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Abstract

The notion of (p, k)-epi mappings is introduced. The properties of such mappings are studied and the
results obtained are applied to some differential equations.
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Introduction

Furi, Martelli and Vignoli [1] have introduced the notion of p-epi mappings as
follows:

If E and F are normed linear spaces, £2 c E is a bounded open set and
p e F then a continuous mapping f:Q-*F with f(x)=t p for any
x e 3S2 is called />-epi if for each compact mapping h: Q -* F with
h = 0 on dQ, the equation f(x) = h(x) + p has a solution in fi.

In their paper the authors have shown that the />-epi mappings have 'existence',
'boundary dependence', 'normalization', 'localization' and 'homotopy' properties
similar to those of topological degree theory. The theory of />-epi mappings is
based on elementary tools such as the Schauder fixed point theorem, Urysohn's
lemma, etc.
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104 E. U. Tarafdar and H. B. Thompson [2 ]

Unlike the case of degree theory p-epi mappings may act between different
spaces. These theories are normally used to establish the existence of solutions of
nonlinear problems. However in applications such as to differential and func-
tional differential equations the problems occur frequently as nonlinear mappings
acting between different spaces. Thus the theory of p-epi mappings is directly
applicable to such problems while to apply degree theory it is necessary to
reformulate the problems as nonlinear self mappings acting on some space.

In this paper we have introduced the concept of a (p,k)-epi mapping by
allowing the mapping h to be a fc-set contraction rather than just a compact
mapping and requiring E and F to be Banach spaces. Thus we are dealing with a
class of mappings smaller than that of p-epi mappings. However, by restricting /
to be a (p, k)-epi mapping we can solve the equation f(x) = p + h(x) for more
general mappings h; this is necessary in some applications.

We have applied our theory of (p, A;)-epi mappings to a number of problems.
The general outline of our paper is as follows:

Section 1—preliminaries and background work;
Section 2—(p, fc)-epi mappings and their properties;
Section 3—(p, k)-epi mappings on the whole space;
Section 4—applications.

1. Preliminaries. Measure of noncompactness and set contraction

In this section we mention the well-known concepts of measure of noncompact-
ness and k-set contractions and some of their properties. We also prove some
results which we will need for the subsequent development of our theory.
Although the section may be considered as ground work, some results however
have their own independent interest. We should point out that some of the results
in this section are not new. However, we include their proofs for the completeness
of presentation and convenience of the readers.

DEFINITION 1.1. Let X be a metric space and A c X a bounded subset. Set
&(A) = {e > 0: A can be covered by a finite number of sets of diameter less than
e}. Then a(A) = inf A(̂ 4) is defined to be the measure of noncompactness of A.
This notion of measure of noncompactness was introduced by Kuratowski [6].

Another notion of measure of noncompactness was introduced by Gohberg,
Goldstein and Markus [3] in the following manner:

Let o(A) = {e > 0: A can be covered by a finite number of balls of
radius e}. Then fi(A) = inf o(A) is called the (ball) measure of non-
compactness of A.
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In what follows we deal only with the measure of noncompactness a. However,
everything we do here will also hold with the measure of noncompactness B and,
for that matter, with any other measure of noncompactness so long as it has the
basic properties of a measure of noncompactness.

Properties of the measure of noncompactness. Let A and B be bounded subsets
of a metric space X. Then

(1) a(A) = 0 if and only if A is relatively compact;
(2) A c B implies a(A) < a(B);
(3) a{A) = a(A), where A denotes the closure of A;
(4) a(A U B) = max(a(A),a(B)).

Furthermore, if X is a normed space, then
(5) a(CoA) = a{A) where Co A denotes the convex hull of A, and
(6) a(A + B) < a(A) + a(B).
For proof of these we refer to Lloyd [7] or Martin [8].

DEFINITION 1.2. A continuous mapping / : X -* Y of a metric space X into a
metric space Y is said to be a k-set contraction if for each bounded subset A of X,
a(f(AJ) < ka(A), where k > 0, and is said to be a condensing mapping if for
each noncompact bounded subset A of X, a(f(A)) < a(A).

In the sequel we denote by 8(A) the diameter of a bounded subset A of a
metric space X

LEMMA 1.1. Le/ Q k a nonempty bounded subset of a metric space X and let
A c [0,1] X S2. Let v(A) = { x e S : (f, x) e ^ /or some f e [0,1]}. 77ie«

a(A).

PROOF. We first show that a(w(^4)) < a(A). Let e > 0. Then there exists a
finite number of subsets Dv D2, • • •, A. °f ^ with ^( A) < a ( ^ ) + e f°r ' =

l ,2 , . . . ,n such that A c U^jZ),, Clearly w(yl) c U?»MA) and 5(w(2),)) <
8(D,) < a(v4) + e. Thus a(7r(v4)) < a(A) + e. Since e > 0 is arbitrary, a(w(^))
< a(^). Now A c [0,1] X w(̂ 4) SO a(A) < a([0,l] X ir(A)). Thus it suffices to
show that a([0,1] X n(A)) < a(v4). Now given e > 0 there exist a finite number
of subsets £>, of ir(A) with S(D,.) < a(w(v4)) + e/2 for i = 1,. . . , m such that
ir(A) c U . I J A . Let 7;. = [(/ - 1)//, ///] for i = 1,. . . , / where 1// < e/2. Thus
[0,l]X7rO4)cU1 < 1 < m,1 < ; < /7} X A and 8(7} X Z>,)< a(ir(.4)) + e. Thus
a([0,1] X IT(A)) < a(w(^)) + e. Since £ was arbitrary, the result follows.

THEOREM 1.1. Let X and Y be metric spaces and £2 a bounded subset of X. Let
H: [0,1] X Q -* Y be a k-set contraction and </>: £2 -> [0,1] be a continuous
mapping. The mapping h: Q -* Y defined by h(x) = H(<j>(x), x), x e fi, is a k-set
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contraction. (Throughout this paper we use the metric p(-, •) on [0,1] X X defined
by p((t, x), (i, 3c)) = max(|f — i\, d(x, x)) where d is the metric on X.)

PROOF. Let S c B , then a(h(S)) < a(H(<t>(S) X S)) < ka($(S) X S ) =
ka(S) by Lemma 1.1. As h is continuous, the proof is complete.

We need the following two lemmas to prove our next theorem.

LEMMA 1.2. Let A be a nonempty bounded subset of a metric space (X,p) and for
e > 0, let B(A,e) = \JxeAB(x,e) where B(x,e)= {y e A: p(x, y) < e}. Then
8(B(A, e)) < 8(A) + 2e. As before, 8 stands for diameter.

PROOF. Let u, v <E B(A, e). Then u e B(x, e) and v e B(y, e) for some x,
ye A. Hence p(u, v) < p(u, x) + p(x, y) + p(y, v) < 8(A) + 2e.

LEMMA 1.3. Let A be as in Lemma 1.2. Then a(B(A, e)) < a(A) + 2e.

PROOF. This is immediate from Lemma 1.2 and definition of a.

For the rest of the paper, unless otherwise stated E and F will denote real
Banach spaces and fi an open bounded subset of E. We will also denote by

the set of all A>set contractions f: £1 -* F.

THEOREM 1.2. Let h: [0,1] -* 2 .̂(12) be a continuous mapping where ^ ( f t ) is
equipped with the topology of uniform convergence. Let H: [0,1] X fi -> F be
defined by H(t,x) = h(t)(x). Then H is a k-set contraction.

