DERIVED FUNCTORS AND HILBERT POLYNOMIALS OVER REGULAR LOCAL RINGS

TONY J. PUTHENPURAKAL **D**

Department of Mathematics, IIT Bombay, Powai, Mumbai, India Email: tputhen@gmail.com

(Received 19 January 2024)

Abstract Let (A, \mathfrak{m}) be a regular local ring of dimension $d \geq 1$, I an m-primary ideal. Let N be a nonzero finitely generated A-module. Consider the functions

$$
t^{I}(N, n) = \sum_{i=0}^{d} \ell(\text{Tor}_{i}^{A}(N, A/I^{n}))
$$
 and $e^{I}(N, n) = \sum_{i=0}^{d} \ell(\text{Ext}_{A}^{i}(N, A/I^{n}))$

of polynomial type and let their degrees be $t^I(N)$ and $e^I(N)$. We prove that $t^I(N) = e^I(N)$ max $\{\dim N, d-1\}$. A crucial ingredient in the proof is that $D^{b}(A)_{f}$, the bounded derived category of A with finite length cohomology, has no proper thick subcategories.

Keywords: torsion and extension functors; bounded homotopy category of projectives

2020 Mathematics subject classification: Primary 13D02; 13D07 Secondary 13A30; 13D40; 13D09

1. Introduction

In this paper, all rings considered are commutative, Noetherian, local with unity and all modules considered will be finitely generated. Let (A, \mathfrak{m}) be a local ring of dimension $d \geq 1$, I an m-primary ideal in A and let L be an A-module. If T is an A-module of finite length then we denote by $\ell(T)$ its length. The Hilbert–Samuel polynomial $n \mapsto \ell(L/T^nL)$ of L with respect to I is well-studied. It is known that it is of polynomial type and of degree dim L. Considerably less is known of the function $n \mapsto \ell(\operatorname{Tor}_i^A(L, A/I^n))$ for $i \geq 1$. It is known that this function is of polynomial type and of degree $\leq d-1$. There are some results which show under certain conditions the maximal degree is attained, see [\[2\]](#page-9-0), [\[4\]](#page-9-0) and [\[7\]](#page-10-0). However this function can also be identically zero, see [\[7,](#page-10-0) Remark 20]. Similarly not much is known of the function $n \mapsto \ell(\text{Ext}^i_A(L, A/I^n))$ for $i \geq 1$. It is known that this function is of polynomial type and of degree $\leq d-1$. There are some results which show under certain conditions the maximal degree is attained, see [\[1\]](#page-9-0), [\[3\]](#page-9-0). Even less is known

© The Author(s), 2024. Published by Cambridge University Press on Behalf G The Author(s), 2024. Published by Cambridge University Press on Benand 1
of The Edinburgh Mathematical Society.

2 T. J. Puthenpurakal

of the functions $n \mapsto \ell(\text{Tor}_i^A(L, M/I^nM))$ and $n \mapsto \ell(\text{Ext}_A^i(L, M/I^nM))$ where M is an A-module.

Perhaps the first case to consider for these functions is when A is regular. In this case, projdim N is finite for any A -module N . Surprisingly, we found out that the functions

$$
t_M^I(N, n) = \sum_{i=0}^d \ell(\text{Tor}_i^A(N, M/I^n M))
$$
 and $e_M^I(N, n) = \sum_{i=0}^d \ell(\text{Ext}_A^i(N, A/I^n))$

are easier to tackle. One can then work with K^b (proj A), the homotopy category of bounded complexes of projective A-modules, which is the bounded derived category of A. More generally, let (A, \mathfrak{m}) be a local ring (not necessarily regular). Let $X_{\bullet}: X_{\bullet}^{-1} \to$ $\mathbf{X}_{\bullet}^0 \to \mathbf{X}_{\bullet}^1$ be a complex of A-modules. In [\[9,](#page-10-0) Proposition 3], it is shown that if $\ell(H^0(\mathbf{X}_{\bullet} \otimes$ M/I^nM)) has finite length for all $n \geq 1$ then the function $n \to \ell(H^0(\mathbf{X}_\bullet \otimes M/I^nM))$ is of polynomial type. The precise degree of this polynomial is difficult to determine (a general upper bound for the degree is given in [\[9,](#page-10-0) Proposition 3]).

