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A robust state estimation technique based on the Huber-based Cubature Kalman Filter
(HCKF) is proposed for Global Positioning System (GPS) navigation processing. The
Cubature Kalman Filter (CKF) employs a third-degree spherical-radial cubature rule to
compute the Gaussian weighted integration, such that the numerical instability induced by
round-off errors can be avoided. In GPS navigation, the filter-based estimation of the position
and velocity states can be severely degraded due to contaminated measurements caused by
outliers or deviation from a Gaussian distribution assumption. For the signals contaminated
with non-Gaussian noise or outliers, a robust scheme combining the Huber M-estimation
methodology and the CKF framework is beneficial where the Huber M-estimation method-
ology is used to reformulate the measurement information of the CKF. GPS navigation pro-
cessing using the HCKF algorithm has been carried out and the performance has been
compared to those based on the Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF) and CKF approaches. Simulation and experimental results presented in this paper
confirm the effectiveness of the method.
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1. INTRODUCTION. The Global Positioning System (GPS) is a satellite-based
navigation system that provides a user access to useful and accurate positioning infor-
mation anywhere on the globe (Axelrad and Brown, 1996). The well-known Kalman
Filter (KF) (Gelb, 1974; Brown and Hwang, 1997), which provides an optimal
(minimum mean square error) estimate of the system state vector, has been widely
applied to the field of navigation.

In navigation filter processing, the linear model increases modelling errors since the
vehicle motions are normally nonlinear. It has been common that additional fictitious
process noise can be added to the system process model, nevertheless, the more suitable
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cure for the divergence problem caused by mis-modelling is to correct the dynamics
model. To achieve improved estimation accuracy, the designers are required to
possess complete a priori knowledge on both the dynamic process and measurement
models. The Extended Kalman Filter (EKF) relies on the first order linearization of
the system model to propagate the mean and covariance of the state. The EKF is sen-
sitive to outliers in the measurements, thus it is likely to yield poor performance if the
measurements include outliers.

The Unscented Kalman Filter (UKF) (Julier, 2002; Julier et al., 1995; Julier et al.,
2000) has been developed to deal with highly nonlinear state estimation problems.
The UKF performs a Gaussian approximation with a limited number of points
(sigma points) using the Unscented Transform (UT). The sigma points are used to
propagate the probability of state distribution through the nonlinear dynamics of
the system. The standard EKF is generally a first order approximation, whereas the
EKF based on a second-order Taylor expansion is shown to be quite closely related
to UKF. Gustafsson and Hendeby (2012) indicated that the UT gives a good approxi-
mation of many standard sensor models in tracking and navigation applications,
however, UT generally does not give the same elements in the covariance as the
second-order Taylor expansion. A simple counterexample was demonstrated in
Gustafsson and Hendeby (2012). Furthermore, for high-dimensional systems, the
UT or the UKF is believed to be unstable due to the possible negative weights on
the centre point.

As a general approach to approximating the Bayesian solution, the Cubature
Kalman Flter (CKF) proposed by Arasaratnam and Haykin (2009) has been an in-
creasing interest in the development of nonlinear Bayesian filters. The CKF uses a
third-degree spherical-radial cubature rule to solve the integration in the Bayesian
filtering problem for numerically computing the multivariate moment integrals
encountered in the nonlinear filtering framework. The CKF is considered to be a
more accurate and stable nonlinear filtering approach than the UKF and has been
used in many engineering applications (Fernandez-Prades and Vila-Valls, 2010). The
spherical-radial cubature rule is composed of two different integrals which include
spherical and radial integrals. This is based on the spherical-radial transformation
and generates an even number of equally weighted cubature points. These integrals
are then numerically computed by the spherical cubature rule and the Gaussian quad-
rature rule, respectively. The performance in terms of estimation accuracy, numerical
stability and computational costs can be improved.

Gustafsson and Hendeby (2012) pointed out that the CKF can be viewed as a
special case of UKF. The viewpoint provided by Wu et al. (2006) has validated the
statement. As stated in this paper, the UT is essentially a Gaussian quadrature rule
and other similar rules can also be applied. The spherical-radial cubature rule used
in CKF is a special case of the quadrature rules. The higher-degree CKF was
studied in Jia et al. (2013), and higher-order UKF has already been studied in Wu
et al. (2006). The possible negative weights of the centre point in UT can be avoided
through tuning the parameters (Julier et al., 2000). Using the additional tuning para-
meters of UKF compared to CKF provides flexibility. If one does not want to bother
to tune them, we can fix them as their default values, or just exclude the centre point,
and the CKF is automatically obtained.

