅}} or is 2 = {{∅}}? Since arithmetic itself isn’t able
to settle the question, we cannot say which of the two sets 2 is, hence we can-
not say that 2 is a set. Numbers could not be sets. The argument works for any
system of objects isomorphic to the natural numbers, hence the conclusion gen-
eralizes: numbers could not be objects. Benacerraf ’s conclusion (1965, 70) that
arithmetic is not a study of objects, but rather the study of “the abstract structure
that all progressions have in common merely in virtue of being progressions,”
echoes Dedekind’s work (Section 5.1.1) and lies at the heart of mathematical
structuralism.
One can demote this challenge (as Wright 1983, §xv, did) by seeing it as an

exemplification in mathematics of the argument for the indeterminacy of trans-
lation raised by Quine (1960), chapter 2, according to which common patterns
of use of a term always license different and possibly incompatible semantic
interpretations: Benacerraf’s challenge would not raise any specific problem
with mathematics then, but would simply remind us that mathematics is, on
this score, on a par with the rest of language. This notwithstanding, reduction
through explicit definitions seems to require univocal identification of individ-
ual numbers, but whenever the same structure can be multiply realized, such
univocal identification seems precluded, since equally effective alternatives
will always be available. Elimination is obtained only in a roundabout way:
the availability of incompatible but equally acceptable definitions prevents the
disputed terms from standing for objects at all.
Obviously, Benacerraf’s challenge relies on the assumption that the only evi-

dence to decide between alternative constructions can be given by arithmetical
considerations. But – as Benacerraf (1996) himself acknowledges – broader
philosophical or theoretical considerations could be offered. These can then
lead to identifying one particular construction as preferred over the others,
either in set-theoretical (Section 5.1.2) or category-theoretical (McLarty 1993)
terms. An alternative option is to trade the identification of individual numbers
for the positing of a unique mathematical structure, this being itself an object
that can be differently instantiated. As we will see, this is the strategy adopted
in several structuralist views.

3.3 Criteria
When we investigate requirements for definitions, we may in principle dis-
tinguish between formal criteria – which must be met in a formal or anyway
systematic theory in order for something to be a definition – and broader
desiderata – which make something a good definition, or a better definition
as compared to others (in a similar vein, for instance, Tarski 1933/1956, 152,
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distinguishes between formal correctness and material adequacy in loooking
for a definition of truth). The distinction, however, is not straightforward.
On the one side, certain formal criteria for a specific sort of definition may
be renounced in some views; on the other, one can take it that inadequate
definitions are just not definitions at all, and view also broader desiderata as
necessarily required. In what follows we’ll collect potential requirements for
specific kinds of definitions under the general label of ‘criteria’ (which include
both matters of formalization and matter of content and theory construction).
Let us first outline some openly formal criteria that may guide the stipulation

of explicit definitions (and other kinds of definitions in some cases).

NONCIRCULARITY. A definition must not explicitly use the symbol to be defined,
nor surreptitiously presuppose it, in the definiens. Circularity may be harder
to spot when the definiens relies on previous definitions (in a trivial and
unproblematic sense, in explicit definitions definienda always presupposes the
meaning of definientia by being stipulated as having the same meaning).

SYNONYMY. Definiens and definiendum in an explicit definition must be synon-
ymous, that is, they must have the same meaning, or at least be in some sense
semantically equivalent. The tenability of synonymy (together with analytic-
ity) has been famously challenged by Quine (1951) (see Section 5.2.2). Despite
this, synonymy or some cognate kind of semantic equivalence is traditionally
considered a crucial requirement for definitions, explicit ones in particular.
Spelling out semantical equivalence heavily depends on one’s theory of

meaning. Take for instance a framework like Frege’s (after Frege 1892), where
linguistic meaning has two ingredients, sense (Sinn) and reference (Bedeu-
tung): should definitions preserve both? Among principles that should “govern
the use of definitions” (Frege 1893–1903), I, §33), Frege enlists the following:

1. Every name correctly formed from the defined names must have a refer-
ence. Thus, for each case it must be possible to supply a name, composed of
our eight primitive names, that is co-referential with it, and the latter must
be unambiguously determined by the definitions [… ]

Whether preservation of sense is also required, however, is controversial. In his
later Logic in Mathematics (Frege 1979b, 208) Frege suggests that it is, as far
as explicit definitions within a formal system are concerned (a different issue
is whether a given analysis of an informal notion is required to preserve both;
see Frege 1984, 200):

when a simple sign is thus introduced to replace a group of signs, […] the
simple sign thereby acquires a sense which is the same as that of the group
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of signs. [… ] If the definiens occurs in a sentence [… ] it is true that we get
a different sentence [… ] but we do not get a different thought.

For definitions other than explicit ones (e.g. definitions by abstraction, see
Section 5.2), a difference in sense between definiens and definiendum may be
essential. Reconciling these different attitudes of Frege isn’t easy (Shieh 2008).
Similar remarks apply to other semantical theories which distinguish between
extension and intension.

ELIMINABILITY. Any occurrence of the definiendum must always be syntacti-
cally replaceable by the definiens (and vice versa):

A formula S introducing a new symbol of a theory satisfies the criterion of
eliminability if and only if: whenever S1 is a formula in which the new sym-
bol occurs, then there is a formula S2, in which the new symbol does not
occur such that S → (S1 ↔ S2) is derivable from the axioms and preceding
definitions of the theory. (Suppes 1957, 154)

Thus formulated, ELIMINABILITY is a syntactic criterion (see Gupta and
Mackereth 2023 for a semantic version). Together with SYNONYMY, it entails:

SUBSTITUTABILITY SALVA VERITATE. Any occurrence of a definiendum sn in a
formula S+ of the extended language L+ of a theory M+ (obtained from M
by adding the definition) can always be replaced by its definiens symbols
s0, . . . , sk so that the formula S of L so obtained maintains the same truth-
value of S+, and vice versa: S+ is a consequence of M+ iff S is. The criterion
is originally due to Leibniz. Whether substitutability salva veritate also entails
substitutability salva significatione, that is, preservation of meaning, may also
depend on whether sense (or intension) is preserved in addition to reference by
Synonymity.

SYNONYMY, ELIMINABILITY, and SUBSTITUTABILITY together entail:

NONCREATIVITY (CONSERVATIVENESS). Explicit definitions must be theoretically
dispensable: they must not introduce, or create, in M+ consequences express-
ible in the language L of M which were not already derivable from (syntactic
version), or a consequence of (semantic version),M itself: “A formula S intro-
ducing a new symbol of a theory satisfies the criterion of non-creativity if and
only if: there is no formula T in which the new symbol does not occur such
that S → T is derivable from the axioms and preceding definitions of the the-
ory but T is not so derivable” (Suppes 1957, 154). A semantic counterpart
of this can be obtained by replacing derivability with logical entailment (see
Gupta and Mackereth 2023). This criterion is often referred to as Conservative-
ness, and a theory M+ is a conservative extension of M only if all definitions
adding new symbols inM+ are noncreative.
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CONSISTENCY. A definition must not make a consistent theory inconsistent. To
be sure, one is free to define inconsistent notions if the abbreviations intro-
duced follow the fate of their definiens (define ‘Top’ as ‘The greatest natural
number’, and ‘¬∃x{x = Top}’ is still a theorem of arithmetic). Now from
the criteria given earlier it follows immediately that no (syntactic or seman-
tic) inconsistency can be introduced by explicit definition if the original theory
is consistent. If some of those criteria are dropped, as for some implicit defini-
tions, consistency becomes a substantial requirement. Notice, to stress again the
interdependence between mathematical theorizing and logical languages, that
since CONSISTENCY concerns what follows fromwhat, it clearly depends on how
a theory’s background logic interprets derivability and logical consequence.

3.3.1 Fregean Criteria

As anticipated, broader, not strictly formal, desiderata may be required of defi-
nitions. Given their historical and persisting relevance, it is worth considering
some of Frege’s suggestions.

FRUITFULNESS. Definitions must “show their worth” by being fruitful (frucht-
bar). In a weak sense, this means that “it must be possible to use them for
constructing proofs” (Frege 1884, xxi; also, Shieh 2008; Boddy 2021). Fruit-
fulness is a widely shared desideratum on definitions in mathematical practice
(Tappenden 2008, 2012). Frege, in particular, connects this to the claim that
“Those [definitions] that could just as well be omitted and leave no link miss-
ing in the chain of our proofs should be rejected as completely worthless”
(Frege 1884, §70). Definitions that are not used anywhere in proofs are not
properly definitions at all (Frege seems to have used Euclid’s alleged defini-
tions of primitives as an example – as outlined in Section 2.3 – taking them as
purely “ornamental definitions”; see Frege and Carnap 2003, p. 141).
This understanding of Frege’s conception, however, is controversial.

After all Frege (1893–1903, I, §33) endorses both ELIMINABILITY and
NONCREATIVITY, and these together guarantee that definienda can be eliminated
anywhere without loss of content. One way of reconciling this tension is to
appeal to passages where Frege suggests that definitions should provide anal-
ysis of pretheoretical concepts (e.g. natural number). The fruitfulness of a
definition would then be located in the fact that the theory provides the cor-
rect definiens for such concepts: its absence would surely leave gaps in proofs,
thereby showing the definition to be fruitful. Still, this is in tension with later
works of Frege’s, where the emphasis is not on conceptual reconstruction, but
rather on theory construction. In Logic in Mathematics (Frege 1979b, 209–
211), Frege distinguishes between “constructive definitions,” that is, arbitrary
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explicit stipulations within a theory, and “analytical definitions,” that is,
definitions of symbols based on a logical (i.e. conceptual) analysis of previ-
ously established uses. However, there is no guarantee that such analysis will
preserve meaning. Moreover, the analysis “does not [… ] form part of the con-
struction of the system, but must take place beforehand.” Analytic definitions
are thus no definitions at all, and “the sense in which [a] sign was used before
the new system was constructed is no longer of any concern to us.” In such
cases, the worth of the analysis does not seem to rely on its capturing exactly the
original informal meaning of prior notions, but rather on its being theoretically
fruitful. As Carnap reports from Frege’s lectures in Jena (Frege and Carnap
2003, p. 140), “Such an analysis cannot be proved right; one can only feel that
one has hit the nail on the head, and it can prove itself fruitful.” FRUITFULNESS is
then strictly related to the role of Conceptual Analysis in theory construction,
as well as to the role of elucidations and explications (see Section 6).

COMPLETENESS. Definitions must provide concepts with sharp boundaries of
application. As a consequence, they cannot be expanded or modified by adapt-
ing them to new entities (see Frege 1893–1903, II, §§56 ff.). We shouldn’t
for example define ‘+’ to express sum among naturals and then extend it to
sum among integers, rationals, and so on, for we would either be defining a
new operation, or claiming that the original was ill-defined. Frege calls such
defective definitions “piecemeal”: “This consists in providing a definition for
a special case [… ] and putting it to use and then, after various theorems,
following it up with a second explanation for a different case” (Frege 1893–
1903, §57). Frege acknowledges that the “development of the science which
occurred in the conquest of ever wider domains of numbers, almost inevitably
demands such a practice” (§58). But it would then be better to introduce new
symbols, since what is acceptable in practice may not be acceptable in logic,
that is, in a stable logical reconstruction of a mathematical notion relative to its
full domain of application. At each step, piecemeal definitions are only shad-
ows of definitions: “Logic cannot recognise such concept-like constructions as
concepts” (§56).
Frege’s insistence on completeness is motivated by his views that concepts

(i.e. functions from objects to truth-values) should be defined over a universal
domain, and by his adoption of the Principle of Bivalence, which demands
that any sentence is either true or false, so that for every object it must be
determined whether a given concept does or does not apply. These views led
Frege to controversy with fellow mathematicians, especially Peano (see Frege
1893–1903, II, §58, fn. 1, 71), who believed that symbols like ‘+’ or even ‘=’
should be given “conditional definitions”: definitions should only be given over
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suitably restricted domains, and Frege’s idea that at some stage all such partial
definitions can be “combined into the form of a single explanation” would be
unreasonable.
COMPLETENESS. can be jeopardized for many ordinary concepts by vague-

ness, which entails an area of borderline cases in which a given concept neither
clearly applies nor clearly doesn’t. However, even if one believes that vague-
ness does not affect mathematical concepts, the criterion can be questioned on
more general grounds. Some concepts may be indefinitely extensible (Dummett
1993c, 441), namely such that, “if we can form a definite conception of a totality
all of whose members fall under [them], we can, by reference to that totality,
characterize a larger [sic] totality all of whose members fall under [them].”
A paradigmatic example is the concept ⌜not being a member of itself ⌝ (Sec-
tion 5.2.1), but other candidates are those of set, concept, extension, and ordinal
and cardinal number. Indefinite extensibility may be at the origins of paradoxes
afflicting these notions (Russell Paradox for sets and extensions, Burali-Forti
Paradox for ordinals, etc.). To avoid paradoxes, Dummett suggests abandoning
classical logic and its requirement for determinate domains of quantification,
and adopting intuitionistic logic, thus forfeiting both COMPLETENESS and the
Principle of Bivalence (Shapiro and Wright 2006; Uzquiano 2015; Linnebo
2018a; notice that similar conclusions can be reached in the context of intu-
itionist mathematics, largely inspired by Brouwer’s works, where definitions
must be constructive, i.e. must not merely support a proof that certain objects
exist, but must allow for a finite construction procedure for them; Posy 2020).
Frege’s rejection of piecemeal definitions may also be resisted by arguing

that however strictly we delimit the application of a concept, there may always
be new cases for which it is unclear whether the concept applies: concepts can
have open texture, or porosity (Waismann 1945, 122–123). Most of our empir-
ical concepts, for instance, “are not delimited in all possible directions” and
so their definitions are “always corrigible or emendable.” This phenomenon
is different from vagueness, but still leaves a modicum of indeterminacy in
our definitions, and it may affect mathematical concepts too, including most
basic ones – for example, the concept of number, which groups an always cor-
rigible “family” of more specific concepts (integer, rational, etc.) (Waismann
1951, 235–237). For any porous mathematical concept, COMPLETENESSwill fail
(Shapiro 2014; Shapiro and Roberts 2021).
Other challenges come from Lakatos’ antifoundationalist views. Lakatos

(1976) presents a dialogue between characters discussing the (Descartes–)Euler
theorem for polyedra, namely that: V(ertices) − E(dges) + F(aces) = 2. In the
discussion, several counterexamples are advanced. The effect of these is not
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just to refute the theorem, but to challenge the very initial definition of ‘polye-
dron’ onwhich it rests. Proofs and refutations, inmathematics, not only concern
propositional content: they determine the meaning of mathematical terms (a
conception evoking some Aristotelian remarks; see Section 2.2). On this pic-
ture, definitions, against COMPLETENESS, are always modifiable conjectures,
part of a fallible mathematical practice (Brown 2008; De Toffoli 2021).
Notice that these challenges to COMPLETENESS have different nature.

Indefinite extensibility allows for a univocal identification of the target con-
cepts, but allocates in the very nature of those concepts their impossibility of
delimiting a determinate and self-contained domain of objects. Waismann’s
open texture and Lakatos’ views put a heavier burden on the analysis of math-
ematical concepts in general. They suggest that either by the underdetermined
nature of concepts, or by the fallibilist nature of conceptual inquiry, a sharp
determination of concepts is neither forthcoming nor probably desirable. On
this score, they resonate with more nuanced conceptions of analysis, concerned
with how informal notions can be differently explicated and how definitions can
be modified with time for contextual or pragmatic reasons (see Section 6.2).

SIMPLICITY. A definition must “contain a single sign whose reference it stip-
ulates,” and “one must not [… ] explain a sign or word by explaining an
expression in which it occurs and whose remaining parts are known” (Frege
1893–1903, II, §66). Simplicity entails (a) that it is not possible to jointly define
more than one symbol, and (b) that it is not possible to define a symbol α by
an expression in which α itself occurs. The latter is distinct from a circularity
worry and is meant to rule out methods for defining several undefined expres-
sions at once bymeans of amatrix of statements in which the expressions occur.
Frege (1893–1903) illustrates this with an algebraic analogy (II, §66):

It sometimes occurs that a whole system of definitions is laid down, each
containing several words that are to be explained, such that each of these
words occurs in several of these definitions. This is comparable to a sys-
tem of equations with several unknowns, where it is once again entirely
left open to question whether there is a solution, and whether it is uniquely
determined.

This requirement had been already discussed in the literature, and relates more
generally to implicit definitions, to which we now turn.

4 Implicit Definitions
Despite having potentially interesting philosophical roles, explicit definitions
appear limited in scope. For instance, Ayer (1936, 59–61) compares explicit
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definitions with those we “expect to find in dictionaries,” and thus with the
definitions per genus et differentiam of the Aristotelian tradition, and adds:

the philosopher [… ] is primarily concerned with the provision, not of
explicit definitions, but of definitions in use. We define a symbol in use, not
by saying that it is synonymous with some other symbol, but by showing how
the sentences in which it significantly occurs can be translated into equiva-
lent sentences, which contain neither the definiendum itself, nor any of its
synonyms.

These are usually referred to as implicit definitions, although a closer look
reveals a wide assortment of terminology, forms, and uses.

