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Myxococcus xanthus is a highly social bacterium and a model system for coordinated multicellular behaviors, 
including swarming motility and developmental cell differentiation. Under nutrient rich conditions, M. xanthuscells 
migrate over surfaces as dense 2-dimensional swarms to prey on nearby bacterial colonies. Under nutrient limited 
conditions, M. xanthuspopulations activate a developmental program that induces cells to aggregate into 3-
dimensional mounds. Some of these mounds develop further into fruiting bodies with heights and diameters of up 
to 100 micrometers. Both swarming motility and fruiting body development involve pronounced changes in cell 
morphology. Swarming, rod-shaped M. xanthuscells can bend along their long axis by well over 90 degrees (Figure 
1a). During fruiting body development, rod-shaped cells either differentiate into spherical myxospores or into 
peripheral rods (a persister-like cell-state), or they burst by undergoing developmental cell lysis (Figure 1b). While 
these morphological transitions have been observed for isolated cells, or in larger populations at single, fixed time-
points, it has not been possible to follow the migration behaviors and developmental fates of hundreds and 
thousands of cells in a population over time. As such, it remains unclear how different biochemical signals and/or 
mechanical cues help coordinate cell migration and cell differentiation in 3D space and time. 

Conventional fluorescence imaging modalities suffer from phototoxicity and photobleaching limitations that prevent 
high-resolution, single-cell tracking of motility or developmental progression over hours and days in large 3D 
bacterial communities, called biofilms. To address this challenge, we adapted minimally-invasive lattice light-sheet 
microscopy (LLSM) for 3D bacterial biofilm imaging within optically accessible flow cells. LLSM combines state-of-
the-art 3D spatial resolution (300-400 nm) with fast temporal resolution (up to 100 ms for single-cell imaging) and 
low photodamage at levels that cannot be matched by confocal microscopy1,2. Specifically, LLSM (and light sheet 
microscopy modalities in general) provide about an order of magnitude lower photobleaching rates compared to 
confocal microscopy3,4. While LLSM enables high-resolution, long-term time-lapse imaging of bacterial biofilms, the 
spatial resolution is still comparable to the size of single bacterial cells (~800 nm in diameter) and, therefore, 
intercellular spaces remain difficult to resolve when cells are densely packed. An additional complication is that 
bacteria scatter excitation and emission light, so that the signal-to-background ratio (SBR) in 3D biofilm images 
degrades rapidly with increasing depth. These properties make it challenging to identify and outline individual cells 
in 3D biofilms, even with state-of-the-art light sheet-based imaging approaches. 

To automatically identify and outline individual cells in 3D biofilm images, we developed Bacterial Cell Morphometry 
3D (BCM3D)5, an open-source, integrated image analysis workflow that currently achieves state-of-the-art 
performance in 3D biofilm image segmentation. BCM3D combines deep learning by convolutional neural networks 
(CNNs) with mathematical image analysis to automatically recognize characteristic morphological features in 3D 
images of densely packed bacterial biofilms. To avoid the time-investment and inconsistencies associated with 
human dataset annotation, BCM3D pioneers the use of computationally simulated biofilm images to train 3D U-Net6 
CNNs. In its initial implementation5, the in silico-trained CNNs of BCM3D consistently outperform previous biofilm 
segmentation approaches7-10in terms of cell counting accuracy and cell shape estimation over a wide range of 
signal-to-background ratios and cell densities. BCM3D further enables morphometric cell classification in mixed-
species biofilms based on different cell shapes or different fluorescent labeling/staining approaches5. 

In recent work, we further expanded the BCM3D workflow with complementary CNN-based processing pipelines 
that transform the raw 3D fluorescence images into strategically altered images that are more amenable to 
conventional mathematical image processing, such as watershed segmentation. Initial results show similar, and in 
some cases superior, segmentation performance compared to the initial BCM3D workflow. Importantly, the new 
BCM3D pipelines do not require image deconvolution as a pre-processing step and are able to recognize a larger 
variety of bacterial cell shapes, including straight rods, spherical cells, as well as regular and irregularly bent cells. 
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By integrating versatile and complimentary approaches for 3D single cell segmentation, we obtain accurate and 
independently validated single-cell segmentation results. The ability to acquire and automatically analyze 3D 
images and 4D movies of hundreds and thousands of M. xanthuscells over orders of magnitude in length- and time-
scales is a critical prerequisite for measuring the diversity of the phenotypic and developmental trajectories of 
individual cells during multicellular swarming and fruiting body formation. Understanding the growth and function of 
bacterial biofilms in terms of the behavioral phenotypes of individual cells will help further our understanding of how 
bacteria in general utilize biochemical and mechanical signals to coordinate their cellular behaviors in multicellular 
biofilms11,12. 

 
Figure 1. Figure 1.  Dynamic cell bending and morphological cell differentiation in multicellular M. xanthus 

communities.  (a) Swarming M. xanthus cells on a flat surface. Cells generally adopt a straight-rod shape, but cells 
can also bend along their long axis (indicated by red arrows).   (b) Rod-shaped M. xanthus cells aggregate into 3D 
mounds after being placed in starvation buffer. Some of these mounds later differentiate into spore-filled fruiting 
bodies.  (c) 3D image of the apex of a mature M. xanthus fruiting body mostly consisting spherical myxospores. 
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