PROOF. Let S c [0,1] x fi. Then clearly H(S) c H([0,1] x ir(S)). Given e > 0,
there exists, by uniform continuity of h, points tu t2,..., tm+l with 0 = t1 < t2

< ' ' " <tm< lm+i = 1 s u c h that \\h(t)(x) - h(r)(x)\\ < e whenever I , T G [/;,
f,+i]> 1 < J < m, J c e Q . Thus for (t, x) e [0,1] X w(S), there is tt, 1 < /' < m
such that | | / I (^,)(A:) - h(t)(x)\\ < e. Hence it follows that

(1) tf([0,l]x*(S))c \jB(h(ti)(HS)),e).
i=i

However

a(h(t,)(v(S))) < ka(w(S)) for i = 1 , 2 , . . . . m

=$ /:a(5) by Lemma 1.1.
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Hence using (1), Lemma 1.3 and properties of measure of noncompactness we
obtain a(H(S)) < a(H([0,l] X w(S))) < ka(S) + 2e. But since e > 0 is arbi-
trary, the theorem is proved.

THEOREM 1.3. Let E and F be normed spaces and Q c E a bounded open set. Let
h: Q -» F be a k-set contraction such that h{x) = 0 for all x e 3fi, where 9S2
denotes the boundary of 12. Let h: E -> F be defined by

' h(x)

Then h is a k-set contraction.

PROOF. Let S cz E be a bounded set. If S n 12 = 0 then h(S) = 0. So
a(h(S)) = 0 < ka(S). Now let S n 12 * 0 . Then a(h(S n 12)) = a(/i(S n 12))

n 12) < ita(S) (by property 2). Also h(S) c A(S n 12) U {0}. Hence
n 12)) < ka(S). Thus the result follows as h is continuous.

THEOREM 1.4. (1) (Fixed Point Theorem of Darbo). If D c E is a closed
bounded convex set andf: D -* D is a k-set contraction with k e [0,1), then f has a
fixedpoint.

(2) If D is as above andf: D -* D is a condensing mapping, then f has a fixed
point.

PROOF. See Martin [8], pp. 125-127.

We will also need the following notion of a A>proper mapping. We first recall
that a continuous mapping / : X -» Y of a topological space X into a topological
space Y is called proper if for every compact subset K of Y, /"1(^T) is compact.
Following this, given k > 0, we define a mapping / : £2 -> F to be k-proper if / is
continuous and a(f'\S)) < A;a(5), for each bounded set S c F. By virtue of
property 1 of the measure of noncompactness if / is a ^-proper mapping for
some k > 0, then / is proper.

THEOREM 1.5. Let f: £2 -> F be kx-proper and h: S2 -* F a k-set contraction.
Then for each bounded set S c F,

«[(/- h)-\s)] < kia(S) + k,ka\{f- h)-\S)\.

PROOF. Let set ( / - h)'\S) = P. Let x e P. Then there exists y e S such
that y=f(x)-h(x), that is, f(x) = y + h(x), that is, x <= f~\y + h(x)).
Thus it follows that P Q f~\S + h(P)). Hence a(P) < a t / ' 1 ^ + h(P))] <
Jtia(S + h(P)) < fci[o(S) + o(A(P))] < kltx(S) + kxka(P).
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COROLLARY 1.1. Letf: Q -* Fbe kx-proper and h: fi -> Fbe compact (that is,
h is continuous and maps each bounded set onto a relatively compact set). Then
(/— h): Q -» Fis k\-proper.

PROOF. Since k = 0, the corollary follows from Theorem 1.5.

Our next theorem will find application in Section 3 and also furnishes an
example of a ^-proper mapping for some k.

Let L: E -* F be a bounded linear Fredholm operator of index zero. Then we
can write E = M © N and F = U © V where N = N(L) = the kernel of L and
U = R(L) = the range of L, dimN = dimF < oo. Let P: E -> N and Q:
F -* V be continuous projections. Also let L: M -> U denote the restriction of L
to the closed subspace M, and <>: N -* V be an isomorphism. Then it can easily
be seen that L + <j>P is an isomorphism.

THEOREM 1.6. Let L: E -* F be a bounded linear Fredholm mapping of index
zero. Then there exists a linear compact mapping K such that L + K is
an isomorphism and is a k = \\LTl\\-proper mapping (in the sense that
a((L + K)-\S)) < ka(S) for each bounded set S c F).

PROOF. NOW K = <̂ P. Let S c F be bounded and let y e S. Thus y = u + v,
where u e ( / and v e V. Set x = (L + K)'ly = m + n, where m e M and
n G N. Thus (L + AT))(/w + n) = u + v so Lw + ATn = u + y. Hence v = Kn
and « = Lm so that (L + K)'\S) c L-1^/ - Q)(S)) + 4>'\Q(S)). Thus
o((L + * r 1 ^ ) ) < o C l - ^ / - <2)(S))) + a(^1(e(5))). Now *-1(C(S)) is
compact so afa-^GCS))) = 0 and a((L + K)-\S)) < aCL"1^/ - Q)(S))) <
WL^Wadl - QXS)). It suffices to show that a((I - Q)(S)) < a(S). Now
(/ - (2)(S) QS- Q(S) SO a ( ( 7 - e)(5)) < a(S) + a(Q(S)) and again since
Q(S) is compact a(Q(S)) = 0, and the result follows.

REMARK 1.1. From the proof of the above result we have a(S) = <x((I - 2X51)),
since S c ( / - g)(S) + Q(S) so o(S) < o((7 - Q)(S)) + a(Q(S)) =

2. Epi mappings

As we have already indicated, throughout the rest of the paper, unless other-
wise stated E and F will denote real Banach spaces and fi an open bounded
subset of E.
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DEFINITION 2.1. A continuous mapping / : £2 -* F is said to be O-admissible
(/>-admissible) if f{x) * 0 (f(x) * p e F) for x e 3S2.

Before stating our next definition we recall (Furi, Martelli and Vignoli [1]) that
a O-admissible mapping / : S -> F is called O-e/»z if for each compact mapping h:
Q -* F with h(x) = 0 on 9fi the equation / ( x ) = fc(;c) has a solution in fi. A
/^-admissible mapping / : Q -* F is called p-epi if the mapping f — p defined by
( / - />)(*) = / ( * ) - P, x e H is 0-epi.

DEFINITION 2.2. A O-admissible mapping / : Q -* F is said to be (0, k)-epi if
for each k-set contraction h: Q -* F with h{x) = 0 on 3fi the equation f(x) =
h{x) has a solution in fl. Similarly a /^-admissible mapping / : fi -» F is said to
be {p, k)-epi if the mapping f — p defined by ( / — />)(*) = f(x) — p , x e J2, is
(0, &)-epi.

REMARK 2.1. Since every compact mapping is a fc-set contraction it follows that
every (0, /c)-mapping is 0-epi and every (p, fc)-epi mapping is p-epi. In fact, the
class of {p, 0)-epi mappings is strictly larger than that of (p, k)-epi mappings.

A little later we will give an example of a 0-epi mapping which is not (0, A:)-epi
for some k. However, the importance of studying (/>, k)-epi mappings lies in the
fact that a (p, k)-epi mapping is in a sense more solvable at the point p than a
p-epi mappings. This can be made clear by introducing the following terminology.

Measure of unsolvability. Let / : $2 -» F be a /^-admissible mapping and
•^(/> P) = {k > 0: there exists a k-set contraction g: Q -» F with g = 0 on 3fi
such that the equation f(x) — p = g(x) has no solution in £2}. We define

"K/./0 =J\ -t Al t \ r*
\ oo ilA(f,p) = 0.

We call y(/ , /?) the measure of unsolvability of / at p. Thus y(f, p): A(ti, p) ->
[0, oo] is a well defined mapping, where A(Q, p) is the set of all /»-admissible
mapping / : Q -» F. It then follows from the above definition that for a ( p, 0)-epi
mapping / : U -» F, y(/, /?) > 0 while y(/, />) > /c for a (/>, /:)-epi mapping / :
B ->F.