The differences between UKF and CKF are summarised as follows: (1) The CKF
uses cubature points with the same weights through the spherical-radial integration
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rule, which employs an analytical Probability Density Function (PDF) to capture the
mean and covariance of the posterior distribution using the total probability theorem
and subsequently uses the measurement to update with Bayes’ rule. From the perspec-
tive of numerical analysis, the third-degree cubature rule can be viewed as a UT of
special form with better numerical stability; (2) the CKF follows directly from the
spherical-radial cubature rule for numerically computing Gaussian-weighted integrals
whose important property is that they do not entail any free parameters. The UKF
introduces a non-zero scaling parameter, which defines the non-zero centre point
and is often associated with a set of weighted samples higher than that of the
minimal set of sigma points (Julier et al., 1995; Wan and Van der Merwe, 2001; Van
der Merwe and Wan, 2004); (3) the UKF-calculated estimation covariance matrix is
not always guaranteed to be positive definite, hence the decomposition of the covari-
ance matrix is unavailable. To improve the stability of the nonlinear filter, the CKF can
effectively avoid round-off errors of numerical computation, and it is more stable than
the UKF and EKF (Jia et al., 2013).

Investigation of the CKF algorithm on the navigation problem presented by Xu
et al. (2014) assumed that the Kalman-type filters are concerned with estimation of
the dynamics model from noisy measurements where the dynamic and measurement
processes can be approximated by Gaussian state-space models. Those nonlinear
filters are very sensitive to measurement errors when the distribution of the true
noise deviates from the assumed Gaussian model, often being characterised by high-
intensity measurement noise and heavy tail distributions. There is considerable motiv-
ation to consider robust statistical procedures to improve the performance of the CKF
in non-Gaussian environments, particularly in the presence of outliers.

Masreliez and Martin (1977) used the M-estimator to “robustify” the KF. Boncelet
and Dickinson (1983) recast the measurement update as a linear regression problem
and solved it using the M-estimator. Using the M-estimator, Yang (1991) robustified
the general Bayes estimator by which KF had been seen as a special case. An adap-
tively Robust Kalman Filter (RKF), capable of dealing with uncertainties in both
process and measurement models, was proposed in Yang et al. (2001) and Yang and
Gao (2006a; 2006b), in which the influences of measurement outliers were controlled
using the M-estimator. The Sigma Point Kalman Filter (SPKF) was robustified by
Karlgaard et al. (2007), focusing on the divided difference filter. As the statistical lin-
earization perspective of the UT is incorrectly employed in the work by Karlgaard
et al. (2007) and Wang et al. (2010), Chang et al. (2012a) robustified the measurement
update of the UKF using the M-estimator in a straightforward and intuitive manner.
Recently, the robust sigma point Kalman smoother was studied by Karlgaard (2015).
It should be noted that two kinds of nonlinearity exist, i.e., the original nonlinearity in
the measurement equation, and that brought by the re-weighting procedure of the M-
estimator, and the iteration becomes rather complex. If both nonlinearities were to be
accounted for in the iteration, it involves issues of iterative UKF (Chang et al., 2012b;
2012¢).

The Huber M-estimation methodology (Huber, 1981; Maronna et al., 2006; Gandhi
and Mili, 2010; Chang and Liu, 2015) is one of the robust techniques that is based on
the combination of minimum #; — and #» — norm estimator. The method has been suc-
cessfully used for robust state estimation, inertial navigation system and visual tracking
applications (Wang et al., 2010; Gao et al., 2014; Hou, 2014). The development of a
RKF uses the Huber technique applied to a linear regression problem at each
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measurement update (Kovacevic et al. 1992; Durgaprasad and Thakur, 1998). The
Huber M-estimation methodology is essentially based on modifying the quadratic
cost function in the filter framework, and works between smooth £, — norm properties
for small residuals and robust #; — norm properties for large residuals (Petrus, 1999).
Alternative functional equations, such as the Huber criterion and the hybrid #,/¢, cri-
terion have also been considered (Huber, 1973; Bube and Langan, 1997; Guitton and
Symes, 2003).

