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Latent variable models have been playing a central role in psychometrics and related fields. In many
modern applications, the inference based on latent variable models involves one or several of the following
features: (1) the presence of many latent variables, (2) the observed and latent variables being continuous,
discrete, or a combination of both, (3) constraints on parameters, and (4) penalties on parameters to
impose model parsimony. The estimation often involves maximizing an objective function based on a
marginal likelihood/pseudo-likelihood, possibly with constraints and/or penalties on parameters. Solving
this optimization problem is highly non-trivial, due to the complexities brought by the features mentioned
above. Although several efficient algorithms have been proposed, there lacks a unified computational
framework that takes all these features into account. In this paper, we fill the gap. Specifically, we provide
a unified formulation for the optimization problem and then propose a quasi-Newton stochastic proximal
algorithm. Theoretical properties of the proposed algorithms are established. The computational efficiency
and robustness are shown by simulation studies under various settings for latent variable model estimation.

Key words: latent variable models, penalized estimator, stochastic approximation, proximal algorithm,
quasi-Newton methods, Polyak–Ruppert averaging.

Latent variable models have been playing a central role in psychometrics and related fields.
Commonly used latent variable models include item response theory models (Embretson & Reise
2000; Reckase 2009), latent class models (Clogg, 1995; Rupp et al., 2010; von Davier & Lee,
2019), structural equation models (Bollen, 1989), error-in-variable models (Carroll et al., 2006),
random-effects models (Hsiao, 2014), and models for missing data (Little & Rubin, 1987), where
latent variables have different interpretations, such as hypothetical constructs, ‘true’ variables
measured with error, unobserved heterogeneity, and missing data. We refer the readers to Rabe-
Hesketh & Skrondal (2004) and Bartholomew et al. (2011) for a comprehensive review of latent
variable models.

A latent variable model contains unobserved latent variables and unknown parameters. For
example, an item response theorymodel contains individual-specific latent traits as latent variables
and item-specific parameters as model parameters. Comparing with models without latent vari-
ables, such as linear regression and generalized linear regression, the estimation of latent variable
models is typically more involved. This estimation problem can be viewed from three perspec-
tives: (1) fixed latent variables and parameters, (2) random latent variables and fixed parameters,
and (3) random latent variables and parameters.

The first perspective, i.e., fixed latent variables and parameters, leads to the joint maximum
likelihood (JML) estimator. This estimator can often be efficiently computed, for example, by an
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alternating minimization algorithm (Birnbaum, 1968; Chen et al., 2019; 2020). Unfortunately,
however, the JML estimator is typically statistically inconsistent (Neyman & Scott, 1948; Ander-
sen, 1973; Haberman, 1977; Ghosh, 1995), except under some high-dimensional asymptotic
regime that is suitable for large-scale applications (Chen et al., 2019; 2020; Haberman, 1977;
2004). Treating both latent variables and parameters as random variables, the third perspective
leads to a full Bayesian estimator, for which many Markov chain Monte Carlo (MCMC) algo-
rithms have been developed (e.g., Béguin & Glas, 2001; Bolt & Lall, 2003; Dunson, 2000; 2003;
Edwards, 2010).

The second perspective, i.e., random latent variables and fixed parameters, essentially follows
an empirical Bayes (EB) approach (Robbins, 1956; C.-H. Zhang, 2003). This perspective is the
most commonly adopted one (Rabe-Hesketh & Skrondal, 2004). Throughout the paper, we refer
to estimators derived under this perspective as EB estimators. Both the full-information marginal
maximum likelihood (MML) estimator (Bock & Aitkin, 1981) and the limited-information com-
posite maximum likelihood (CML) estimator (Jöreskog & Moustaki, 2001; Vasdekis et al., 2012)
can be viewed as special cases. Such estimators involve optimizing an objective function with
respect to the fixed parameters, while the objective function is often intractable due to an integral
with respect to the latent variables. The most commonly used algorithm for this optimization
problem is the expectation-maximization (EM) algorithm (Dempster et al., 1977; Bock & Aitkin,
1981). This algorithm typically requires to iteratively evaluate numerical integrals with respective
to the latent variables, which is often computationally unaffordable when the dimension of the
latent space is high.

A high-dimensional latent space is not the only challenge to the computation of EB estimators.
Penalties and constraints on parameters may also involve in the optimization, further complicating
the computation. In fact, penalized estimators have become increasingly more popular in latent
variable analysis for learning sparse structure, with applications to restricted latent class analysis,
exploratory item factor analysis, variable selection in structural equation models, differential item
functioning analysis, among others (Chen et al., 2015; Sun et al., 2016; Chen et al., 2018; Lind-
strøm & Dahl, 2020; Tutz & Schauberger, 2015; Jacobucci et al., 2016; Magis et al., 2015). The
penalty function is often non-smooth (e.g., Lasso penalty, Tibshirani, 1996), for which many stan-
dard optimization tools (e.g., gradient descent methods) are not applicable. In addition, complex
inequality constraints are also commonly encountered in latent variable estimation, for example,
in structural equation models (Van De Schoot et al., 2010) and restricted latent class models (e.g.,
de la Torre, 2011, Xu, 2017). Such complex constraints further complicate the optimization.

In this paper, we propose a quasi-Newton stochastic proximal algorithm that simultaneously
tackles the computational challenges mentioned above. This algorithm can be viewed as an exten-
sion of the stochastic approximation (SA) method (Robbins & Monro, 1951). Comparing with
SA, the proposedmethod converges faster and is more robust, thanks to the use of Polyak–Ruppert
averaging (Polyak & Juditsky, 1992; Ruppert, 1988). The proposed method can also be viewed
as a stochastic version of a proximal gradient descent algorithm (Chapter 4, Parikh & Boyd,
2014), in which constraints and penalties are handled by a proximal update. As will be illustrated
by examples later, the proximal update is easy to evaluate for many commonly used penalties
and constraints, making the proposed algorithm computationally efficient. Theoretical properties
of the proposed method are established, showing that the proposed one is almost optimal in its
convergence speed.

The proposed method is closely related to the stochastic-EM algorithm (Celeux, 1985; Ip,
2002; Nielsen, 2000; S. Zhang et al., 2020b) and theMCMC stochastic approximation algorithms
(Cai, 2010a; 2010b; Gu&Kong, 1998), two popular methods for latent variable model estimation.
Although these methods perform well in many problems, they are not as powerful as the pro-
posed one. Specifically, the MCMC stochastic approximation algorithms cannot handle complex
inequality constraints or non-smooth penalties, because they rely on stochastic gradients which
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do not always exist when there are complex inequality constraints or non-smooth penalties. In
addition, as will be discussed later, both the stochastic-EM algorithm and the MCMC stochastic
approximation algorithms are computationally less efficient than the proposed method, even for
estimation problems without complex constraints or penalties.

The proposed method is also closely related to a perturbed proximal gradient algorithm
proposed in Atchadé et al. (2017). The current development improves upon that of Atchadé et
al. (2017) from two aspects. First, the proposed method is a Quasi-Newton method, in which the
second-order information (i.e., second derivatives) of the objective function is used in the update.
Although this step may only change the asymptotic convergence speed by a constant factor (when
the number of iterations grows to infinity), our simulation study suggests that the new method
converges much faster than that of Atchadé et al. (2017) empirically. Second, the theoretical
analysis of Atchadé et al. (2017) only considers a convex optimization setting, while we consider
a non-convex setting which is typically the case for latent variable model estimation. Note that
the analysis is much more involved when the objective function is non-convex. Therefore, our
proof of sequence convergence is different from that of Atchadé et al. (2017). Specifically, the
convergence theory is established by analyzing the convergence of a set-valued generalization of
an ordinary differential equation (ODE).

The rest of the paper is organized as follows. In Sect. 1, we formulate latent variable model
estimation as a general optimization problem which covers many commonly used estimators as
special cases. In Sect. 2, a quasi-Newton stochastic proximal algorithm is proposed. Theoretical
properties of the proposed algorithm are established in Sect. 3, suggesting that the proposed
algorithm achieves the optimal convergence rate. The performance of the proposed algorithm is
demonstrated and compared with other estimators by simulation studies in Sect. 4. We conclude
with some discussions in Sect. 5. An R package has been developed that can be found on https://
github.com/slzhang-fd/lvmcomp2.

1. Estimation of Latent Variable Models

1.1. Problem Setup

We consider the estimation of a parametric latent variable model. We adopt a general setting,
followed by concrete examples in Sects. 1.2 and 1.3. Let Y be a random object representing
observable data and let y be its realization. For example, in item factor analysis (IFA),Y represents
(categorical) responses to all the items from all the respondents. A latent variable model specifies
the distribution of Y by introducing a set of latent variables ξ ∈ �, where � denotes the state
space of the latent vector ξ . For example, in item factor analysis, ξ consists of the latent traits of
all the respondents and� is a Euclidean space. Let β = (β1, . . . , βp)

� ∈ B be a set of parameters
in the model, where B denotes the parameter space. The goal is to estimate β given observed data
y.

