
Highlights of Astronomy, Vol. 12 
International Astronomical Union, 2002 
H. Rickman, ed. 

Stat is t ical Effects from Hipparcos A s t r o m e t r y 

Frederic Arenou 

DASGAL/URA 335 du C.N.R.S. - Observatoire de Paris-Meudon, 
F-92195 Meudon Cedex, France - Frederic.Arenou@obspm.fr 

Xavier Luri 

Departament d'Astronomia i Meteorologia, Universitat de Barcelona, 
Avda. Diagonal 647, E-08028, Barcelona, Spain - xluri@am.ub.es 

Abstract. The Hipparcos astrometry is used mainly for the deriva
tion of stellar physical quantities such as luminosity, masses and velocity. 
However, sample selections on data with observational errors or an in
trinsic dispersion may lead to biased estimates, especially when the error 
distributions are non-Gaussian. We review the classical biases and the 
ways to avoid them through the use of statistical methods. 

1. Introduction 

The primary way to calibrate absolute magnitudes is through the use of Hip
parcos (ESA 1997) parallaxes. Except the rare stars with a very small relative 
parallax error, it is actually hard to avoid statistical biases in luminosity cali
brations (see e.g. Arenou & Luri 1999 for a detailed discussion). Many other 
biases can occur, due to an incorrect extinction model, duplicity, etc. We will 
focus here on the absolute magnitudes and we refer to Arenou & Palasi (2000) 
for what concerns the masses derived from the Hipparcos astrometry. 

2. Non-linear Functions 

The first problem is related to the fact that the parameters of interest (distance, 
absolute magnitudes, velocity) are usually non-linear functions of the parallax. 
Due to this, on average the "observed" (derived from the parallaxes) absolute 
magnitudes of a sample will be biased, that is to say, its distribution will not 
represent the true distribution, leading for instance to a wrong estimation of the 
mean absolute magnitude. Moreover, the error bar can be highly asymmetric 
and of about two magnitudes for a 100% relative error. And, of course, negative 
parallaxes can not be used directly. 

The only way to avoid this bias is to work in a plane of linear functions 
of parallaxes, whose error distribution is nearly Gaussian. For example, instead 
of using a classical HR diagram, it is much more sensible, from a statistical 
point of view, to use an "astrometric" HR diagram with colour as abscissa and 
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the "reduced parallax" ay = \Q"-iMv = 7rl0 5 on the ordinate. In such a 
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diagram, even stars with negative parallax can be plotted, and the error bars 
are symmetric. Except for possible Malmquist (1936) effects (Sect. 5) no other 
bias is expected. 

3. Correlation and Truncation 

The second source of bias arises from correlations in the observational data. 
When random errors in two variables are correlated, the correlation can produce 
effects that in some cases may be confused with a systematic error. For instance, 
plotting 7THip — TTphoto versus 7rphoto shows a trend which could be attributed to 
some systematic error in the photometric calibration; however this effect is easy 
to reproduce using a Gaussian error law for the absolute magnitude and some 
spatial model for the parallax distribution. A more extreme example can be 
shown by plotting Mmp — Mphoto versus Mmp; this time the effect will depend 
on the asymmetrical error bars on Mnip, on the luminosity distribution and with 
a probable Malmquist (1936) effect, so that nothing useful can be deduced from 
such graphs. The only way around is to plot uncorrelated variables. 

It is important to notice that a correlation does not introduce a bias by 
itself. A bias occurs on the average of the ordinate variable when a truncation is 
done on the abscissa variable. The classical example is the so-called Lutz-Kelker 
bias (Lutz & Kelker 1973), when Mmp is plotted against ^ - . 

4. T h e Lutz-Kelker Bias 

The problem arises when stars are selected by imposing a (usually small) limit 
to the relative parallax error, in the hope of getting the most precise absolute 
magnitudes. Since this is a truncation on the observed parallax, whose distribu
tion is not uniform, the resulting mean absolute magnitude is biased. This mean 
absolute magnitude (or, correspondingly, the mean parallax) should then be cor
rected by an amount which depends on the sample distribution, e.g. AM — 0.43 
mag at - 5 i - = 0.175 for a distance-limited sample. A common misunderstand
ing of the problem is to think that this is an individual (per star) correction, 
improving or correcting in some way the individual parallaxes. However, the 
individual parallaxes are (unless some observational problem is present, which 
is not the case for Hipparcos) unbiased, and the correction is applied to com
pensate for the (biasing) selection process. The Lutz-Kelker correction (Lutz 
& Kelker 1973) may have a very large confidence interval (Koen 1992), and it 
also depends on the assumed spatial distribution. This means that the corrected 
mean absolute magnitude may be both biased (if the adopted model is incorrect) 
and imprecise. One should come back to the initial cause of the bias, which is a 
truncation based on the observed parallax and avoid the truncation. The bias 
would be avoided and all the available data will be used. 