The robust Huber-based Cubature Kalman Filter (HCKF) algorithm integrates the
merits of the Huber M-estimation methodology and CKF. The CKF is used to avoid
the numerical instability and the Huber M-estimation methodology is incorporated to
handle outliers through reformulating the measurement information in the CKF
framework to provide robustness against deviations from Gaussian behaviour.

This paper is organised as follows. In Section 2, the preliminary background to the
nonlinear filter is introduced, where the UKF and the CKF will be reviewed. The
Huber M-estimate regression filtering strategy is presented in Section 3. In Section
4, some results from simulation and experiments are presented to evaluate GPS navi-
gation performance for the HCKF approach in comparison to those by the conven-
tional approach. Conclusions are given in Section 5.

2. THE NONLINEAR FILTERS. The nonlinear filtering deals with the case gov-
erned by the nonlinear stochastic difference equations:

X1 = f(Xg, k) + wy (1a)

Zj :h(xk,k)+vk (lb)

where the state vector is x; € R”, process noise vector w, € R”, measurement vector

7. € R, and measurement noise vector vy € R™. The vectors w; and v; are zero
mean Gaussian white sequences having zero cross-correlation with each other:

, i=k Ri, i=k
E[wkw?]:{%i‘ Pk ;E[vkviT]:{O/j iik;E[kafT]:O

forall i and k

(2)

where Q, is the process noise covariance matrix, Ry is the measurement noise covari-
ance matrix.

2.1.  Unscented Kalman Filter. The first step in the UKF involves the UT to gen-
erate a set of weighted samples/sigma points, which are deterministically chosen so that
they adequately capture the true mean and covariance of the random variable.
Consider an n dimensional random variable x, which has the mean x and covariance
P, and suppose that it propagates through an arbitrary nonlinear function f. The UT
creates 2n + 1 sigma vectors x (a capital letter) and weighted points 17

X0 =% X =%+ (Vi + WP) ;X =% — (V(n + V)P)]i=1,...n (3)

W 1
O e RS LS e I
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where (\/(n+ A)P); is the ith row of the matrix square root. /(n+ A)P can be
obtained from the lower-triangular matrix of the Cholesky factorisation; A =
a’(n+x) —n is a scaling parameter; a determines the spread of the sigma points
around x; k is a secondary scaling parameter; 3 is used to incorporate prior knowledge
of the distribution of X; W™ and W' are the weights for the mean and covariance,
respectively, associated with the ith point.

The sigma vectors are propagated through the nonlinear function to yield a set of
transformed sigma points,

yv,=/(X;)i=0,...,2n (5)

The mean and covariance of y; are approximated by a weighted average mean and
covariance of the transformed sigma points:

2n
o= w"y, (6)
i=0
2n
P,=> W -y —v)" (7)
i=0

To implement the UKEF, the set of sigma points are firstly created by Equation (3). After
that, the algorithm for implementation of the UKF is summarized in Table 1 (Tseng
et al.,, 2016). The UKF involves the time update (prediction) stage, i.e., Equations
(8)—(12), and the measurement update (correction) stage, i.e., Equations (13)—(17).

2.2.  The Cubature Kalman Filter. Like the UKF, the CKF is another type of non-
linear filtering approach without linearization of the nonlinear model. The first step of
the CKF algorithm is to approximate the mean and variance of the probability distri-
bution through a set of 2n (n is the dimension of the system model) cubature points.
The cubature points are then propagated through the nonlinear functions. The mean
and variance of the current approximate Gaussian distribution by the propagated
cubature points can then be calculated. A set of 2n cubature points are given by
[§;, w;], where §; is the ith cubature point and w; is the corresponding weight:

= \/ﬁ[l]l’ i= 1,2,...,]1 . —L .
i"_{—\/ﬁ[l]m in4lnt2 . ont =gy i=1h2 2 (18)

where [1],€ R" denotes the ith column vector of the identity matrix I,x,. Under the
assumption that the posterior density at time k — 1 is known, the steps involved in
the time and measurement updates are given by Equations (19)—(32), summarised in
Table 2. See Tseng et al. (2016) for further discussion.

3. THE HUBER-BASED REGRESSION FILTERING STRATEGY. As a re-
cursive minimum ¢, — norm estimation technique, the KF exhibits sensitivity to devia-
tions from the assumed underlying probability distributions.

3.1. The Huber M-estimate regression filtering. The technique that relies on
Huber’s generalised Maximum Likelihood (ML) methodology exhibits robustness
against deviations from the commonly assumed Gaussian probability density func-
tions and can solve the non-Gaussian distribution problem efficiently. The
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Table 1. Implementation algorithm for the unscented Kalman filter.