We consider an EB estimator which takes the form

l(β) = log

(∫
�

f (y, ξ | β)dξ

)
, (1)

where f (y, ξ | β) is a complete-data likelihood/pseudo-likelihood function that has an analytic
form. We assume that the objective function l(β) is finite for any β ∈ B and is also smooth in β.

The estimator is given by solving the following optimization problem

β̂ = argmin
β∈B

−l(β) + R(β), (2)
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where R(β) is a penalty function that has an analytic form, such as Lasso, ridge, or elastic
net regularization functions. Note that the penalty function often depends on tuning parameters.
Throughout this paper, we assume these tuning parameters are fixed and thus do not explicitly
indicate them in the objective function (2). In practice, tuning parameters are often unknown
and need to be chosen by cross-validation or certain information criterion. We point out that
many commonly used estimators take the form of (2), including the MML estimator, the CML
estimator, and regularized estimators based on the MML and CML.We also point out that despite
its general applicability to latent variable estimation problems, the proposed method is more
useful for complex problems that cannot be easily solved by the classical EM algorithm. For
certain problems, such as the estimation of linear factor models and simple latent class models,
both the E- and M-step of the EM algorithm have closed-form solutions. In that situation, the
classical EM algorithm may be computationally more efficient, though the proposed method can
still be used.

1.2. High-dimensional Item Factor Analysis

Item factor analysismodels are commonlyused in social andbehavioral sciences for analyzing
categorical response data. For exposition, we focus on binary response data and point out that
the extension to ordinal response data is straightforward. Consider N individuals responding to J
binary-scored items. Let Yi j ∈ {0, 1} be a random variable denoting person i’s response to item
j and let yi j be its realization. Thus, we have Y = (Yi j )N×J and y = (yi j )N×J , where Y and
y are the generic notations introduced in Sect. 1.1 for our data. A comprehensive review of IFA
models and their estimation can be found in Chen & Zhang (2020a).

It is assumed that the dependence among an individual’s responses is driven by a set of latent
factors, denoted by ξ = (ξik)N×K , where ξik represents person i’s kth factor. Recall that ξ is
our generic notation for the latent variables in Sect. 1.1 and here the state space � = R

N×K .
Throughout this paper, we assume the number of factors K is known.

An IFA model makes the following assumptions:

1. ξ i = (ξi1, . . . , ξi K )�, i = 1, . . . , N , are independent and identically distributed (i.i.d.)
random vectors, following a multivariate normal distribution N (0,�). The diagonal
terms of � = (σkk′)K×K are set to one for model identification. As � is a positive
semi-definite matrix, it is common to reparametrize � by Cholesky decomposition,

� = BB�,

where B = (bkk′)K×K is a lower triangular matrix. Let bk be the kth row of B. Then
‖bk‖ = 1, k = 1, . . . , K , since the diagonal terms of � are constrained to value 1.

2. Yi j given ξ i follows a Bernoulli distribution satisfying

P(Yi j = 1 | ξ i ) = exp(d j + a�
j ξ i )

1 + exp(d j + a�
j ξ i )

, (3)

where d j and a j = (a j1, . . . , a jK )� are item-specific parameters. The parameters a jk

are often known as the loading parameters.
3. Yi1,…, Yi J are assumed to be conditionally independent given ξ i , which is known as

the local independence assumption.
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Note that we consider the most commonly used logistic model in (3). It is worth pointing out
that the proposed algorithm also applies to the normal ogive (i.e., probit) model which assumes
that P(Yi j = 1 | ξ i ) = �(d j + a�

j ξ i ). Under the current setting and using the reparametrization
for�, our model parameters are β = {B, d j , a j , j = 1, . . . , J }. The marginal likelihood function
takes the form

l(β) =
N∑
i=1

log

⎛
⎝∫

x∈RK

J∏
j=1

exp[yi j (d j + a�
j x)]

1 + exp(d j + a�
j x)

φ(x | B)dx

⎞
⎠ , (4)

where φ(x | B) is the density function for multivariate normal distribution N (0,BB�). The K -
dimensional integrals involved in (4) cause a high computational burden for a relatively large K
(e.g., K ≥ 5).

IFA models are commonly used for both exploratory and confirmatory analyses. In
exploratory IFA, an important problem is to learn a sparse loading matrix (ai j )J×K from data,
which facilitates the interpretation of the factors. One approach is by the L1-regularized estimator
(Sun et al., 2016) which takes the form

β̂ = argmin
β∈B

−l(β) + R(β), (5)

where the parameter space

B = {β ∈ R
p : bkk′ = 0, 1 ≤ k < k′ ≤ K ,

K∑
k′=1

b2kk′ = 1, k = 1, . . . , K },

and the penalty term

R(β) = λ

J∑
j=1

K∑
k=1

|a jk |. (6)

In R(β), λ > 0 is a tuning parameter assumed to be fixed throughout this paper. This regularized
estimator resolves the rotational indeterminacy issue in exploratory IFA, as the L1 penalty term is
not rotational invariant. Consequently, under mild regularity conditions, the loading matrix can be
consistently estimated only up to a column swapping. Note that only the Bmatrix has constraints,
as reflected by the parameter space B. Here bkk′ = 0 is due to that B is a lower triangle matrix
and

∑K
k′=1 b

2
kk′ = 1 is due to that the diagonal terms of � = BB� are all 1. We remark that it is

possible to replace the L1 penalty in R(β) by other penalty functions for imposing sparsity, such
as the elastic net penalty (Zou & Hastie, 2005)

R(β) = λ1

J∑
j=1

K∑
k=1

a2jk + λ2

J∑
j=1

K∑
k=1

|a jk |, (7)

where λ1, λ2 > 0 are two tuning parameters.
In confirmatory IFA, zero constraints are imposed on loading parameters, based on prior

knowledge about the measurement design. More precisely, these zero constraints can be coded
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by a binary matrix Q = (q jk)J×K . If q jk = 0, then item j does not load on factor k and a jk is
set to 0. Otherwise, a jk is freely estimated. These constraints lead to parameter space B = {β :
bkk′ = 0, 1 ≤ k < k′ ≤ K ;∑K

k′=1 b
2
kk′ = 1, a jk = 0 for q jk = 0, j = 1, . . . , J, k = 1, . . . , K }.

The MML estimator for confirmatory IFA is then given by

β̂ = argmin
β∈B

−l(β). (8)

Besides parameter estimation, another problem of interest in confirmatory IFA is to make sta-
tistical inference, for which it is required to compute the asymptotic variance of β̂. The estimation
of the asymptotic variance often requires to compute the Hessian matrix of l(β) at β̂, which also
involves intractable K -dimensional integrals. As we will see in Sect. 2.1, this Hessian matrix, as
well as quantities taking a similar form, can be easily obtained as a by-product of the proposed
algorithm.

1.3. Restricted Latent Class Model

Our second example is restricted latent class models which are also widely used in social and
behavioral sciences. For example, they are commonly used in education for cognitive diagnosis
(von Davier & Lee, 2019). These models differ from IFA models in that they assume discrete
latent variables. Here, we consider a setting for cognitive diagnosis when both data and latent
variables are binary. Consider data taking the same form as that for IFA, denoted byY = (Yi j )N×J

and y = (yi j )N×J . In this context, Yi j = 1 means that item j is answered correctly and Yi j = 0
means an incorrect answer.

The restricted latent class model assumes that each individual is characterized by a K -
dimensional latent vector ξ i = (ξi1, . . . , ξi K )�, i = 1, . . . , N , where ξik ∈ {0, 1}. Thus, the
latent variables are ξ = (ξik)N×K , whose state space � = {0, 1}N×K contains all N × K binary
matrices. Each dimension of ξ i represents a skill, and ξik = 1 indicates that person i has mastered
the kth skill and ξik = 0 otherwise.

The restricted latent class model can be parametrized as follows.

1. The person-specific latent vectors ξ i , i = 1, . . . , N , are i.i.d., following a categorical
distribution satisfying

P(ξ i = α) = exp(να)∑
α′∈{0,1}K exp(να′)

,

where α ∈ {0, 1}K represents an attribute profile representing the mastery status on all
K attributes, and we set να′ = 0 as the baseline, for α′ = (0, . . . , 0)�.

2. Yi j given ξ i follows a Bernoulli distribution, satisfying

P(Yi j = 1 | ξ i = α) = exp(θ j,α)

1 + exp(θ j,α)
, α ∈ {0, 1}K .