1.1. In this paper, we prove a surprising result. Let (A, \mathfrak{m}) be a local ring and let K^b (proj A) be the homotopy category of bounded complexes of projective A-modules, Let K_f^b (proj A) denote the homotopy category of bounded complexes of projective A-modules with finite length cohomology. Let $\mathbf{X}_{\bullet} \in K_f^b(\text{proj }A)$. We note that for any A-module M and an ideal I we have $\ell(H^{i}(\mathbf{X}_{\bullet} \otimes M/I^{n}M))$ which has finite length for all $n \geq 1$ and for all $i \in \mathbb{Z}$. The main point of this paper is that it is better to look at the function

$$
\psi^{M,I}_{\mathbf{X}\bullet}(n) = \sum_{i\in\mathbb{Z}} \ell(H^i(\mathbf{X}_\bullet\otimes M/I^nM)), \quad \text{for } n \ge 1.
$$

We know that $\psi_{\mathbf{X}_{\bullet}}^{M,I}(n)$ is of polynomial type say of degree $r_I^M(\mathbf{X}_{\bullet})$. The main result of this paper is

Theorem 1.2. [with hypotheses as in 1.1]. Assume $M \neq 0$ and $I \neq A$. Then, there exists a nonnegative integer r_I^M depending only on I and M such if $\mathbf{X}_{\bullet} \in K_f^b(\text{proj } A)$ is nonzero then $r_I^M(\mathbf{X}_{\bullet}) = r_I^M$.

The essential reason why this happens is because $K_f^b(\text{proj }A)$ has no proper thick subcategories.

1.3. Thus, to determine $r_I^M(X)$, it suffices to compute it for a single nonzero complex \mathbf{X}_{\bullet} in $K_f^b(\text{proj }A)$. As a consequence of Theorem 1.2, we show

Theorem 1.4. [with hypotheses as in Theorem 1.2]. If $\dim M > 0$ and I is $\mathfrak{m}\text{-}primary then r_I^M = \dim M - 1.$

1.5. Let A be a Cohen–Macaulay local ring. Let $I \neq A$ be an ideal of A and let M be a nonzero A-module. If L is a nonzero module of finite length and finite projective dimension, set $t_M^I(L,n)$ and $e_M^I(L,n)$ as before. Also let $t_M^I(L)$ and $e_M^I(L)$ denote the degree of the corresponding functions of polynomial type. We show

Corollary 1.6. (with hypotheses as in [1.5\)](#page-1-0). Let L_1, L_2 be two nonzero modules of finite length and finite projective dimension. Then

$$
t_M^I(L_1) = t_M^I(L_2) = e_M^I(L_1) = e_M^I(L_2).
$$

1.7. We now consider the case when dim $M > 0$ and I is m-primary. Let $X_{\bullet} \in$ K^b (proj A). Then by [[9](#page-10-0), Proposition 3], it follows that $\psi_{\mathbf{X}_{\bullet}}^{M,I}(n)$ is of degree

$$
s_I^M(\mathbf{X}_{\bullet}) \le \max\{\dim H^*(\mathbf{X}_{\bullet} \otimes M), \dim M - 1\}.
$$

Furthermore if $\dim H^*(\mathbf{X}_\bullet \otimes M) \geq \dim M$ then $s_I^M(\mathbf{X}_\bullet) = \dim H^*(\mathbf{X}_\bullet \otimes M)$. We prove

Theorem 1.8. (with hypotheses as in 1.7) We have

$$
s_I^M(\mathbf{X}_{\bullet}) = \max\{\dim H^*(\mathbf{X}_{\bullet} \otimes M), \dim M - 1\}.
$$

1.9. Let $I \neq A$ be an m-primary ideal of A and let M be a A-module with dim $M > 0$. If L is a nonzero module of finite projective dimension, set $t_M^I(L,n)$ and $e_M^I(L,n)$ as before. Also let $t^I_M(L)$ and $e^I_M(L)$ denote the degree of the corresponding functions of polynomial type. As an application of Theorem 1.8, we have

Corollary 1.10. (with hypotheses as in 1.9). We have

$$
t_M^I(L) = e_M^I(L) = \max\{\dim M \otimes L, \dim M - 1\}.
$$

As an application of this corollary (with $N = L$ and $M = A$), we get the result stated in the abstract.

We now describe in brief the contents of this paper. In $\S 2$, we discuss a few prelimi-nary results. In § [3,](#page-4-0) we prove Theorem [1.2](#page-1-0) and Corollary 1.6. In § [4,](#page-5-0) we give a proof of Theorem [1.4.](#page-1-0) In § [5,](#page-7-0) we give a proof of Theorem 1.8. Finally, in § [6,](#page-8-0) we give a proof of Corollary 1.10.

2. Preliminaries

In this section, we discuss a few preliminary results that we need. We use [\[6\]](#page-9-0) for notation on triangulated categories. However, we will assume that if $\mathcal C$ is a triangulated category then $\text{Hom}_{\mathcal{C}}(X, Y)$ is a set for any objects X, Y of \mathcal{C} .

2.1. Let C be an essentially small triangulated category with shift operator Σ and let $\text{Iso}(\mathcal{C})$ be the set of isomorphism classes of objects in C. By a weak triangle function on C, we mean a function $\xi: Iso(\mathcal{C}) \to \mathbb{Z}$ such that

- (1) $\xi(X) \geq 0$ for all $X \in \mathcal{C}$.
- (2) $\xi(0) = 0$.
- (3) $\xi(X \oplus Y) = \xi(X) + \xi(Y)$ for all $X, Y \in \mathcal{C}$.
- (4) $\xi(\Sigma X) = \xi(X)$ for all $X \in \mathcal{C}$.
- (5) If $X \to Y \to Z \to \Sigma X$ is a triangle in C then $\xi(Z) \leq \xi(X) + \xi(Y)$.