- Initialisation: Initialise state vector Xo| and state covariance matrix Pojo

- Time update

(1) The transformed set is given by instantiating each point through the process model

Gt = £ (Xix—1); 1 =0,...,2n ®)
(2) Predicted mean
2n )
Xpfk—1 = Z Wi ki1 )
=0
(3) Predicted covariance
2n i
P = Z VVi(()[(i,k\k—l = X1 [Ci -1 — K1)+ Qe (10)
=0

(4) Instantiate each of the prediction points through observation model

Zi i1 =h(Cpe-1) (11)
(5) Predicted observation
2n
Zyp1 = Z W,'(m)Z[.k\k—l (12)
=0
- Measurement update
(6) Innovation covariance
2n
P, = Z wi (Zig—1 — Zie ) [Ziger — Ziper]” + R (13)
i=0
(7) Cross covariance
2n i r
P, = Z VV[(()[(i,k\k—l = X111 -1 — Zifie—1] (14)
i=0
(8) Performing update
K; = PP} (15)
Xk = Xek—1 + Kie(Zx — Zge—1) (16)
Py = Pyt — KiPK] (17)
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Table 2. Implementation algorithm for the cubature Kalman filter.

- Initialisation: Initialise state vector Xgjo and state covariance matrix Pojo

- Time update

(1) Factorise the covariance
Piij-1 = Sk—l\k—lsz;l\kq (19)
(2) Evaluate the cubature points
Xik-1pk—1 = Sk—1pp—1& + Xe—1je-1 (20)

(3) Evaluate the propagated cubature points through the process model

X -1 = F(Xige—15-1) (21)
(4) Estimate the predicted mean
2n
Xpfk—1 = Z @i X ko1 (22)
=1

(5) Estimate the predicted error covariance

2n

Prj1 = Zl: X 1 X1 — X1+ Qe (23)
- Measurement update
(6) Factorize the covariance
Pt = Sk\kfls/{yf,l (24)
(7) Evaluate the cubature points
Xikk—1 = Srpr—18 + Xeppeo1 (25)

(8) Evaluate the propagated cubature points through observation model

Zi k-1 = h(Xpe—1) (26)
(9) Evaluate the propagated observation
2n
B = Y 0iigg (27)
=1
(10) Estimate the innovation covariance
2n
P = 0 Zippr Z s~ 12 + Re (28)

i=1
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Table 2. (Cont.)

- Initialisation: Initialise state vector Xo| and state covariance matrix Pojo

- Measurement update

(11) Estimate the cross-covariance
2n
T o =T
P.. = Z wiXi,k\k—l Z,‘_’/(\/\»f] —Xklk—1Zj|j—1 (29)

i=1

(12) Perform update state vector X4, and its covariance matrix Py

K, =P.P_/ (30)
X = Xik—1 + Kie (2 — Zi—1) (31)
Py = Pryo1 — K PK{ (32)

measurement update can be modified to enhance robustness using the Huber M-esti-
mation methodology.

To incorporate this mechanism into the CKF framework, it is necessary to reformu-
late the measurement update as a nonlinear regression problem between the state pre-
diction and the observed quantity, and then the nonlinear regression model has the
form (Chang et al., 2012a; Tsakonas et al., 2014)

Z) h(xk) Vi
. = + 33
[kal } { Xk O (33)
where z; is the measurement; X;,_; is the predicted state, which is obtained from the
time update of the CKF, and 8xy is the error between the true state and its prediction.

Denote
_ | Yk
o= | gt | (34
with
Elex] = 0and Elere/ | = [l})k Pk?1:| = A A]

where the term A; may be obtained by Cholesky decomposition, Ry, is assumed to be a
known noise covariance of vi, and Pka_l is the error covariance propagation.
Multiplying Equation (33) with A" yields the nonlinear regression model

7 = g(xx) + v (35)
where
- _ Zj
= A L?ku(—l ] (36)
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and

The covariance matrix of vy is the identity matrix, as can be seen from expanding the
expectation E[vxv]].