3. Local independence is still assumed. That is, Yi1,…, Yi J are conditionally independent
given ξ i .
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The above model specification leads to a marginal likelihood function

l(β) =
N∑
i=1

log

⎛
⎝ ∑

α∈{0,1}K

exp(να)∑
α′∈{0,1}K exp(να′)

J∏
j=1

exp(yi jθ j,α)

1 + exp(θ j,α)

⎞
⎠ , (9)

where β = {να, θ j,α,α ∈ {0, 1}K , j = 1, . . . , J }.
We consider a confirmatory setting where there exists a designmatrix, similar to theQ-matrix

in confirmatory IFA. With slight abuse of notation, we still denote Q = (q jk)J×K , where q jk ∈
{0, 1}. Here, q jk = 1 indicates that solving item j requires the kth skill and q jk = 0 otherwise. As
will be explained below, this design matrix leads to equality and inequality constraints in model
parameters.

Denote q j = (q j1, . . . , q jK )� as the design vector for item j . For α = (α1, . . . , αK )�, we
write

α � q j , if αk ≥ q jk for all k ∈ {1, . . . , K },

and write

α � q j , if there exists k such that αk < q jk .

That is, α � q j if profile α has all the skills needed for solving item j and α � q j if not. The
design information leads to the following constraints:

1. P(Yi j = 1 | ξ i = α) = P(Yi j = 1 | ξ i = α′), if both α,α′ � q j . That is, individuals
who have mastered all the required skills have the same chance of answering the item
correctly.

2. P(Yi j = 1 | ξ i = α) ≥ P(Yi j = 1 | ξ i = α′) if α � q j and α′
� q j . That is, students

who have mastered all the required skills have a higher chance of answering the item
correctly than those who do not.

3. P(Yi j = 1 | ξ i = α) ≥ P(Yi j = 1 | ξ i = 0) for all α. That is, students who have not
mastered any skill have the lowest chance of answering correctly.

We refer the readers to Xu (2017) for more discussions on these constraints which are key to the
identification of this model. Under these constraints, the MML estimator is given by

β̂ = argmin
β∈B

−l(β), (10)

where

B = {β : max
α�q j

θ j,α = min
α�q j

θ j,α ≥ θ j,α′ ≥ θ j,0, if α′
� q j , ν0 = 0}.

When K is relatively large, the computation for solving (10) becomes challenging, due to
both the summation over 2K possible values of α in l(β), and the large number of inequality
constraints.
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2. Stochastic Proximal Algorithm

In this section, we propose a quasi-Newton stochastic proximal algorithm for the computation
of (2). The description in this section will focus on the computation aspect, without emphasizing
the regularity conditions needed for its convergence. A rigorous theoretical treatment will be given
in Sect. 3. In what follows, we describe the algorithm in its general form in Sect. 2.1, followed
by details for two specific models in Sects. 2.2 and 2.3, and finally comparisons with related
algorithms in Sect. 2.4.

2.1. General Algorithm

For ease of exposition, we introduce some new notation. We write the penalty function as
the sum of two terms, R(β) = R1(β) + R2(β), where R1(β) is a smooth function and R2(β)

is non-smooth. In the example of regularized estimation for exploratory IFA, R1(β) = 0 and
R2(β) = λ

∑J
j=1

∑K
k=1 |a jk |, when R(β) is an L1 penalty as in (6). When an elastic net penalty

is used as in (7), R1(β) = λ1
∑J

j=1
∑K

k=1 a
2
jk and R2(β) = λ2

∑J
j=1

∑K
k=1 |a jk |.

The optimization problem can be reexpressed as

min
β

h(β) + g(β), (11)

where h(β) = −l(β) + R1(β) and g : R
p → R ∪ {+∞} is a generalized function taking the

form g(β) = R2(β) + IB(β), where

IB(β) =
{
0, if β ∈ B,

+∞, otherwise.
(12)

Note that since both l(β) and R1(β) are smooth in β, h(β) is still smooth in β. The second term
g(β) is non-smooth in β, unless it is degenerate (i.e., g(β) ≡ 0). We further write

H(ξ ,β) = − log f (y, ξ | β) + R1(β), (13)

which can be viewed as a complete-data version of h(β) that will be used in the algorithm.
The algorithm relies on a scaled proximal operator (Lee et al., 2014) for the g function,

defined as

ProxDγ,g(β) = argmin
x∈Rp

{
g(x) + 1

2γ
‖x − β‖2D

}
,

where γ > 0, D is a strictly positive definite matrix, and ‖ · ‖D is a norm defined by ‖x‖2D =
〈x, x〉D = x�Dx. The choices of γ , D, and the intuition behind the proximal operator will be
explained in the sequel.

Our general algorithm is described in Algorithm 1, followed by implementation details. The
proposed algorithm is an extension of a perturbed proximal gradient algorithm (Atchadé et al.,
2017). Themajor difference is that the proposed algorithmmakes use of second-order information
from the smooth part of the objective function, which can substantially speed up its convergence.
See Sect. 2.4 for further comparison.
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Algorithm 1. (Stochastic Proximal Algorithm)

InputData y, initial parametersβ(0), a sequence of step size γs , s = 1, 2, . . ., pre-specified
tuning parameters c2 ≥ c1 > 0, and burn-in size  .
Update At tth iteration where t ≥ 1, we perform the following two steps:

1. Stochastic step Sample ξ from the conditional distribution of ξ given y,

ψ(ξ) ∝ f (y, ξ | β(t−1)),

and obtain ξ (t). The sampling can be either exact or approximated by MCMC.
2. Proximal step Update model parameters by

β(t) = ProxD
(t)

γt ,g

(
β(t−1) − γt (D(t))−1G(t)), (14)

where

G(t) = ∂H(ξ (t),β)

∂β

∣∣∣∣
β=β(t−1)

.

D(t) is a diagonal matrix with diagonal entries

δ
(t)
i = t − 1

t
δ
(t−1)
i + 1

t
T
(
δ̃
(t)
i ; c1, c2

)
,

where T (x; c1, c2) is a truncation function defined as

T (x; c1, c2) =
⎧⎨
⎩
c1, if x < c1,
x, if x ∈ [c1, c2],
c2, if x > c2.

(15)

Here δ̃
(t)
i = δ̃

(t)
i,1 + (δ̃

(t)
i,2)

2, where

δ̃
(t)
i,1 = (1−γt )δ̃

(t−1)
i,1 +γt

⎛
⎝∂2H(ξ (t),β)

∂β2
i

∣∣∣∣
β=β(t−1)

−
(

∂H(ξ (t),β)

∂βi

)2 ∣∣∣∣
β=β(t−1)

⎞
⎠ ,

δ̃
(t)
i,2 = (1 − γt )δ̃

(t−1)
i,2 + γt

(
∂H(ξ (t),β)

∂βi

)2 ∣∣∣∣
β=β(t−1)

.

Iteratively perform these two steps until a stopping criterion is satisfied and let n be the
last iteration number.
Output β̄n = ∑n

t=+1 β(t)/(n − ).

In what follows, we make a few remarks to provide some intuitions about the algorithm.
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Remark 1. (Connection with stochastic gradient descent) To provide some intuitions about the
proposed method, we first make a connection between the proposed method and the stochastic
gradient descent (SGD) algorithm. In fact, when the sampling of ξ is exact in the stochastic
step, then G(t) is a stochastic gradient of the smooth part of our objective function, in the sense
that E(G(t) | y,β(t−1)) = ∇h(β)|β=β(t−1) . If, in addition, there is no constraint or non-smooth

penalty, i.e., g(β) ≡ 0, then the proximal step degenerates to an SGD update β(t) = β(t−1) −
γt (D(t))−1G(t). In that case, the proposed method becomes a version of SGD.

Remark 2. (Proximal step) We provide some intuitions about the proximal step. We start with
two special cases. First, as mentioned in Remark 1, if there is no constraint or non-smooth penalty,
then the proximal step is nothing but a stochastic gradient descent step. This is because, the scaled
proximal operator degenerates to an identity map, i.e., ProxDγ,g(β) = β. Second, when the g
function involves constraints but does not contain a non-smooth penalty, then the proximal step
is a projected stochastic gradient descent step. That is, one first performs a stochastic gradient

descent update β̃
(t) = β(t−1) − γt (D(t))−1G(t). Then β̃

(t)
is projected back to the feasible region

B by the scaled proximal operator:

β̂ = argmin
β∈B

‖β − β̃
(t)‖D,

which is a projection under the norm ‖ · ‖D. When D is an identity matrix as in the vanilla (i.e.,
non-scaled) proximal operator, then the projection is based on the Euclidean distance.

More generally, when the g function involves non-smooth penalties, then the proximal step
can be viewed asminimizing the sum of g(β) and a quadratic approximation of h(β) at β(t−1); see
Lee et al. (2014) for more explanations. We provide an example to facilitate the understanding.
Suppose that

g(β) = λ

p∑
i=1

|βi |

is the Lasso penalty, and D = diag(δ1, . . . , δp) is a diagonal matrix, where λ, δi > 0, i =
1, . . . , p. Then ProxDγ,g(β̃

(t)
) involves solving p optimization problems separately, each of which

takes the form

β̂i = argmin
x

1

2
(x − β̃

(t)
i )2 + λγ

δi
|x |. (16)

It is well known that (16) has a closed-form solution given by soft-thresholding (see Chapter 3,
Friedman et al., 2001):

β̂i =

⎧⎪⎨
⎪⎩

β̃
(t)
i − λγ

δi
, if β̃

(t)
i >

λγ
δi

,

β̃
(t)
i + λγ

δi
, if β̃

(t)
i < −λγ

δi
,

0, otherwise.