4.1 Outline
The characterization of implicit definitions traces back to Gergonne’s Essai
sur la théorie des définitions (Gergonne 1818–9). First, Gergonne introduces
explicit definitions as identities as surveyed earlier (9, 13). He then claims that
sometimes, even in the absence of such identities, an undefined word can be
understood by understanding a sentence in which it occurs, together with (and
only with) other known words. For instance, by learning that each of the two
diagonals of a quadrilateral divide it into two triangles, someone familiar with
‘quadrilateral’ and ‘triangle’ may learn the meaning of the hitherto unknown
‘diagonal.’ These are “phrases which thus provide the understanding [intelli-
gence] of one of the words of which they are composed by means of the known
meaning of the others” (Gergonne 1818–9, 9, 23). Gergonne too compares
explicit definitions to solved equations, and implicit definitions to unsolved
equations. Crucially, the analogy also shows that “it is also conceivable that,
just as two equations with two unknowns determine both of them, two sen-
tences which contain two new words, combined with known words, can often
determine their meaning; and the same may be said of a greater number of
new words combined with known words, in an equal number of sentences”
(Gergonne 1818–9, 9, 23).
Essential features of implicit definitions that can be retrieved from Ger-

gonne’s discussion are the following:

(G1) CONTEXTUALITY. Symbol α is defined via a sentential context featuring α
as an undefined symbol and known symbols βo, . . . , βn otherwise.

(G2) SIMULTANEITY. More undefined symbols α0, . . . , αn can simultaneously
be defined by a system of sentential contexts otherwise featuring only known
symbols β0, . . . , βn.
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(G3) NUMERICAL BALANCE. Each defining sentential context must contain “just
one word” (14) α which is undefined.

(G4) UNIVOCALITY. Themeaning of the undefined symbol αmust be completely
and univocally determined through the definition.

By (G1), implicit definitions differ from explicit ones because “the definiens
will be a statement or condition that involves the term to be defined. [… ] The
purpose of such a definition is not, of course, to set up an equivalence between
the term and the defining condition, but somehow to constrain the interpretation
of the term bymeans of the condition” (Fine 2002, 16). Hence, α is defined only
to the extent to which it contributes to the meaning of a sentence in which it
occurs: “the symbol itself, when occurring in isolation, need not be endowed
with any meaning at all” (Antonelli 1998, §3). Without violating circularity,
therefore, the definiens must contain the definiendum. A common example is
the arithmetical definition of ‘+’ given the following conditions: n+ 0 = n and
n + Suc(m) = Suc(n + m).
Since their definiens is an entire sentential context, implicit definitions

are often called contextual definitions. The expression ‘definitions in use’ is
due to Whitehead and Russell. In the Introduction to Whitehead and Russell
(1910–13), 66, they claim: “By an ‘incomplete’ symbol we mean a symbol
which is not supposed to have any meaning in isolation, but is only defined in
certain contexts. [… ] Such symbols have what may be called a ‘definition in
use’.” Their examples include mathematical symbols like ‘ d

dx ’ and ‘
∫ b
a ’, which

require completion in order to mean anything, but the crucial case is the treat-
ment of definite descriptions, namely the analysis of the expression ‘the x such
that ϕ(x)’ as an incomplete symbol. Despite its grammatical behavior of a sin-
gular term, its meaning is defined by a complex conjunctive condition to the
extent that there exists one x, and only one x, such that ϕ(x).
Two classes of definitions – axiomatic and abstractive – whose primary pur-

pose is to introduce primitive terms are usually considered implicit definitions.
Indeed, they meet condition (G1) and are thus contextual definitions (axiomatic
definitions are actually rarely called contextual or in use, and the two may even
be considered in opposition; see Carnap 1928, §15). However, given their role,
they may forfeit some of the criteria that apply to other implicit definitions
(Gupta and Mackereth 2023, §2.6, talk of a “liberalized conception of implicit
definitions”). We will here distinguish between implicit definitions in a more
general understanding of the term, and a class of primitive implicit definitions.
To sketch a basic distinction, given a mathematical theoryMwith a languageL,
implicit definitions proper will act, similarly to explicit definitions, as expan-
sions of L to L+. Primitive implicit definitions, on the other hand, provide
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the vocabulary of L itself (see also Gupta and Mackereth 2023, §2.6; Šikić
2022, §6, aptly distinguishes between “definitions in models” and “definitions
of models”).
This section discusses only implicit definitions in general, whose formal

characterization is best given in semantic or model-theoretic terms. Following
again Boolos et al. (2007), 266, we can say that implicit definitions incorporate
the idea that “a theory defines a concept in terms of others if ‘any specifi-
cation of the universe of discourse of the theory and the meanings of the
symbols representing the other concepts (that is compatible with the truth of
all the sentences in the theory) uniquely determines the meaning of the symbol
representing that concept’.”
Hence (where the βi are among the nonlogical symbols of T) “α is implicitly

definable from the βi in T if any two models of T that have the same domain
and agree in what they assign to the βi also agree in what they assign to α.”

4.2 Roles
Implicit definitions share many of their potential roles with explicit definitions.
As regards Salience, they can still specify “our choice of subjects” via appro-
priate definienda. Also Conceptual Analysis of pretheoretical notions is one
crucial role for implicit definitions, once a suitable primitive vocabulary is
available. On this regard, they can outstrip explicit definitions when no direct
semantical equivalence for an undefined symbol α is available. Recursive defi-
nitions are a common example (see Section 4.3). Both these roles, however,
take up a particular philosophical significance when other purposes of implicit
definitions are considered.

4.2.1 Ontological Reduction

Implicit definitions allow translating discourse about α in terms of more ele-
mentary expressions ‘β0, β1, . . . βn’ without forcing us to identify α with one
of the βi. As Quine (1969), 72, emphasizes, even outside mathematics this
procedure proved helpful, for instance in translating, in empiricist accounts of
empirical knowledge talk about physical bodies into talk of sense expressions
while avoiding Hume’s controversial identifications of the former with the lat-
ter (Quine sees Bentham’s works on fictions in Bentham 1962 as a “crucial
step” in the development of this procedure).
It is to this definitional procedure that Ayer refers to in the earlier quota-

tion, for the role it plays in Carnap’s Aufbau (Carnap 1928), which attempts
an ambitious foundation of our scientific language by means of a “construc-
tional system of concepts.” Such a system provides a “genealogy of concepts”
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starting from a limited basis of fundamental concepts (§1), aided by a suit-
able theory of relations. “Construction takes place through definition” (§38),
and provides progressive “ascension” to concepts of objects of higher level
from concepts of lower-level objects. In the simplest cases, explicit definitions
will do, and “the new object [… ] remains within one of the already formed
object spheres.” In other cases it will only be possible to define an object
“relative to the already constructed objects” (§39); Carnap’s term for these is
“quasi-objects.” Construction requires that:

it [… ] be possible to transform the propositions about it into propositions
in which only the previous objects occur, even though there is no symbol
for this object which is composed of the symbols of the already constructed
objects. [… ] such an introduction of a new symbol is called a definition in
use (definitio in usu), since it does not explain the new symbol itself – which,
after all, does not have any meaning by itself – but only its use in complete
sentences.

Carnap takes the definition of ‘prime number’ as an example: ‘x is a prime
number ↔ x is a natural number and has only 1 and x as divisors’. Carnap
concludes that ‘prime’:

can be defined only in use by indicating which meaning a sentence of the
form “a is a prime number” is to have, where a is a number. This meaning
must be indicated by giving a propositional function which means the same
as the propositional function “x is a prime number,” and contains nothing but
already known symbols, and which could thus serve as a translation rule for
sentences of the form “n is a prime number.”

As Carnap’s terminology of “quasi-objects” suggests, ontological reduction is
weaker when obtained through implicit definition: we trade identification of
objects for translation of talks about them. However, this coheres with the
semantic tradition which has characterized a large bulk of analytic philoso-
phy (Coffa 1991; Dummett 1993b): philosophical inquiries, ontological ones
included, must proceed through semantic analysis. In this setting, constructions
by contextual definitions address every legitimate concern on what speaking of
certain objects consists in, while all further metaphysical questions become
pseudo-problems.

4.2.2 Rational Reconstruction

Carnap conceived of the Aufbau as a project of rational reconstruction,
which he defines as “the searching out of new definitions for old concepts”
(Carnap 1928, Preface, 2nd ed., v). Given a choice of primitives, a rational
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reconstruction should yield a way for a subject of acquiring a priori the
fundamental concepts of a target discourse. This is provided by contextual
definitions.
The only evidence for the correctness of a rational reconstruction is its ability

to output the targeted discourse. But then nothing prevents in principle differ-
ent reconstructions, based on different selections of primitives and definitions,
from resulting in equally adequate outputs. As Quine (1969), 75, vividly states:
“If Carnap had successfully carried such a construction through, how could he
have told whether it was the right one? The question would have had no point.
[… ] If there is one way there are many [… ]”.
Rational reconstructions of mathematical theories by implicit definitions

may face the same problem. Once a certain mathematical discourse is recov-
ered, asking which particular reconstruction is the right one may have no point.
This exacerbates themultiple realizability problemBenacerraf (1965) raises for
explicit definitions.

4.3 Criteria
NONCIRCULARITY. Implicit definitions too should avoid surreptitiously relying
on themeaning of the definiendum. This conditionsmay appear to be violated in
cases in which the defining condition, or some statements of a set of defining
conditions, involves the definiendum itself. A relevant case is recursive defi-
nitions, where a base clause states that a property P holds for an initial base
element x, and a recursive clause establishes when, for any y obtained from x
by successive application of some procedure, P holds of y. Take the definition
of exponentiation in arithmetic:

m0 = 1,

mn+1 = mn × m.

While (each instance of) ‘mn’ occurs as part of the definiens in (each instance of)
the second clause, this occurrence is harmless, since the definition abbreviates
an infinite sequence of formulae in which the definiendum only occurs on the
left:

m0 = 1,

m1(=0+1) = 1 × m,

m2(=1+1) = (1 × m) × m,

. . .
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When this is the case, such formulae are said to be in normal form
(Gupta and Mackereth 2023, §2.4), and the conditions imposed on them guar-
antee satisfaction of ELIMINABILITY and NONCREATIVITY (CONSERVATIVENESS).

SYNONYMITY between subsentential expressions does not properly apply to
noneliminative (see below) implicit definitions. However, some form of seman-
tical equivalence (arguably stronger than material or logical equivalence)
between the defining and the defined sentential contextsmay still be demanded
(as we’ll see in the case of abstractive definitions).

CONSISTENCY. Avoidance of inconsistency is trickier than with explicit defi-
nitions, since with implicit definitions one must ascertain that the defining
condition is entailed by the theory. Mates (1972), 198, exemplifies this with
the definition of division on integers in terms of multiplication:

∀x∀y∀z(x ÷ y = z ↔ x = y × z).

This appears as a good definition, since for example 6 ÷ 2 = 3 and 6 = 2 × 3.
However, the condition also establishes that 0 ÷ 0 = 1 (since 0 = 0 × 1) and
0 ÷ 0 = 2 (since 0 = 0 × 2), and hence entails, inconsistently, that 1 = 2.

NONCREATIVITY (CONSERVATIVENESS). Conservative implicit definitions added
to consistent theories preempt the preceding problem: no inconsistent conse-
quence of the extended theory would be a theorem in the language L of the
original theory M. Although consistency of the extended theory is guaran-
teed by conservativeness (from a consistent theory), the inverse doesn’t hold.
A creative implicit definition may yield a consistent and yet nonconservative
extension M+ of M (see Mates 1972, 198, for examples, and the discussion of
primitive implicit definitions in the next Section).

ELIMINATIVITY and SUBSTITUTABILITY SALVA VERITATE. In general, Eliminativity
must be understood differently for implicit definitions than it is for explicit
ones, since in implicit definitions we may not be able to replace a defined
expression term by term with a defining one. Eliminativity in a broader sense
may be preserved by ensuring that any sentential context in which the definien-
dum occurs can be replaced without loss with the defining sentential contex(s),
hence guaranteeing also substitutability salva veritate of these entire (sets of)
sentences.
In some favorable conditions, however, eliminativity can be guaranteed

more straightforwardly (Shapiro 1991, §6.6; Šikić 2022; Gupta and Mackereth
2023), whenever Beth’s Theorem (Beth 1953) holds. Beth builds on a method
introduced by Padoa (1900), that establishes when an undefined symbol α is
not definable via (is “irreducible to”) a system of primitive undefinable symbols
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β0, . . . , βn of a theory T as they occur in the axioms (“unproved propositions”)
of the latter:

P೫೮೫’ M೯ೲ೮
[… ] to prove that the system of undefined symbols is irreducible with
respect to the system of unproved propositions it is necessary and suffi-
cient to find, for each undefined symbol, an interpretation of the system of
undefined symbols that verifies the system of unproved propositions and
that continues to do so if we suitably change themeaning of only the symbol
considered. (Padoa 1900, 122)

Hence, α cannot be implicitly defined by the βi in T if there are two modelsM1

andM2 agreeing on the interpretation of all the βi in T but disagreeing on the
interpretation of α. Now, it is a consequence of the characterization of explicit
definitions and the UNIVOCALITY constraint (G4) on implicit ones, that any α
which is explicitly definable from the βi inT is also implicitly definable from the
βi in T. Beth’s Theorem conjoins this with the inverse direction (Boolos et al.
2007, §20.3; Shapiro 1991, §6.6.3; Hodges 1993, §6.6; see also van Heijenoort
1967, 118–119; Giovannini and Schiemer 2019):

B೯ೲ’ D೯೫೬ഃ Tೲ೯೯
α is implicitly definable from the βi in T iff α is explicitly definable from
the βi in T.

Beth’s Theorem holds for first-order languages. In this case, any implicit
definition can be turned into an explicit one, and Eliminativity is hence imme-
diately guaranteed. However, Beth Theorem does not hold in second-order
languages (due to their failing compactness; Shapiro 1991, 164; Boolos et al.
2007, 267), and many philosophically relevant implicit definitions are for-
mulated in second-order languages. Moreover, some notable (e.g. axiomatic)
first-order definitions are used to introduce primitive symbols, and may thus
not be required anyway to meet all general criteria for implicit definitions,
Eliminativity included. Let us then turn to primitive implicit definitions.

5 Primitive Implicit Definitions: Axioms and Abstractions
The conviction that mathematical primitive terms are undefinable was long
held. To wit, inDe l’Esprit géométrique (Pascal 1658) Pascal praises Euclidean
geometry because it does not attempt to define its primitive notions, which are
“clear and understood by all mankind” and “so naturally designate the things
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they mean, to those who understand the language,” so that “there is nothing
more feeble than the discourse of those who wish to define these primitive
words.” In contrast to similar attitudes, axiomatic and abstractive definitions
have been developed as ways of defining mathematical primitives.

5.1 Axiomatic Definitions
5.1.1 Outline

In the Euclidean model, one way to picture the epistemic role of primitives and
postulates is that they neither admit nor need, respectively, definition and proof,
since the basic source of geometrical knowledge is immediately provided by
the perceptually accessible physical space we inhabit, whose properties geom-
etry studies (or, in a Kantian perspective, constitutes). This picture was shaken
in the nineteenth century by the development of non-Euclidean geometries
(mainly through the negation of the fifth postulate), which detached the study
of geometrical space and physical space, and removed any kind of extratheo-
retical ground for postulates and primitives. Geometries started being studied
for their formal properties as mathematical theories. The first axiomatic presen-
tation of Euclidean geometry was Hilbert’s, in the Grundlagen der Geometrie
(Hilbert 1899). He considers “three distinct systems of things,” points, straight
lines, and planes, and proceeds to discuss geometrical axioms. Although he still
presents “the choice of the axioms and the investigation of their relations to one
another” as “tantamount to the logical analysis of our intuition of space,” and
although he presents his five groups of Axioms (connection, order, parallel,
congruence, and continuity) as expressing “certain related fundamental facts
of our intuition,” he crucially claims that

We think of these points, straight lines, and planes as having certain mutual
relations, which we indicate by means of such words as “are situated,”
“between,” “parallel,” “congruent,” “continuous,” etc. The complete and
exact description of these relations follows as a consequence of the axioms
of geometry (§1, p. 3).