In Equation (35), the nonlinear regression problem can be solved efficiently for ro-
bustness using Huber’s generalised ML method, in which the solution is found by mini-
mising the cost function

m+n
Xy = arg minZP(UkA,i) (38)

i1
where vy ; is the ith component of the residual vector, vy, and p(-) is the score function
used to handle the outlier measurements or contaminated Gaussian; m is the dimen-
sion of the measurement. The Huber p — function used in the M-estimation is given by
1

1a
7 ki for|vk ;| <y

1 , forjvg| >y
~5V

where y is a tuning parameter. The p function is a blend of the #; — and £, — norm es-
timation functions, which provides #, — norm properties for small residuals to ensure
both quality and efficiency simultaneously with normal distribution and #; — norm
properties for large residuals to suppress the impact of outliers or contaminated
Gaussian noises.

If the p — function is differentiable, the solution to the nonlinear regression problem
can be found by deriving the cost function as

p(vk,i) = (39)

Y|Uk,i

ovns
D o) 5t =0 (40)

where ¢(vi ;) = p'(vk,;). By defining the y — function as y(vi ;) = ¢(vk )/ vk, and cor-
responding to the Huber density

N _ 1 for|vk | <y
y(ves) = {ysgn(vkj)/vk,,- for|vk | >y

The Huber M-estimation methodology makes use of the weighting matrix ¥j =
diag[y(vx ;)] to recast the measurement information. The weighting matrix ¥ can
be interpreted in terms of re-weighting the residual error covariance and constructing
the measurement process. The modified covariance is given by

(41)

St = AW AT (42)

The decomposition of the Sy matrix into two submatrices Sy, and Sy . corresponding
to the state update and state correction with measurements so that

5= % o | @)
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where the S, € R™" and Sy, € R, and the robust measure of correlation can be
expressed in the recursive filter as the CKF measurement-update.

3.2. The Huber M-estimation methodology-based cubature Kalman filter. The
Huber M-estimation methodology is robust to the outliers and ensures the accuracy
of the state estimation. To apply this method, the w— function is the component of
the residual vector vi. Specifically, when |v;; | < 7, the accurate estimation of the
system state reaches the expected behaviour demand and Huber-based filtering is
equal to the CKF measurement update because ¥, = I. On the other hand, when
[ug,i | > v, the CKF has a divergent trend due to the noisy signal contaminated with
outliers. The measurement update is modified to exhibit robustness using the Huber
M-estimation methodology. Defining

1ik = Sk,z (44)

as the modified measurement covariance, and replacing R, with Ry for operating the
CKF framework in the measurement update process leads to the HCKF.

The M-estimation problem in Huber-based regression filtering aims to minimise
Equation (38), which is essentially nonlinear. In general, the calculation procedure
of the RKF based on the M-estimation should be solved iteratively because the
reweight matrix is constructed based on the residuals which are further related to
the state parameter estimates. By setting the weighting matrix ¥y = diag[y(vi,)], an
iterative solution to Equation (40) can be obtained using statistical approximation
of the nonlinear function My (+). The implicit Equation (40) can be written in matrix
form,

M}Z\Pk (kak — 21() =0 (45)

which can be solved for x;. to give x; = (M,{‘I’/CMk)flM,Z‘I’kik. An iterative solution to
Equation (45) is expressed as

x/ = Ml M) T MY 7, (46)

where the superscript (5) is the iteration index. The method can be initialised using the

iteratively reweighted least squares solution: x,(co) = (MZMk)_lMgik. The iteration
will converge if the w function is non-increasing when using the Huber p function.
The Huber M-estimation methodology can be iterated until convergence or can be
carried out through only one fixed iteration step to save the computational costs.

The one-step Huber update is summarised as follows: (1) Calculate X; xx—1, Zi k-1
and 2, using Equations (24)—«(27); (2) Form a redundant observation vector shown
as in Equation (33); (3) Solve the nonlinear regression model, Equation (35), using the
solution based on Equation (46); (4) Update the modified covariance matrix using
Equation (42); (5) Perform the modified measurement covariance Rj = Sk, and
replace Ry with Ry for operating the CKF framework in Equation (28). A high level
operation of the HCKF is shown in Figure 1(a). Figure 1(b) presents the architecture
of the GPS navigation processing using the HCKF implementation. The block indi-
cated by the dashed-line is the Huber M-estimation mechanism for reformulating
the measurement information of the CKF framework.
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H Huber M-estimator J*—T ' '

k=k+1 (R Sy e i
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Figure 1. (a) High level operation of the HCKF. (b) Configuration of the GPS navigation
processing using the HCKF.