Remark 3. (Role of D(t)) Our proximal step is a quasi-Newton proximal update proposed in
Lee et al. (2014) under a non-stochastic optimization setting. As shown in Lee et al. (2014),
quasi-Newton proximal methods converge faster than first-order proximal methods under the

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 08:34:51, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


SILIANG ZHANG, YUNXIAO CHEN 1483

non-stochastic setting. Here, the diagonal matrix D(t) is used to approximate the Hessian matrix
of h(β) at β(t). When β(t) converges to β̂, then δ

(t)
i , the i th diagonal term of D(t) converges to

T

(
∂2h
∂β2

i
|
β=β̂

; c1, c2
)
where T is the truncation function defined in (15); see Remark 8 for more

explanations.
In the proposed update,we chooseD(t) to be a diagonalmatrix for computational convenience.

Specifically, as discussed inRemark 2, the proximal step is in a closed formwhenD(t) is a diagonal
matrix. In addition, the proximal step requires to calculate the inverse of D(t), whose complexity
is much lower when D(t) is diagonal.

We point out that using a diagonal matrix to approximate the Hessian matrix is a popular
and effective trick in numerical optimization (e.g., Chapter 5, Bertsekas et al., 1992; Becker & Le
Cun, 1988), especially for large-scale optimization problems. In principle, it is possible to allow
D(t) to be non-diagonal. In fact, it is not difficult to generalize the BFGS updating formula for
D(t) given in Lee et al. (2014) to a stochastic version.

Our choice ofD(t) guarantees its eigenvalues to be constrained in the interval [c1, c2]. It rules
out the singular situation when D(t) is not strictly positive definite. In the implementation, we set
c1’s to be a sufficiently small constant and set c2’s to be a sufficiently large constant. According
to simulation, the algorithm tends to be insensitive to these choices.

We further provide some remarks regarding the implementation details.

Remark 4. (Choices of step size) As will be shown in Sect. 3, the convergence of the proposed
method requires the step size to satisfy

∑∞
t=1 γt = ∞ and

∑∞
t=1 γ 2

t < ∞. This requirement is

also needed in the Robbins–Monro algorithm. Here, we choose the step size γt = μt− 1
2−ε so

that the above requirement is satisfied, where μ is a positive constant and ε is a small positive
constant. As will be shown in Sect. 3, with sufficiently small ε, β̄n is almost optimal in terms
of its convergence speed. We point out that ε is needed to prove the convergence of β̄n , under
our non-convex setting. It is not needed, if the objective function (2) is convex; see Atchadé et
al. (2017). The requirement of ε may be an artifact due to our proof strategy. Simulation results
show that the algorithm converges well even if we set ε = 0. For the numerical analysis in this
paper, we set ε = 10−2.

We point out that our choice of step size is very different from the step size in the Robbins–
Monro algorithm, for which asymptotic results (Fabian, 1968) suggest that the optimal choice of
step size satisfies γt = O(1/t).

Remark 5. (Starting point) As the objective function (2) is typically non-convex for most latent
variable models, the choice of the starting point β(0) matters. The algorithm is more likely to
converge to the global optimum given a good starting point. One strategy is to run the proposed
algorithm with multiple random starting points and then choose the best-fitting solution. Alterna-
tively, onemay find a good starting point using less accurate but computationally faster estimators,
such as the constrained joint maximum likelihood estimator (Chen et al., 2019; 2020) or spectral
methods (H. Zhang et al., 2020a). Moreover, to further avoid convergence to local optima, one
may also use multiple random starting points and choose the one with the smallest objective
function value.

Remark 6. (Sampling in stochastic step) As mentioned in Remark 1, when the latent variables ξ

can be sampled exactly in the stochastic step, then G(t) is a stochastic gradient of h(β). Unfor-
tunately, exact sampling is only possible under some situations such as restricted latent class
analysis. In most cases, we only have approximate samples from anMCMC algorithm. For exam-
ple, as discussed below, the latent variables in IFA can be sampled by a block-wise Gibbs sampler.
With approximate samples, G(t) is only approximately unbiased. As we show in Sect. 3, such
G(t) may still yield convergence of β̄n .
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Remark 7 (Stopping criterion) In the implementation of Algorithm 1, we stop the iterative update
by monitoring a window of successive differences in β(t). More precisely, we stop the iteration
if all differences in the window are less than a given threshold. Unless otherwise stated, the
numerical analysis in this paper uses a window size 3. The same stopping criterion is also adopted
by the Metropolis–Hasting Robins–Monro algorithm proposed by Cai (2010a).

Finally, as we explain in Remark 8, certain quantities, including the Hessian matrix of l(β),
can be obtained as a by-product of the proposed algorithm.

Remark 8 (By-product) It is often of interest to compute quantities of the form

M̂ = E
[
m(y, ξ | β) | y,β] ∣∣

β=β̂
, (17)

where m(y, ξ | β) is a given function with an analytic form and the conditional expectation
E
[· | y,β] is with respect to the conditional distribution of ξ given y. The quantity (17) is

intractable due to the high-dimensional integral with respect to ξ . One such example is the Hessian
matrix of l(β) at β̂ as discussed in Sect. 1.2 that is a key quantity for the statistical inference of
β̂. In fact, by Louis’ formula (Louis, 1982),

∂2l(β)

∂β∂β� =E

[
∂2(log f (y, ξ | β))

∂β∂β� + ∂(log f (y, ξ | β))

∂β

[
∂(log f (y, ξ | β))

∂β

]�∣∣∣∣∣ y,β
]

− E

[
∂(log f (y, ξ | β))

∂β

∣∣∣∣ y,β
](

E

[
∂(log f (y, ξ | β)))

∂β

∣∣∣∣ y,β
])�

.

Thecomputationof (17) is a straightforwardby-product of the proposed algorithm.Toapprox-
imate M̂ , we only need to add the following update in each iteration

M (t) = M (t−1) + γt
(
m(y, ξ (t) | β(t)) − M (t−1)), (18)

for t ≥ 2, where M (1) = m(y, ξ (1) | β(1)). We approximate M̂ by the Polyak–Ruppert averaging
M̄n = (

∑n
t=+1 M

(t))/(n − ). When the sequence β(t) converges to β̂ (see Theorem 1 for the
convergence analysis), under mild conditions, Theorem 3.17 of Ben-veniste et al. (1990) suggests
the convergence of M (n) to M̂ with probability 1, which further implies the convergence of M̄n to
M̂ . Note that we use the averaged estimator M̄n as it tends to converge faster than the pre-average
sequence M (n). We point out that the updating rule for the diagonal matrix D(t) in Algorithm 1
makes use of such an averaged estimator.

Remark 9 (Burn-in size) LikeMCMC algorithms, the proposed method also has a burn-in period,
where parameter updates from that period are not used in the Polyak–Ruppert averaging. The
choice of the burn-in size will not affect the asymptotic property of the method, but does affect
the empirical performance. This is because, the parameter updates may be far away from the
solution due to the effect of the starting point. Including them in the Polyak–Ruppert averaging
may introduce a high bias. In our numerical analysis, the burn-in size  is fixed to be sufficiently
large in each of our examples. Adaptive choice of the burn-in size is possible; see S. Zhang et al.
(2020b).
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2.2. Example I: Item Factor Analysis

We now explain the details of using the proposed method to solve (5) for exploratory IFA.
The computation is similar when replacing the L1 regularization by the elastic net regularization.
For confirmatory IFA, the stochastic step is the same as that of exploratory IFA and the proximal
update step is straightforward as no penalty is involved. Therefore, the details for the computation
of confirmatory IFA are omitted here.

We first consider the stochastic step for solving (5). Note that ξ1,…, ξ N are conditionally
independent given data, and thus can be sampled separately. For each ξ i , we sample its entries by
Gibbs sampling. More precisely, each entry is sampled by adaptive rejection sampling (Gilks &
Wild, 1992; S. Zhang et al., 2020b), as the conditional distribution of ξik given data and the other
entries of ξ i is log-concave. We refer the readers to S. Zhang et al. (2020b) for more explanations
of this sampling procedure. If a normal ogive IFA is considered instead of the logistic model
above, then we can sample ξ

(t)
i by a similar Gibbs method with a data augmentation trick; see

Chen & Zhang (2020a) for a review.
We now discuss the computation for the proximal step. Recall that β = {B, d j , a j , j =

1, . . . , J }. We denote

β̃
(t) = β(t−1) − γt (D(t))−1G(t)

as the input of the scaled proximal operator. The parameter update is given by

β(t) = ProxDγ,g(β̃
(t)

) = argmin
β

{
g(β) + 1

2γt

p∑
i=1

δ
(t)
i (βi − β̃i )

2

}
,

where the parameter space

B = {β ∈ R
p : bkk′ = 0, 1 ≤ k < k′ ≤ K ,

K∑
k′=1

b2kk′ = 1, k = 1, . . . , K },

and g(β) = λ
∑J

j=1
∑K

k=1 |a jk | + IB(β) only involves loading parameters a jk and parameters
B for the covariance matrix.