2.2. Set

$$
\ker \xi = \{ X \mid \xi(X) = 0 \}.
$$

The following result (essentially an observation) is a crucial ingredient in our proof of Theorem [1.2](#page-1-0).

Lemma 2.3. (with hypotheses as above). ker ξ is a thick subcategory of \mathcal{C} .

Proof. We have

- (1) $0 \in \ker \xi$.
- (2) If $X \cong Y$ and $X \in \text{ker } \xi$. Then note $\xi(Y) = \xi(X) = 0$. So $Y \in \text{ker } \xi$.
- (3) If $X \in \text{ker } \xi$ then note $\xi(\Sigma X) = \xi(X) = 0$. So $\Sigma X \in \text{ker } \xi$. Similarly $\Sigma^{-1}X \in$ ker ξ.
- (4) If $X \to Y \to Z \to \Sigma X$ is a triangle in C with $X, Y \in \text{ker } \xi$. Then note

$$
0 \le \xi(Z) \le \xi(X) + \xi(Y) = 0 + 0 = 0.
$$

So $Z \in \ker \xi$.

(5) If $X \oplus Y \in \text{ker } \xi$ then $\xi(X) + \xi(Y) = \xi(X \oplus Y) = 0$. As $\xi(X)$, $\xi(Y)$ are nonnegative, it follows that $\xi(X) = \xi(Y) = 0$. Thus $X, Y \in \text{ker }\xi$.

It follows that ker ξ is a thick subcategory of C.

2.4. Let A be a ring. Let K^b (proj A) be the homotopy category of bounded complexes of projective complexes. We index complexes cohomologically,

$$
\mathbf{X}_{\bullet} \colon \cdots \to \mathbf{X}_{\bullet}^{n-1} \to \mathbf{X}_{\bullet}^{n} \to \mathbf{X}_{\bullet}^{n+1} \to \cdots.
$$

We note that $\mathbf{X}_{\bullet} = 0$ in $K^b(\text{proj } A)$ if and only if $H^*(\mathbf{X}_{\bullet}) = 0$. If $\mathbf{X}_{\bullet} = 0$ in $K^b(\text{proj } A)$ then note that $H^*(X \otimes N) = 0$ for any A-module N.

2.5. Let K_f^b (proj A) denote the homotopy category of bounded complexes of projective complexes with finite length cohomology. We note that if $X_{\bullet} \in K_f^b(\text{proj }A)$ and N is an A-module then $H^*(\mathbf{X}_\bullet \otimes N)$ also has finite length. To see this if \check{P} is a prime ideal in A with $P \neq \mathfrak{m}$ then

$$
H^*(\mathbf{X}_{\bullet} \otimes_A N)_P = H^*(\mathbf{X}_{\bullet P} \otimes_{A_P} N_P) = 0 \quad \text{as } \mathbf{X}_{\bullet P} = 0 \text{ in } K^b(\text{proj } A_P).
$$

Lemma 2.6. Let $X_{\bullet} \in K^b(\text{proj }A)$ be nonzero. Let $N \neq 0$. Then $H^*(X_{\bullet} \otimes N) \neq 0$.

Proof. We may assume X_{\bullet} is a minimal complex. Furthermore (after a shift), we may assume that $\mathbf{X}_{\bullet}^0 \neq 0$ and $\mathbf{X}_{\bullet}^i = 0$ for $i \geq 1$. Let $H^0(\mathbf{X}_{\bullet}) = E \neq 0$ since \mathbf{X}_{\bullet} is minimal. It is straight forward to check that $H^0(\mathbf{X}_{\bullet} \otimes N) = E \otimes N \neq 0$. The result follows.

2.7. Suppose for an A-module M and an ideal I we have $\ell(H^{i}(\mathbf{X}_{\bullet}\otimes M/I^{n}M))$ has finite length for all $n \geq 1$ and for all $i \in \mathbb{Z}$. Consider the function

$$
\psi_{\mathbf{X}_{\bullet}}^{M,I}(n) = \sum_{i \in \mathbb{Z}} \ell(H^{i}(\mathbf{X}_{\bullet} \otimes M/I^{n}M)), \quad \text{for } n \ge 1.
$$

By [[9](#page-10-0), Proposition 3] we know that $\psi_{\mathbf{X}_{\bullet}}^{M,I}(n)$ is of polynomial type say of degree $r_I^M(X)$ and

$$
r_I(M) \le \dim M.
$$

2.8. Let I be an \mathfrak{m} -primary ideal in A and let M be an A-module. An element $x \in I$ is said to be M-superficial with respect to I if there exists c such that $(I^{n+1}M: x) \cap I^cM =$ $IⁿM$ for all $n \gg 0$. Superficial elements exist when $k = A/\mathfrak{m}$ is infinite, (see [[8](#page-10-0), p. 7] for the case when $M = A$; the same proof generalizes).