We recall that a mapping of the form / - h is called a compact vector field
where h: Q -* E is a compact mapping and / is the identity on E. (See Granas
[4]-)

LEMMA 2.1. Let (I — h): Q -» E be a compact vector field and assume that
h s 0 on 3fl. Then y ( / , p) > 1 if and only if p e J2, where f = I — h.
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PROOF. First note that y(f,p) is defined only when / is ^-admissible, that is
when f(x) = x — h(x) =t p for all x e 3S2. This implies that p £ 9fi as h = 0
on 9S2. Thus p e E \ 30.

Now suppose that p e S and let g: £2 -> E be a fc-set contraction with
0 < k < 1 and g s O o n 3S2. Setting /(*) = p + h(x) + g(x), x e i l w e see that
/ is a A>set contraction. We define / : £ - > £ by

if JC « Q.

By Theorem 1.3, / is a k-set contraction and therefore /(fl) is bounded. Let
M = sup{||/(jc)||: ^ e 0 } a n d 5 = { x e £ : ||JC|| < M). Then the restriction of h
to the closed convex ball B is a selfmapping and remains a £>set contraction.
Hence by Theorem 1.4 there exists a point x0 e 5 such that /(JC0)

 = *o- ^ow
JC0 e S, for otherwise /(x0) = p = x0 which will contradict the fact that p e £2.
Thus x0 G fi and x0 = l(x0) = p + h(x0) + g(x0), that is f(x0) -p = g(x0) as
required. Next suppose that y(/, p) > 1. Let g = -A. Then g is a O-set contrac-
tion and therefore f(x0) — p - g(xQ) = 0 for some x0 e fi. Hence p = x0 e fl,
as required.

EXAMPLE 2.1. More generally, let h: £2 -> £ be a A>set contraction such that
A: e [0,1) and p £ (/ - A)(3fi). We also assume that the (Nussbaum [9]) degree,
d(f,Sl,p)*O where / = / - h. We choose e > 0 sufficiently small that k + e < 1
and consider a [1 - (k + e)]-set contraction g: fi -> 2? such that g = 0 on 3fi.
Then clearly A + g is a (1 - e)-set contraction and h + g = A on 3J2. Hence by
the boundary dependence property of the Nussbaum degree d(I — h,ft, p) =
d{I — (h + g), S,/») =£ 0. Hence by the existence property of the degree there
exists a solution x0 e $2 of the equation /(JC) - p = g(x), that is y(f, p) ^ 1 - k.

EXAMPLE 2.2. Now we give an example where d(f, Q, 0) = 0 but / is (0, k)-epi,
for all k. Let £ = R, the real line, fi = (-2,0) U (0,2) and / : S -» E be defined
by / (*) = x2 - 1. Clearly d(f,Q,Q) = 0 but y(/,0) = oo. To see that y(f,0) =
oo let g: fi -» £ be continuous and let g s 0 on 3i2. Now we note that d(f | [02],
(0,2),0) - 1. S ince / - g = / o n 3((0,2)) we have d(f-g\ [02],(0,2),0) = 1. The
conclusion follows from the definition of y.

We now return to (p, k)-epi mappings and prove some of their basic proper-
ties.

EXISTENCE PROPERTY. Iff:Q^>Fisa(p, k)-epi mapping, then the equation
f(x)=p has a solution in B.
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PROOF. Using h(x) = 0 on Q in the definition of (p, k)-epi, we obtain a
solution of the equation f(x) = p in S2.

NORMALIZATION PROPERTY. The inclusion mapping i: fi -» E is (p,k)-epi for
k G [0,1) if and only ifp G £2, that is, y(i, p)> \ if and only ifp G £2.

This is a special case of Lemma 2.1 with h = 0 in J2.

LOCALIZATION PROPERTY. / / / : fi -> Fis (0, k)-epi and f ~\0) is contained in an
open set 0 t c J2, then f restricted to ilx is also (0, k)-epi.

PROOF. Let h: Slx -* F be a fc-set contraction such that h = 0 on 3 ^ . Define
A: £ -• F by

Then A is, by Theorem 1.3, a &-set contraction and hx, the restriction of h to B,
is, therefore, a fc-set contraction and obviously hx = 0 on 3S2. Thus the equation
/(x) = /JX(X) has a solution x0 e fl. Now /"x(0) c fl: implies that x0 e flx.
Therefore / (x) = h(x) has a solution x0 e fl1( as required

HOMOTOPY PROPERTY. Lef / : H -» F be (0, fc)-e/w a«rf h: [0,1] X Si ^> F be an
a-set contraction with 0 < a < k < 1 SMC/I f/ia? /i(0, x) = 0 for all x e fi. Further
let f(x) + h(t, x) * 0 /or a// x e 312 W /or a// f e [0,1]. Then /(•) + A(l, •):
Q-> Fis (0, Jt - a)-epj.

PROOF. Let g: £2 -» F be a (/c - a)-set contraction such that g = 0 on 3fi. The
set S = (x e H: /(x) + /i(^,x) = g(x) for some t e [0,1]} is a closed set since
/ , g, /i are continuous and [0,1] is compact. Note that g being a (k - a)-set
contraction is a fc-set contraction. Hence there exists x0 G £2 such that / (x0) =
g(x0). Thus /(x0) + /i(0, x0) = g(x0) and S is nonempty. Moreover S and 3J2
are disjoint. Hence by Urysohn's Lemma there exists a continuous function </>:
Q -» [0,1] such that </> = 1 on S and <f> = 0 on 3J2. We now consider the function
h: fl -» F defined by ^(x) = g(x) - A(«J>(x), x), x e fl. In view of Theorem 1.1
h is a fc-set contraction. Also A = 0 on 3fl. Hence the equation / (x) = A(x) =
g(x) - h(<j>(x), x) has a solution x0 e £2. This implies x0 G S. Hence /(x) +
A.(l, x) = g(x) has a solution x0 G i2.

Thus y(-, p) has the essential features of a degree theory.
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B O U N D A R Y D E P E N D E N C E P R O P E R T Y . Let f: ft -> F be ( 0 , k)-epi and g : Q , ^ F
be an a-set contraction with 0 < a < k < 1 and g = 0 on 9ft. Then ( / + g):
ft -> Fis(0,k - a)-epi.

PROOF. Let h be a (fc - a)-set contraction and /i = 0 on 9ft. Then (A - g):
0 -• .F is a jfc-set contraction and (h — g) = 0 on 9ft. Hence /(x) = (h - g)(x),
that is, / (x) + g(x) = /I(JC) has a solution in ft.

We now consider the /c-proper mapping which we have introduced in Section 1.
Since every ^-proper mapping / : ft -* F is proper, it follows that if / : ft -> F is
fc-proper, then /(ft) is closed and hence /(ft) = /(ft), by continuity of / .

THEOREM 2.1. / / / : J2 -> F K (0, k)-epi with k e [0,1) and proper, then f maps
B o/j/o a neighborhood of the origin. More generally, if U is the connected
component o/ir\/(9J2) containing the origin, then U c f(Q).

PROOF. Since / is proper, /(9S) is closed. Thus U is an open set and is path
connected. Assume that p e U and <j>: [0,1] -> U is a continuous mapping with
<#>(0) = 0 and <J>(1) = p. Then taking the O-set contraction h(x, t) = -<>(/) in our
homotopy property, we see that /(•) — 4>(1): £2 -» F is (0, &)-epi. Thus f(x) —
</>(l) = 0 has a solution in Q, that is, p = <>(1)

In the following theorem by a {p, l~)-epi we mean a /^-admissible mapping / :
Q -* F such that for each condensing mapping / : fi -> F with g = 0 on 9°-, the
equation / (x) - p = g(x) has a solution in £2.