4. GPS NAVIGATION PROCESSING AND PERFORMANCE
EVALUATION. Both the Position-Velocity (PV) model and the Position-Velocity-
Acceleration (PVA) model are linear. The nonlinear dynamic model that provides
more adequate description of the vehicle is adopted from Jwo and Lai (2008).

4.1. Nonlinear dynamic modelling ]jor GPS navigation. Consider a vehicle moving
at the velocity represented as V;, = uyi + vij + wpk. The velocity in the fixed frame in
terms of Euler angles and body velocity components has the relation

he CoCy  SoSeCy — CoSy  CoSeCy + SoSy | [ us
Vi=|J|=|GCSy SoSsSy+ CoCy CoSoSy—SoCy | | m
z —S@ S@Ce C(p C9 Wp

where the following notations are used: S¢ = sin(®), Cq = cos(®), Sp = sin(6),
Sy =sin(y), Sy =sin(y), and C, = cos(y). Suppose that the non-holonomic con-
straint is applied, only the longitudinal movement is considered and the lateral slip-
page is neglected. In case the velocity in the x-component of the body frame is
considered, ||Vy|| = |[upi]| = V, the dynamic process model of the GPS receiver,
when written in the form x = f(x, f) + u(z), can be represented as

X X1 [V cosOcosy ] u
b Xy V cosOsiny U
z X3 —V'sin@ Uz
d X4 0 Uy
0|=|x| = 0 + | us (47)
1}/ XG 0 Ug
I:/ jC7 0 uy
l? .568 d usg
L d | _Xg i L 0 | L U9 |
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The process noise covariance matrix for this nonlinear model has the form

diag(q“, e ,q77) 0
Q= qss 498 (48)
0 q39 499

where diag(qi1,...,q77) denotes the 7 x 7 diagonal matrix, and ggs = S/Af + SgAt3/2;
qog = SgAZZIZ, qgo = SgAt2/2; {99 = SgA[.

If only the pseudorange observables are available, the expected pseudorange hy (X; )
based on the GPS satellite position and the a priori estimate X, is given by

hi(%7) = /(i — %)+ (5 — 9 + (5 — )’ (49)

The elements of the measurement model Hy, are the partial derivatives of the predicted
measurements with respect to each state, which is an n X 9 matrix:

n - m

ex’ ey egl) 0
X .
o S 0
e e® 0000 1 0
where the line-of-sight vector from the user to the satellites is (e(xi), eg), el

X X0 :jf;ZA—yi; o) —

i i ri

2;—21'

o) =

4.2.  Simulation test. The commercial software Satellite Navigation (SATNAV)
Toolbox by GPSoft LLC was employed for generating the satellite positions and pseu-
doranges. The scenario for simulation used in this paper is adopted from Jwo and Lai
(2008). The three dimensional vehicle trajectory and the vehicle velocity in the east,
north, and altitude components is shown in Figure 2. The description of the vehicle
motion is provided in Table 3. The dynamic process model used in the EKF is the
PV model, while the nonlinear model has been applied to the other approaches. The
spectral amplitudes for the clock model, Sy = 107%sec and S, = 1072sec™!, were
used to find the Q, matrix as in Equation (48) for the nonlinear dynamic model.

It is assumed that the Differential GPS (DGPS) mode is used, and most of the re-
ceiver-dependent errors are removed. We assume the remaining errors, mostly
caused by multipath errors and thermal noise, follow a Gaussian mixture distribution
of the form, defined by the PDF of the form

s =Gz Gl Gl o

or equivalently by X ~ (1 — &)N(0,0?) + eN(0, 03), where o, and o are the standard
deviations of the individual Gaussian distributions, and ¢ is a perturbing parameter
that represents error model contamination. In order to demonstrate the validity of
the robustness of the proposed algorithm in non-Gaussian distributions, the perturbed
conditions £ = 0-6 (i.e., with 60% contamination), and o, = 100, = 10 X 1 (m) have been
used. Figure 3 shows the Gaussian mixture model for the pseudorange errors in the
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Figure 2. The scenario for simulation: (a) three dimensional trajectory of the vehicle and (b) the
east, north, and altitude components of the vehicle velocity.

Table 3. Description of the vehicle motion.