2.9. If grade(I, M) > 0 and x is M-superficial with respect to I then x is M-regular. This fact is well-known. We give a proof due to lack of a suitable reference. Let $(I^{n+1}M: x) \cap I^cM = I^nM$ for all $n \gg 0$. Let $u \in I$ be M-regular. If $xm=0$ then $xu^cm = 0.$ So $u^cm \in I^n$ for all $n \gg 0.$ Thus $u^cm = 0$ and so $m = 0.$

2.10. A sequence $\mathbf{x} = x_1, \ldots, x_r \in M$ is said to be an M-superficial sequence if x_i is $M/(x_1, \ldots, x_{i-1})M$ -superficial for $i = 1, \ldots, r$. If grade $(I, M) > r$ then it follows from 2.9 that x is an A-regular sequence.

3. Proof of Theorem [1.2](#page-1-0) and Corollary [1.6](#page-2-0)

In this section, we give proofs of Theorem [1.2](#page-1-0) and Corollary [1.6.](#page-2-0) We first give

Proof of Theorem [1.2.](#page-1-0) By [2.6,](#page-3-0) it follows that the function $\psi_{\mathbf{X}_{\bullet}}^{M,I}(n) \neq 0$ for all $n \geq 1$. Thus $r_I^M(\mathbf{X}_{\bullet}) \geq 0$ for all $\mathbf{X}_{\bullet} \neq 0$. Also by 2.7, $r_I^M(\mathbf{X}_{\bullet}) \leq \dim A$ for any $\mathbf{X}_{\bullet} \in K_f^b(\text{proj } A)$. Let

$$
c = \max\{r_I^M(\mathbf{X}_{\bullet}) \mid \mathbf{X}_{\bullet} \neq 0\}.
$$

For $\mathbf{Y}_{\bullet} \in K^b(\text{proj }A)_f$ define

$$
\eta(\mathbf{Y}_{\bullet}) = \lim_{n \to \infty} \frac{c!}{n^c} \psi_{\mathbf{Y}_{\bullet}}^{M,I}(n).
$$

Clearly $\eta(\mathbf{Y}_{\bullet}) \in \mathbb{Z}_{\geq 0}$. Furthermore if $\mathbf{Y}_{\bullet} \cong \mathbf{Z}_{\bullet}$ then clearly $\eta(\mathbf{Y}_{\bullet}) = \eta(\mathbf{Z}_{\bullet})$. Thus, we have a function $\eta\colon \operatorname{Iso}(\bar{K}^b_f(\operatorname{proj} A))\to \mathbb{Z}$ where $\operatorname{Iso}(K^b_f(\operatorname{proj} A))$ denotes the set of isomorphism classes of objects in $K_f^b(\text{proj }A)$.

Claim: η is a weak triangle function on $K_f^b(\text{proj }A)$.

Assume the claim for the time-being. By [2.3,](#page-3-0) ker η is a thick subcategory of $K_f^b(\text{proj }A)$. Let X_{\bullet} be such that $r_I^M(X_{\bullet}) = c$. Then $\eta(X_{\bullet}) > 0$. So $X_{\bullet} \notin \text{ker }\eta$. Thus ker $\eta \neq$ K^b (proj A). By [\[5,](#page-9-0) Lemma 1.2], it follows that ker $\eta = 0$. Thus $r_I^M(\mathbf{Y}_{\bullet}) = c$ for any $\mathbf{Y}_{\bullet} \neq 0$ in $K_f^b(\text{proj } A)$.

It remains to prove the claim. The first four properties of definition in [2.1](#page-2-0) are trivial to verify. Let $\mathbf{X}_{\bullet} \xrightarrow{f} \mathbf{Y}_{\bullet} \to \mathbf{Z}_{\bullet} \to \mathbf{X}_{\bullet}[1]$ be a triangle in $K_f^b(\text{proj }A)$. Then $\mathbf{Z}_{\bullet} \cong \text{cone}(f)$ and we have an exact sequence in $C^b(\text{proj }A)$

$$
0 \to \mathbf{Y}_{\bullet} \to \text{cone}(f) \to \mathbf{X}_{\bullet}[1] \to 0.
$$

As \mathbf{X}_{\bullet}^{i} are free A-modules we have an exact sequence for all $n \geq 1$,

$$
0 \to \mathbf{Y}_{\bullet} \otimes M/I^{n}M \to \text{cone}(f) \otimes M/I^{n}M \to \mathbf{X}_{\bullet}[1] \otimes M/I^{n}M \to 0.
$$

Taking homology we have

$$
\psi^{M,I}_{\mathbf{Z}\bullet}(n) \leq \psi^{M,I}_{\mathbf{Y}\bullet}(n) + \psi^{M,I}_{\mathbf{X}\bullet[1]}(n)
$$

for all $n \geq 1$. It follows that

$$
\eta(\mathbf{Z}_{\bullet}) \leq \eta(\mathbf{Y}_{\bullet}) + \eta(\mathbf{X}_{\bullet}[1]) = \eta(\mathbf{Y}_{\bullet}) + \eta(\mathbf{X}_{\bullet}).
$$

Thus, η is a weak triangle function on $K_f^b(\text{proj }A)$.