THEOREM 2.2. Let f: Q, -* F be continuous, injective and 1-proper. T'.en
open if and only iffis (p, l')-epifor any p

PROOF. Let p e/(fi). Since / is proper, it follows from Theorem 2.1 that
f — p being also (0,0)-epi maps fi onto a neighbourhood of 0. Thus /(ft) is open.

Now let /(fi) be open. It suffices to prove that if 0 e /(ft) then / is (0, l")-epi.
So we assume 0 e /(fl). Now since /(fi) is open, / is injective and 1-proper and
hence proper, f'1 is continuous. Also since /(ft) =/(ft), we have 9(/(ft)) =
/(9ft). Let h: ft -> F be condensing such that /i = 0 on 8ft.

We define g: F -* F by

M)
10, otherwise.
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Since 9(/(B)) = /(3fi), g = 0 on 3(/(fi)). Thus it follows that g is continuous.
Now let S be a bounded subset of F. Then a[g(S)] = a[h(f-1{Snf(Q)})] <
a[ /"H5 n/(S)}] <_a(S n / (3) ) < a(S). Also since g(F) = gtf(G)) U {0} =

U {0} = h(tt) U {0} and /i is condensing, g(F) is bounded. Let M =
H: y e g(F)}. Let 5 = [x e J1: ||x|| < Af }. Then g restricted to B maps

fi into itself and is, by what we have proved above, a condensing mapping. Hence
by Theorem 1.4 there is a point y0 e B such that g(y0) = y0. Since 0 e /(£2), it
follows that jo e/(B). Hence JC0 =/~1(>'o) G ^ ' is a solution of the equation
/(*) = *(*)•

THEOREM 2.3. Le?/: fi -» F be continuous, injective and kx-proper. Thenf{Q>) is
open if and only if f is (p,k)-epi for each p e /(f i ) and each nonnegative k
satisfying the condition kxk < 1.

PROOF. The argument for the 'if part' is the same as in the proof of Theorem
2.2. For the 'only if part' let h: fi -> F be a k-set contraction. The rest of the
argument will be the same as in the proof of Theorem 2.2 except that we need to
show that the mapping g as constructed there is a k^-set contraction. Indeed
a[g(S)] = alhif^S n /(0)})] < ka[f-\S n /(0)}] < * M { S n /(0)} <

COROLLARY 2.1. Lef/: fi -> F be continuous, injective and k^proper and f{U)
be open. Then fis (p, k)-epi for each nonnegative k satisfying kxk < 1 if and only if

PROOF. If / is (p, k)-epi, then p e /(fi) by the existence property (regardless
of whether /(S2) is open or not). If /(fi) is open, the result follows from the
Theorem 2.3.

THEOREM 2.4. Let f: B -» F be continuous, injective and proper. Then f(&) is
open if and only iffis (p, 0)-epifor every p e /(fi).

PROOF. Again the argument is the same as in the proof of Theorem 2.2, except
that we use the fact that g(F) = /i(S2)U{0} is relatively compact as h is a
compact mapping. The fixed point of g | B: B -» B is guaranteed by the Schauder
fixed point theorem.

The above theorem and following corollary have been obtained by Furi,
Martelli and Vignoli [1].
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COROLLARY 2.2. Let f: £2 -» F be continuous, injective and proper and f(Q)
open. Then f is (p, 0)-epi if and only ifp e /(fl).

PROOF. The proof is similar to that of Corollary 2.1, except that we use
Theorem 2.4 in place of Theorem 2.3.

REMARK 2.1. For each k > 0, we construct a mapping fk such that y(fk, 0) = k.
We consider the Hilbert space H = {x = Ea,e,: -00 < /' < 00, Ea,2 < 00}

where { et} is the orthonormal basis, that is, (e,, ej) = 0 if i ¥= j and = 1 if / = j .
The norm of H is defined by ||*|| = [£a,2|1/2, where x = Ea,e,,

Let fl = 5(04) = {* e # : ||x|| < 1}. Let / : Q -* H be defined by /(JC) =
(l/2d)x, J G . O where rf > 0 is a constant. Clearly / : £2 -> / / is continuous,
injective and 2J-proper and /(B) is open as / is a homomorphism onto /(fi)
(= /(fi)). Hence, by Corollary 2.1, / is (p, k)-cpi for each nonnegative k < l/2d
and each p e /(fi), that is, y(/, />) > l/2rf for each p e /(fi). We now con-
struct a £-set contraction h: J2 -> H for some positive number £, with /i = 0 on
3S2 such that f(x) = A(x) has no solution in Q, that is, y(/, 0) < ^.

Let u: Q -* H be defined by U(JC) = Ea,-e,+1 for JC = Ea,.e,-G Q and <f>:
U -* Hby

*(*) = (1 -||*||)«(*) +||*||* + Hi " Wl)«o. *_* 0-
Finally we defined /i: fl -» H by A(x) = (* - <f>(x))/c?, x e S2. It is easy to
verify that /i s 0 on 3£2. We next verify that h is a fc-set contraction for some
positive number fc. On simplifying h(x) = ^(1 - ||x||)(x — u(x) — %e0). Hence
for x, y e Q,

- u(x)) ~{y - u(y))} - {(y - u(y) -

where v = / — u: H —> H is a bounded linear operator on H.
Hence

\\h{x)-h{y)\\ < i [ | i - I M I I N I H * - . H I + ( | | » IHb l l + *)(ll*ll -\\y\\)]

* - . H I -
Thus /i is fc-set contraction where 1c = (2||u|| + j)^.Next we show that /(*)
h(x) has no solution in J2. Suppose that f(x0) = h(x0) for some x0 G fi.
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Case 1. Let x0 G 3J2 an f{x0) = h(x0), then xo/2rf = 0 by definition of / and
h, which is a contradiction. Hence ||xo|| < 1.

Case 2. Let ||xo|| = \. Then x0 = 2$(x0), that is, x0 = u(x0) + x0 + \e0, that
is, u(x0) + \e0 = 0, that is La,+1e( + \e0 = 0, where x0 = £a,e,. This implies
that ax = - j , and ay = 0 for j =£ 1. Thus ||xo|| = y which is a contradiction.
Hence ||xo|| = / < 1 and t # \.

Case 3. Let ||*0|| = / < 1 and t ¥= \. As <£(0) # 0 and x0 = 2<f>(x0), we have
x0 = 2(1 - /)«(*<>) + 2txQ + |(1 - t)e0, that is, £a,e,. = 2(1 - *)£«/*/+1 +
2rLa;e, + |(1 - O«o where x0 = E a ^ . Hence (1 - 2t)(l - t)'1'Laiei =
2Ea,e,+1 + fe0. Thus (1 - 8)Ea,e,. = 2La,e,.+1 + fe0, where 5 = t/{\ - t) # 1
as ? * £. Hence(1 - S)aj+1 = 2a, + | 5 0 ) + 1 where

0 if i ^ 7 ,

and 1 - 8 ^ 0 . Hence |«y| -» oo as y -» oo or \aj\ -> oo as _/ -» -oo according as
2/(1 - 8) > 1 or 2/(1 - 8) < 1. But Ea,2 < oo which is a contradiction. Thus we
conclude that h(x0) # /(x0) for any x0 e J2. Hence / is not (0, fc)-epi and hence
Y(/.0) < ^- Thus there exists r such that (Id)'1 < r < Jc and / is (0, s)-epi for
each J < r but not (0, j)-epi for s > r. Setting fk = kf/r, the result follows.

We recall that a set Q c F is said to be star-shaped with respect to the origin if
ty G Q whenever j e g and t e [0,1].