In order to define the geometrical primitives, it suffices to determine which
relations hold between the elements points, lines, and planes, and everything
there is to establish about these relations is provided by the axioms (in either
Euclidean or non-Euclidean groupings). The Axioms of Connection “establish
a connection between the concepts indicated above; namely, points, straight
lines, and planes”; the Axioms of Congruence “define the idea of congruence
or displacement”; and so on (emphasis added). Axioms do not simply capture,
reconstruct, or recover relations among elements that are given to us prior to
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the theory, but rather establish them.While subsequent definitions are explicitly
given in terms of primitives (e.g. “IfM is an arbitrary point in the plane α, the
totality of all pointsA, for which the segmentsMA are congruent to one another,
is called a circle”; §7), primitives are jointly defined by the axioms.
Lacking extratheoretical evidence, the consistency and independence of

axioms must be ascertained through appropriate mathematical procedures. To
this aim, Hilbert develops (metamathematical) methods that will then consti-
tute the bulk of model theory. To prove consistency (§9), “it is sufficient to
construct a geometry where all of the five groups are fulfilled [i.e. satisfied].”
Let points stand for ordered pairs <x,y> from the field of real numbers (or for an
appropriately selected enumerable subset Ω of algebraic numbers), and define
lines and planes as constructions on them (that points, lines, surfaces could be
represented as constructions out of real numbers was common since Descartes
introduced analytic geometry). Then any contradiction in the axioms would
surface in the theory of real (or Ω) numbers. Hilbert thus provides a model-
theoretic consistency proof of his axioms relative to the consistency of analysis
(or the consistency of the arithmetic ofΩ), this being assumed as granted. Anal-
ogous procedures prove that axioms are mutually independent, and hence that
“none of them can be deduced from the remaining ones by any logical process
of reasoning” (§10).
In arithmetic, the axiomatic definition of arithmetical primitives was to be

developed by Peano and had been anticipated by Dedekind (1888). Dedekind
sets out to investigate “that part of logic which deals with the theory of num-
bers” (14). Both he and Frege saw themselves as extending to arithmetic the
quest for rigor that dominated the mathematics of their time, they both set out
to expel the intuitions of space and time from the foundations of mathematics,
and both saw arithmetic as intimately related to logic and as, as Dedekind puts
it, “an immediate result of the laws of thought” (Reck 2013, 2021; on different
ways of characterizing mathematical rigor, see Burgess 2015; Tanswell 2024).
Dedekind begins by assuming the notion of an object [thing, Ding] as any

object of thought. He then introduces the notion of a system [System] of objects
(a proto-set-theoretical notion), having other objects as elements. He then
defines subset (part), proper subset (proper part), and intersection [Gemeinheit].
He provides the first systematic treatment of transformations [Abbildungen],
namely mappings between a system S and its image S′, or ϕ(S), associat-
ing an element s of S to an element s′ (ϕ(s)) of S′. He first defines similar
transformations (injectivemappings, although he sometimesmeans bijections),
and then automorphism, namely transformations of S into an S′ which is a
(proper or improper) subset of itself. He introduces the crucial notion of chain
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[Kette] of a system S (S0) as the intersection of all those systems which con-
tain S and contain all and only those systems which can be obtained by S
through ϕ. Apart from ambiguities between a system S and an element s, a
chain coincides with the smallest inductive set obtained from s of S through a
function ϕ (i.e. closed under ϕ). Two other major accomplishments are (a) the
theorem of complete induction; (b) the first rigorous definition of an infinite
set as one that stands in a bijection with a proper subset of itself (subvert-
ing a long tradition according to which the whole is greater than the part,
as we read in Euclid’s Common Notions). This by itself does not prove that
infinite systems (sets) exist. In §66 Dedekind proves that if we take the system
S of all things that can be objects of my thought, and the function ϕ map-
ping each element s of S to the thought that s is an object of my thought
(which, being a thought, is itself an object of my thought), then the set ϕ(S)
so obtained is a proper subset of S, and hence, by the definition of infinity,
S is infinite. To prove that ϕ(S) is a proper subset of S, Dedekind shows that
there is at least one thing which is an object of my thought (hence an element
of S) but is not itself a thought of the form “s is an object of my thought”
(hence not an element of ϕ(S)). Quite unfortunately, he selects “my own Ego”
as an example, thus jeopardizing his proof with psychologistic notions. The
criticism of psychologism or mentalism is, however, possibly too harsh, and
Dedekind’s aim was in fact to provide a logical proof of the existence of
infinite sets.
To define natural numbers, Dedekind introduces a specific kind of infinity,

simple infinity (§71), and proves that every infinite system S contains as a
(proper or improper) part a simply infinite system N (§72). Via the earlier proof
that there are infinite systems, this also proves that there are simply infinite
systems. These are defined by the following conditions:

D೯೮೯೮’ Sഃ I೯ Sഃ೯
α. ϕ(N) is a part of N
β. N is the chain obtained through ϕ from a base-element 1 (N = 10)
γ. 1 is not contained in ϕ(N)
δ. ϕ is similar (injective)

The use of ‘N’ and ‘1’ is notationally arbitrary: by themselves, conditions
α − δ only state that a simply infinite system S is ordered [geordnet] by an
injective function ϕ from elements of S to elements of S, starting from an
initial element s which is not in the image ϕ(S) of S. Natural numbers are
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subsequently characterized via these conditions (§73), through a process of
apparently psychological abstraction (but see Reck 2013; Yap 2014):

If in the consideration of a simply infinite system N set in order by a trans-
formation ϕ we entirely neglect the special character of the elements; simply
retaining their distinguishability and taking into account only the relations to
one another in which they are placed by the order-setting transformation ϕ,
then are these elements called natural numbers or ordinal numbers or simply
numbers, and the base-element 1 is called the base-number of the number-
series N. With reference to this freeing the elements from every other content
(abstraction) we are justified in calling numbers a free creation of the human
mind. The relations or laws which are derived entirely from the conditions
α, β, γ, δ in (71) and therefore are always the same in all ordered simply
infinite systems, whatever names may happen to be given to the individual
elements (compare 134), form the first object of the science of numbers or
arithmetic.

§134 contains the proof of the categoricity of (second-order) arithmetic estab-
lishing that all systems (models) satisfying α − δ are isomorphic. Arithmetic
can thus disregard the particular nature of the objects composing its models and
be concerned only with what follows from those conditions.

In the Arithmetices Principia (Peano 1889) and several editions of the For-
mulaire de Mathématiques (Peano 1895), Peano sets up to present arithmetic
through a “newmethod,”which first consists in presenting a background logical
language and notation (which will inspire the formal setting of Principia Math-
ematica). Peano emphasizes that arithmetical “signs” are divided into those
that can be defined from other arithmetical signs plus logical ones, and those
that cannot. Their properties are characterized axiomatically (Peano 1889,
pp. 85–86):

If, as I think, these [signs] cannot be reduced any further, it is not pos-
sible to define the ideas expressed by them through ideas assumed to be
known previously. Propositions that are deduced from others by the oper-
ations of logic are theorems; propositions that are not thus deduced I have
called axioms. There are nine of these axioms (§1), and they express the
fundamental properties of the signs that lack definition.

Primitive arithmetical notions are number (N), unity (1), the successor of
(a+ 1), and is equal to (=). Peano takes numerical identity as a nonlogi-
cal notion to be axiomatically defined, rather than taking identity as a prior
logical notion that can then be applied to numbers (as for instance Frege
did; Frege 1884, §63): as a consequence, four of his axioms are today seen
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as extra-arithmetical claims concerning identity. The other five, given (as
Dedekind’s conditions) within a theory of classes, are the proper axioms of
arithmetic (presented here in modified notation):

P೯೫’ Aം
1. 1 ∈ N

– a ∈ N → a = a
– a,b ∈ N → (a = b ↔ b = a)
– a,b,c ∈ N → ((a = b ∧ b = c) → a = c)
– (a = b ∧ b ∈ N) → a ∈ N

2. a ∈ N → a + 1 ∈ N
3. a,b ∈ N → (a = b ↔ a + 1 = b + 1)
4. a ∈ N → a + 1 , 1
5. k ∈ K ∧ 1 ∈ k ∧ ∀x((x ∈ N ∧ x ∈ k) → (x + 1 ∈ k)) → N ∈ k

Axiom 1 states that 1 is a natural number. Axiom 2 states that if a is a natural
number, so is its successor. Axiom 3 states that the successor function is injec-
tive (different natural numbers have different successors). Axiom 4 states that
1 is not the successor of any natural number. Axiom 5 is the principle of math-
ematical induction – if k is a class, 1 is in k, and if x is a number in k then also
x+1 is in k, then the whole class N is in k. As regards Dedekind’s conditions, α
corresponds to Axiom 2; β entails both Axiom 5 – for the notion of chain is so
defined as to encode mathematical induction – and Axiom 1 – since Dedekind’s
base-element 1 is contained in N by the definition of chain; γ corresponds to
Axiom 4; and δ corresponds to Axiom 3.
As mentioned earlier (Section 3.1), and as is witnessed by the different con-

ceptions of identity just rehearsed, the interplay between logical and nonlogical
resources can significantly affect mathematical definitions. Standard modern
presentations of the so-calledDedekind–Peano Axioms for arithmetic are given
in second-order logic, and take 0 as the initial number:

PA2 Aം
1. N(0)
2. ∀x∃y(s(x) = y)
3. ∀x∀y(s(x) = s(y) → x = y)
4. ∀x(s(x) , 0)
5. ∀P(P(0) ∧ ∀x(P(x) → P(s(x))) → ∀xPx)
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Second-order arithmetic is categorical. Notice that the Induction Axiom
[5] involves quantification over predicates. Since on a standard (Tarskian,
referential) semantics second-order quantification over predicates is tanta-
mount to quantification over sets (the sets of individuals to which the corre-
sponding predicates apply), Quine (1970), §5, argued that second-order logic
is not logic, but rather set-theory in disguise (“in sheep’s clothing”): it is a math-
ematical theory itself and shouldn’t be used in the foundations of mathematics.
Not everyone shares Quine’s concerns (Shapiro 1991), but this is still perceived
as a serious challenge. Axiom 5 can also be formulated at first-order, avoiding
this threat. In this case, however, further axioms need to be added, for addition
and multiplication (and hence subtraction and division) can be defined from the
PA2 Axioms, but must be characterized axiomatically in first-order PA.

A೮೮೫ F-O೮೯ PA Aം
6. ∀x(x + 0 = x)
7. ∀x∀y(x + Sy = S(x + y))
8. ∀x(x × 0 = 0)
9. ∀x∀y(x × Sy = (x × y) + x)

Most importantly, first-order arithmetic (due to the compactness of first-order
languages) is not categorical, and has nonstandard models (i.e. models not
isomorphic to the natural numbers; Boolos et al. 2007, ch. 25), hence the pos-
sibility of capturing a unique domain of objects (at least up to isomorphism)
is jeopardized. Moreover, Axiom 5 becomes an axiom schema (quantifiers are
dropped and predicate letters occur as schematic letters), expressing that any of
its instances obtained by replacing schematic letters with suitable arithmetical
open formulae is an axiom:

PA I೮೭ S೭ೲ೯೫
5. [ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx))] → ∀xϕ(x)
where x is free in any well-formed open formula ϕ(x).

Not only, however, one must clarify what knowing a schema amounts to
(McGee 1997); also, Axiom 5 now stands for an infinity of sentences: first-
order arithmetical axioms are not five, but infinitely many, and it seems to
be a reasonable requirement on knowing a theory that it is finitely axiomati-
zable, so that all of its axioms can be surveyed at once. On the other hand,
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first-order logic is complete, while second-order logic isn’t, thus making first-
order logic a more secure setting to be working with. For these and other
reasons, also weaker arithmetical systems are studied (the most relevant being
PRA, Primitive Recursive Arithmetic, and Q, Robinson Arithmetic). However,
PA and PA2 remain standard reference axiomatizations in the foundations of
mathematics.
Hilbert, Dedekind, and Peano (and his school; Burali-Forti 1894 ch. IV, §6;

Padoa 1900; Cantù and Luciano 2021) all contributed to the canonization of the
axiomatic method as a standard of mathematical theorizing (soon to be applied,
for instance, to presentations of set-theories in the early nineteenth century).
They also shared the intuition that axioms jointly define mathematical primi-
tives (and, with Frege and Russell, sought to understand indefinables in logic
too; Picardi 2022).

5.1.2 Roles and Criteria

CONSISTENCY is obviously a crucial requirement of axiomatic definitions
(although research programs on inconsistent mathematics are also pursued;
Weber 2022). When it comes to arithmetic, however, a dedicated discussion
is needed. Hilbert’s method to prove the consistency of geometry provided a
relative consistency proof: Euclidean geometry is consistent if analysis (i.e.
the theory whose objects are used to build the model) also is. The consistency
of analysis remained an open question, as did the consistency of arithmetic
itself. A relative consistency proof for arithmetic could be given only in logical
terms, but the limitations of logicist programs made this hard to obtain. Hil-
bert hoped to find a direct consistency proof instead. He did this by taking the
finitary part of arithmetic to be concerned with signs (syntactic strings) and by
claiming that on its basis the whole of arithmetic, once suitably formalized in a
system like that of Whitehead and Russell’s Principia Mathematica, could be
shown unable to syntactically derive both a formula and its negation (Hilbert
1926). Gödel’s incompleteness theorems in 1930 and 1931 proved this to be
impossible (second theorem), while also showing (first theorem) that any for-
mal system capable of recovering enough arithmetic is incomplete (not every
true consequence of the system is syntactically derivable in it). A later proof
of the consistency of first-order PA was given by Gentzen, which nonetheless
used methods (transfinite induction) that are not formalizable in PA itself. The
debate on these issues is vast and cannot be rehearsed here (for surveys, see
Raatikainen 2022; Zach 2023). Notice, however, that when it comes to the
consistency of mathematical axiom systems, often only relative proofs can be
obtained, based on other theories whose consistency is not directly proved, but
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rather taken as plausible enough given the extended time they have been used
without engendering contradictions. Also, notice that while we are focusing
here on criteria for axioms as definitions, other criteria (such as indeed com-
pleteness, soundness, etc.) can be imposed on the metamathematical properties
of axiom systems more generally.
As regards other formal criteria, neither ELIMINATIVITY nor NON-CREATIVITY

(CONSERVATIVENESS) meaningfully apply. For explicit (or implicit) definitions,
these criteria guarantee that a newly defined symbol α of the extended lan-
guage L+ can always be replaced by the definiens symbols β0, . . . , βn of L, or
thatL+-sentences containing α can be replaced byL-sentences containing only
β0, . . . , βn. But in axiomatic definitions the definienda are the primitives of L:
their elimination is tantamount to annihilating the theory altogether.
Axiomatic definitions have been traditionally considered implicit definitions

proper (originally by Enriques; Biagioli 2023). An association between the two
may have resided in an analogy with the principle of duality which Gergonne
himself introduced in projective geometry, since the intersubstitutability of
‘plane’ and ‘line’ makes the individuation of their meaning a relational rather
than absolute matter, close in spirit to how meaning is supposedly assigned
to primitives by axioms (see also Pasch 1882 and Pollard 2010, Ch. 4). But
the association is inadequate (Otero 1970; Gabriel 1978). First, they forfeit
(G3) (NUMERICAL BALANCE): generally each undefined symbol occurs in more
than one axiom (hence they also fail Fregean SIMPLICITY). Also, they may fail
to satisfy (G4), UNIVOCALITY. As foreshadowed by Dedekind and displayed
in Hilbert’s independence and consistency proofs, axioms constrain, but do
not necessarily fix univocally, the interpretation of the primitives. They only
determine a set of relations, leaving room for indeterminacy as to what in
fact their relata are. Any way of specifying their meaning will thus prioritize
structural features (Giovannini and Schiemer 2019 aptly call them “structural
definitions”), and for this reasonmany proposals on this score underlie different
varieties of mathematical structuralism.
Starting from Dedekind’s work and later suggestions by Benacerraf (see

Section 3.2), structuralism has become one of the most developed philosoph-
ical accounts of arithmetic and mathematics generally (Hellman and Shapiro
2018). One of its major methodological strengths is that it conjoins philosoph-
ical inquiry with a focus on those structural relations which to many seem to
matter to professional mathematicians much more than preoccupations with
the nature of mathematical objects. Structuralism thus seems especially ade-
quate as a philosophical account of actual mathematics. Also, it is closer in
spirit to some algebraic traditions in mathematics (think of algebra, or the views
expounded by Bourbaki; Bourbaki 1950), as well as to more recent discussions
on the foundational role of category theory (Reck and Schiemer 2023, §3).
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For our present purposes (although comparison between structuralism and
rival views will resurface below), we are just interested in outlining how axi-
omatic or structural definitions can provide knowledge of their subject matter,
hence how their semantic role can be differently understood, either by reinstat-
ing UNIVOCALITY somehow, or by motivating how to dispense with it. Here are
some possible options:

STRUCTURAL OBJECTS. Axioms define univocally one specific object, a
structure (progressions, complete ordered fields, etc.). This has been
advocated by Shapiro’s ante rem structuralism, which is eliminative
about individual mathematical objects (unless we conceive of them
as places in structures in what Shapiro calls a places-as-objects per-
spective), but noneliminative about structural objects (Shapiro 1997).
Structures are conceived analogously to universals. They are self-
subsistent (“free-standing,” Shapiro 1997, 92–96) abstract objects,
which exist whether they are instantiated or not (hence, ante rem).
This yields a peculiar kind of platonism about structures. As such,
ante rem structuralists must provide identity conditions for structures,
and account for our epistemic access to them (Shapiro 2011). In other
variants (Hellman and Shapiro 2018), structures are conceived as pat-
terns or systems of relations that particular (actual or possible) systems
of objects instantiate, their existence being dependent on the (actual
or possible) existence of such systems (notice also that proposals
to define structures via abstractive definitions have been advanced:
Linnebo and Pettigrew 2014; Leach-Krouse 2017).