Time interval (sec) Motion

[0-50] [101-150] [201-250] [351-450] Constant velocity

[51-100] Constant acceleration
[151-200] Variable acceleration

[251-350] Circular motion, clockwise turn

simulation. The initial measurement noise variances r, value are set to be 8 m?. The
parameters utilised are a =14, §=2-5, ¥ =0 in the UKF; y=1-345 in the CKF, for
which the same value of the bounded-influence estimation selected by Huber (1981)
is used.

The results are shown in Figures 4-6. Prior to the incorporation of the Huber M-es-
timation mechanism, the GPS navigation accuracies based on the conventional non-
linear approaches: EKF, UKF and CKF are presented, shown in Figure 4, where
the merits of the CKF have been shown. After that, evaluation of the results based
on the nonlinear approaches compared to the Huber-based M-estimation CKF ap-
proach is conducted. Figure 5 provides comparison for the three types of filters:
UKEF, CKF, and HCKF. To show the benefit of the Huber M-estimation methodology,
the comparison among Huber-based EKF, Huber-based UKF and Huber-based CKF
has also be presented, shown in Figure 6. The HCKF, which inherits the virtue of ro-
bustness, shows the best performance among the various approaches. The simulation
results show the superiority of the HCKF in highly dynamic situations which lead to
the model to be mismatched to the actual situation. The improvement in robustness for
the non-Gaussian measurement errors has also been presented.

Several important remarks are given as follows.

(1) In the four time intervals, 0-50, 101-150, 201-250, 350-450 s, the vehicle does
not conduct manoeuvring and is performing constant-velocity straight-line
motion. The navigation errors of all the nonlinear filters are not significantly dis-
tinguishable between the six methods.

(2) In the three time intervals, 51-100, 151-200, 251-350 s, the vehicle is conducting
manoeuvring (constant acceleration, variable acceleration, or circular motion).

https://doi.org/10.1017/50373463316000692 Published online by Cambridge University Press


https://doi.org/10.1017/S0373463316000692

540 CHIEN-HAO TSENG AND OTHERS VOL. 70

0.25
e (GAUSSIAN 1: Hy =0.0, =1
Gaussian 2: Hy =O.c:2 =10
0.2} B
=2
E 0.15 E
z
1., |
o

g5

o -50
0 50 100 150 200 250 300 350 400 450 UG 50 100 150 200 250 300 350 400 450 O 50 100 150 200 250 200 350 400 450
Time (sec) Time (s0¢) Time (sec)
East errors North errors Altitude errors

Figure 4. Comparison of positioning errors for EKF, UKF and CKF.
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Figure 5. Comparison of positioning errors for UKF, CKF and HCKF.

The model mismatch to the actual situation leads to increased errors, as can be
seen from the solution using the standard EKF. The CKF is about to converge in
the high dynamic regions where there still exist noticeably large errors for the
UKF-based solutions. However, performances based on the nonlinear filters
are sensitive when the actual noise distribution deviates from the assumed
Gaussian model. To further improve the performance of the CKF, a robust tech-
nique where the Huber M-estimation mechanism is incorporated can be utilised.
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Figure 6. Comparison of positioning errors for HEKF, HUKF and HCKF.

(3) When the GPS pseudorange observables are contaminated with non-Gaussian
measurement errors, the CKF can adequately capture the non-Gaussianity
and demonstrate noticeably better performance. Due to the appropriate
tuning via the Huber M-estimation methodology, the HCKF exhibits robust be-
haviour and therefore outperforms the CKF when the non-Gaussian measure-
ment errors are involved.

(4) The HCKF associates the contaminated measurements with an increase in the
measurement covariance, causing the reformulated error covariance. This modi-
fied covariance inflation is known to cause an increase in the state estimation
error due to the fact that all measurements are processed as if they were outliers.

(5) The HCKF and CKF filters give comparable results to each other for the posi-
tioning error during the non-manoeuvring intervals, while the HCKF provides
a substantially improved performance in the high dynamic regions (51-100,
151-200, and 251-350 s), where it adequately captures both nonlinearity and
non-Gaussianity. The HCKF is expected to provide further improved perform-
ance since the residual error covariance and measurement information used in
computing the Huber M-estimation is the ML estimates for perfectly compensat-
ing against deviations from Gaussianity. The navigation results show that the
HCKF demonstrates superior performance as compared to the other approaches.