THEOREM 2.5. Let f: Q -» F be (0, fc)-e/?/ with k e [0,1) and Q a star-shaped
subset of F with respect to the origin such that Q n /(3J2) = 0 . Then for each k1

set contraction h: Q -* F with h(dti) c Q and 0 < kx < k < 1, ?/ie equation
f(x) = h(x) has solution in fl. In particular Q c

PROOF. It is clear that for all x e 9J2 and for all * e [0,1], th(x) G g and
/(*) ^ g. Hence /(x) * th{x) for all x e 3fl and for all < G [0,1]. We define the
mapping H: [0,l]xU^>F by H(t,x) = -th(x), for all (r,*) e [0,1] X fi.
Clearly for each fixed t e [0,1], the mapping Ht: £2 -» F defined by i/,(x) =
//(?, x) = -tfi(.x) is a itj-set contraction (as a(H,(S)) = a(th(S)) = ta(h(S)) <
tk^iS) < ^^(S) , for every set S c fl). Hence by Theorem 1.2, H: [0,1] x fi -».f
is a /q-set contraction. Also /f(0, JC) = 0 for all x G i2. Thus by the homotopy
property/(•) + #(1, •) = /(•) - h(-) is (0, A: - fc^-epi. Hence/(x) = A(x) has a
solution in Q. Now let p G g. The constant mapping /i(x) = /» for all x G fi is a
0-set contraction. Hence by the above f(x) = p for some x G i2. Thus Q c /(fi).
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THEOREM 2.6. Let f: Q -* F be continuous, O-admissible and kx-proper and let
{fn- fn- ^ ""* F) be a sequence of (0 — k)-epi mappings with k-Jc < 1 such that
fn —> f uniformly. Then f is (0,k)-epi.

PROOF. Let h: fi -* F be a k-set contraction such that h = 0 on 3fi. For each
n = 1,2,..., there exists xn e Q, such that fn{xn) = h(xn). Let yn = f(xn) -
/ „ ( * „ ) = / ( * „ ) - h{xn). Then yn -» 0 as « -» oo. Let set 5 = {yn: n = 1,2,.. .}.
Then by Theorem 1.5,

~ h)~\S)\ as a(S) = 0.

Now as A:!/: < 1, this implies that ( / - h)'\S) is relatively compact. Hence {xn:
n = 1,2,... } being a subset of ( / - /i)"1(5) must have a limit point x0. Clearly

/Oo) = M*o)-

THEOREM 2.7 (Perturbation). Let f: Q ^> F be (0, &)-<?/?/ W kx-proper and let
h: [0,1] X fi -» Fbe a k2-set contraction such that 0 < k2 < k < 1 andh(0, x) = 0
/or a// * G S2. / / A : ^ < 1, tfien r/iere exwtt e > 0 iwc/i ?Aa/ / ( • ) - /i(?, •) w
(0, k — k2)-epifor all t satisfying \t\ < e.

PROOF. In view of the homotopy property, it will suffice to show that there
exists £ > 0 such that f(x) - h(t, x) + 0 for all x e 3fi and for all / e (-e, e).
We assume that there is no such e > 0. Then we can show that there exists a
sequence {(?„, xn)} with tn -> 0, xn e 3fi and / ( x j = h(tn, xn) = ^n, for all n.
Now using the fact that / is A^-proper and h is a &2"

set contraction,

a[xn: n = 1,2,.. .] < a[f-\yn): n = 1,2,...] < kia[yn- « = 1,2,...]

= M [ A ( ^ , J c B ) : « = 1,2,...] < kxk2<x[(tn,xn): n = 1 , , . . . , . . . ]

< k^^Kt^ X{xm}: m, n = l,2,...]= ^!/:2a[xm: »i = 1,2, . . . ] ,

by Lemma 1.1. Since kxk2 < 1, a[xn: « = 1,2,...] = 0. Hence the sequence
{xn) has a limit point x0. It follows that f(x0) = h(0, x0) = 0 which contradicts
the fact that / is 0-admissible.

If / : fl -> E is a &-set contraction mapping such that A: e [0,1), / is the
identity mapping on E, and p & (I - /)(3fi), then the degree of / - F at p ,
d(I — f, Q, p) is well defined (see [7], p. 95). The following theorem is similar to
the example following the definition of measure of unsolvability.

THEOREM 2.8. Let I - / : 9, -» E be p-admissible and let f: Q -» E be a k-set
contraction with k e [0,1). If d(I - f,ti, p) ± 0, then for every kx with 0 < k <
kx < \, I — fis {p,kx — k)-epi.
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PROOF. Let h: J2 -» £ b e a ( / c 1 - fc)-set contraction such that /i = 0 o n 3J2.
( / — ( / + h)) is a A^-set contraction and clearly / + h = f on 9fi. Hence by the
boundary dependence property of the degree, d(I - ( / + h), Q, p) =
d(I - f,Q, p) * 0. Hence there exists x0 e fi such that x0 - ( / + h)(x0) = />.
Thus JC0 - f(x0) = /» + A(*o)> as required.

THEOREM 2.9. Le/ L: E —> F be bounded, linear and subjective with dim KerL
< oo. Let g: U -» R" be continuous with bounded range. Let g(x) ¥= 0 for all
x e 8S2 n KerL and J: R" ^> E be a linear mapping with lmJ = KerL. / / /toe
Brouwer topological degree d{gJ, J'\Q),0) # 0, f/ien y(Af,O) > HL"1!! w/iere
£ = KerL ffi N, L is the restriction of L to N, and M: Q -» F X R" w defined by
M(x) = (Lx,g(x)).

PROOF. The proof is similiar to that of Theorem 1.7 of Furi, Martelli and
Vignoli [1]. Let S = L~\ We define A: F X R" -> E by ^ ( 7 , z) = Sy + Jz.
Evidently yl is an isomorphism. We now consider the mapping / = MA: A~l(Qi)
-> F X R". Then as S is a right inverse of L and I m / = KerL, / ( j , z) =
(L(Sy + 7z), g(5> + Jz)) = (y, g(Sy + Jz)) = (y, z) - (0, z - g(Sy + Jz)) =
( / - /i)(_y, z) where A: ^ ( f t ) -• {0} X R" is the mapping defined by h(y, z) =
(0, z — g(Sy + /z)). By using the properties of Leray-Schauder degree

= d(gJ,J-1(Q),0)*0.

Hence by Example 2.1, y(/,0) > 1. Now M = /4"1 and A'1 is HL"1!! proper and
hence Y(M,0)>y(/,0)||L-1||.

EXAMPLE 2.3. A natural question which arises from Theorem 2.9 is the
following. In Theorem 2.9 is it legitimate to replace the assumption that the
Brouwer degree d(gJ, J~\Q),0) ¥= 0 merely by the assumption that gJ: / ^ ( f l )
-» F is 0-epi. This is not legitimate as the following example shows.