PARADIGMATIC MODELS. Axioms do capture a specific intended model.
For arithmetic, for instance, this can be provided by the natural num-
bers as sui generis objects, or by a particular model of sets (usually the
von Neumann ordinals we already mentioned in Section 3.2.5) in set-
theoretical varieties of structuralism. Pending a reply to Benacerraf’s
challenge, UNIVOCALITY is defended, and any other model satisfying
a certain structure will count as an “isomorphic imposter” (Shapiro
2000, 361) – although (categorical) axioms will guarantee that any
structure-preserving translation of the theory will hold of any such
isomorphic model. Methodologically, one can accept that different
isomorphic models for the same axiomatic definition are available,
and pick a preferred one (e.g. a particular set-theoretical or category-
theoretical construction) for theoretical reasons such as pervasiveness
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in mathematics, perspicuity, manageability, and so on. Such relativist
structuralism (Reck and Price 2000) sidesteps the challenge of multi-
ple realizability, while at the same time avoiding the need to posit the
existence of structures.

RELATIONAL OBJECTS. Axioms define first-level concepts of objects,
but these are entirely individuated by relational properties. This rein-
states UNIVOCALITY, but has the metaphysical burden of explaining how
objects can only have relational properties (and, prior to that, how struc-
tural properties should be characterized: Korbmacher and Schiemer
2018).

ARBITRARY REFERENCE. Axioms bestow objectual reference on primi-
tives but reference is understood as arbitrary: for instance, ‘0’ refers
arbitrarily to any object which may occupy the first position of an ω-
sequence, although not to any specific one (Boccuni and Woods 2020).
This clearly requires defending arbitrary reference as tenable (see e.g.
Breckenridge and Magidor 2012).

PARTIAL AND COLLECTIVE DENOTATION. Axioms define primitives univo-
cally, but semantic reference, although not being arbitrary, is partial: ‘0’
partially denotes all objects occupying the first position in all (actual or
possible) systems instantiating an ω-sequence. Reference is not univo-
cal, but still not indeterminate (against Quine’s views; see Field 1974,
220–223). Alternatively, one can take numerals to refer collectively
to all objects occupying a given position in all systems instantiating
a given structure (White 1974).

CONCEPT STRUCTURALISM. Axioms primarily define concepts, and
whether these are concepts of specific individual objects, and which
ones, is either impossible to establish, or immaterial. As for the first
option, Frege, in his exchange with Hilbert on geometry (Blanchette
2018), objected that Hilbert’s axioms define not first- but second-
(or higher-) level concepts. They do not establish, for example, what
objects natural numbers or geometrical points are, but rather what it
takes for a concept to be a natural-number-concept or a geometrical-
point-concept:

The characteristic marks you give in your axioms are apparently all
higher than first-level; i.e., they do not answer to the question ‘What
properties must an object have in order to be a point (a line, plane,
etc.)?’, but they contain, e.g., second-level relations, e.g., between
the concept point and the concept line. (Frege 1980, Frege to Hilbert,
6.1.1900, 46; also Frege 1971, §II)
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Hilbert somehow concurred (similar remarks are found in Pasch 1882;
see Hodges 2023):

You say that my concepts, e.g. ‘point’, ‘between’, are not unequivo-
cally fixed; e.g. [… ] point is [… ] a pair of numbers. But it is surely
obvious that every theory is only a scaffolding or schema of concepts
together with their necessary relations to one another, and that the
basic elements can be thought of in any way one likes. (Frege 1980,
Hilbert to Frege, 29.12.1899, 40)

If we follow Frege’s criticism, axioms merely define conditions for cer-
tain concepts to be concepts of kind F, but do not allow establishing
univocally which objects F’s are. Bracketing Frege’s criticism, how-
ever, this view can lend support to a positive proposal where concepts
take explanatory priority over objects, namely to a form of concep-
tual structuralism (Reck and Schiemer 2023, §2.2; Ferreirós 2023)
according to which mathematics deals primarily with relations among
concepts, rather than with objects or structures conceived as such.

The axiomatic method has now a long tradition, and is pervasive in mathe-
matical practice. For this reason, an exhaustive discussion of its theoretical and
philosophical roles would need to consider a vast array of purposes, including
its ability to provide rigorous analysis of mathematical notions, of permit-
ting suitable architectonic systematizations of different parts of mathematics,
of serving heuristic or even pedagogical functions (Cantù 2023). Here we’ll
confine ourselves to some brief remarks on those roles that we have explored
in connection with explicit and implicit definitions in general.
Salience of the definienda is straightforward: primitives are necessarily sali-

ent within a theory. Salience of the definiens, namely the axiom system, boils
down to the motivation for having the theory in the first place.
Ontological Reduction may be accomplished in a peculiar sense. We

could first define reals (e.g. following Cantor or Dedekind) as set-theoretical
constructions of rationals, and then provide axioms for real number theory.
However, these axioms would not introduce reals as primitives, but simply
point to objects independently defined: reduction is accomplished beforehand.
If, on the contrary, we outright lay down the axioms, no reduction is at stake.
An indirect form of reduction is afforded when an axiomatic theory M offers
a reduction basis for another theory M ∗, and the primitives of M ∗ are in the
end reduced to the objects axiomatically defined in M (as is the case for most
mathematical theories with respect to set theory or category theory).
To some extent, axiomatic definitions can provide both Conceptual Anal-

ysis and Rational Reconstruction (as well as being the outcome of a process
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of Explication; see Section 6.2). They can systematize informal notions inher-
ited from practice, or provide a way to reconstruct our knowledge in a certain
domain. For a familiar example among themany, Hilbert’s claim that the choice
of the axioms of Euclidean geometry “is tantamount to the logical analysis of
our intuition of space” could be seen in this light. Frege emphasized that axioms
can be ambiguous between analyses of antecedent notions and arbitrary stip-
ulations (Frege 1980; Frege 1971, §3). Both eventually took the connection
between informal notions and formal rendition as more inspirational than con-
stitutive: once a formal system has been laid out, the connection between the
informal notion and the formalized one can be disregarded (Section 7.3.2).

5.2 Definitions by Abstraction
5.2.1 Outline

Definitions by abstraction are discussed in the foundations of mathematics
at least since Frege’s works (and adopted both in Frege’s and earlier times;
Mancosu 2016), and still animate a vast debate (Boccuni and Zanetti in press).
They are provided by abstraction principles of the form:

∀α∀β [Σ(α) = Σ(β) ↔ α ∼ β] (ABS)

Syntactically, ‘Σ’ is a term-forming operator taking expressions like ‘α’ and ‘β’
as arguments and delivering singular terms as values, and ‘∼’ is a relation-term
of the underlying language. Semantically, the abstraction function Σ takes the
denotata of ‘α’ and ‘β’ as arguments and delivers the denotata of ‘Σ(α)’ and
‘Σ(β)’ as values, and ‘∼’ stands for an equivalence relation between α’s and
β’s. The principle can then be instantiated by different choices of ‘α’, ‘β’, and
‘∼’ in its right-hand side (RHS).
Frege appealed to an instance of ABS in attempting a definition of the con-

cept of (finite) cardinal number. In Frege (1884), after surveying a vast array
of rival views, some cornerstone claims are offered:

CONCEPT-ASCRIPTIONS: numerical ascriptions – Zahlangaben, namely state-
ments of the form ‘Mars has two moons’ – are statements about concepts. They
state that the relevant concept (e.g. ⌜Moons of Mars⌝) is such that a particular
number is associated to it.
SINGULAR TERMHOOD: the proper logical form of numerical ascriptions is that
of identity statements (‘The number of the concept ⌜Moons of Mars⌝ = 2’),
with numerical expressions occurring as singular terms in substantival posi-
tion, hence purporting to refer to individual, “self-subsistent” objects.
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CARDINALITY: expressions of the form ‘The number of the concept F’ stand for
cardinal numbers (Anzahlen), and answer ‘How many?’-questions about the
objects falling under a concept F.
CONTEXT PRINCIPLE: the meaning of words should never be sought for in isola-
tion, but always in the context of a sentence (Frege 1884, Introduction and §62)
(ruling out, e.g. psychologistic conceptions of linguistic meanings as mental
representations).

It follows that the (inherently epistemological) question “How are numbers
given to us?” (Frege 1884, §62) can only be answered by establishing the
meaning of numerical identities. Frege’s insight is that “whenever we speak
of objects of any kind, we must have in the background a principle for deter-
mining what is to count as the same object of that kind” (Dummett 1991, p.
162). Fixing the meaning of identity statements between numerical terms gives
us a criterion of identity for the objects they refer to, insofar as they “express
our recognition of a number as the same again” (Frege 1884, §62) even when
referred to bymeans of different terms. Such numerical identities should thus be
part of the very definition of cardinal number (Anzahl), which Frege (inspired
by a passage by Hume) first attempts through what is known today as Hume’s
Principle:

∀F∀G (#F = #G ↔ F ≈ G). (HP)

Hume’s Principle states that for any two concepts F and G, the number of F is
identical to the number of G iff F and G are equinumerous, that is, can be put
into a one-to-one correspondence relation (bijection).
Hume’s Principle is a second-order abstraction, with terms for second-order

entities (concepts) in the RHS, and terms for first-order entities (objects) in the
LHS. A first-order abstraction is the Direction Principle (DP) also discussed by
Frege:

∀a∀b (D(a) = D(b) ↔ a//b) (DP)

stating that, for any line a and b, the Direction of a is identical to the Direction
of b iff a and b are parallel.
Hume’s Principle and DP contextually define their definienda (‘#F’, ‘D(a)’)

bymeans of the sentential conditions on their RHS: Frege suggests (Frege 1884,
§64) that we “carve up the content” of the RHS “in a way different from the
original one, and this yields us a new concept.” How recarving, or reconcep-
tualization, is best understood is controversial (Hale 1997; Linnebo 2018b, ch.
2). According to Frege, we “remov[e] what is specific in the content” of the
equivalence in the RHS, and we “divid[e] it” between the two related items.
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Such logical abstraction turns an equivalence relation into an identity between
objects – which are objects of α and β (as numbers, for Frege, are numbers of
concepts).
Hume’s Principle has significant definitional potential. Its definiens (the

RHS) can be formulated logically – in a second-order logic, defining equinu-
merosity requires quantifying over relations:

∃R [∀x(Fx → ∃!y(Gy ∧ R(x,y)) ∧ ∀x(Gx → ∃!y(Fy ∧ R(y,x)))] (≈)

An initial true instance of HP is obtained by instantiating the RHSwith a purely
logical concept, ⌜being non-self-identical⌝, ⌜x , x⌝ – where identity, follow-
ing Leibniz, can be second-order defined by saying that objects are identical
iff they share the same properties: ∀x∀y(x = y ↔ ∀F(Fx ↔ Fy)). This first
instantiation then allows the definition of infinitely many cardinals through a
procedure known as Fregean Bootstrapping:

F೯ೱ೯೫ B೫ೱ
Take the logical concept ⌜x , x⌝, and substitute it for both variables F
and G in the RHS of HP. Since equinumerosity is reflexive, this instance
of the RHS of HP is true. It follows by stipulation that the correspond-
ing LHS is true, hence that #(⌜x , x⌝) = #(⌜x , x⌝). From here,
apply Existential Generalization to derive that ∃x(x = #(⌜x , x⌝)). This
first-order existential quantification shows (under most interpretations) that
there exists an object which is the number of the concept ⌜being non-self-
identical⌝. Define then explicitly: 0 =df #(⌜x , x⌝). Use 0 to define a
new concept, namely ⌜x = 0⌝. Apply the same procedure as earlier, and
obtain the existence of #(⌜x = 0⌝), which explicitly defines ‘1’. Use 1
to define the concept ⌜x = 0∨ x = 1⌝ hence deriving the existence of
#(⌜x = 0∨ x = 1⌝), which explicitly defines ‘2’. Proceed similarly for
subsequent cardinals.

Further definitions deliver the notion of finite cardinal, i.e. natural, number.
Frege (1879), III, 76, defines the notion of following in a R-series, or ancestral
of a relationR. Take a relationR. Define a conceptF as hereditary in theR-series
iff for any two objects x and y, if R(x,y), then if F(x), then F(y): F is inherited
in R-series from any x which is F by any y with which x bears R. The ancestral
of R, R+, is defined by saying that y follows x in the R-series iff y falls under
all those R-hereditary concepts under which x and any object z such that R(x, z)
fall. Compare ⌜x is the father of y⌝ (R) and ⌜x is the ancestor of y⌝ (R+).Weak
ancestral, R−, is then defined as: y follows x in the R-series or y = x. Compare
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⌜x is the ancestor of y⌝ (R+) with ⌜x is a member of the lineage of y⌝ (R−),
which reflexively applies to the originator of the lineage. Frege then logically
defines the relation S of immediate successor between cardinals m and n, and
can thus define the (ancestral) relation S+(n,m) ⌜being greater than⌝ (m < n),
and (weak ancestral) S−(n,m) as ⌜being greater than or equal⌝ (m ≤ n). With
m = 0, this provides the relation of being greater or equal to 0, that is, following
in the S-series beginning with 0 or being equal to 0. This condition defines the
concept of finite cardinal (i.e. natural) number. It does so via logical principles
and definitions only. This would qualify arithmetical knowledge, and epistemic
access to numbers, as logical and a priori. It also would show (a) that some
objects are given to us through purely intellectual processes without appeal to
intuition (contra Kant) or mental representations (contra empiricists); (b) that
arithmetical statements are analytic in Frege’s sense of being provable by logic
and definitions (more on this in Section 5.2.2).
HP provides a simple procedure to establish whether two numerical terms

refer to the same cardinal (hence providing conditions of identity). We extract
the concepts F andG from ‘#F’ and ‘#G’ and check whether they are equinu-
merous. If they are (the RHS is true, hence the LHS is true, hence), they refer
to the same cardinal; if they aren’t (the RHS is false, hence the LHS is false,
hence), they refer to different cardinals. Given a well-defined F, however,
Frege’s COMPLETENESS criterion also requires us to be able, for any x, to estab-
lish whether x is or is not an F. But take any sentence of the following form:

#F = q, (CS)

where ‘q’ is a singular term not of the form ‘#F’ (nor previously introduced
as abbreviating such a term), such as ‘England’ or ‘Julius Caesar.’ There is no
G to be extracted from q and be compared with F as regards equinumerosity.
HP does not establish, for any x, whether x is a cardinal (hence fails to provide
conditions of application). This is known as the Caesar Problem (CP) and is
a symptom that HP fails ELIMINATIVITY, for it cannot eliminate its definiendum
in all sentential contexts, but only in those of the form ‘#F = #G’ (see also
Section 5.2.2 below).
Frege then discards HP as a definition, and quite surprisingly reverts to

an explicit definition. He avails himself of what he initially considers a log-
ical notion, that of extension of a concept, this being an object containing the
elements falling under a concept. One way to understand it is as a proto-set-
theoretical notion, roughly coinciding with a naive notion of set. Frege (1884),
§69, defines ‘#F’ explicitly as ‘the extension of the concept ⌜being equinumer-
ous to the concept F⌝’. If we let ‘ε(F)’ stand for ‘the extension of the concept
F’ and ⌜≈F⌝ be the second-level concept of concepts ⌜being equinumerous to
the concept F⌝, Frege’s explicit definition is:
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#F =df ε(⌜≈F⌝). (N=)

This identifies cardinal numbers with equivalence classes of equinumerous
concepts, providing a specific kind of logicist platonism about cardinal num-
bers (the definition in Frege 1893–1903 differs slightly and defines cardinals
as classes of extensions of equinumerous concepts). Being explicit, N= is
eliminative: every arithmetical statement becomes a notational variant of a
logical statement, and both identity and application conditions are guaranteed,
provided we know what extensions are.
Extensions get formal treatment in Frege (1893–1903). Again, Frege appeals

to an abstraction principle. His Basic Law V introduces the crucial notion Frege
works with in Grundgesetze, that of value-ranges of functions, stating that two
functions have the same value-range iff they have the same values for the same
arguments. When applied to those particular functions (from objects to truth-
values) that concepts are for Frege, this provides extensions:

∀F∀G (ϵ(F) = ϵ(G) ↔ ∀x(Fx ↔ Gx)). (BLV)

Any concepts F and G have the same extension iff the same objects fall
under both (notice that for reasons internal to the system of Grundgesetze
and related to the so-called proof of referentiality, an equivalent CP for exten-
sions may be avoided; (see Frege 1893–1903, §10; Heck 1999; Linnebo 2004;
Bentzen 2019).
Frege shows that all arithmetical truths (including, most notably for us, the

PA2 Axioms) can be derived as theorems from BLV via N= (and HP, which
can itself be derived as a theorem – but see May and Wehmeier 2019). In his
setting we have no proper axioms of arithmetic, that is, unprovable arithmeti-
cal first principles: the only basic laws are (supposedly) logical. The Induction
Axiom itself is a consequence of the definition of cardinals. If BLV is taken
as a definition of extensions, Frege’s logicism can be seen as the view that
arithmetical statements are derivable from logical laws as notational variants
of logical statements obtained via logical definitions (on varieties of logicism,
see Boccuni and Sereni 2021).
Unfortunately, the introduction of BLV in the system ofGrundgesetze (Cook

2023) makes the latter inconsistent, as discovered by Russell (Frege 1980, let-
ter 16.06.1902). Extension bears strong resemblance with a naive notion of
set (Burge 1984), and Russell’s Paradox affects both (hence also Cantor’s,
Dedekind’s, and Peano’s settings). Two principles underly the latter:

PRINCIPLE of EXTENSIONALITY (PE): ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y): sets
with the same elements are identical.