Next we give

Proof of Corollary [1.6.](#page-2-0) By Theorem [1.2,](#page-1-0) we have that there exists c with $r_I^M(\mathbf{X}_{\bullet})$ = c for any nonzero $\mathbf{X}_{\bullet} \in K_f^b(\text{proj }A)$. Let L be a nonzero finite length A-module with finite projective dimension. Let Y_{\bullet} be a minimal projective resolution of L. Then $Y_{\bullet} \in$ K_f^b (proj A) and is nonzero. It follows that $r_I^M(\mathbf{Y}_{\bullet}) = c$. Observe that $r_I^M(\mathbf{Y}_{\bullet}) = t_M^I(L)$. Set $\mathbf{Y}_{\bullet}^* = \text{Hom}_A(\mathbf{Y}_{\bullet}, A)$. Note that $\mathbf{Y}_{\bullet}^* \in K_f^b(A)$ and is nonzero. Also observe

$$
\operatorname{Ext}\nolimits_A^*(L,M/I^nM) = H^*(\operatorname{Hom}\nolimits_A(\mathbf{Y}_\bullet,M/I^nM) \cong H^*(\mathbf{Y}_\bullet^* \otimes_A M/I^nM).
$$

Therefore

$$
e_M^I(L) = r_I^M(\mathbf{Y}_{\bullet}^*) = c.
$$

The result follows. \Box

4. Proof of Theorem [1.4](#page-1-0)

In this section, we assume (A, \mathfrak{m}) is local ring, M is an A-module with dim $M > 0$ and I is an m-primary ideal. In this section, we give a proof of Theorem [1.4.](#page-1-0) We first discuss the invariant $r_I^M(A)$ under base change.

4.1. Base change:

(1) We first consider a flat base change $A \to B$ where (B, \mathfrak{n}) is local and $\mathfrak{n} = \mathfrak{m}B$. We claim that $r_I^M(A) = r_{IB}^{M \otimes_A B}(B)$.

In this case, we first observe that if E is an A-module of finite length then $\ell_B(E \otimes_A B) =$ $\ell_A(E)$. Also if X_{\bullet} is a bounded complex of A-modules with finite length cohomology then $X_{\bullet} \otimes_{A} B$ is a bounded complex of B-modules with finite length cohomology and $\ell_B(H^*(\mathbf{X}_\bullet \otimes B)) = \ell_A(H^*(\mathbf{X}_\bullet)).$ If $\mathbf{Y}_\bullet \in K_f^b(\text{proj }A)$ then $\mathbf{Y}_\bullet \otimes_A B \in K_f^b(\text{proj }B)$. Let $\mathbf{Y}_{\bullet} \in K_f^b(\text{proj }A)$ be nonzero. Set

$$
\psi_{\mathbf{Y}_{\bullet},A}^{M,I}(n) = \sum_{i \in \mathbb{Z}} \ell_A(H^i(\mathbf{Y}_{\bullet} \otimes M/I^nM)), \text{ for } n \ge 1.
$$

Then

$$
\psi_{\mathbf{Y}_{\bullet} \otimes_{A} B, B}^{M \otimes_{A} B, B}(n) = \sum_{i \in \mathbb{Z}} \ell_{B}(H^{i}(\mathbf{Y}_{\bullet} \otimes_{A} B \otimes_{B} (M/I^{n} M \otimes_{A} B))
$$

$$
= \sum_{i \in \mathbb{Z}} \ell_{B}(H^{i}((\mathbf{Y}_{\bullet} \otimes_{A} M/I^{n} M) \otimes_{A} B))
$$

$$
= \psi_{\mathbf{Y}_{\bullet}, A}^{M, I}(n).
$$

It follows that degree of the function $\psi_{\mathbf{Y}_{\bullet},A}^{M,I}(n)$ is equal to degree of $\psi_{\mathbf{Y}_{\bullet}\otimes_{A}B,B}^{M\otimes_{A}B,IB}(n)$. The result follows.