We first look at the update for d j s. As the g function does not involve d j , its update is simply

d(t)
j = d̃(t)

j , where d̃(t)
j is the corresponding component in β̃

(t)
. We then look at the update for

the loading parameters a jk . Suppose that a jk corresponds to the ia jk th component of β. Then the
update is given by solving the optimization

a(t)
jk = argmin

a jk

λ|a jk | + 1

2γt
δ
(t)
ia jk

(a jk − ã(t)
jk )2.

As discussed in Remark 2, this optimization has a closed-form solution via soft-thresholding. We
finally look at the update for B. Suppose that bkl corresponds to the ibkl th component of β. Then
the update of bk , the kth row of B, is given by solving the following optimization problem:

b(t)
k = argmin

bk :‖bk‖=1,bkk′=0,k′>k

{
K∑
l=1

δ
(t)
ibkl

(bkl − b̃(t)
kl )2

}
,

which can be easily solved by the method of Lagrangian multiplier.
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2.3. Example II: Restricted LCA

We now provide a brief discussion on the computation for the restricted LCA model. First,
the stochastic step is straightforward, as the posterior distribution for each ξ i is still a categorical
distribution which can be sampled exactly. Second, the proximal step requires to solve a quadratic
programming problem. Again, we denote

β̃
(t) = β(t−1) − γt (D(t))−1G(t).

The proximal step requires to solve the following quadratic programming problem

min
β

(β − β̃
(t)

)�D(t)(β − β̃
(t)

),

s.t. max
α�q j

θ j,α = min
α�q j

θ j,α ≥ θ j,α′ ≥ θ j,0, for all α′
� q j ,

and ν0 = 0.

(19)

Quadratic programming is the most studied nonlinear convex optimization problem (Chapter 4,
Boyd et al., 2004) and many efficient solvers exist. In our simulation study in Sect. 4.3, we use
the dual method of Goldfarb & Idnani (1983) implemented in the R package quadprog (Turlach
et al., 2019).

2.4. Comparison with Related Algorithms

We compare Algorithm 1 with several related algorithms in more details.

2.4.1. Robbins-Monro SA andVariants The proposedmethod is closely related to the stochastic
approximation approach first proposed in Robbins &Monro (1951), and its variants given in Gu&
Kong (1998) andCai (2010a) that are specially designed for latent variablemodel estimation. Note
that the Robbins–Monro method is the first SGD method with convergence guarantee. Both the
methods of Gu&Kong (1998) and Cai (2010a) approximate the original Robbins–Monro method
by using MCMC sampling to generate an approximate stochastic gradient in each iteration, when
an unbiased stochastic gradient is difficult to obtain. All these methods do not handle complex
constraints or non-smooth objective functions.

When there is no constraint or penalty on parameters (i.e., g(β) ≡ 0), the proximal operator
degenerates to an identity map. In this case, the proposed method is essentially the same as Gu
& Kong (1998) and Cai (2010a), except for the sampling method in the stochastic step, the way
the Hessian matrix is approximated, the specific choices of step size, and the averaging in the last
step of the proposed method. Among these differences, the step size and the trajectory averaging
are key to the advantage of the proposed method.

As pointed out in Remark 4, the Robbins–Monro procedure has the same general requirement
on the step size as the proposed method. Specially, the Robbins–Monro procedure, as well as its
MCMC variants (Gu & Kong 1998; Cai 2010a), typically let the step size γt decay in the order
1/t as suggested by asymptotic theory (Fabian, 1968). However, this step is often too short at
the early stage of the algorithm, resulting in poor performance in practice (Sect. 4.5.3., Spall,
2003). On the other hand, the proposed method adopts a longer step size. By further adopting
Polyak–Ruppert averaging (Ruppert, 1988; Polyak & Juditsky, 1992), we show in Sect. 3 that the
proposed method almost achieves the optimal convergence speed.
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2.4.2. Perturbed Proximal Gradient Algorithm Proximal gradient descent algorithm (Parikh &
Boyd, 2014) is a non-stochastic algorithm for solving nonsmooth and/or constrained optimization
algorithms. For example, the widely used gradient projection algorithm for oblique rotation in
factor analysis (Jennrich, 2002) is a special case. The vanilla proximal gradient descent algorithm
does not use the second-order information of the objective function and thus sometimes converges
slowly. To improve convergence speed, proximal Newton-type methods have been proposed in
Lee et al. (2014) that utilize the second-order information of the smooth part of the objective
function.

Theperturbedproximal gradient algorithm (Atchadé et al., 2017) solves a similar optimization
problem as in (2) by combining the methods of stochastic approximation, proximal gradient
decent, and Polyak–Ruppert averaging. The proposed method extends Atchadé et al., (2017) by
adopting a Newton-type proximal update suggested in (2014). The method of Atchadé et al.,
(2017) can be viewed as a special case of the proposed one with c1 = c2. As shown by simulation
study in the sequel, thanks to the second-order information, the proposed method converges much
faster than that of Atchadé et al., (2017). We also point out that the theoretical analysis of Atchadé
et al., (2017) focuses on convex optimization,while in Sect. 3we consider amore general setting of
non-convex optimization that includes a wide range of latent variable model estimation problems
as special cases.

2.4.3. Stochastic EM Algorithm The proposed method is also closely related to the stochastic-
EM algorithm (Celeux, 1985; Ip, 2002; Nielsen, 2000; S. Zhang et al., 2020b). The stochastic-EM
algorithm is a similar iterative algorithm, consisting of a stochastic step and a maximization step
in each iteration, where the stochastic step is the same as that in the proposed algorithm. The
maximization step plays a similar role as the proximal step in the proposed algorithm. More
precisely, when there is no constraint or penalty, the maximization step of the stochastic-EM
algorithm obtains parameter update β(t) by minimizing the negative complete data log-likelihood
function − log f (y, ξ (t) | β), instead of a stochastic gradient update. It is also recommended to
perform a trajectory averaging in the stochastic-EM algorithm (Nielsen, 2000; S. Zhang et al.,
2020b), like the last step of the proposed algorithm. As pointed out in S. Zhang et al. (2020b),
the stochastic EM algorithm can potentially handle constraints and non-smooth penalties on
parameters by incorporating them into the maximization step.

The stochastic-EMalgorithm is typically not as fast as the proposedmethod,which is revealed
by simulation studies below. This is because, it requires to solve an optimization problem com-
pletely in each iteration, which is time consuming, especially when constraints and non-smooth
penalties are involved. On the other hand, the proximal step of the proposed algorithm can often
be efficiently performed.

3. Theoretical Properties

In what follows, we establish the asymptotic properties of the proposed algorithm, under
suitable technical conditions. For readers who are not interested in the asymptotic theory, this
section can be skipped without affecting the reading of the rest of the paper. Note that in this
section, we view data as fixed and the randomness comes from sampling of the latent variables.
The following expectation is taken with respect to latent variable ξ given data y and parameters
β, denoted by E(· | β) = ∫ ·πβ(ξ)dξ , where πβ is the posterior distribution for ξ given y and
β. Let ‖ · ‖ denote the vector l2-norm. Following the typical convergence analysis of non-convex
optimization (e.g., Chapter 3, Floudas, 1995), wewill first discuss the convergence of the sequence
β(t) to a stationary point of the objective function h(β) + g(β) in Theorem 1, which follows the
theoretical development in Duchi & Ruan (2018). Then with some additional assumptions on the
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local geometry of the objective function at the stationary point being converged to, we will show
the convergence rate of the Polyak–Ruppert averaged sequence β̄n in Theorem 2 which extends
the results of Atchadé et al. (2017) to the setting of non-convex optimization.

For a function f : R
d �→ R ∪ +∞, denote the Fréchet subdifferential (Chapter 8.B Rock-

afellar & Wets, 1998) of f at the point x by ∂ f (x),

∂ f (x) =
{
z ∈ R

p : f ( y) ≥ f (x) + z�( y − x) + o(‖ y − x‖) as y → x
}

.

Define the set of stationary points of the objective function as

B∗ = {β ∈ B : ∃ x ∈ ∂h(β) + ∂g(β) with x�(y − β) ≥ 0, for all y ∈ B}.

Note that the global minimum β̂ is a stationary point, i.e., β̂ ∈ B∗. In addition, when the objective
function is smooth, i.e., g(β) ≡ 0, then B∗ = {β ∈ B : ∇h(β) = 0}, which is the standard
definition of stationary points set for a smooth function.

The following assumptions are assumed for our objective function.