4.3.  Outdoor tests. Two tests conducted outdoors were carried out to further val-
idate the effectiveness of the proposed algorithm. The two tests conducted at the
National Taiwan Ocean University (NTOU) campus involved a field test and a
rooftop experiment. The data collected by the Ashtech GPS receiver (DG14
module) was used for processing to perform a comparative study on navigation per-
formance using various nonlinear estimators. The sampling rate of the measurements
is 1 Hz. The measurement noise variances r,, value are set to be 100 m?. The test results
were obtained by post-processing of logged sensor data using the Matlab® software.
The high accuracy relative positioning solution was used as the reference trajectory.

4.3.1. Field test. The first dataset was collected on the sports field at the univer-
sity campus, shown in Figure 7. The raw data was collected for 140 seconds. In this test,
the number of visible satellites varied between eight and nine in the clear open sky. To
investigate the effect due to the contaminated non-Gaussian measurement errors, add-
itional errors in the GPS pseudorange observables are added. The errors are assumed
to possess the distribution again in the form as in Figure 3. Figure 8 shows the posi-
tioning errors for EKF, UKF and CKF. The CKF framework possesses some
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Figure 8. Positioning errors for EKF, UKF and CKF - the field test.

capability to deal with the non-Gaussian measurement errors/outliers. A comparison
of the positioning errors for the three types of filters: UKF, CKF, and HCKEF, is
shown in Figure 9.

4.3.2. Rooftop experiment. The second dataset selected for performance evalu-
ation was collected on the rooftop of the department building. The trajectory for
the rooftop experiment is shown in Figure 10, where a close look at the trajectory is
also provided using the data collected by the Ashtech GPS receiver. The picture
shown inside the trajectory based on the Ashtech GPS receiver is a zoomed-in shot
for the upper right corner where a red tower is located. The starting point of the tra-
jectory is at one side of the red tower, and the terminated point at the other side. In this
experiment, the raw data was collected for 124 seconds. The rooftop environment pre-
sented a negative impact on the quality of GPS signals in such a challenging multipath
environment. In this environment, there are several reflective objects on the rooftop,
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Figure 9. Positioning errors for UKF, CKF and HCKF- the field test.
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Figure 10. The trajectory for the rooftop experiment by Google map (left, circled area) and by the
data collected by the Ashtech GPS receiver (right), respectively.
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Figure 11. Number of visible satellites for the rooftop experiment.
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Figure 12. Positioning errors for EKF, UKF, CKF and HCKF-the rooftop experiment.

including the door that provides access to the roof. In addition, there are several other
antennae in the vicinity. Multipath reflections from rooftop objects introduced a sig-
nificant number of non-Gaussian errors to the GPS pseudorange observables.
Furthermore, some of the GPS signals were blocked by the mountains in the south
such that the number of visible satellites varied between four and seven, as shown in
Figure 11. Figure 12 presents the positioning errors for the four approaches: EKF,
UKEF, CKF and HCKF.

The results for the two outdoor tests do not try to demonstrate the superiority of
the HCKF in high dynamic environments, but exhibit effectiveness against the non-
Gaussian measurement errors. In the above three illustrative examples, the improve-
ment due to the incorporation of the Huber M-estimation mechanism has been
demonstrated. The GPS positioning errors clearly show the superiority of the HCKF
algorithm.

5. CONCLUSIONS. This paper has presented a Huber-based Cubature Kalman
Filter (HCKF) for GPS navigation processing. The measurements are GPS pseudor-
ange observables contaminated with non-Gaussian errors. The cubature Kalman
filter is based on the third-degree spherical-radial cubature rule to propagate the cuba-
ture points through the nonlinear functions, so as to solve the integration in the
Bayesian filtering problem for numerically computing the multivariate moment inte-
grals. The Huber M-estimation methodology is essentially based on Huber’s general-
ised ML estimation theory, which exhibits robustness against the deviations from the
Gaussian distribution.

The HCKF algorithm integrates the merits of the Huber M-estimation method-
ology to handle non-Gaussian errors or outliers and the cubature Kalman filter to
avoid the numerical instability problem and improve the estimation accuracy in
high-dimensional systems. The CKF framework was recast in the form of a sequence
of nonlinear regression problems to be solved, at each measurement update using the
robust Huber M-estimation methodology so as to enhance the CKF performance. In
addition to the simulation test, the real GPS navigation data is also applied to validate
the proposed algorithm. Performance comparisons on the six types of filters, EKF,
UKF, CKF, HEKF, HUKF, and HCKF have been presented, among which the
HCKEF algorithm shows superior performance in GPS navigational accuracy.
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