5. T h e Malmquist Bias 

Up to now, we have dealt with biases created by the user of the data, and we 
pointed how to avoid them. However, the way the initial sample was selected 
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has also to be taken into account. In most Catalogues, and in particular in Hip-
parcos, the initial sample is magnitude-limited, whereas usually one would like a 
distance-limited sample for magnitude calibrations, because due to the intrinsic 
dispersion of the absolute magnitude combined with the truncation in apparent 
magnitude, intrinsically brighter stars are over-represented in this kind of sam
ple. This introduces a bias not only in the mean absolute magnitude, but more 
generally in all the moments of the distribution, and in particular the dispersion, 
which would be needed to correct the bias. This means that the residuals of an 
absolute magnitude calibration, after subtraction of the dispersion due to the 
parallax errors, will give a biased value of the intrinsic dispersion. There can be 
a sort of unbiased plateau, a distance up to which the sample will be complete, 
and from which unbiased statistics can be computed, but this will reduce the 
amount of useful data. In order to correct the bias, the true spatial distribu
tion must be known. In the case of an exponential distribution perpendicular 
to the galactic plane, the bias will depend on the limiting magnitude, the scale 
height and the magnitude dispersion, and will thus be different from the classical 
1.38a2 correction (Luri et al. 1993). The distribution of the absolute magnitude 
around the mean value is also classically considered Gaussian in the estimations 
of the bias, whereas the effects of evolution, metallicity and rotation lead to an 
asymmetric distribution. 

The correction of this bias is thus not obvious. In the best case, adding 
enough parameters to a calibration allows one to get a small dispersion in ab
solute magnitude, and thus a small bias. Otherwise, one has to rely on a para-
metrical model. 

6. Calibration Methods 

If a calibration is done using parametrical methods, a maximum likelihood anal
ysis allows us to make use of all the available information, including the sample 
selection function. Such an analysis was done first by Jung (1971) and the 
method has been further improved by Ratnatunga & Casertano (1991) and Luri 
et al. (1996). We will not discuss the methods which are intended to correct 
Lutz-Kelker bias, since we have shown that this bias may be avoided. In the 
parametric methods, the probability that a star has been observed with its par
allax, proper motion, magnitude, etc, is computed with the help of a kinematical 
model, a luminosity error distribution and a spatial distribution. If these models 
are correct the luminosity calibration will be optimal and unbiased, since each 
possible truncation of the above cited distributions may be taken explicitly into 
account. On the contrary, biased results will be obtained if the sample does not 
follow the assumed distribution. 

Among non-parametrical methods, the first one proposed simply works in 
the parallax domain and gives asymptotically unbiased estimates since the con
version to absolute magnitudes is done on the mean reduced parallax. This 
method has been used by Roman (1952), justified by Jung (1971) and further 
improved by van Leeuwen & Evans (1998) using the intermediate Hipparcos 
data. Other non-parametrical methods, using a transformation of the observed 
parallax, have been suggested recently. For instance Smith & Eichhorn (1996) 
use a function of the observed parallax for computing the mean distance or 
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mean absolute magnitude. Moreover Smith (2000) improved the function and 
showed that it could be more precise than the reduced parallax method. The 
performance of the reduced parallax method will be improved when the intrin
sic magnitude dispersion is taken into account in the weights used to compute 
the mean value. Also if the absolute magnitude errors are assumed Gaussian, a 
correction —0.23cr^ to the mean magnitude should be applied, due to the asym
metry of the transformation (Jung 1971); for the reason noted above, however, 
the reduced parallax should have an error distribution more symmetric than the 
absolute magnitude, and this correction would not be applied. 

7. Sample Selection 

To elaborate a luminosity calibration, one would like to use a sample representa
tive of the parent population, that is, complete in a statistical sense, or a sample 
for which one knows exactly its selection function. When using Hipparcos stars, 
the only sample for which we know the exact selection function is the Survey, 
which is magnitude-limited. For fainter stars the exact selection will be hard 
(if possible at all) to know. To be conservative, a luminosity calibration should 
then use only the Survey. Extracting a volume-limited sample from the Survey 
in order to avoid the Malmquist bias is not easy. For instance, selecting a sam
ple with -^x- smaller than some value does not give a distance-limited sample 
since an may vary by a factor 3 with the magnitude. Or using a photometric 
parallax to select a sample, since 7rphoto = 10_ 0-2(m~M)_ 1 > 7rmin is equivalent 
to m < M — 5 log 7rmin — 5, creating once again a magnitude-limited sample. 
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