(2) If $(Q, \mathfrak{n}) \to (A, \mathfrak{m})$ is a surjective ring homomorphism and if J is any n-primary ideal in Q with $JA = I$ then $r_I^M(A) = r_J^M(Q)$. To see this, if $\mathbf{Y}_{\bullet} \in K_f^b(\text{proj }Q)$ then $\mathbf{Y}_{\bullet} \otimes_Q A \in K_f^b(\text{proj }A)$. Let $\mathbf{Y}_{\bullet} \in K_f^b(\text{proj }Q)$ be nonzero. Set

$$
\psi_{\mathbf{Y}_{\bullet},Q}^{M,J}(n) = \sum_{i \in \mathbb{Z}} \ell_Q(H^i(\mathbf{Y}_{\bullet} \otimes_Q M/J^n M), \text{ for } n \ge 1.
$$

Then

$$
\psi_{\mathbf{Y}_{\bullet} \otimes_{Q} A, A}^{M, I}(n) = \sum_{i \in \mathbb{Z}} \ell_{A} (H^{i}(\mathbf{Y}_{\bullet} \otimes_{Q} A \otimes_{A} M / I^{n} M)
$$

$$
= \sum_{i \in \mathbb{Z}} \ell_{Q} (H^{i}((\mathbf{Y}_{\bullet} \otimes_{Q} M / J^{n} M)
$$

$$
= \psi_{\mathbf{Y}_{\bullet}, Q}^{M, J}(n).
$$

The result follows.

(3) If $\mathfrak{q} \subseteq \text{ann}_A M$ then note that M can be considered as a $C = A/\mathfrak{q}$ -module. Set $J = (I + \mathfrak{q}/\mathfrak{q})$. Note J is primary to the maximal ideal of C. Then $r_I^M = r_J^M$. The proof of this assertion is similar to (2).

We now give

Proof of Theorem [1.4.](#page-1-0) By [1.7,](#page-2-0) we have $r_I^M \leq \dim M - 1$. We first do the following base-changes:

(1) If the residue field of A is finite then we set $B = A[X]_{m,A[X]}$ then (B, \mathfrak{n}) is a flat extension of A with $m = n$ and the residue field of B is $k(X)$ is infinite. So we replace M by $M \otimes_A B$ and I by IB (see [4.1\(](#page-5-0)1)).

8 T. J. Puthenpurakal

- (2) We then complete A (see [4.1\(](#page-5-0)1)).
- (3) By (1) , (2) we assume A is complete with an infinite residue field. Let A be a quotient of a regular local ring Q . Then, we can replace A by Q (see [4.1\(](#page-5-0)2)).
- (4) By (3), we can assume A is regular local with infinite residue field. We note $a = \text{grade}(\text{ann }M) = \text{height} \text{ ann }M$. Choose $y_1, \ldots, y_a \in \text{ann }M$ an A-regular sequence. By [4.1\(](#page-5-0)3), we can replace A with $A/(y_1, \ldots, y_a)$.

Thus, we can assume A is Cohen–Macaulay with infinite residue field and dim $A =$ $\dim M > 0$. Let $d = \dim A$ and let $\mathbf{x} = x_1, \ldots, x_d$ be a maximal $M \oplus A$ -superficial sequence with respect to I . Then as x is an A-superficial sequence with respect to I it is an A-regular sequence, see [2.10.](#page-4-0) Let \mathbf{K}_{\bullet} be the Koszul complex on \mathbf{x} . Then $\mathbf{K}_{\bullet} \in K_f^b(\text{proj }A)$. We also note that as x_1 is M-superficial with respect to I there exists c and n_0 such that $(IⁿM: x₁) \cap I^cM = Iⁿ⁻¹M$ for all $n \ge n_0$.

Set

$$
\psi^{M,I}_{\mathbf{K}\bullet,A}(n)=\sum_{i\in\mathbb{Z}}\ell_A(H^i(\mathbf{K}_\bullet\otimes M/I^nM)),\quad\text{for }n\geq 1
$$

and let r be its degree. By [2.7,](#page-4-0) $r \leq d-1$. We note that

$$
H^d(\mathbf{K}_{\bullet} \otimes M/I^nM) = \frac{I^nM \colon \mathbf{x}}{I^nM} \supseteq \frac{(I^nM \colon \mathbf{x}) \cap I^cM}{I^nM} = \frac{I^{n-1}M}{I^nM} \text{ (for } n \geq n_0).
$$

So $\psi^{M,I}_{\mathbf{K}\bullet,\mathcal{A}}(n) \geq \ell(I^{n-1}M/I^nM)$ for all $n \geq n_0$. So $r \geq d-1$. Thus $r = d-1$. By Theorem [1.2,](#page-1-0) it follows that $r_I^M = r = d - 1$.

5. Proof of Theorem [1.8](#page-2-0)

In this section, we give a proof of Theorem [1.8.](#page-2-0) We need the following well-known result. Suppose dim $E > 0$. Then, there exists $x \in \mathfrak{m}$ such that $(0:_{E}x)$ has finite length and $\dim E/xE = \dim E - 1.$

We now give

Proof of Theorem [1.8.](#page-2-0) By [1.7,](#page-2-0) it suffices to consider the case when dim $H^*(\mathbf{X}_\bullet \otimes$ M) \leq dim $M - 1$.