UNRESTRICTED COMPREHENSION PRINCIPLE FOR SETS (UC): ∃x∀y(y ∈ x ↔ ϕ(y)),
where ϕ is any formula not containing y free: for any open formula ϕ not
containing y free there exists the set {x : ϕ(x)} of the objects satisfying ϕ.ht
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Take the property R = x < x (‘x is not a member of itself’). By UC, the set
R = {x : x < x} exists. Since sets are objects in the first-order domain, R is
among the possible values of ‘x’ inR. So one can ask whether R ∈ R or R < R.
Suppose R ∈ R; then Rmust satisfy the condition for membership in R, namely
R; hence R < R. Suppose R < R; then R satisfies condition R; thus R ∈ R.
Hence the contradiction – and the failure to satisfy PE, since we cannot know
which elements are in R and thus whether R is identical to itself. In Fregean
terms, this can be formulated by taking the concept ⌜x is the extension of a
concept F, and x does not fall under F⌝, then by taking the extension K of this
concept, to see thatK is an element ofK if and only if it isn’t (Frege 1893–1903,
II, Afterword, 254).
Why does the contradiction arise? Intuitively, BLV makes incompati-

ble requests. Its right-to-left direction (Va) imposes a functional correlation
between concepts and extensions: different extensions are associated to dif-
ferent concepts. But the opposite direction (Vb) entails that such correlation is
one-one: distinct concepts are correlated with different extensions. Since UC
entails that there exists a concept under which all and only the objects satisfying
the RHS of BLV fall, we have a conflict: by UC there must be more concepts
than extensions, while by Vb there must be as many extensions as concepts. If
concepts are extensionally identified with subsets of the first-order domain of
objects, this seems to engender paradox by violating Cantor’s Theorem, accord-
ing to which the cardinality of the power set P(x) (i.e. the set of all subsets) of
a set x with cardinality k is 2k and hence strictly greater than x.
However, the inconsistency may reside in other interactions with the logical

system of GGA (Zalta 2023; Cook 2023; Boccuni and Sereni in press). Some
(Dummett 1993a) have blamed UC (or, better, the principles in Frege’s sys-
tem – like his Rule of Substitution – which play an equivalent role), especially
for its being impredicative. Impredicativity can apply to definitions themselves,
or to their background logic. A definition is impredicative if the definiendum
is defined via reference to a domain of objects to which it itself belongs. Basic
Law V is impredicative in this sense: it appeals to a first-order domain (the one
of its RHS) which itself contains extensions as first-order objects. As regards
the background logic, UC is impredicative because ϕ is allowed to contain
bound second-order variables. Since it is by the impredicativity of UC that
R can be formed, restricting UC predicatively may prevent the paradox. The
drawback is that the system of GGA significantly loses mathematical strength
(see e.g. Burgess 2005). Analogous restrictions, applied directly to BLV, may
have similar consequences. In recent times, several ways of adjusting BLV so
as to make it consistent have been advanced (starting from Boolos’ New V;
see Boolos 1986), also as ways of reinstating Frege’s program for set-theory
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(Studd 2016; Linnebo 2018b, ch. 12; Cook 2023). Here we must emphasize
that the culprit of the contradiction cannot just lie in the logical form of BLV,
since other abstraction principles, including HP, are consistent.
As anticipated, from BLV and N=, HP can be derived as a theorem rather

than being introduced as a definition. ELIMINATIVITY isn’t thus here a constraint
for HP, but is a fortiori satisfied since any occurrence of ‘#F’ in HP can be
eliminated via N=. The status of abstraction principles as primitive implicit
definitions, then, is not just given by their form, but by their theoretical role
within a theory.
The possibility of conceiving of HP itself as a definition has been vindicated

by (Scottish) Neologicism (Wright 1983; Hale and Wright 2001a; Cook 2007;
Ebert and Rossberg 2016). Thanks to formal results by Boolos (1987) andHeck
(1993), it has been shown that (a) in the Grundgesetze the appeal to extensions
is indispensable up to the derivation of HP and dispensable thereafter, and (b)
the system known as Frege Arithmetic, that is, the system of impredicative sec-
ond order logic with the addition of HP as a definitional axiom (i) is consistent
(if PA2 is), and (ii) proves the PA2 Axioms, via a derivation known as Frege’s
Theorem (Heck 2011; Zalta 2023), essentially outlined earlier. The (envisioned)
significance of BLV, and the contemporary significance of HP, are best clarified
by surveying their expected roles and criteria.

5.2.2 Roles and Criteria

Despite similarities, it will be useful to discuss the Fregean and neologicist
settings separately.

Fregean Definitions

Bracketing the inconsistency of BLV, the explicit definition N= satisfies
NONCIRCULARITY, ELIMINATIVITY, SUBSTITUTABILITY SALVA VERITATE,
SYNONYMITY, as well as COMPLETENESS and SIMPLICITY. It satisfies
FRUITFULNESS through its role in providing proofs of arithmetical theorems.
It would satisfy CONSISTENCY and NONCREATIVITY (CONSERVATIVENESS) if the
background theory were consistent.
Salience (of both definiens and definiendum) is obviously an intended role.

Frege’s analysis would show that cardinal numbers are extensions, and which
extensions they are. In a sense, N= also provides Ontological Reduction:
cardinals are just extensions.
Regarding Conceptual Analysis, things are more complicated. Frege’s

aim both in Begriffschrift and the Grundlagen can reasonably be seen as an
attempt at capturing the notion of cardinal and natural number inherited from
mathematical practice. But in Grundgesetze and later writings (Frege 1979a)
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Frege suggests that once a proper formal analysis is completed, the original
informal notion should be abandoned. As anticipated, his attitude converges
with Hilbert’s: analysis has more of an heuristic role, and adequacy to actual
practice is more an ex post virtue of the formal system in which the notion
is characterized than a strict ex ante criterion for the construction of the sys-
tem (for discussions, see e.g. Antonelli and May 2000; Blanchette 2007; Shieh
2008; Hallett 2021).
Basic Law V can be seen – though strikingly Frege (1893–1903), II, §146,

himself disagrees – as a primitive implicit definition of a logical notion. As
such, it should satisfy a criterion of LOGICALITY. It is hard to pin down what
a logical definition consists in, however (a criterion for the logicality of an
expression, inspired by Tarski, that can be applied to abstractions too, is permu-
tation invariance: see Antonelli 1998). At least, a logical definiendum should be
introduced via a logical definiens. Bracketing inconsistency, BLV accomplishes
this. But much depends on what counts as logical in the first place. A feature
traditionally credited to logic is topic-neutrality (logical claims should hold in
any domain of discourse), which entails that logic should not be concerned
with particular objects. This, however, is clearly alien to Frege’s conception of
logic, where extensions are logical objects. Other features sometimes credited
to basic logical principles are self-evidence or obviousness. But Frege himself,
after the paradox, retrospectively claims that BLV “is not as obvious as the
[other basic laws] nor as obvious as must properly be required of a logical law”
(Frege 1893–1903, II, Afterword, 253). Moreover, clarifying these notions may
be as hard as clarifying the notion of logicality (Jeshion 2001; Jeshion 2004;
Shapiro 2009).
If taken as a primitive implicit definition, BLV should fail ELIMINATIVITY and

SUBSTITUTABILITY salva veritate, and it does: only occurrences of the definien-
dum which appear in contexts like those of the LHS can be eliminated. It
obviously fails CONSISTENCY. It satisfies SIMPLICITY (but see again Frege 1893–
1903, II, §146) and NONCIRCULARITY, and had it been consistent, would have
satisfied COMPLETENESS and FRUITFULNESS. As any implicit definition, it fails
term-to-term SYNONYMITY between definiendum and definiens, although some
form of semantic equivalence will have to be preserved between the defining
(RHS) and the defined (LHS) sentential contexts. As a primitive implicit defi-
nition, BLV should fail NONCREATIVITY (it should be nonconservative), but it
ends up being so vacuously (in a classical setting), given its inconsistency.
Frege discusses noncreativity in a sense different from conservativeness,

endorsing a criterion that we may call FREGEAN NONCREATIVITY, its major tar-
get being Dedekind (Frege 1893–1903, Vol II, §§138 ff.). Dedekind claimed
that “numbers are free creation of the human mind” (Dedekind 1888), that
for any nonrational cut “we create for ourselves a new, irrational number”
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(Dedekind 1872), and that expansions of number systems (from N to Z to Q
etc.) are “formed by a new creation” (Dedekind 1888). Frege takes this to mean
that definitions are mental acts of metaphysical creation. He opposes this for his
antipsychologism and for his firmly objectivist view of mathematics, according
to which “Just as the geographer does not create a sea when he draws bor-
derlines [… ] so too the mathematician cannot properly create anything by
his definitions” (Frege 1893–1903, I, Preface, xiii). In a Fregean (as well as
a neologicist) conception, abstraction does not create new objects, but merely
provides new conceptual means to refer to, or think of, objects which were there
all along.
Strikingly, he wonders about BLV itself whether “our procedure [can] be

called a creation” (Frege 1893–1903, II, §147). This can end up in a “quarrel
about words,” the main point being that “our creation, if one wishes so to call it,
is not unconstrained and arbitrary, but rather the way of proceeding, and its per-
missibility, is settled once and for all.”What Fregemost strongly opposes is that
definitions can be used as a way for a free and unconstrained creation of math-
ematical objects. His major concern is to provide nonarbitrary principles for
the adoption of definitions (Ebert and Rossberg 2019; Hallett 2019). Whether
Dedekind deserves Frege’s charges is an entirely different matter, given that his
definitions of the irrationals and his axiomatization of arithmetic are certainly
rigorous by mathematical standards, and have proved their worth in becoming
entrenched parts of mathematics. It is also worth noting that some authors gave
more constructivist readings of abstraction, seeing them in general as akin to
creative definitions (e.g. Weyl 1949, §1.2, takes them as definitions “through
which new ideal objects can be generated,” akin to those of points at infinity or
other ideal elements in geometry and mathematics).
A complete discussion of definitions in Frege cannot ignore two essential

criteria, Sortality and Analyticity. Since they are crucial also for neologicists,
we discuss them in the next section.

Neologicist Abstractions

For Frege’s Theorem to have a philosophical significance, HP must be vindi-
cated as a definition. Hence, a solution to the Caesar Problemmust be provided.
To appreciate the relevance of CP, a further criterion on Fregean definitions for
some concepts must be noted:

SORTALITY. A definition introduces a sortal concept F iff it provides it with both
conditions of identity and conditions of applications.

Sortality (Dummett 1991, ch. 13; Wright 1983, ch. 1) can be seen as a specifi-
cation of the COMPLETENESS criterion that applies to concepts under which
determinately distinct objects fall, hence to any concept of objects which isn’t
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vague (a precondition, according to Frege, to be able to count the objects fall-
ing under the concept, and hence to apply arithmetic). It doesn’t pertain to mass
concepts (gold, water, …) or to color concepts (red, …) because they are not
concepts under which objects fall. One possible diagnosis of CP, as hinted ear-
lier, is that HP doesn’t provide a sortal concept of cardinal since it doesn’t
determine conditions of application.
Rather than a formal solution, neologicists offer a philosophical one

(Hale and Wright 2001b), by endorsing a particular “philosophical ontology”:
“all objects belong to one or another of a smallish range of very general cate-
gories, each of these subdividing into its own respective more or less general
pure sorts; and in which all objects have an essential nature given by the most
specific pure sort to which they belong” (389).
This picture is backed up by a Sortal Inclusion principle (SI), establishing

that a sort of objects F is included under a sort G only if some suitable identity
statements about G’s are true because they satisfy the same identity criteria for
identity among F’s (Hale 1994, 198; see also Wright 1983, §xiv). Once applied
to concepts of cardinal numbers and persons this principle (or a particular
specification of it, called Nd) entails that cardinals can be persons only if some
identities among persons are true because they satisfy the same identity crite-
ria for identity among cardinals, namely because a certain one-one correlation
obtains between certain concepts. Caesar can be a cardinal only if he falls under
a sortal concept whose identity conditions are exhaustively provided in terms
of equinumerosity among concepts. Since he doesn’t (for identity conditions
for persons are not of this kind), SI and Nd tell us that persons are not cardi-
nals, and vice versa. Caesar is not a cardinal and the Caesar sentence is false.
Since objects fall under many sortals, it is crucial to identify those that some-
how capture their essence. Sortal Inclusion and Nd should thus be restricted to
pure sortals, such that if an object is an instance of a pure sortal, then it is so
necessarily and “could not survive ceasing to be so” (Hale and Wright 2001b,
387). Restriction to pure sortals is also required to deal with another problem,
namely to guarantee that the RHS of HP exhibits everything that is involved
in the essence of numbers, ruling out that numbers can have any additional
nature that HP isn’t able to capture (Hale and Wright 2008; Potter and Sullivan
2005; Hale and Wright 2008) – relatedly, one could treat HP as a real
definition which completely captures the nature of cardinal numbers
(Gideon Rosen 2020).
Even granting a solution to CP, neologicists must vindicate arithmetic as

analytic, at least in Frege’s sense. There is a wide debate on whether Frege’s
aims were preeminently philosophical or mathematical, and this affects the
weight that should be put on analyticity as either, respectively, an essential
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philosophical desideratum in its own right, or rather a by-product of the formal
reconstruction of arithmetic (thus relating to a broader debate on the combina-
tion of mathematical and philosophical concerns in Frege’s views; Benacerraf
1981; Weiner 1984; Blanchette 1994; Panza and Sereni in press). Fregean ana-
lyticity may be connected to both, since it strictly relates to the notion of
proof:

FREGE-ANALYTICITY. A statement is Frege-analytic iff in “finding the proof of
the [statement], and [… ] following it up right back to the primitive truths . . .
we come only on general logical laws and on definitions” (Frege 1884, §3).

The analytic/synthetic distinction dates back to Hume’s distinction between
relations of ideas and matters of fact (Hume 1748, IV, 1). The guiding thought
is that some statements can be true just in virtue of the meaning of their com-
ponent expressions, with no contribution from empirical evidence. Analyticity
has been crucial in defending the possibility of a priori knowledge in rational-
ist views. Logical empiricism relied heavily on analyticity too, since it would
guarantee truth by conventional stipulations (Section 7.2.1) to logical andmath-
ematical statements which could not be empirically verified. Analyticity is
clearly connected with definitions, as is synonymy: by conventionally stipulat-
ing a definition we establish the synonymy between definiens and definiendum
and we secure its truth merely in virtue of meaning. At least with regards to the
logical empiricist views, Quine (1951) challenged the tenability of the notion,
primarily on two grounds: that analyticity and synonymy are essentially inter-
dependent notions and cannot thus be used to explain one another, and that there
is no clear way of distinguishing the contribution of either world or language
in the meaning of a statement.
Despite this, the notion is still defended today. Following Boghossian

(Boghossian 1996b), we can distinguish Epistemic Analyticity – “a statement is
‘true by virtue of its meaning’ provided that grasp of its meaning alone suffices
for justified belief in its truth” (Boghossian 1996a, 334) – and Metaphysi-
cal Analyticity – “a statement is analytic provided that, in some appropriate
sense, it owes its truth-value completely to its meaning, and not at all to ‘the
facts”’ (ibid.). Neither exactly matches Frege Analyticity, although Epistemic
Analyticity may come closer to what Frege had in mind, for the role of ‘mean-
ing’ and ‘justification’ mirror those of ‘definitions’ and ‘(logical) proof’ in
Frege’s notion. After all, Frege believed that a judgment on the analyticity of
a statement “is a judgement about the ultimate ground upon which rests the
justification for holding it to be true” (Frege 1884, §3).
Frege presents his notion as a clarification of Kant’s notion of analyticity

(Kant 1781, Introduction, IV), which was heavily influenced by a traditional
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Aristotelian conception of logic and definitions, as concerned with relations
of inclusion among concepts, and based on a logical analysis of judgments
that mirrors the grammatical distinction between subject and predicate. Focus-
ing on universal affirmative judgments (‘All A’s are B’s’), analytic judgments
are such that “the predicate B belongs to the subject A as something that is
(covertly) contained in this concept A,” and “the connection of the predicate
is thought through identity,” namely by the Law of Non-Contradiction (so that
it is not possible to deny without contradiction that all A’s are B’s) – contrary
to synthetic judgments where the predicate “B lies entirely outside the con-
cept A.” As a consequence, analytic judgments are “judgments of clarification
[… ] since through the predicate [they] do not add anything to the concept of
the subject, but only break it up by means of analysis into its component con-
cepts, which were already thought in it (though confusedly)”: only synthetic
judgments (“judgments of amplification”) increase knowledge.
In contrast, Frege’s notion of analyticity is epistemic (and proof-theoretic)

in nature: the question of analyticity is “removed from the sphere of psychol-
ogy,” and as anticipated, concerns the justification for holding the content of
a statement (Satz) true. The end purpose is to show, contra Kant, that analytic
statements can be informative and increase our knowledge. It is impossible to
understand the import of Frege’s notionwithout considering the radical changes
in its background logic and semantics (MacFarlane 2002; Linnebo 2003). These
entail that logical form need not respect the grammatical subject/predicate dis-
tinction, being rather based on the function/argument distinction. This allows
Frege to consider the analyticity of statements lying outside the scope of tra-
ditional logic: existential statements (∃x(Fx)), simple predications (F(a)), and
relational statements (R(a,b)). Analytical consequences of axioms and defini-
tions increase our knowledge by entailing statements whose truth cannot be
ascertained by a mere decompositional analysis of concepts: “they are con-
tained in the definitions, but as plants are contained in their seeds, not as beams
are contained in a house” (Frege 1884, §88).
Is neologicist arithmetic analytic?While arithmetical statements can’t be just

notational variants of logical ones (since HP is noneliminative), HP and Frege’s
Theorem seem to entail that PA2 Axioms are a priori and Frege-analytic.
However, it is a consequence of that theorem that there exist infinitely many
arithmetical objects, and, traditionally, analytic statements should have no exis-
tential consequences. Boolos (1997) challenged the analyticity of HP on these
lines, essentially equating it to an Axiom of Infinity. Neologicists have replied
(Wright 1999) that HP, by itself, has no existential consequences: being a bicon-
ditional, it only equates the truth-conditions of its two sides, but is silent on
whether those of the RHS are ever instantiated (something which depends on
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the background logic). It is, as it were, a purely nominal definition of#F-terms.
Secondly, neologicists contend, the order of explanation should be reversed.
It is not that if HP has existential consequences, it is not analytic; rather, if
HP satisfies criteria for being an acceptable definition, and it turns out to have
existential consequences, then it is the traditional conception of analyticity as
existentially neutral that should be revised – a move which, after all, is wholly
consistent with Frege’s revision of that notion.
Neologicism, if successful, provides a rationalist (or “intellectualist”:

Hale and Wright 2002) reply to Benacerraf (1973)’s challenge: it accounts for
arithmetical knowledge and access to arithmetical objects a priori, via standard
reasoning capacities, starting from linguistic knowledge. Crucially, especially
for present purposes, it is based on the role of a unique fundamental definition.
It is then worth surveying briefly some of the many concerns affecting implicit
definitions in this program.