Let fi = {(x, j ) e R ! : 0 < x2 + y2 < 4} c E = R2 and let / : R -^ £ be
given by J(x) = (x,0) so that J~\Q) = (-2,0) u (0,2) Let g: Q ̂  F = R be
given by g(x, j ) = x2 + y2 - 1. Thus_g/^[-2,2] -» R is given by gJ(x) = x2 - 1
so g7 is 0-epi on (-2,0) u(0,2) = J'\^) from Example 2.2. Let L: £ -> £ be
given by L(x, y) = y. Thus imJ = KerL. Let A/(x, _y) = (y, x2 + y2 - 1) =
(L(x, j ) , g(x, y)). We show that M: fl -» £ X R is not 0-epi. Define h: fi -» £
X R by A(x, >>) = (2(x2 + 72)(x2 + j 2 - 2),0). Thus /i(x, j ) = (0,0) for all
(x, y) e 3£2, /i is continuous on Q, and it suffices to show that M{x, y) # A(JC, >>)
for all (x, y) e B. Suppose there is a solution (x, y) e fi, then g(x, y) = 0 so
x2 + _y2 = 1. Thus /i(x, y) = -2 # L(x, y) = y since |^| < 1.
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3. (p, k )-epi mappings on the whole space

As before, E and F are real Banach spaces. Let / : E -» F be a continuous
mapping of E into F. For p e i s / is said to be p-admissible if f~\p) is a
bounded subset of £. / is said to be (p, k)-epi if / is (p, &)-epi on the closure of
any bounded open set fl 3 f'\p), that is, / | B , the restriction of / to Q, is
(p, k)-epi for each bounded open subset Q containing f~\p). We note that by
virtue of our localization property for (0, A:)-epi mappings it suffices to consider a
sufficiently large open ball centered at the origin and containing /-1(0).

HOMOTOPY PROPERTY. / / / : E -> F is (0, kx)-epi, h: [0,1] x E -> F is a k2-set
contraction such that h(0, x) = 0, for all x e E, 0 < k2 < kY < 1 and the set
S = {x e E: f(x) + h(x, t) = 0 /or .some f e (0,1]} is bounded, then /(•) +
h(l, •) is (0, ̂  - k2)-epi.

PROOF. It is an easy consequence of our homotopy property for mappings on
bounded sets.

THEOREM 3.1. Let f: E -* F be (0,k)-epi with k <= [0,1) and Q c F be
starshaped with respect to the origin. Iff^iQ) is bounded andh: E -* F is a kx-set
contraction such that 0 < kx < k < 1 and ImAc g, then the equation f(x) = h(x)
has a solution. In particular Im/ D Q.

PROOF. Let S2 be a ball centered at the origin such that fi z> f'\Q). We
consider the mapping /1 JJ: fi -> F. Then using a similar argument to that in
Theorem 2.5 and the above homotopy property, the result follows.

COROLLARY 3.1. If L: E -* F is a linear bounded mapping, then L is
(0, t/\\L~l\\)-epifor each t e [0,1) if and only if L is an isomorphism.

PROOF. Let L be an isomorphism. Then L is continuous, injective and
HL^II-proper. Hence L is (0, //||Z.-1||)-epi for each / e [0,1), by Corollary 2.1.
Conversely, if L is (0, f/HL^ID-epi, for all t e [0,1) then L'\G) is bounded by
the admissibility of L. Thus L is one-to-one. To prove that L is onto, let p £ F
and Q = [tp: 0 < / < 1}. Then L'\Q) is clearly bounded. Hence by Theorem
3.1, L(x) = p has a solution (taking h to be the constant mapping h(x) = p for
all x e E).

COROLLARY 3.2. Letf: E -> Fbe (0, k)-epi for some k e [0,1) and \\f(x)\\ -* oo
as \\x\\ -» oo. / / /J: E -* F is a kx-set contraction such that 0 < kx < k < 1 a«J
/i(£) iy bounded, then the equation f(x) = h(x) has a solution. In particular f is
onto.
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PROOF. The condition | | / ( jc) | | -»ooas| | jc | | -»oo implies that f~\S) is bounded
for every bounded subset S of F. Since Imh = h(E) is bounded, we can take a
ball Q centered at the origin of F sufficiently large that Q 3 Im h. Hence the
Corollary follows from Theorem 3.1.

REMARK 3.1. If / and h are as in Corollary 3.2, then f+h is (0, k - fc^-epi
and, therefore, / is (p, /c)-epi for an p e F.

THEOREM 3.2. Let f: E -» F be 0-admissible and k^-proper on bounded closed
sets and let { /„: /„: E -> F } be a sequence of (0, k)-epi mappings such that / „ - * f
uniformly on closed bounded subsets of E. Further assume that the sets /^(O) are
uniformly bounded and kkl < 1. Then f is (0,k)-epi.

PROOF. This is a direct consequence of our Theorem 2.6.

4. Applications

EXAMPLE 1. In this example we try to find a solution x e C1[0,1] of the
following problem:

(t) = h(t,x(t),x(4>(t)),x(<t>(t))),

where <j> e C[0,1] satisfies 0 < <j>(t) < t for all t e [0,1] and h: [0,1] X R3 -» R
is continuous and satisfies

(4.1) \h(t,x,y,z)\ < a + b\x\ + c\y\ + r\z\

and

(4.2) \h(t,x,y,z)-h(t,x,y,u)\ <r\z-y\

for all t e [0,1] and x, y,z,ue R, a, b, c and r being nonnegative with r < 1.
Furi, Martelli and Vignoli [1] considered the special case of this problem where

x(t) = ja(?)*(<XO) + Ht> x(t% x(4>({))) where ju: [0,1] -> R is continuous and
satisfies \n(t)\ < t < 1 and h: [0,1] X R2 -» R is continuous and satisfies

\h(t,x,y)\ ^a + b\x\ + c\y\,

where a, b, c, r and <#> are as above. Their method cannot be extended to treat the
more general problem above. To this end we first prove the following results.

LEMMA 4.1. Let a,b,c and r be nonnegative numbers with r < 1. Let x,
y e C^O, 1] and $ e C[0,1] with 0 < <H0 < t, for all t e [0,1]. Further assume
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that for all t e [0,1] we have

(4.3) |*(0| < a + b\x(t)\ + C|JC(*(O)| + r\x(H'))\,

(4.4) y(t) >a + by(t)

and

(4.5)

Then \x(t)\ < y(t), for all t e [0,1].

PROOF. Since <J>(0) = 0, we obtain by using (4.3), (4.4) and (4.5)

(4.6) y(0)>[a+(b + c)y(0)]/(l-r)

>[a+(b + c)\x(0)\]/(l-r)>\x(0)\.

Let T = sup{t e [0,1]: |JC(5>| < y(s) and \x(s)\ < y(s),0 < s < t}. By virtue of
(4.5), (4.6) and continuity it follows that 0 < T < 1.

Clearly

(4.7) \x{s)\<y{s) and \x{s)\ < y{s) f o r j e [ 0 , r ) .

Suppose that |JC(T)| = y(r). Since y(s) > \x(s)\ > 0 for s e [0, T] and 0 < <t>(s)
< s, then \x(4>(s))\ < y(<f>(s)) and y(Hs)) > l*(*(*))l for s e [0, T]. Thus from
(4.3) and (4.4) we obtain

(4.8) \x(s)\ <y(s) f o r j e [ 0 , T ) .

This, together with (4.5), implies that y(r) > \X(T)\ which is a contradiction.
Suppose that y(r)> \x(r)\. Now since |JC«>(T))| <J(<I>(T)) and y(4>(^))>

\^c(<t>(T))\, it follows from (4.3) and (4.4) that \X(T)\ < y(r) which is again a
contradiction. Thus the lemma is proved.

COROLLARY 4.1. Let a, b,c and r be nonnegative numbers with r < 1. Let x,
y G Cl[0,1] and <j> £ C[0,1] with 0 < <j>(t) < /, for all t e [0,1]. Assume that x
satisfies (4.3) andy is nondecreasing. Further assume that

(4.9) y{t) > a + by(t) + cy{t) + ry(t), for all t e [0,1]

|JC(O)| < >»(0). Theny(t) > x(t), for all t e [0,1].

PROOF. Clearly j(0) > 0 and so >(/) > 0, for all t e [0,1]. Thus 7(<)(0)
Again as y is nondecreasing, y(t) > >(<#>(?))• Hence (4.4) is satisfied and the
result follows from the Lemma 4.1.