We first consider the case when dim $H^*(\mathbf{X}_\bullet \otimes M) = 0$. We prove the result by inducting on dim $H^*(\mathbf{X}_\bullet)$. If dim $H^*(\mathbf{X}_\bullet) = 0$ then the result follows from Theorem [1.4.](#page-1-0) If $\dim H^*(\mathbf{X}_\bullet) > 0$ then choose x such that map $H^*(\mathbf{X}_\bullet) \stackrel{x}{\to} H^*(\mathbf{X}_\bullet)$ has finite length kernel and dim $H^*(\mathbf{X}_\bullet)/xH^*(\mathbf{X}_\bullet) = \dim H^*(\mathbf{X}_\bullet) - 1$. Consider the triangle $X_{\bullet} \stackrel{x}{\rightarrow} X_{\bullet} \rightarrow Y_{\bullet} \rightarrow X_{\bullet}$ [1]. By taking long exact sequence of homology, we get an exact sequence

$$
0\rightarrow H^*(\mathbf{X}_\bullet)/xH^*(\mathbf{X}_\bullet)\rightarrow H^*(\mathbf{Y}_\bullet)\rightarrow (0\colon {}_{H^*(\mathbf{X}_\bullet)}x)[1]\rightarrow 0.
$$

It follows that $\dim H^*(\mathbf{Y}_\bullet) = \dim H^*(\mathbf{X}_\bullet) - 1$. Furthermore note

 $\mathbf{Z}_{\bullet} = \text{cone}(x, \mathbf{X}_{\bullet}) \cong \mathbf{Y}_{\bullet}$. We have an exact sequence

$$
0 \to \mathbf{X}_{\bullet} \to \mathbf{Z}_{\bullet} \to \mathbf{X}_{\bullet}[1] \to 0.
$$

As \mathbf{X}_{\bullet}^{i} is free for all i we have an exact sequence for all $n \geq 0$

$$
0 \to \mathbf{X}_{\bullet} \otimes M/I^nM \to \mathbf{Z}_{\bullet} \otimes M/I^nM \to \mathbf{X}_{\bullet}[1] \otimes M/I^nM \to 0,
$$

and

$$
0 \to \mathbf{X}_{\bullet} \otimes M \to \mathbf{Z}_{\bullet} \otimes M \to \mathbf{X}_{\bullet}[1] \otimes M \to 0.
$$

By considering later short exact sequence of complexes, we get by looking at long exact sequence in homology that dim $H^*(\mathbb{Z}_{\bullet} \otimes M) = 0$. So by induction hypothesis $s_I^M(\mathbf{Y}_{\bullet}) = \dim M - 1$. By considering all $n \geq 1$ and summing all i, we get

$$
\psi^{M,I}_{\mathbf{Y}_{\bullet}}(n) \le 2\psi^{M,I}_{\mathbf{X}_{\bullet}}(n).
$$

It follows that $s_I^M(\mathbf{X}_\bullet) \geq s_I^M(\mathbf{Y}_\bullet) = \dim M - 1$. But $s_I^M(\mathbf{X}_\bullet) \leq \dim M - 1$. The result follows.

We now assume $0 < a = \dim H^*(\mathbf{X}_\bullet \otimes M) \leq \dim M - 1$ and the result is proved for complexes \mathbb{Z}_{\bullet} with dim $H^*(\mathbb{Z}_{\bullet} \otimes M) = a - 1$. Choose x such that map $H^*(\mathbb{X}_{\bullet} \otimes M) \stackrel{x}{\rightarrow}$ $H^*(\mathbf{X}_\bullet \otimes M)$ has finite length kernel and $\dim H^*(\mathbf{X}_\bullet \otimes M)/xH^*(\mathbf{X}_\bullet \otimes M) = \dim H^*(\mathbf{X}_\bullet \otimes M)$ $M)-1$. Consider the triangle $\mathbf{X}_{\bullet} \stackrel{x}{\rightarrow} \mathbf{X}_{\bullet} \rightarrow \mathbf{Y}_{\bullet} \rightarrow \mathbf{X}_{\bullet}[1]$. Note $\mathbf{Z}_{\bullet} = \text{cone}(x, \mathbf{X}_{\bullet}) \cong \mathbf{Y}_{\bullet}$. We have an exact sequence

$$
0 \to \mathbf{X}_{\bullet} \to \mathbf{Z}_{\bullet} \to \mathbf{X}_{\bullet}[1] \to 0.
$$

As \mathbf{X}_{\bullet}^{i} is free for all *i*, we have an exact sequence for all $n \geq 0$

$$
0 \to \mathbf{X}_{\bullet} \otimes M/I^nM \to \mathbf{Z}_{\bullet} \otimes M/I^nM \to \mathbf{X}_{\bullet}[1] \otimes M/I^nM \to 0,
$$

and

$$
0 \to \mathbf{X}_{\bullet} \otimes M \to \mathbf{Z}_{\bullet} \otimes M \to \mathbf{X}_{\bullet}[1] \otimes M \to 0.
$$