SOL. Frege Arithmetic relies on second-order logic, and HP is formu-
lated in a second-order language. Neologicists must address Quinean
doubts on the legitimacy of second-order logic (Wright 2007). Other
authors suggest adopting plural quantification (i.e. quantification over
pluralities rather than sets) to escape the apparent set-theoretical com-
mitments of SOL; these views could then be adapted to logicist accounts
Linnebo 2022, §4).

RECONSTRUCTIVE EPISTEMOLOGY . As a reconstruction of an a pri-
ori route to arithmetical knowledge (and not a cognitive or developmen-
tal description of how such knowledge is actually formed), neologicist
epistemology is prey, among others (Nutting 2018), to the same objec-
tions leveled against Rational Reconstruction (see Section 4.2). One
concern is whether it must be taken as an hermeneutic project, aiming to
capture what subjects meant all along when using the concept of num-
ber, or a revolutionary one, advancing a theoretical replacement for that
notion. Frege Arithmetic may in fact provide a theory which is just an
isomorphic translation of arithmetic, rather than arithmetic itself (Heck
2000). This challenges the role of HP for Conceptual Analysis, since
the neologicist concept of cardinal may fail to capture adequately, or
uniquely, the informal notion it targets. The possibility of giving dif-
ferent abstractive reconstructions of the same informal notion can then
either lead to pluralist interpretations of abstractions (see Section 7.4.1),
or to acknowledge that far from delivering univocal analysis or reduc-
tions, abstractions are rather the outcome of a much more nuanced
process of explication (see Section 6.2; Reck 2007).
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SYNTACTIC PRIORITY THESIS. Neologicists appeal to a version of the
Context Principle, the Syntactic Priority Thesis: if an expression qual-
ifies, by purely syntactic criteria, as a singular term, and there are rea-
sons to hold true a class of purportedly referential (nonopaque) contexts
in which it occurs, nothing else is required for the expression to have
genuine objectual reference. Provided #F-expressions behave syntac-
tically as singular terms, they can be said to refer to objects, and the
latter can then be proved to exist, based only on the truth of instances of
the RHS of HP. Finding purely syntactic criteria for singular-termhood,
however, isn’t straightforward (Hale and Wright 2001a, Essays 1,2;
Schwartzkopff 2016). Also, the metaontology underling Neologicism
(Hale and Wright 2009b), according to which the existence of objects
can be guaranteed by purely linguistic considerations, can be disputed.

IMPREDICATIVITY . FregeArithmetic adopts unrestricted, namely impred-
icative SOL. Also, HP is impredicative insofar as cardinals are objects
populating the first-order domain of its RHS. According to Dummett
(1991), ch. 17, in order to grasp a first-order quantified statement we
should be able to have a complete grasp of its domain of quantification.
But this can’t be done for the RHS of HP, for its domain contains objects
that can be acknowledged only once HP has been advanced. Predicative
restrictions to HP can be explored (Linnebo 2016). Still, neologicists
believe that impredicativity poses no real epistemological challenge
(Wright 1998), since a subject going though the steps of Frege’s The-
orem can start with a concept (⌜x = 0⌝) which requires no grasp of
objects, and then only requires, at each step, to have a grasp of the car-
dinal numbers introduced in the previous steps, but never of the entire
first-order domain – making impredicativity epistemically “harmless.”

BAD COMPANY . All abstractive definitions should be a priori, consist-
ent, and jointly consistent. But BLV isn’t. The Bad Company Objection
(Dummett 1998) states that HP cannot be a good definition since it
shares the same logical form with bad abstractions. Neologicists have
turned this into a request for criteria for acceptable abstractions. One
is CONSISTENCY, which rules out BLV. But this is not enough. The
so-called Nuisance Principle, NP (Wright 1997, 289–290) states that
two concepts have the same Nuisance iff they differ finitely – iff the
concepts ⌜F ∧ ¬G⌝ and ⌜¬F ∧ G⌝ are both finite. NP is a consistent
abstraction, but has only finite models and is then jointly unsatisfiable
with HP, which is only satisfiable in infinite domains. Both HP and NP
fail NONCREATIVITY/CONSERVATIVENESS. On that constraint, {T + HP}
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should not entail sentences expressible in the language of T which are
not already entailed by (or derivable from) T alone, for any T. But this
HP does, since it entails ϕ = ‘There exist infinitely many objects’, which
is expressible in T but may not be a consequence of T alone if T has a
finite domain. However, while NP entails that the entire domain (includ-
ing the domain of T) must be finite, HP only entails ϕ with respect to its
own ontology of cardinals, remaining silent on the domain of T alone.
Hence, it satisfies the following constraint:

SEMANTIC FIELD-CONSERVATIVENESS: an abstraction principle
ABS is semantically Field-conservative if for any theory T to
which ABS can be consistently added, and for any sentence
ϕ¬Σ of the language of Twhose quantifiers have been restricted
to the ontology of the original theory, {T + ABS} |= ϕ¬Σ only
if T |= ϕ¬Σ.

Still, it is possible to find pairs of abstractions which are consistent,
semantically Field-conservative, and consistent with HP, but are pair-
wise inconsistent since they are satisfied only if the domain of objects
they introduce are of different infinite cardinalities. Further constraints
are needed, but other bad companions are to be expected, and the list
of constraints (such as irenicity, stability, etc.) must then be expanded
(see e.g. Linnebo 2009; Cook and Linnebo 2018; on conservativeness,
see also Cook 2012; Mackereth (in press)).

GOOD COMPANY. As Mancosu (2016) shows, different equivalence
relations on the RHS of HP yield different good cardinal abstractions.
Frege (as Dedekind and Cantor) measures cardinalities in terms of
equinumerosity. As a consequence: (i) a set x which is a proper part
of a set y can have the same infinite cardinality; (ii) nonequinumer-
ous infinite sets have different infinite cardinalities (naturals and reals,
etc.). We can replace equinumerosity with Peano’s cardinality func-
tion num(a) and obtain an alternative Peano’s Principle (PP): num(a)
assigns cardinals to finite concepts in the same way as HP, but every
infinite concept is assigned the same infinite cardinal (∞), against (ii).
Peano’s Principle also ignores part–whole relations (infinite sets which
are proper parts of infinite sets are always assigned the same cardinal).
Yet another principle, Boolos’s Principle (BP), assigns finite cardinals
to finite concepts like HP, but then assigns a cardinal a to each con-
cept F which is both infinite and coinfinite (i.e. such that ¬F is also
infinite); and a different cardinal b to each concept G which is infinite
but cofinite (i.e. such that¬G is finite). PP and BP satisfy criteria against
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bad abstractions and derive the PA2 Axiom. Yet, we ultimately end
up with different definitions of cardinal number, diverging on assign-
ments to infinite concepts. But how to tell then which one is the correct
one? This exacerbates for neologicists the problems afflictingRational
Reconstruction (see also Section 7.4.1).

Extending Abstraction: Real Numbers

Real numbers can be easily defined axiomatically. Their structure is a com-
plete ordered field. A field is an algebraic structure constituted by a set with
an operation of addition + and multiplication × defined on them, and an addi-
tive and multiplicative inverse. Apart from field axioms and order axioms, a
Completeness Axiom establishes in which sense reals differ from discrete sets
(e.g. N) and dense sets (e.g. Q): every nonempty set of reals which is bounded
above has a least upper bound. This axiomatic definition characterizes directly
the real-number structure. Alternatively, however, it is possible to define the
reals as particular objects whose properties will then ensure that they satisfy
completeness and total order and that field operations can be defined on them.
This could be done by abstraction too.
In Frege (1893–1903), II, Frege gestures at how to extend his program to

the reals (Dummett 1991, ch. 22; Simons 1987). A full treatment was left to a
third volume, which was never published in light of Russell’s Paradox. Today
we know of different ways to define reals by abstraction. Shapiro (2000) pro-
vides one. He first defines naturals via HP, and then, by repeated abstractions,
integers from naturals, quotients of integers from integers, and the reals by
means of an abstraction which essentially introduces Dedekind’s cuts. This
procedure, like the genetic method discussed earlier, ultimately bases the defi-
nition of the reals on the naturals. Hale (2000) advances a Cut Abstraction
closer to Frege’s thoughts. We know Hilbert rejected the genetic method and
favored axiomatic presentations. Frege too rejects it, but for different reasons.
He believes that defining reals based on numerical constructions betrays their
essential purpose of expressing ratios of quantities, a feature – crucially related
to their applications in measurement (Section 7.6.2) – that should be captured
in their definition. Hale’s Cut Abstraction defines reals as ratios of quantities
defined on suitably specified quantitative domains. The existence of at least
one such domain is granted by the domain of ratios (introduced by abstraction)
among naturals (introduced by HP). Other options are available, and one open
question is whether once properly reconstructed, a Fregean definition of the
reals is really able to sustain the extension of Frege’s logicist views to analysis
(Boccuni and Panza 2022). Even harder issues arise as regards the possibility of
extending the neologicist program to set-theory (Cook 2021). The possibility of
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extending neologicist abstractionism beyond arithmetic is essential in compar-
ing the prospects of this program to those of axiomatic approaches in recovering
higher branches of mathematics (and contributes, more generally, to a wider
debate on a general framework for abstractive definitions and their merits; Ebert
2016; Panza 2016).

6 Elucidations and Explications
Definitions are properly effected within the language of a given theory. But,
as we have seen, in most interesting cases, and especially when primitive
notions are involved, definitions are the terminating end of a process of analysis
which starts from informal notions coming from previous mathematical prac-
tice. There are several ways of explaining how this process occurs. Although
we have already hinted at related issues, it is worth pausing a little on some
available options.

6.1 Elucidations
Theories must start somewhere. Explicit definitions (as well as implicit defi-
nitions of nonprimitive terms) must be given within a theory by relying on its
basic vocabulary. Unless we devise a way (axiomatic, abstractive, or other)
to provide something akin to a definition of such basic vocabulary, primitives
cannot be defined, and still their meaning must be conveyed somehow if we
are to understand the subject matter of the theory at all. Elucidations provide
a way of accomplishing this. These generally point to processes of illustrat-
ing the meaning of a concept by means of a previously known language, when
no possibility of further reduction or definition is available. In a sense, as we
have seen (see Section 2.3), the primitives of Euclid’s original presentation in
the Elements are elucidated rather than defined. They are introduced by state-
ments of whose meaning an understanding must be granted, lacking any further
reduction to more basic concepts, in virtue of how those notions are used before
theory construction.
Elucidations can thus delineate themeaning of primitive notions before a for-

mal treatment is provided. In Frege (1893–1903), I, §§34–35, Frege suggests
that elucidations (Erläuterung) are ways of initially conveying the intended
meaning of the primitive notions of his formal language, without expect-
ing completeness or full exactness (see also Frege 1979a, 207). Concerning
geometrical primitives too he states that “we must admit logically primitive
elements that are indefinable” (Frege 1971, p. 59) and that can only be eluci-
dated. Elucidation, in this sense, is no proper part of a scientific theory: “it [… ]
serves the purpose of mutual understanding among investigators, as well as the
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communication of the science to others,” and its role is mainly an heuristic or
“propaedeutic” one with the aim of “mutual cooperation” (Frege 1971, p. 59).
Precise definitions are only available fromwithin. It is again on this ground that
Frege criticizes (p. 60) Hilbert’s attempted axiomatic definitions of the geomet-
rical primitives, because they are not presented as mere elucidations, but they
are “cornerstones of the science” and can be used “as premises of inferences”
within the theory. Also, a pivotal role of elucidation is to let investigators con-
verge on a specific and univocal meaning of the relevant terminology, and we
have already seen that one of the features (which is, in Frege’s eyes, a defect)
of Hilbert’s axioms is that different interpretations of the primitives are equally
admissible.

6.2 Explications
Although the terminology is sometimes overlapping and the German
‘Erläuterung’ is translated differently, we should distinguish elucidations and
explications. Explications are ways of giving a formal rendition of informal
notions even though their analysis may fail to be faithful to every aspect of
common usage. They are a way in which Conceptual Analysis may proceed
(Carnap 1947, I.2) and they result in analyses that are not merely antecedent
or propaedeutic to the theory, but form a proper part of it. As Carnap (1950b),
p. 3, puts it in introducing his logical analysis of the notion of probability:

The task of explication consists in transforming a given more or less inexact
concept into an exact one or, rather, in replacing the first by the second. [… ]
The explicandum may belong to everyday language or to a previous stage
in the development of scientific language. The explicatum must be given
by explicit rules for its use, for example, by a definition which incorporates
it into a well-constructed system of scientific either logicomathematical or
empirical concepts.

Carnap extensively elaborated this method (Novaes and Reck 2017; Reck
2024), and advanced explicit requirements for explications (Carnap 1950b,
§I.3): (a) similarity: the explicatum should be as similar as possible to the
explicandum (complete correspondence is obviously not required or even
attainable); (b) exactness: it should be given precise rules of use; (c) fruitful-
ness: it must help deliver as many theorems (or scientific laws) as possible;
(d) simplicity: it must be expressible in the simplest form compared to other
possible choices of explicata. Indeed, the process is by its very nature com-
parative (and hence closely related, in both merits and limits, to Rational
Reconstruction): “[… ] if a solution for a problem of explication is proposed,
we cannot decide in an exact way whether it is right or wrong. [… ] The
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question should rather be whether the proposed solution is satisfactory, whether
it is more satisfactory than another one, and the like.”
As examples concerning logico-mathematical concepts, Carnap mentions

Tarski’s (1933/1956) formal analysis of truth, Menger’s (1943) treatment of the
notion of dimension, and, most notably for us, a combination of Peano’s axio-
matic and the Frege–Russell analysis of cardinal number (the former as a way
of providing an exact axiomatic rendition, the latter as a way of settling on one
particular interpretation of those axioms among the many available equivalent
progressions).
Explications, however satisfactory they eventually are, must then sacrifice

something of the original usage of the informal notion. Quine (1960), §53, takes
the notion of ordered pair as a “philosophical paradigm” of this kind of analysis.
Different explications of the pretheoretical notion of ordered pair, as for exam-
ple {{x}, {x,∅}} or {{x}, {x,y}}, provide formal renditions with the required
set-theoretical properties, but do so at the expense of adequacy to pretheoretical
informal use. Similar remarks apply to Russell’s theory of definite descrip-
tions, or to Frege’s analysis of cardinals as equivalence classes. In all these
cases:

We do not claim synonymy. We do not claim to make clear and explicit what
the users of the unclear expression had unconsciously in mind all along. We
do not expose hidden meanings, as the words ‘analysis’ and ‘explication’
would suggest; we supply lacks. We fix on the particular functions of the
unclear expression that make it worth troubling about, and then devise a
substitute, clear and couched in terms to our liking, that fills those functions.
(ibid. 257–258)

In this sense, “explication is elimination” (259), in that the original notion is
discarded, and the differences with the newly introduced one are ignored.
The method of explication provides further nuances as to how Concep-

tual Analysis can be understood. On one conception, which may be suited to
traditional foundational project, analysis targets an informal notion that, how-
ever underspecified or vague in its ordinary usage, is meant to be unique and
uniquely characterizable. One way of contrasting this picture is to claim that
the target notion is indeed unique bust still schematic, and allows for a plu-
rality of specifications (see Section 7.4.1). Explication seems to renounce the
very idea that the outcome of analysis (either in a monist or pluralist sense)
can be uniquely determined. Pragmatic factors, including issues concerning
the most appropriate systematization of our scientific theories, enter the com-
parative evaluation of alternative analyses. This picture can adequately account
for the actual development of alternative formal theories of the same informal
notion, a most notable example being the various axiomatization of the notion
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of set (see Section 7.3.2). Axiom systems (as well as abstractive definitions)
can provide the required exactness to the explicatum. But different (theoreti-
cal, mathematical, and philosophical) considerations may lend support to one
or another system.
To a certain extent, this method is faithful to how we clarify both ordinary

and scientific concepts, and how different clarifications are offered over time.
The nature and details of this process of conceptual engineering may vary. It
affects both ordinary and socially relevant notions (viz. gender, or family), and
scientific ones (viz. mass, light, or planet). Arguably (Tanswell 2018), we also
conceptually engineer logical and mathematical notions: think of how different
conceptions of logical validity are motivated by nonclassical logics, or how
conceptions of number or set have been differently explained or just expanded
through time. Explication and conceptual engineering, then, bear resemblances
worth exploring (Brun 2016, 2020) – and in the end are both related to the
method of reflective equilibrium mentioned in Section 2.1.
A pressing issue in either case – something that was already foreshadowed

earlier in discussing the Frege–Hilbert debate – is whether change in concepts
entails a replacement view, that is, a change of subject, so that for example
users of the two concepts would not actually disagree, but simply talk past
each other about different things (Quine 1970, §6); or whether some continuity
of topic can be granted, so as to take the concept resulting from the analysis as
an ameliorative version of the original one.