H1. B is compact and contains finite stationary points. For stationary points β,β ′ ∈ B∗,
h(β) + g(β) = h(β ′) + g(β ′) if and only if β = β ′.

H2. H(ξ ,β) is a differentiable function with respect to β for given ξ and let Gβ(ξ) =
∂H(ξ ,β)/∂β. Define function Mε : � × � → R+ as

Mε(β; ξ) = sup
β ′∈B,‖β ′−β‖<ε

‖Gβ ′(ξ)‖.

There exists ε0 > 0 such that for all 0 < ε < ε0,

E[Mε(β; ξ)2 | β] < ∞ for all β ∈ B.

H3. There exists ε0 > 0 such that for all β ′ ∈ B, there exists λ(ξ ,β ′) ≥ 0 such that

β �→ H(ξ ,β) + λ(ξ ,β ′)
2

‖β − β0‖2

is convex on the set {β : ‖β − β ′‖ ≤ ε0} for any β0, and E[λ(ξ ,β ′) | β] < ∞.

H4. The stochastic gradient Gβ(t−1) (ξ
(t))

is a Monte Carlo approximation of ∇h(β(t−1)). That is, if computationally feasible, we
take ξ (t) as an exact sample fromπβ(t−1) , where, as defined earlier,πβ(t−1) is the posterior

distribution of ξ given y and β(t−1). If not, we sample ξ (t) from aMarkov kernel Pβ(t−1)

with invariant distribution πβ(t−1) .
H5. Define

β+
γ (ξ) = argmin

x∈B

{
[Gβ(ξ)]�(x − β) + g(x) + 1

2γ
‖x − β‖2D

}
,

Uγ (ξ ;β) = 1

γ
(β − β+

γ (ξ)),

(20)
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where step size satisfy
∑∞

t=1 γt = ∞,
∑∞

t=1 γ 2
t < ∞. Then with probability 1,

lim
n→∞

n∑
t=1

γt

(
Uγt (ξ

(t);β(t−1)) − E[Uγt (ξ
(t);β(t−1)) | β(t−1)]

)

exists and is finite.

We remark that conditions H1 throughH5 are quite mild. ConditionH1 imposesmild require-
ments on the compactness of the parameter space and the properties of the stationary points of the
objective function. Specifically, the compactness of the parameter space is often assumed when
analyzing stochastic optimization problems without assuming convexity, see e.g., Gu & Kong
(1998), Nielsen (2000), Cai (2010b), and Duchi & Ruan (2018). It also requires that the objective
function has different values at different stationary points. Conditions H2 and H3 require the
complete-data log-likelihood function H(ξ , ·) is locally Lipschitzian and weakly convex, respec-
tively. These conditions hold when the complete-data log-likelihood function H(ξ , ·) is Lips-
chitzian and convex on the entire parameter space. Requiring locally Lipschitzian and weakly
convex enables our theory to be applicable to a wider range of problems. Similar conditions are
imposed in Duchi & Ruan (2018). For the examples that we consider in Sects. 1.2 and 1.3, these
two conditions are satisfied because H(ξ ,β) is smooth and convex in β. Condition H4 is automat-
ically satisfied according to the way the latent variables are sampled in Algorithm 1. Finally, H5 is
a key condition for the convergence of the sequence β(t). When exact samples from the posterior
distribution are used, Lemma 1 guarantees that H5 is satisfied. With approximate samples from
an MCMC algorithm, H5 may still hold when the bias from the MCMC samples is small.

Lemma 1 Define the filtration of σ -algebraFt−1 = σ
(
β(0), ξ (k), 0 ≤ k ≤ t − 1

)
. ξ is a sample

from πβ . Let

εγ (ξ ;β) = Uγ (ξ ;β) − E[Uγ (ξ ;β) | β],

then γtεγt (ξ
(t),β(t−1)) is a square-integrable martingale difference sequence adapted to Ft−1,

and with probability 1, limn
∑n

t=1 γtεγt (ξ
(t),β(t−1)) exists and is finite.

Theorem 1 Apply Algorithm 1 to optimization problem (11) with step size γt = t− 1
2−ε, ε ∈

(0, 1
2 ], for which conditions H1-H5 hold. Then with probability 1, the sequence β(n) converges to

a stationary point in B∗.

We remark that the convergence of the proposedmethod is similar to that of the EMalgorithm.
In fact, for marginal maximum likelihood estimation that is non-convex, the EM algorithm also
only guarantees the convergence to a stationary point (Wu, 1983). Moreover, when the objective
function has a single stationary point (e.g., when the objective function is strictly convex), then
Theorem 1 guarantees global convergence.

The convergence of β(n) guarantees the convergence of the Polyak–Ruppert averaging
sequence β̄n . However, Theorem 1 does not provide information on the convergence speed. In
what follows, we establish the convergence speed of β̄n . Without loss of generality, by Theorem 1,
we assume that β(n) converges to β∗ ∈ B∗.

H6. There exists δ > 0, such that h(β) is strongly convex in B1 = {β ∈ B : ‖β − β∗‖ ≤ δ}
and ∇h(β) is Lipschitz in B1 with Lipschitz constant L .

H7. For β,β ′ ∈ B1, any γ > 0, and diagonal matrix D with diagonal entries δi ∈ [c1, c2],
the following conditions hold.
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(i) g
(
ProxDγ,g(β)

)
− g

(
β ′) ≤ − 1

γ

〈
ProxDγ,g(β) − β ′,ProxDγ,g(β) − β

〉
D
.

(ii)
∥∥∥ProxDγ,g(β) − ProxDγ,g

(
β ′)∥∥∥2

D
+
∥∥∥(ProxDγ,g(β) − β

)
−
(
ProxDγ,g

(
β ′)− β ′)∥∥∥2

D
≤∥∥β − β ′∥∥2

D.

(iii) supγ∈(0,c1/L] supβ∈B1
γ −1

∥∥∥ProxDγ,g(β) − β

∥∥∥ < ∞.

H8. For a measurable function V : � → [1,+∞), a signed measure μ on the σ -field of �,

and a function f : � → R, define

| f |V def= sup
ξ∈�

| f (ξ)|
V (ξ)

, ‖μ‖V def= sup
f,| f |V ≤1

∣∣∣∣
∫

f dμ

∣∣∣∣ .

There exist λ ∈ (0, 1), b < ∞,m ≥ 4 and a measurable function W : � → [1,+∞)

such that

sup
β∈B1

∣∣Gβ

∣∣
W < ∞, sup

β∈B1

PβW
m ≤ λWm + b,

where Gβ(ξ) = ∂H(ξ ,β)/∂β and Pβ is the Markov kernel defined in condition H4.
In addition, for any � ∈ (0,m], there existsC < ∞, ρ ∈ (0, 1) such that for any ξ ∈ �,

sup
β∈B1

∥∥∥Pn
β (ξ , ·) − πβ

∥∥∥
W �

≤ CρnW �(ξ).

H9. There exists a constant C such that for any β,β ′ ∈ B1,

∣∣Gβ − Gβ ′
∣∣
W

+ sup
ξ∈�

∥∥Pβ(ξ , ·) − Pβ ′(ξ , ·)∥∥
W

W (ξ)
+ ∥∥πβ − πβ ′

∥∥
W

≤ C
∥∥β − β ′∥∥ .

We provide a few remarks on conditions H6-H9, which are needed for establishing the
convergence speed in addition to conditions H1–H5. Condition H6 requires that the smooth
part of the objective function is strongly convex and its derivative is Lipschitz continuous in a
small neighborhood of β∗. Specifically, h(β) being strongly convex inB1 means that there exists a
positive constantC , such that (∇h(β)−∇h(β ′))�(β −β ′) ≥ C‖β −β ′‖2, for any β and β ′ ∈ B1.
Condition H7 imposes some requirements on the non-smooth part of the objective function, with
regard to the proximal operator. As verified in Lemma C.1, H7 holds when g is a generalized
function that indicates constraints or when g is locally Lipschitz continuous and convex that holds
when g is a L1 regularization function. Thus, H7 holds for the examples we consider in Sects. 2.2
and 2.3. Conditions H8 and H9 impose mild regularity conditions on the stochastic gradient in
a local neighborhood of β∗, especially when the stochastic gradients are generated by a Markov
kernel. These conditions are used to control the bias caused byMCMC sampling. H8 is essentially
a uniform-in-β ergodic condition and H9 is a local Lipschitzian condition on the Markov kernel.
These regularity conditions are commonly adopted in the stochastic approximation literature
(Benveniste et al., 1990; Andrieu et al., 2005; Fort et al., 2016) and have been shown to hold for
general families of MCMC kernels including Metropolis–Hastings and Gibbs samplers (Andrieu
& Moulines, 2006; Fort et al., 2011; Schmidt et al., 2011).
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Theorem 2. Suppose that H1–H9 hold. Then there exists a constant C, such that for the Polyak–
Ruppert averaging sequence β̄n = 1

n

∑n
t=1 β(t) from Algorithm 1,

E‖β̄n − β�‖2 ≤ Cn− 1
2+ε. (21)

Note that the expectation is taken with respect to ξ (1), . . . , ξ (t) given β(0) and ξ (0).