COROLLARY 4.2. Let a, b, c, r, x, y and § be as in Lemma 4.1 and assume that
(4.3) to (4.5) hold. Theny(t) > \x(t)\, for all t e [0,1].
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PROOF. This is implicit in the proof of Lemma 4.1.

THEOREM 4.1. Let h: [0,1] X R3 -> R be continuous and satisfy (4.1) and (4.2).
Then the mapping H: (^[0,1] -* C[0,1] defined by

is an r-set contraction.

PROOF. Let S c C^O.l] be a bounded set with a(S) = X. We show that
a(H(S)) < rX where a is the measure of noncompactness in the relevant spaces.
Denote by S' the set { / : y G S} and identify S and 5 ' as subsets of C. Let G:
C X C -» C be defined by G(H, i>)(*) = A('> u(/), M(</>(0), "«>(0))> for / G [0,1].
as H(S) c 0 ( 5 , 5") it suffices to show that a(G(S, S")) < ra(S") < rX. Now the
set T = {z: z = j>(0 or z = j ' ( 0 for some y G 5 and r G [0,1]} is bounded. So
given e > 0, by the uniform continuity of h on [0,1] X T3, there is TJ > 0 such
that \h(t, x, y, z) - h{t, p, q, z)\ < e, whenever \x - p\ + \y - q\ < 2TJ, t G [0,1],
and x, >>, z, p , ^ G T. As S is a bounded equicontinuous subset of C there is an
rj-net uv...,um for S in C. Thus G(S, 5") c Ur-i5(G(M;, 5"), e) and by Lemma
1.2 and property (iv) of the measure of noncompactness

a ( G ( S , S ' ) ) < max{a(G(«, ,S ' )) + 2e: 1 < / < « } .

Thus it suffices to show that a(G(ut, S')) < m(S") for 1 < / < m. Let F be an
arbitrary bounded subset of C. We show that 8(G(M, , F)) < r8(V), where S
denotes diameter in C. For U!, v2 G F,

|G(«,, Bl)(r) - G(ultv2)(t)\ < r\vMt)) - v2(<j>(t))\

so ||G(w,,«,-) - G(«,, u2)ll <
 rl|i;i ~ V2\\ and the result follows.

PROBLEM A. We now turn our attention to problem

where h satisfies (4.1) and (4.2) and <J> G C[0,1] with 0 < <j>(t) < t for t G [0,1].
Let M: C^O, 1] -» C[0,1] x R be defined by

M(x)(t) = (i(0 - h(t,x(t),x(*(t)),*(*(t))),x(O))-
Then M is (0, k)-epi for each A: e [0,1 - r). In particular the problem has a
solution for each d e R.

PROOF. We first note that L: C^O, 1]-» C [ 0 , l ] x R given by (Lx)(i) =
(x(O,Jc(0)) is an isomorphism with HL"1!! = 1; here we use the norm in C[0,1] X R
defined by ||(*, r)\\ = \\x\\ + \r\ for (x, r) G C[0,l] X R where ||x|| is the usual
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sup norm. Let K: C\0, 1] -> C[0, 1] X R be defined by K(x)(t) =
(h(t,x(t),x(<j>(t)),x(<t>(t))),d). We claim that S = {x G 0*10,1]: Lx = \K(x)
for some X G [0,1]} is bounded. To this end let Lx = XK(x) where A G [0,1]
and x(0) = Xd. By (4.1)

|* (0 l < at + b\x(t)\ + C |JC(*( / ) ) | + r\x(+(t))\.
Let / ( / ) = a + (b + c)y(t) + ry(t) + 1, that is, y(t) = [(1 + a) +
(b + c)y(t)]/(l — r) and y(0) = 1 + \d\. By solving this equation we can easily
see that y(t) is nondecreasing. Since y(0) = 1 + \d\ > \x(0)\ = X\d\, by
Corollaries 4.1 and 4.2 it follows that ||;c|| < ||>»|| and hence S is bounded.

From Theorem 4.1 it easily follows that K is an r-set contraction and hence H:
[0,1] X C^O.l] -» C[0,l] X R defined by H(X,x) = -XK(x) is also an r-set
contraction. By our Corollary 3.1 L is (0,1 - e)-epi for each e e [0,1). Hence by
our homotopy property L — K{-) = M(-) is (0,1 - e — r)-epi.

REMARK 4.1. It is not difficult to see that the above result can be strengthened
by replacing (4.1) by

where r e [0,1) is a constant and \p: [0,00) -» (0, 00) is a continuous strictly
increasing function satisfying /°° (\p(s))~l ds = 00. All that is required is the
corresponding modification of Lemma 4.1 and its corollaries and the observation
that

\) + l)/(l-r), y(Q) = 1

has a solution on [0,1] with y(t) nondecreasing.

EXAMPLE 2. Let $2 be a bounded C11 domain in R", let LP(Q) be the spaces of
Lebesgue measurable functions with the usual norms, for 1 < p < 00, and let
W^q(Q) and Wp'q{Q,) be the usual Sobolev spaces for p,q = 1,2,.... Let
au e C(Q), bt, c e L°°(S2) for i, j = 1,2,...,«, and let

for all I G R", A: G fl and, some constant Ao > 0 and c < 0. Let h: Q, X R X R"
x R"2 satisfy

\ h ( x , u , p , s ) \ < k { \ u \ + \ p \ + \ s \ ) + g ( x )
for some constant k > 0 and g G L2(fi) and

\ h ( x , u , p , s ) - h ( x , u , p , t ) \ < / c | s - t\,
for all (x, u, p) G J2 X R X R" and for all s, t G R"2. Moreover let h satisfy the
Caratheodory conditions: that is, let h(x, •, -, •): R X R" X R" be continuous
a.e. x e fi and let fc(-, M, ^, s): Q -» R be measurable for all («, /?, s) G R X R"

2
X R"2.
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Let B = W^2(Q,) n W2-2(Q) with the W2-2 norm and define L: B -> L2(f l) by

Lu = cijjDijU + bjDtU + cu. We look for a solution u e B of the Dirichlet

problem

B{Lu = eh(x,u,Du,D2u) in Q,

where e > 0 is sufficiently small.
Define the Nemitsky operator M: L2(Q) X (L2(Q))n X (L2(S2))"2 -> L2{0,) by

Af(u, /?, i)(x) = h(x, u(x), p(x), s(x)). From the growth on h, M is continuous
(see [10], page 162). By the Kondrachov compactness theorem (see [2], page 167)
the mapping K: B -* L2(Q,) X (L2(Q))n given by K{u) = (u, Du) is completely
continuous. We show that the mapping H: B -> L2(Q) given by H(u) =
M(K(u), D2u) is a 2/c-set contraction. As M, K and D2 are continuous, i / is
continuous. We show that for any bounded set S Q B, H(S) c fl^S) + ^ C 5 )
where H2(S) is compact and a^H^S)) < 2fca(S); here S and a represent the
diameter and the measure of noncompactness, respectively, in the appropriate
spaces and for G: B -» L2{U), G(S) = {G(u): M e S j . F i x w e S and define
Hx, H2: B -> L2(Q) by H2(u) = M(K(u), D2w) and Hx(u) = H(u) - H2(u) for
all u e 5. As |Z)2w| e L2(fi) it follows that Af(-, •, D2w): L2(fi) X (L2(S2))" -»
L2(B) is continuous and hence /f2 is completely continuous. We show that
SiH^S)) < 2k8(S) and then a(//!(S)) < 2ka(S) as S is an arbitrary bounded
set. By the Lipschitz condition on h, \h(x, u, Du, D2u) - h(x, u, Du, D2w)\ <
k\D2u - D2w\ so that WH^W < k\\u\\ and hence S(^(S)) < 2k8(S). Now
a(H(S)) < a(J/j(S)) + a(^2(S)) < a (^ (S ) ) < 2ka(S), as required.