7 Knowledge by Definition
The preceding general taxonomy of definitions and their philosophical roles
leaves many open questions as to whether, and how, definitions of different
sorts can provide mathematical knowledge. This section briefly outlines some
of these major issues to provide a map of the recent and current debate.

7.1 Definitions and Empirical Evidence
7.1.1 Naive Empiricism

If, as empiricists would have it, all knowledge is to be grounded on empirical
evidence, knowledge provided by definitions should be too. Views on these
lines were advanced by Mill (1843) (and von Helmholtz). Mill conceives of
arithmetical laws (and geometrical postulates) as inductive generalizations on
observed experience, rather than a priori self-evident propositions. As such,
they are contingent and can be falsified by experience, although wemay be psy-
chologically unable to conceive it. As a consequence, he takes the notion of sum
to generalize instances of unions of physical unit quantities, and believes that
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1+1 does not necessarily result in 2, for it is always possible that, by physical
processes, in adjoining one and one unit of a given substance, less than two units
result. In this setting, definitions assert observed matters of fact. For instance,
the definition of ‘3 =df 2 + 1’ would assert the possibility of rearranging a col-
lection of objects, say three pebbles, so that they can either impress our senses
as ⊚⊚ ⊚ or as ⊚⊚⊚. Numerical terms denote particular physical collection, and
connote their physical properties. To these views, Frege harshly objected that
empiricists confuse “the applications that can bemade of an arithmetical propo-
sition [… ] with the pure mathematical proposition itself” (Frege 1884, §9;
see also Frege 1893–1903, Vol. II, §137) – on the other hand, Mill’s view that
apparently obvious and indubitable truths can possibly be false was much more
aligned with subsequent developments in non-Euclidean geometries.
Views like Mill’s are generally considered untenable (but see Kitcher 1983).

A more nuanced form of empiricism only claims that mathematical statements
should be justified by empirical means (not that their content is empirical),
on the basis of the role they play for the expressive or explanatory power
of scientific theories – as the so-called Indispensability Argument suggests
(Panza and Sereni 2013, chs. 6–7). Here, however, definitions play little epis-
temological role by themselves, and are rather confined to how the background
mathematical theories are constructed.

7.1.2 Cognitive Adequacy

More recently, however, studies in the cognitive sciences and neurosciences
greatly incremented our appreciation of the cognitive and neurological under-
pinning of numerical abilities in humans and animals (Carey 2009; Dehaene
2011; Samuels and Snyder 2024). Neuroscientific studies on mathematical
cognition could be used to dismiss philosophical concerns. As Quine (1969)
rejected traditional epistemology in favor of psychology, one may dismiss phil-
osophical (epistemological, normative) concerns on mathematics in favor of
scientific (data-driven, descriptive) inquiry on numerical capacities. An alter-
native, more conciliatory attitude consists in asking foundational theories to
take neuroscientific evidence into due account. As regards definitions, one may
even add a further methodological constraint:

COGNITIVE ADEQUACY. Definitions of numerical (or mathematical) concepts in
philosophical reconstructions of mathematical theories should be cognitively
adequate, that is, should cohere with cognitive and neuroscientific evidence on
the possession, formation, and development of such concepts.

Whether this would be a desirable constraint is controversial. Even without
being dismissive toward either neuroscientific or philosophical inquiries, one
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can maintain a healthy division of labor. Philosophy and neuroscience are legit-
imate but distinct enterprises, differing in methodology and aims: the search for
justification and the description of concept formation should not be confused.
If one endorses the criterion, however, one may wonder which, among alter-

native definitions available of, for example, natural number, is most cognitively
adequate. A significant challenge on this score is that neuroscientific evidence
on numerical cognition still doesn’t settle the nature of our basic number con-
cepts. Some evidence suggests that our numerical abilities are grounded on
elementary appreciation of order among small collections of objects: a struc-
turalist conception, or anyway a conception of natural numbers as essentially
ordinals, would thus seem preferable. Other evidence acknowledges an essen-
tial function to the ability of immediately grasping the numerosity of small
collections of objects (subitizing), which would better cohere with a defini-
tion of natural numbers along (neo-)Fregean lines, or anyway as essentially
cardinals (Decock 2022).
Be that as it may, one particular difficulty consists in merging empirical

research on very elementary numerical skills with the epistemological concerns
regarding complex and mature mathematical theories. A yet harder question,
which has been tackled recently (Pantsar 2024), is whether it is possible
to provide an account of mathematical (or at least arithmetical) knowledge
that is attentive to traditional epistemological concerns while being empiri-
cally informed on both the neurocognitive basis of numerical abilities and the
impact of training and society (enculturation) in the development of numerical
concepts.

7.2 Knowledge without Objects
7.2.1 Conventions

Some believe that language is not in the business of capturing objective, inde-
pendent constituents of reality. Rather, language use is constitutive of our
concepts, and which concepts we adopt to categorize reality is partly arbitrary.
Definitions then act as conventions, which we are free to stipulate at our con-
venience for various purposes, and still secure a priori knowledge. A major
inspiration comes again from Carnap, who neatly distinguished between ques-
tions internal and external to a given linguistic framework (Carnap 1950a).
External questions (“Are there really numbers?”) are only to be settled by
pragmatic reasons, for example by the convenience of adopting a linguistic
framework in which specific kind of entities are contemplated. Internal ques-
tions (“Are there prime numbers?”) are instead to be addressed by considering
what follows internally to a linguistic framework from its basic principles,
including meaning postulates establishing the meaning of basic expressions.
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The choice of postulates is entirely conventional (although conventions can be
compared for their usefulness and fruitfulness as the outcome of alternative
explications).
As anticipated, the possibility of truth by convention is essential to logical

empiricism (see p. 55). Together with analyticity and synonymy (Section 5.2.2),
the idea has been challenged by Quine (Quine 1936, 1954), although it has
recently been defended again (Warren 2020).

7.2.2 Fictions, Creations, and Constructions

A radical distaste with an ontology of abstract objects underlies nominalist
views. We have seen how eliminative definitions can sustain nominalism. They
can also support fictionalist varieties of nominalism. Fictionalists’ major con-
tention is that any apparent reference to mathematical objects should be seen as
a façon de parler, an helpful instrument with no proper referential role. Defini-
tions can thus be seen as fiction-introducing principles. For instance, once we
have numerical quantifiers as defined in Section 3.2, we can introduce numer-
als, grammatically behaving as singular terms, as fictional tools for simplifying
lengthy deductions (‘#F = 2’ will replace the long expansion of ‘∃2xF(x)’).
Field (1980/2016) argues along these lines. Yablo (2005) advances a related
view, in which definitions could be conceived as bridge principles, establish-
ing how to translate certain statements about the real world into figurative (or
metaphorical) ones within a particular make-believe game, to “make as if” there
were numbers.
Notice that fictional realists maintain that fictional terms genuinely denote

(mind- and language-dependent) fictional objects. Within this framework,
mathematical fictions would be about objects after all – and fictionalism would
come close to forms of creation. Similar remarks apply to views somehow inter-
mediate between creationism and conventionalism. Cole (2015), for instance,
suggests that mathematical objects should be conceived as social construc-
tions (and, arguably, definitions would be akin to social conventions). The view
inherits all concerns affecting social ontologies generally, but has the merit of
connecting mathematical ontology to a conception of mathematics as a human,
historically and socially determined, practice (Cantù and Testa 2023).

7.3 Knowledge through Axioms
7.3.1 Consistency and Existence

If we believe that axiom systems are not mere conventions, but rather theoreti-
cal descriptions of certain mathematical domains, then how can we know they
are true, and how can we have knowledge of the objects they are allegedly
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about? Recall a fundamental distinction between the traditional Euclidean
model and Hilbert’s conception. On the former, a prior, extratheoretical access
to an external geometrical reality provides content to primitives and truth to
postulates. That a straight line lies between any two points, and that points are
objects of a given kind, is not something we know as a consequence of the the-
ory, but something that can be ostensively presented to test its adequacy. The
possibility of such extratheoretical evidence is forsaken in Hilbert’s conception.
Knowledge of both truths and objects can only be afforded by the theory. As
Hilbert writes to Frege: “If the arbitrarily given axioms do not contradict one
another with all their consequences, then they are true, and the things defined
by the axioms exist. This for me is the criterion of truth and existence” (Frege
1980, 29.12.1899, 39, 42).
Similar views are today displayed in plenitudinous varieties of platonism

(Balaguer 1998). Closer to a Euclidean spirit, Frege retorts that “from the truth
of the axioms it follows that they do not contradict one another.” Axioms are
guaranteed to be true insofar as they are able to capture objects and proper-
ties that can be independently exhibited. We don’t first have a theory and then
look for a(ny) model of it (as in Hilbert’s metamathematical proofs); we dis-
play a(n intended) model and then theorize about it. This holds for arithmetic
too, where definitions provide the objects from whose properties arithmeti-
cal truths will follow. This almost ostensive exhibition of the intended model
makes any additional consistency proof supererogatory (Hallett 2019, 301).
For Frege, Hilbert’s conception suffers the same limits of ontological proofs
for the existence of God: from the joint consistency of claims that x is intelli-
gent, omnipresent, and omnipotent, it does not follow that such an x actually
exists (Frege 1980, 6.1.1900, 47). In axiomatics, existence must rather be pre-
supposed, and cannot be proved. In Aristotle’s terms, primitives need both a
nominal definition and a presupposition that they exist.
An analogous dialectics is present inmore recent debates. If we see axioms as

defining ante rem structures, and structures are sets of (possibly uninstantiated)
relations, it’s less controversial to take the existence of structures as entailed by
the consistency of axioms (or by their coherence, a narrower notion adopted by
Shapiro 1997). However, neologicists (Hale and Wright 2002, 112–113) follow
Frege in seeing here an unwarranted passage from “conveying a concept” to “in
addition, induc[ing] awareness of an articulate, archetypal object”: conceptual
understanding alone cannot provide knowledge of objects.

7.3.2 Choosing the Axioms

If primitive concepts are entirely determined by axiomatic definitions, then a
change in axioms is a change in concepts. As Hilbert already claimed: “only
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the structure of axioms yields a complete definition. Every axiom contributes
something to the definition, and hence every new axiom changes the concept”
(Frege 1980, 29.12.1899, 40, 42).
Modifying axioms isn’t problematic if we take axioms as arbitrary stipula-

tions, but it is if axioms are meant to provide univocal analyses of prior notions.
An illuminating example is offered by axiomatic set-theory. Axiomatizations
like ZF and NBG advanced in the early twentieth century could be seen as
formal reconstructions of an informal notion of set. To avoid paradoxes, they
include formal conditions going well beyond what seems implicit in pretheo-
retical usage (respectively, the idea that sets form a cumulative hierarchy, and
that sets and proper classes should be distinguished by a principle of limitation
of size; Potter 2004; Ferreirós 2007; Barton 2024). A suitable choice of axioms
is crucial whenever the analysis proves somehow incomplete, as revealed for
example by the recognition that ZFC does not decide the Continuum Hypothe-
sis (CH) (namely that the cardinality of the set of real numbers is ℵ1, hence that
there is no intermediate infinite cardinality between the cardinality of counta-
ble sets like natural numbers, ℵ0, and that of the reals, 2ℵ0 ). It follows that both
ZFC+CH and ZFC+¬CH are consistent. Additional axioms can decide CH one
way or another, but how do we choose? One can either rely on extrinsic, possi-
bly inductive, evidence for purely mathematical or architectural reasons; or on
intrinsic evidence directly relating to our pretheoretical notion of set, believ-
ing (like Gödel 1964) that our initial axioms failed to capture it completely
(Maddy 2011; Linnebo 2017, ch. 12). The debate on alternative axiomatizations
of set-theory in light of higher set-theoretical principles has flourished recently
(Antos, Friedman, Honzik, and Ternullo 2018). If one renounces the idea that
only one analysis is to be correct, axiom revision comes close to processes of
explication or conceptual engineering (see Section 6.2).

7.4 Knowledge of Objects
7.4.1 Multiverses, Good Company, and Pluralism

Maybe, by changing the axioms we are neither replacing nor improving old
concepts, but rather providing rival and still equally acceptable specifications
of the same concept. We renounce UNIVOCALITY not because different analyses
are available for comparison, but because the very notion we are analyzing
proves somehow schematic and open to a plurality of specifications.
This form of pluralism has been extensively explored in logic. Among differ-

ent varieties of logical pluralism (see Shapiro 2014), Beall and Restall (2005)
argue that rival logics (provided suitable criteria are met) are equally legiti-
mate outcomes of alternative specifications of a general schematic definition of
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logical validity. This view could be transferred to mathematical concepts too.
Different axiomatizations of set-theory could provide different and still legit-
imate specifications of a common, underdetermined if not schematic, concept
of set. A controversial consequence ensues anytime the target concept is a con-
cept of objects and hence a form of ontological pluralism is engendered. If any
axiomatization characterizes a set-theoretical universe, the adequate ontologi-
cal view could be that of aMultiverse of sets, a plurality of coexisting, distinct
although possibly overlapping set-theoretical domains (Hamkins 2012).
Mathematical pluralism can be defended in various ways (Priest 2024), and

can also be sustained via abstractive definitions. Recall the Good Company
Problem (Section 5.2.2), according to which a plurality of equally accepta-
ble cardinal abstractions is available. A possible way to interpret this result
(Sereni, Sforza Fogliani, and Zanetti 2023) is to see the informal notion of car-
dinal as underdetermined, and all good companions as legitimate ways of
specifying it. In analogy to logical pluralism, these could be seen as based on
different specifications of a schematic relation of ‘being the same size as’ that
the RHS of HP should capture. Different cardinal abstractions would describe
a plurality of co-existing, partially overlapping (on the finite) and yet distinct
numerical domains.