We now provide a few remarks regarding the convergence speed (21). First, the small positive
constant ε comes from the requirement on step size that

∑∞
t=1 γ 2

t < ∞ inH5.Since
∑∞

t=1 γ 2
t < ∞

is satisfied when γt = μt− 1
2−ε, for any μ, ε > 0, the convergence speed of E‖β̄n − β�‖2 can

be arbitrarily close to O(n− 1
2 ) by choosing an arbitrarily small ε. Second, this ε might be an

artifact due to our proof strategy to overcome the non-convexity of the problem. In fact, if the
objective function is convex, similar to Atchadé et al. (2017), we can choose ε = 0 and then prove

under similar conditions that E‖β̄n −β�‖2 ≤ Cn− 1
2 . Lastly, it is well-known that for non-smooth

convex optimization, the minimax optimal convergence rate is O(n− 1
2 ); see Chapter 3, Nesterov

(2004). In this sense, our algorithm is almost minimax optimal, when ε is very close to zero. It is
well-known that Polyak–Ruppert averaging typically improves the convergence speed of a slowly
convergent sequence (Ruppert, 1988, Bonnabel, 2013).

4. Simulation Study

4.1. Study I: Confirmatory IFA

In the first study, we compare the performance of four variants of the proposed method and
the stochastic EM (StEM) algorithm. The five methods, including their abbreviations, are given
in Table 1. For a fair comparison, the same Gibbs sampling method is used. We further explain
the differences below.

1. USP is the method that we recommend. It has a step size γt close to t−1/2, applies
Polyak–Ruppert averaging, and uses a quasi-Newton update in the proximal step.

2. TheUSP-PPGmethod is the perturbed proximal gradientmethod that is implemented the
same as the USP method except that c1 = c2 so that it does not involve a quasi-Newton
update. c1 is set to be 1 without tuning in this study.

3. The USP-RM1 method is implemented the same as the USP method, except that β(n)

from the last iteration is taken as the estimator instead of applying Polyak–Ruppert
averaging. This method is very similar to a Robbins–Monro algorithm, except for the
update of parameters B for the covariance matrix where constraints involve.

Table 1.
Comparison of five stochastic algorithms.

Estimator Step size Averaging Quasi-Newton MCMC

USP γt = t−0.51 Yes Yes Gibbs
USP-PPG γt = t−0.51 Yes No Gibbs
USP-RM1 γt = t−0.51 No Yes Gibbs
USP-RM2 γt = t−1 No Yes Gibbs
StEM NA Yes NA Gibbs
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4. TheUSP-RM2method is the same asUSP-RM1, except thatwe set the step sizeγt = 1/t
which is the asymptotic optimal step size for the Robbins–Monro algorithm (Fabian,
1968).

5. The implementation of the StEM algorithm is the same as USP, except for the proximal
step. Instead of making stochastic gradient update, StEM obtains β(t) by completely
solving an optimization problem

β(t) = argmax
β∈B

H(ξ (t),β) + g(β).

In our implementation, this optimization problem is solved bymaking the quasi-Newton
proximal update (14) iteratively until convergence.

We consider a confirmatory IFA setting with only two factors (i.e., K = 2), so that an EM
algorithm with sufficient numbers of quadrature points and EM steps can be used to obtain a more
accurate approximation of β̂ thatwill be used as the standardwhen comparing thefivemethods.We
emphasize that it is important to compare the convergence speed of difference algorithms based
on β̂ rather than the true model parameters. This is because, under suitable conditions, these
algorithms converge to β̂ rather than the true model parameters. If we compare the algorithms
based on the true model parameters, the difference in the convergence speed cannot be observed
clearly, as the statistical error (i.e., the difference between β̂ and the true model parameters) tends
to dominate the computational errors (i.e., the difference between β̂ and the results given by the
stochastic algorithms).

More precisely, we consider sample size N = 1000 and the number of items J = 20. The
design matrix Q is specified by the assumptions that items 1 through 5 only measure the first
factor, items 6 through 10 only measure the second factor, and items 11 through 20 measure
both. The intercept parameters d j are drawn i.i.d. from the standard normal distribution, and
the non-zero loading parameters are drawn i.i.d. from a uniform distribution over the interval
(0.5, 1.5). The variances of the two factors are set to be 1 and the covariance is set to be 0.4.
Under these parameters, 100 independent datasets are generated, based on which the five methods
are compared. To ensure a fair comparison, the true parameters are used as the starting point for
all the methods. In addition, 1000 iterations are run (i.e., n = 1000) for each method, instead of
using an adaptive stopping criterion. For USP, USP-PPG, and StEM, the burn-in size  is chosen
to be 500. All algorithms are implemented in C++ and run on the same platform1 using a single
core.

The results regarding the accuracy of the proposed methods are given in Figs. 1 and 2 that
are based on the following performance metrics. Specifically, for the intercept parameters d j , the
following mean squared error (MSE) is calculated for each simulated dataset and each method,

1

J

J∑
j=1

(
d̃ j − d̂ j

)2
,

where d̂ j , which is treated as the global optimum, is obtained by an EM algorithm with 31
Gaussian–Hermite quadrature points per dimension, and d̃ j is given by one of the five stochas-
tic methods after 1000 iterations. Similarly, the MSEs for the loading parameters and for the
correlation σ12 between the factors are calculated, where the MSE for the loading parameters is
calculated for the unrestricted ones, i.e.,

1CPU: 2.6 GHz 6-Core Intel Core i7; RAM: 16 GB 2400 MHz DDR4.
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Table 2.
The elapsed time (seconds) for the five methods in confirmatory IFA.

Elapsed time USP USP-RM1 StEM USP-PPG USP-RM2

25% quantile 12.2 12.2 20.3 12.2 12.1
median 12.3 12.3 20.4 12.3 12.2
75% quantile 12.3 12.4 20.5 12.3 12.3

∑
j,k 1{q jk �=0}(ã jk − â jk)

2∑
j,k 1{q jk �=0}

.

Again, â jk is given by the EM algorithm, and ã jk is given by one of the five methods.
Figure 1 compares the accuracyof all thefivemethods.Aswecan see, theUSP,USP-RM1, and

StEMmethods have much smaller MSEs than the USP-PPG and USP-USP-RM2 methods. Since
the USP-PPGmethod only differs from the USPmethod bywhether using a quasi-Newton update,
the inferior performance of USP-PPG implies the importance of the second-order information in
the stochastic proximal gradient update. As the USP-RM2 method only differs from USP-RM1
by their step sizes, the inferior performance of USP-RM2 is mainly due to the use of short step
size.

In Fig. 2, we zoom in to further compare theUSP,USP-RM1, and StEMmethods. First, we see
that the USP method performs the best among the three, for all the parameters. As the USP-RM1
method is the same as the USP method except for not applying Polyak–Ruppert averaging, this
result suggests that averaging does improve accuracy. Moreover, the USP method and the StEM
method only differ by the way the parameters are updated, where the USP method takes a quasi-
Newton proximal update, while the StEM method completely solves an optimization problem.
It is likely that the way parameters are updated in the USP method yields more smoothing (i.e.,
averaging) than the StEM, which leads to the outperformance of the USP method.

On the computational efficiency, we show in Table 2 the elapsed time for the five methods.
‘USP’, ‘USP-RM1’, ‘USP-PPG’, and ‘USP-RM2’ share similar computation time since their
floating point operations per iteration are at the same level. ‘StEM’ is most time consuming
because an inner loop of optimization is involved in each iteration. In summary, the proposed
USP algorithm is computationally the most efficient among the five algorithms, in the sense that
it achieves the highest accuracy (see Figs. 1 and 2), within a similar or smaller amount of time
(see Table 2).

4.2. Study II: Exploratory IFA by Regularization

In the second study, we apply the proposed method to regularized estimation for exploratory
IFA as discussed in Sect. 1.2. We consider increasing sample size N = 1000, 2000, 4000, eighty
items and five correlated latent factors (i.e., J = 80, K = 5). The true loading matrix is sparse,
where the items each factor loads on are given in Table 3. Similar to Study I, the intercept
parameters d j are drawn i.i.d. from the standard normal distribution, and the non-zero loading
parametersa jk are drawn i.i.d. fromauniformdistribution over the interval (0.5, 1.5). The elements
of covariance matrix � = (σk,k)5×5 are set to be σk,k′ = 1, for k = k′ and σk,k′ = 0.4 for k �= k′.

For each sample size, 50 independent datasets are generated. In the proposed algorithm, we
adopt a burn-in size  = 50 and stop based on the criterion discussed in Sect. 2, where the
stopping threshold is set to be 10−3. A decreasing penalty parameter λN = √

log J/N is used to
ensure estimation consistency (Chapter 6, Bühlmann& van deGeer, 2011). Other implementation
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Table 3.
The sparse loading structure in the data generation IFA model.