By Theorem 9.15 and Corollary 9.17 of Gilbarg and Trudinger [2] L: B -*
L2(i2) is an isomorphism. Choose e0 > 0 such that 2keol~

l < 1 where I'1 = HL"1!!.
Let S = {(X, u) e [-1,1] x B: Lu = Xe0H(u)}. We show that S is bounded. Let
(X,«) e S then ||Xe0H(u)|| < eo||g|| + *eo||i<|| thus ||«|| < I'^WgW + A^eo/-

r||M||
and ||M|| < 2/-1e0||g||. As eH is a 2eQk-set contraction for |e| < e0, 2eokl'1 < 1,
and L is an isomorphism with HL̂ H = I'1, then L — eH is (0, £)-epi for each
1c e [0, / — 2e0A:), by Corollary 3.1 and the homotopy property of Section 3. Now
problem B is equivalent to finding a solution w e B o f I « = eH{u) so problem B
has a solution for each e with |e| < e0.

Problem C of the next example is well known. There are several different
existence proofs in the literature. We give an existence proof based on the
previous sections of this paper.

EXAMPLE 3. Let X be a Banach space with norm denoted by | • |. Let
C([0,1], X) be the space of continuous functions y: [0,1] -* X with norm defined
by Ĥ ll = sup{e~"|j>(f)|: 0 < t < 1}, where / > 1 is a constant given below. Let
C^fO, 1], X) be the space of continuously differentiable functions y in C([0,1], X)
with norm | | | j | | | = max{||j>||, j | | / | | } . Clearly a bounded subset S c C1 is a
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bounded equicontinuous subset of C. Let h: [0,1] X X -> X be uniformly con-
tinuous and assume there is a constant k > 0 such that \h(t, y)\ < k, for all
(t, y) e [0,1] X X, and a(h(t, S)) *£ ka(S), for all bounded subsets S c X. Then
there is a solution j e C1 of the problem

' = h(t,y), fo ra l l?e[0 , l ] ,

It suffices to consider the case y0 = 0. Let C&([0,1], X) = {y: y e C1, j(0) = 0).
Clearly Cj is a closed subset of C1.

Define L: Q1 -» C by (Ly)C) = / ( ' ) and H: Q1 -» C by H{y\t) =
fc(f, j>(/))- If S c CQ is a bounded set then for an arbitrary bounded subset
D c C and t e [0,1] let D(/) = {y{t): y e D}. If S c CQ1 is a bounded set then
/f( 5) = { i / ( » : j e 5 } i s a bounded equicontinuous subset of C so by variants
of Lemma 2.3.1 and Theorem 2.3.1 of Martin [8]

a(H(S)) = sap{e-"a(H(S)(t)):0 < / < 1}

<sup{e-"*a(S(/)):0< r< 1}

= ka(S).
Clearly H is continuous and it is not difficult to show that L is an isomorphism
with H-L"1!! < I'1. Choose I > k. Now the problem C is equivalent to solving
Ly = H(y). Let (X, j ) e S = {(X, j ) e [0,1] x Q1: Ly = Xi/(^)}, then for all
t G [0,1], ^ ' (0 = ^W, y{t)) and j'(O) = 0. Thus |j>(OI < k and hence |^(/)| <
k, for all / G [0,1]. Hence |||;>||| < k and S is bounded.

The result now follows by an argument similar to that in Example 2. In
particular L — H is, (0, £)-epi for fc G [0, HIT1!!"1 - k) and hence problem C has
a solution.

EXAMPLE 4. Let <> <= C2(R) satisfy <£'(*) < 0 and 4>"(x) > 0, for all x G R and
set Q = {(x, j ' ) G R2: y > <j>(x)}. Let h: 0 x R 3 ^ R b e continuous. Let y =
<(>(x) and 3c = ^>"1(̂ ) and for u: Q -» R let

where / > 1 is chosen later. Let C(S2) = {«: S2 -» R, u is continuous, ||«j| < oo}.
Consider the Cauchy problem

( u y ) in £2,

on 9fi,

where a solution u is a function satisfying u, ux, uy, uxy = uyx G C(S2) and Z)
pointwise.

We assume that h satisfies

\ h { x , y , u , p , q ) - h ( x , y , u , s , t ) \ < k { \ p - s \ + \ q - t \ } ,

https://doi.org/10.1017/S1446788700029025 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029025


[23] Solvability of nonlinear noncompact operator equations 125

a n d

\ h ( x , y , u , p , q ) \ < k { \ u \ + \ p \ + \ q \ } + g ( x , y )

for all (x, y) G J2 and for all p, q,r,s G R, where g G C(fi). We show that
problem D has a solution. By translating axes we may assume that (0,0) G 3S2.
Let fiM = {(x,y) G G: |x|,|j>| < n), for all n = 1,2,..., and let C(Un) and ||«||
for M G C(i2M) have the obvious interpretations. We find a solution un of problem

Jwx>,(.x,.y) = h(x, y,u,ux,uy) infln ,

" \ M = M;C = M^ = 0 in8f in f l M ,

and show problem D has a solution by a standard diagonalization argument. Let

Bn= {u: u,ux,uy, and uxy = uyx& C{tin),u = ux = uy = 0 ondQ C\tin}

and define a norm on Bn by ||M|| =_||«|| + \\ux\\ + | |K,| | + l'l\\uxy\\. Thus Bn is a
Banach space. Let L, N: Bn -> C(fin) be given by (Lu)(x, y) = uXJ,(x, y) and
//(«)(*, y) = h(x, y, u, ux, uy), for all u G Bn and for all (x, y) G S2n. It is not
difficult to show that problem Dn is equivalent to solving Lu = H(u). Now L is
an isomorphism with HIT1!! < I'1. Choose / > 2k. Now H is a £>set contraction.
This follows by a similar argument to that in Example 1 since a bounded subset
of Bn has compact closure in C(fin). Let Sn = {(X, M) G [0,1] X Bn: Lu = XH(u)}
then Sn is bounded independently of n. To see this (X, u) G Sn then ||Xi/(u)|| <
fc|||u||| ^ | | g | | . Since IIL-1!! < (2A:)-1 then |||u||| < k~l\\g\\ < C, a constant as
g G C(fl). By an argument similar to that in Example 2, there is a solution
un G fln of Lu = # ( M ) . NOW let Tn = {u G 5n: LM = /?(«)} = (L - H)-\{0}).
By Theorem 1.5, a{Tn) = 0 since A:^ = \\L'l\\k < 1. Clearly Mm|Sn G 7n, for all
m > n. Choose a subsequence of um denoted by uml, after relabelling, such that
uml | $ converges in Bx. Proceeding inductively we may choose a subsequence of
umn denoted by um<n+l, after relabelling, such that umn+11 ^ converges in 5 n + 1 .
Thus M = limn_0 0 «„ „ with the limit appropriately interpreted is a solution of
problem D, as required.

REMARK 4.2. Problem D is similar to one studied by Hartman and Wintner [5];
however they establish existence in a bounded domain by producing a convergent
sequence of approximate solutions. Thus, our existence result in a bounded
domain is cleaner. It would be interesting to know if the existence of a solution in
the unbounded domain could be established directly without finding solutions in
an expanding sequence of bounded domains. In the case h is Lipschitz with
respect to u as well as ux and uy the existence of a solution on all of Q follows
directly from the contraction mapping principle, as is well known.
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Lu = g(x,u,Vu,D2u) + h(x,u,Vu,Lu), for all x e 12,
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W2-2(Q) n WX'2(Q,) to L2(fl). Although there is some formal similarity with our
problem B of Example 2, their problem is somewhat different from, and their
results do not apply to, our problem B.
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