7.4.2 Real Definitions and Metaphysical Foundationalism

Objectual knowledge through definitions is, at least, indirect: it is propositional
knowledge that some objects exist and are so-and-so. However, one may fol-
low Aristotle and also ask for knowledge why mathematical objects are, on
what their existence and essence are grounded, by taking mathematical defi-
nitions as real definitions. Some proposals with a clear metaphysical focus
take mathematical definitions as either individuating the essence of numbers
as necessary beings (Hale 2013, ch. 6 and 7), or encoding all and only those
properties that establish numbers as particular abstract objects (Zalta 1999;
Nodelman and Zalta 2024). Some recent proposals take the relation between
definiendum and definiens as an (asymmetrical) relation of metaphysical reduc-
tion (Rosen 2010). While in an explicit definition the definiens establishes just
what the definiendum is (it metaphysically identifies the latter with the former),
in implicit definitions metaphysical reduction relates not just the target enti-
ties, but facts involving them. This brings up notions pervasive in analytical
metaphysics like grounding and ontological dependence.
Grounding (Fine 2012; McKenzie 2022) is a relation of metaphysical, non-

causal explanation between facts (or, on some views, between statements). It
is expressed by ‘in virtue of’ or ‘because’ idioms, and underlies claims such as
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“The fact that the singleton set of Socrates exists obtains in virtue of the fact that
Socrates exists.” It is formalizable as ‘A ≺ B’ (‘A grounds B’). As all explana-
tory relations, it is asymmetric (A ≺ B → B ⊀ A). Strict ground is irreflexive
(A ⊀ A), in contrast to weak ground (where A ≺ A). On most conceptions, it is
factive (A ≺ B → A,B) and transitive (A ≺ B∧B ≺ C → A ≺ C ). A fact A can
ground a fact B alone (full ground) or together with other facts (partial ground).
Ontological dependence can loosely be seen as expressing the relation ‘x exists
in virtue of the existence of y.’
Traditional foundational programs developed in a milieu permeated by a dis-

taste for traditional metaphysics and a priority assigned to semantic analysis.
As Dummett (1993b), 6, epitomizes this: “Language may be a distorting mir-
ror: but it is the only mirror that we have.” Still, several authors acknowledge
that even when Frege characterizes foundations as “afford[ing] us insight into
the dependence of truths upon one another” (§2.1), his “relation of grounding
or dependence is as much metaphysical as it is epistemic” (Shapiro 2012, 221–
222). As Wright (2020), 283, has it, Frege’s claims are “suggestive of a kind of
metaphysical architecturalism” and “Frege never shakes off a broadly Euclid-
ean view” to the extent that “the axioms should codify the ground of the truth of
the theorems, the body of fact on which those truths rest.” After all, considera-
tions on the essence of arithmetical objects surface in both Fregean, neologicist,
and structuralist perspectives. Can metaphysical insights be afforded by either
axiomatic or abstractive definitions?
In a structuralist framework, one can wonder which dependence holds

between objects and structures (Linnebo 2008). On the one hand, it seems
that relations cannot hold without relata: the existence of structures depends
ontologically on the existence of their instances. However, in an ante rem set-
ting, relata are just places (or “offices”) in structures (although conceivable as
objects; Shapiro 1997, ch. 3), and these are determined by the structure: objects,
that is, places, should rather be seen as depending ontologically on structures.
Also, since positions in a structure are determined by their relation with one
another, positions may depend for their identity on all others.
What about abstractions? One can take the consequences of Frege’s the-

orem, arithmetical axioms in particular, as facts grounded on logical laws
and HP. However, while logical derivation may provide an epistemic depend-
ence between premises and conclusions, one could take all arithmetical facts
to be metaphysically on a par and equally fundamental. A different issue is
whether the LHS of HP can be seen as metaphysically grounded on its RHS,
that is, if identity of cardinals holds in virtue of equinumerosity of concepts.
However, on some conceptions of content-recarving, abstractions provide dif-
ferent conceptualization of the same fact, differently described on the two
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sides. As Hale and Wright (2009b), 187, claim, “the existential commitments
of the statements which the abstraction pairs together are indeed the same”
(which, in passing, seems to require the RHS to effect hidden reference to cardi-
nals even though no surface denotational device is available). Equinumerosity
of concepts is (although it is said differently) identity of cardinals (see also
Section 7.5.1). It is then hard to see how the two sides could be assessed asym-
metrically. Finally, one may ask whether the objects whose existence HP helps
to prove are ontologically dependent on one another. Various proposals have
been advanced (Rosen 2010; Schwartzkopff 2011; Donaldson 2017). However,
they outline a hierarchy of dependence relations which appears in tension with
a platonist setting, and is better located within a renaissance of neo-Aristotelian
views in which mathematical existence is grounded on more fundamental,
possibly nonmathematical, facts (Panza and Sereni in press). Other recent pro-
posals (deRosset and Linnebo 2023) apply grounding to other varieties of
abstractionism (in particular, to Linnebo’s conception of thin objects; see
Section 7.5.1).

7.5 Knowledge, for Little or Nothing
7.5.1 Thinness

The concern with the existential consequences of definitions, abstractive ones
in particular, is partly due to a traditional conception of platonism: abstract
objects seem to impose too heavy a metaphysical burden to be warranted only
through our conceptual and linguistic procedures.
One route is to claim that while the notion of reference in most areas of

language (e.g. empirical discourse) is in some sense robust, abstractions only
secure a thin reference. Dummett (1973), 223–224, distinguishes between real-
istic reference and semantic role, the first being modeled on the name/bearer
relation, the latter being the contribution that an expression makes to the truth
conditions of a statement. Since in an abstraction what is at stake is essentially
the equivalence between the RHS and LHS, “the notion of the reference of the
[terms in the LHS] [… ] plays no role in our conception of what determines
the thought as true or false” and is thus “semantically idle” (Dummett 1991,
p. 193). This view is, however, hostage to an explanation of how reference
happens to behave differently in different areas of language.
Without revising the notion of reference, it is then possible to defend the

Fregean or neologicist approach to ontology as grounded on semantical con-
siderations. The basic insight (coherently with the linguistic turn inaugurated
by Frege) is that the picture according to which we need a prior access to,
or conception of a given sort of objects, in order to be able to understand
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thoughts about them, is misguided. In relevant cases the order of explanation
is reversed, and it is propositional knowledge (e.g. that involved in the stip-
ulation of an abstraction principle) that gives us all we need (and can have)
to obtain knowledge of certain objects and of statements concerning them
(Hale and Wright 2009b).
Various strategies, despite differences, agree in claiming that the kind of

ontological knowledge provided by abstractions is, in some sense, unproblem-
atic or anyway easy to obtain (Thomasson 2014). One possibility is to claim
that the very nature of the objects involved is such that it makes no substantial
metaphysical demands on the world. For instance, Rayo (2013) considers just-
is statements, that is, statements stating that, for suitable statements p and q, for
p to be the case just is for q to be the case, so that the ontological import of the
two statements is the same (e.g. for the number of dinosaurs to be 0 just is for
there to be no dinosaurs). Reading abstractions as just-is statements could pro-
vide a form of trivialism that defuses their metaphysical robustness by claiming
for a strong symmetry between its two sides, namely that for two numbers to
be identical just is for two concepts to be equinumerous. Linnebo (2018b) has
developed a distinct form of minimalism based on the notion of thin objects,
namely objects whose existence does not make a substantial demand on the
world. Linnebo reads abstractions as sufficiency statements, that is, statements
establishing that asserting the RHS gives sufficient grounds for asserting the
LHS. This affords an asymmetric reading of abstraction, and the ontology of
the LHS is a genuine addition with respect to that of the RHS. The RHS gives
identity conditions which assign genuine objectual referents to the terms in
the LHS, whose demands on the world (their conditions of existence), how-
ever, do not exceed those expressed in the RHS, ensuing in another variety
of lightweight platonism (Sereni and Zanetti 2023). These sufficiency claims
extend both the original language and the original ontology, in a process of
dynamic abstraction with several ramifications (Carrara and Zanetti 2023).

7.5.2 Entitlement

The problem of obtaining noninferential justification of basic principles has
special significance when applied to basic logical laws too. The centrality
of most basic deductive (and inductive, as Hume showed) logical principles
entails that any attempt at their justification is bound to circularly appeal to
the very same principles. Cognate remarks apply to a larger family of state-
ments which are central to many cognitive enterprises but whose inferential
justification is unattainable. For instance, skeptical challenges suggest that any
inferential justification for the claim that there exists an external world will
be a case of transmission failure: it will fail to transmit justification from its
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premises to the target conclusion by surreptitiously relying on the very fact
that it wants to establish, namely that an external world exists.
All these cases can be seen as instances of what Wittgenstein (1969) calls

“hinge” or “cornerstone” propositions: propositions so deeply entrenched in
our conceptual schemes as to be constitutive of them, and as such impossi-
ble to be justified from within. Relying on them requires alternative forms of
epistemic warrant. Wright has appealed to the notion of epistemic entitlement
(Wright 2004a, 2004b). Entitlement is in place whenever a presupposition P
underlying a specific cognitive project is such that “(i) There is no extant reason
to believe not-P and (ii) Someone pursuing the relevant project who accepted
that there is nevertheless an onus to justify P would thereby implicitly com-
mit themselves to an infinite regress of justificatory projects, each concerned
to vindicate presuppositions of its predecessor” (Wright 2016, 166).
When we find ourselves in this situation, even in the absence of an inferential

justification for P, we should take ourselves to be nonetheless entitled, or war-
ranted (by default, or for nothing), in believing P. This holds for HP too. The
epistemology of HP (and possibly other basic abstractions) would be analogous
to that of basic logical rules, analogously to Gentzen-style definitions of logi-
cal constants. These can be provided by pairs of introduction and elimination
rules. The meaning of e.g. ‘∧’ is entirely exhausted by:

A B ∧-IA ∧ B
A ∧ B ∧-E1A

A ∧ B ∧-E2.B
HP may be understood analogously (Hale and Wright 2000). Being in fact the
conjunction of two conditionals, it works as a shorthand for an introduction
rule (right-to-left) and an elimination rule (left-to-right) of the numerical oper-
ator ‘#_’ (see also Tennant 1987). If Gentzen-style rules provide warrant, so
does HP.
Entitlement is a much debated notion (Pedersen 2016; Graham and Pedersen

2020). If tenable, it would importantly qualify the kind of knowledge that can
be afforded by HP. It preserves the possibility of attaining some form of a priori
knowledge by implicit definition, but locates our belief in HP (leaching, pos-
sibly, to that in its arithmetical consequences) far from the “realm of apodictic
certainty” (Ibid., 183) usually associated with the a priori, seeing it rather as
groundless and defeasibly warranted.

7.6 Axioms or Abstractions?
7.6.1 Arrogance

The epistemological significance of implicit definitions mostly relies on their
traditional connection (Hale and Wright 2000) with a priori knowledge. To an
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extent, both abstractive and axiomatic definitons are well equipped to provide a
priori an understanding of the concepts they define. For abstractive definitions,
this is provided by the biconditional statement itself. For axiomatic definitions
(for mathematical terms as well as theoretical terms in the empirical sciences)
this can be done by taking the Ramsey-sentence (see Ramsey 1931) of a the-
ory T, that is, roughly, the existential generalization over a conjunction of the
axioms where primitives are replaced by suitable variables (so if the matrix of
T’s axioms is #(x), the Ramsey-sentence of T would be ‘∃x(#x)’); and then
stipulating the corresponding so-called Carnap conditional: if there exists a t
that satisfies ‘#x’, then ‘#t’ – something whose truth does not depend on the
existence of any such t, and hence can be freely stipulated.
However, in both cases the truth of the definition itself (certain axioms or a

certain abstraction) have, directly or indirectly, existential implications. Should
we take the traditional connection to be severed in either cases? An argument
to favor abstractive over axiomatic definitions on this score has been offered
by neologicists by appealing to the notion of arrogance. Consider the follow-
ing purported definition of the name ‘Jack the Ripper,’ as laid down at the
beginning of the relevant police investigation:

Jack the Ripper is the perpetrator of this series of killings. (JTR)

Are we warranted in taking JTR as true just by stipulating it? Not according
to neologicists: to vindicate its truth we must ascertain both that those killings
were actually perpetrated by someone (rather than being accidental events),
and that the perpetrator was unique. Both presuppositions cannot be obtained
merely by understanding the JTR statement itself. They are genuine pieces of
(empirical) knowledge that must be independently obtained. Hence, JTR “can-
not justifiably be affirmed without collateral (a posteriori) epistemic work”
(Hale and Wright 2000, 128), so that “the truth of the vehicle of the stipulation
is hostage to the obtaining of conditions of which it’s reasonable to demand an
independent assurance” (Hale and Wright 2009a, 465). Hence, JTR is an arro-
gant definition, while “A good implicit definition has to be something which we
can freely stipulate as true, without any additional epistemological obligation”
(Hale and Wright 2000, 133). Conversely, HP is an innocent definition: its truth
can be appreciated without any further epistemological obligations: HP alone
neither entails (see Section 5.2.2), nor presupposes, for its truth, the truth of
any existential claim (but see MacFarlane 2009, Assadian 2023 for contrasting
thoughts).
Arrogance becomes crucial in distinguishing the epistemic pedigree of HP

vis-à-vis the stipulation of the PA2 Axioms, and hence in comparing abstrac-
tionism and structuralism. Stipulating the PA2 Axioms (given the occurrence
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of simple predications and existential claims), is tantamount to stipulating that
a model for them (a progression of suitable objects) exists. But no mere stipu-
lation can guarantee existence in this way, and ascertaining that the axioms are
true would thus require “collateral [… ] epistemic work” (be it a posteriori or
a priori). The stipulation of the axioms is therefore arrogant and cannot sustain
a priori knowledge.
A full analysis of arrogance is still lacking. It is a complex and promising

notion, which, if stable, can distinguish between licit and illicit definitions
by also accounting for some of the requirements traditionally imposed by
LOGICALITY and ANALYTICITY, without endorsing those requirements them-
selves – unless, of course, arrogance is just analyticity in sheep’s clothing.

7.6.2 Applicability and Frege’s Constraint

Foundational programs traditionally focus on pure mathematics, and our dis-
cussion only cursorily mentioned applied mathematics. A recent debate bridges
the two, and leads to a final comparison between axiomatic and abstractive
definitions.
We saw that Frege rejects bringing particular applications into the content

of mathematical statements. However, he believed that applicability, in full
generality, must be accounted for. This does not entail that a definition of a
mathematical notion isn’t justified if we don’t have a particular application in
mind (famously, e.g., group theory was developed in complete autonomy from
empirical applications), but it does entail that we should at least in principle
understand how the notion could be applied, on pain of introducing a purely
symbolic apparatus. Indeed, in his critique of formalist views like Thomae’s
and Heine’s, in order to distinguish contentual (inhaltliche) arithmetic from a
chess-like manipulation of language, he argues (Frege 1893–1903, II, §91) that
“it is applicability alone which elevates arithmetic from a game to the rank of
a science.” For these reasons, Frege endorsed an additional criterion for his
definitions, which Wright 2000 (p. 324) expresses as follows:

FREGE’SCONSTRAINT (FC). A satisfactory foundation for a mathematical theory
must somehow build its applications, actual and potential, into its core – into
the content it ascribes to the statements of the theory – rather than merely
“patch them on from the outside” [The quotation is from Frege 1893–1903,
II, §159.].

Apparently, HP meets the constraint. If canonical applications of cardinals
are grounded on comparison of cardinality between concepts, the RHS of HP
encodes exactly this kind of explanation of cardinal applications. But Wright
endorses a robust reading of FC, according to which for abstractions to meet
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FC requires viewing “the applications of the sorts of mathematical objects
they concern as belonging to the essence of objects of those sorts” (Wright
2000, 325). The emphasis on essences coheres with a possible interpretation of
Frege’s views as substantially concernedwith the nature of arithmetical objects.
It also furnishes another argument against structuralist definitions by entailing
that arithmetical objects “have an essence which transcends whatever is shared
by the respective types of models of even categorical (second-order) formu-
lations of those theories” (Wright 2000, 325). Hence no axiomatic, structural
definition of natural numbers can meet FC. This objection is strictly related to
that of arrogance. Hume’s Principle conveys the idea that the essence of car-
dinals is tied to their applications, whereas the PA2 Axioms “convey no more
than the collective structure of the finite cardinals” (Hale and Wright 2009a,
471): any application, through appropriate mappings between target domains
and the structure (or part of it), “will then depend upon an additional apprecia-
tion of structural affinities between any such instance and the intended realm of
application” (Wright 2000, 326–327). Structural definitions are arrogant (also)
because they fail to meet FC.
This can be questioned in various ways. The robust reading of FC seems

almost question-begging against structuralists. Once weakened, FC may be
satisfiable by ante rem structuralists too (Sereni 2019). After all, structure con-
cepts will be defined (also) in terms of isomorphism. Since their applications
are also based on (iso)morphisms, the resources for explaining applicability
will be built into, and not additional to, their (axiomatic) definition.
More generally, Wright’s argument relies on the assumption that canonical

arithmetical applications are cardinal, rather than ordinal, in nature. But not
only what is to count as canonical can depend on various theoretical purposes
(Panza and Sereni 2019). Also, structuralists may retort that either view must
account for both cardinal and ordinal applications, and to do so can appeal to
available resources, although apparently additional to their respective defini-
tions. So either both fail FC, or both meet it (Snyder, Samuels, and Shapiro
2018).
The emphasis on applications introduces a novel element in the compari-

son of rival mathematical definitions, both for arithmetic and analysis. Indeed,
FC seems to underlie Frege’s objections to Cantor’s and Dedekind’s definitions
of the reals, on grounds that in them “either measurement does not feature at
all, or [… ] it features without any internal connection grounded in the nature
of the number itself, but is merely tacked on externally” (Frege 1893–1903,
§159; see also Dummett 1991, 272–273). While Hale (2000) concurs that FC
should be met by an abstractive definition of reals, Wright (2000) believes FC
is motivated only when “the flow of concept formation” (329) can go from
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applications to theory, so that at least some rudimentary conception of the
relevant numbers can be conveyed via elementary applications, something that
cannot happen with the reals, given limitations in the exactness of empirical
measurements.
As some reactions have displayed (Shapiro 2000, 361; Batitsky 2002), there

are both philosophical and practical reasons to dismiss this constraint. A pre-
eminent regard for structural relations, as well as the acknowledgment of how
applications proceed in actual mathematics (often by taking number systems for
granted and applying suitable representation theorems), may lead to dismiss-
ing constraints on definitions which are perceived as either overrationalistic or
detached from mathematical practice. On the other hand, autonomy can still be
advocated for epistemological and foundational inquiries.

***

As this last debate emphasizes, the traditional relevance of mathematical defini-
tions (as well as elucidations, and explications), which we have tried to address
in our discussion, is primarily due to the peculiar spot they occupy, in between
practice and theory. They are pillars around which different needs revolve: the
need to understand and recover a multiplicity of heterogeneous ordinary and
scientific activities; and the need to systematize and formalize mathematical
theories in a way that duly answers to genuinely philosophical concerns and
desiderata. For these reasons, clarifying their epistemological import is still
among the most pressing matters in the philosophy of mathematics.
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