Factor Items

1 1-10, 51, 52, 54, 57, 61, 62, 64, 67, 71, 72, 73, 75, 76, 78
2 11-20, 51, 53, 55, 58, 61, 63, 65, 68, 71, 72, 74, 75, 77, 79
3 21-30, 52, 53, 56, 59, 62, 63, 66, 69, 71, 73, 74, 76, 77, 80
4 31-40, 54, 55, 56, 60, 64, 65, 66, 70, 72, 73, 74, 78, 79, 80
5 41-50, 57, 58, 59, 60, 67, 68, 69, 70, 75, 76, 77, 78, 79, 80

Table 4.
The mean squared errors for estimated loading parameters in exploratory IFA with L1 regularization.

MSE of Ã N = 1000 N = 2000 N = 4000

25% quantile 0.032 0.026 0.017
median 0.034 0.027 0.018
75% quantile 0.036 0.027 0.019

details can be found in Sect. 2.2. The algorithm in this example is implemented in C++ and is run on
the same platform as in Study I. Although a regularized EM algorithm (Sun et al., 2016) can also
solve this problem, it suffers from a very high computational cost. Due to the five-dimensional
numerical integrals involved, it takes a few hours to fit one dataset. We thus do not consider it
here.

We focus on the accuracy in the estimation of the loading matrix A = (a jk)J×K . Note that
although the rotational indeterminacy issue is resolved in this regularized estimator, the loading
matrix can still only be identified up to column swapping. That is, two estimates of the loading
matrix have the same objective function value, if one can be obtained by swapping the columns
of the other. The following mean-squared-error measure is used that takes into account column
swapping of the loading matrix

min
A′∈P(Ã)

{
1

J K
‖A′ − A‖2F

}
, (22)

where ‖ · ‖F is the Frobenius norm, A is the true loading matrix, Ã is the output of Algorithm 1,
and P(Ã) denotes the set of J × K matrices that can be obtained by swapping the columns of Ã.

Results are given in Tables 4 and 5. In Table 4, we see that the MSE for the loading matrix is
quite small and decreases as the sample size grows, suggesting that consistency of the regularized
estimator. In Table 5, the quantiles of time consumption under different sample sizes are given,
which suggests the computational efficiency of the proposed method.

4.3. Study III: Restricted LCA

In this study, we apply the proposed method to the estimation of a restricted latent class
model as discussed in Sect. 1.3, where the optimization involves complex inequality constraints.
Specifically, data are from a Deterministic Input, Noisy ‘And’ gate (DINA) model (Junker &
Sijtsma, 2001) that is a special restricted latent class model. Note that the DINA assumptions are
only used in the data generation.We solve optimization (10) which is based on a general restricted
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Table 5.
The elapsed time (seconds) for exploratory IFA with L1 regularization.

Elapsed time N=1000 N=2000 N=4000

25% quantile 9.2 14.8 25.8
median 9.7 15.1 26.6
75% quantile 10.4 15.7 27.6

Table 6.
The design matrix Q for the restricted LCA model.

Attribute Items

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

α1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1 1 0
α2 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1
α3 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1
α4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1

latent class model considered in Xu (2017) instead of the DINA model, mimicking the practical
situation when the parametric form is unknown.

We consider a test consisting of twenty items (i.e., J = 20) that measure four binary attributes
(i.e., K = 4). Three sample sizes are considered, including N = 1000, 2000, and 4000. The design
matrix Q is given in Table 6. In addition, the guessing and slipping parameters s j and g j of the
DINAmodel are drawn i.i.d. from a uniform distribution over the interval (0.05, 0.2), which gives
the values of θ j,α . That is,

θ j,α =
{
log((1 − s j )/s j ), if α � q j ,

log(g j/(1 − g j )), otherwise.

Finally, we let να = 0, for all α ∈ {0, 1}K , so that P(ξ = α) = 1/2K . According to the results in
Xu (2017), the model parameters are identifiable, given the Q-matrix in Table 6.

For each sample size, 50 independent datasets are generated. The proposed algorithm adopts
a burn-in size  = 50 and stops based on the criterion discussed in Sect. 2, where the stopping
threshold is set to be 10−3. Other implementation details can be found in Sect. 2.3. The follow-
ing metrics are used to evaluate the estimation accuracy. For item parameters θ j,α , the MSE is
calculated as

1

J × 2K

J∑
j=1

∑
α∈{0,1}K

(
θ̃ j,α − θ j,α

)2
.

For structural parameters να , the MSE is calculated as

1

2K − 1

∑
α∈{0,1}K , α �=0

(ν̃α − να)2 .
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Table 7.
The MSE for item parameters θ j,α in the restricted latent class model.

MSE of θ̃ N = 1000 N = 2000 N = 4000

25% quantile 0.150 0.062 0.028
median 0.182 0.070 0.031
75% quantile 0.252 0.077 0.033

Table 8.
The MSE for structural parameters να in the restricted latent class model.

MSE of ν̃α N = 1000 N = 2000 N = 4000

25% quantile 0.028 0.012 0.005
median 0.045 0.018 0.007
75% quantile 0.085 0.028 0.009

Our results are given in Tables 7 and 8. As we can see, the estimation becomes more accurate
as the sample size increases for both sets of parameters. It confirms that the current model is
identifiable as suggested by Xu (2017) and thus can be consistently estimated.

5. Concluding Remarks

In this paper, a unified stochastic proximal optimization framework is proposed for the com-
putation of latent variable model estimation. This framework is very general that applies to a
wide range of estimators for almost all commonly used latent variable models. Comparing with
existing stochastic optimization methods, the proposed method not only solves a wider range
of problems including regularized and constrained estimators, but also is computationally more
efficient. Theoretical properties of the proposed method are established. These results suggest
that the convergence speed of the proposed method is almost optimal in the minimax sense.

The power of the proposed method is shown via three examples, including confirmatory
IFA, exploratory IFA by regularized estimation, and restricted latent class analysis. Specifically,
the proposed method is compared with several stochastic optimization algorithms, including a
stochastic-EMalgorithm and aRobbin–Monro algorithmwithMCMCsampling, in the simulation
study of confirmatory IFA,where there is no complex constraint or penalty.Using the same starting
point and the same number of iterations, the proposed one is always more accurate than its
competitors. The simulation studies on exploratory IFA and restricted latent class analysis further
show the power of the proposed method for handling optimization problems with non-smooth
penalties and complex inequality constraints.

The implementation of the proposed algorithm involves several tuning parameters. First, we
need to choose a step size γt . Our theoretical results suggest that γt = t−0.5−ε for any ε ∈ (0, 0.5],
and a smaller ε leads to faster convergence. In practice, we suggest to set γt = t−0.51 that performs
well in all our simulations. This choice of step size is very different from the choice of γt = t−1 in
theMCMC stochastic approximation algorithms. Second, a burn-in size is needed. The burn-in
in the proposed algorithm is similar to the burn-in in MCMC algorithms. It does not affect the
asymptotic convergence of the algorithm but improves the finite sample performance. In practice,
the burn-in size can be decided similarly as in MCMC algorithms by monitoring the parameter
updates using trace plots. Third, two positive constraints c1 and c2 are needed to regularize the
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second-order matrix in the scaled proximal update. Depending on the scale of each particular
problem, we suggest to choose c1 to be sufficiently small and c2 to be sufficiently large. It is
found that the performance of our algorithm is not sensitive to their choices. Finally, a stopping
criterion is needed. We suggest to stop the iterative update by monitoring a window of successive
differences in parameter updates.

The proposed framework may be improved from several aspects that are left for future inves-
tigation. First, the sampling strategy in the stochastic step needs further investigation. Although in
theory any reasonableMCMC sampler can yield the convergence of the algorithm, a good sampler
will lead to superior finite sample performance. More sophisticated MCMC algorithms need to
be investigated regarding their performance under the proposed framework. Second, methods for
parallel and distributed computing need to be developed. As we can see, many steps of Algo-
rithm 1 can be performed independently. This enables us to design parallel and/or distributed
computing systems for solving large-scale and/or distributed versions of latent variable model
estimation problems (e.g., fitting models for assessment data from online learning platforms and
large-scale mental health records). Finally, the performance of the proposed method under other
latent variable models needs to be investigated. For example, the proposed method can also be
applied to latent stochastic process models (e.g., Chow et al., 2016; Chen & Zhang, 2020) that
are useful for analyzing intensive longitudinal data. These models bring additional challenges, as
stochastic processes need to be sampled in the stochastic step of our algorithm.

In summary, the proposed method is computationally efficient, theoretically solid, and appli-
cable to a broad range of latent variable model inference problems. Like the EM algorithm as the
standard tool for low-dimensional latent variable models, we believe that the proposed method
may potentially serve as the standard approach to the estimation of high-dimensional latent vari-
able models.
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