By considering the latter short exact sequence of complexes, we get by looking at long exact sequence in homology we get an exact sequence

$$
0\rightarrow H^*(\mathbf{X}_\bullet\otimes M)/x^*H^*(\mathbf{X}_\bullet\otimes M)\rightarrow H^*(\mathbf{Z}_\bullet\otimes M)\rightarrow (0\colon {}_{H^*(\mathbf{X}_\bullet\otimes M)}x)[1]\rightarrow 0.
$$

Therefore dim $H^*(\mathbf{Z}_\bullet \otimes M) = \dim H^*(\mathbf{X}_\bullet \otimes M) - 1$. So by induction hypothesis $s_I^M(\mathbf{Y}_\bullet) =$ $\dim M - 1$. By considering all $n \geq 1$ and summing all i, we get

$$
\psi_{\mathbf{Y}_{\bullet}}^{M,I}(n) \le 2\psi_{\mathbf{X}_{\bullet}}^{M,I}(n)
$$

It follows that $s_I^M(\mathbf{X}_{\bullet}) \geq s_I^M(\mathbf{Y}_{\bullet}) = \dim M - 1$. But $s_I^M(\mathbf{X}_{\bullet}) \leq \dim M - 1$. The result follows. \Box

6. Proof of Corollary [1.10](#page-2-0)

In this section, we give a proof of Corollary [1.10.](#page-2-0) We need the following result:

Lemma 6.1. Let A be a Cohen–Macaulay local ring and let L be a nonzero A-module of finite projective dimension. Then

 $\dim M \otimes L = \dim \operatorname{Ext}_A^*(L,M).$

Proof. It is clear that $\text{Supp}(M \otimes L) = \text{Supp } M \cap \text{Supp } L$. Thus, it follows that $\mathrm{Supp} \, \mathrm{Ext}_A^*(L,M) \subseteq \mathrm{Supp}(M \otimes L)$. Conversely let $P \in \mathrm{Supp} M \otimes L$. We localize at P. So it suffices to prove $\text{Ext}^*(L,M) \neq 0$. By taking a minimal resolution of L, it clear that if $c = \text{projdim } L$ then $\text{Ext}_{A}^{c}(L, M) \neq 0$. The result follows.

We now give

Proof of Corollary [1.10.](#page-2-0) Let X_{\bullet} be a minimal projective resolution of L. Then $t_M^I(L,n) = \ell(H^*(\mathbf{X}_\bullet \otimes M/I^nM)).$ By [1.8,](#page-2-0) it follows that

 $t_M^I(L) = \max\{\dim H^*(\mathbf{X}_\bullet\otimes M), \dim M - 1\}.$

The result follows as $\dim H^*(\mathbf{X}_\bullet \otimes M) = \dim M \otimes L$.

Set $\mathbf{X}_{\bullet}^* = \text{Hom}_A(\mathbf{X}_{\bullet}, A)$. Observe

$$
\text{Ext}_{A}^{*}(L, M/I^{n}M) = H^{*}(\text{Hom}_{A}(\mathbf{X}_{\bullet}, M/I^{n}M)) \cong H^{*}(\mathbf{X}_{\bullet}^{*} \otimes_{A} M/I^{n}M).
$$

So

$$
e_M^I(L) = \max\{\dim H^*(\mathbf{X}_\bullet^* \otimes M), \dim M - 1\}.
$$

Notice $H^*(\mathbf{X}_\bullet^* \otimes M) = \text{Ext}_A^*(L, M)$. The results follows from Lemma 6.1.

Data availability statement. No data (public or private) were used in this paper.

References

- (1) A. Crabbe, D. Katz, J. Striuli and E. Theodorescu, Hilbert-Samuel polynomials for the contravariant extension functor, Nagoya Math. J. 198 (2010), 1–22.
- (2) S. Iyengar and T. J. Puthenpurakal, Hilbert-Samuel functions of modules over Cohen-Macaulay rings, Proc. Amer. Math. Soc. 135(3) (2007), 637–648.
- (3) G. Kadu and T. J. Puthenpurakal, Bass and Betti numbers of A/I^n , J. Algebra 573 (2021), 620–640.
- (4) D. Katz and E. Theodorescu, On the degree of Hilbert polynomials associated to the torsion functor, Proc. Amer. Math. Soc. 135(10) (2007), 3073–3082.
- (5) A. Neeman, The chromatic tower for $D(R)$, With an appendix by Marcel Bökstedt, Topology 31(3) (1992), 519–532.
- (6) A. Neeman, Triangulated categories, Annals of Mathematics Studies, 148, (Princeton University Press, Princeton, NJ, 2001).
- (7) T. J. Puthenpurakal, Hilbert coefficients of a Cohen-Macaulay module, J. Algebra 264(1) (2003), 82–97.
- (8) J. D. Sally, Numbers of Generators of Ideals in Local rings (Marcel Dekker, Inc., New York-Basel, 1978).
- (9) E. Theodorescu, Derived functors and Hilbert polynomials, Math. Proc. Cambridge Philos. Soc. **132**(1) (2002), 75–88.