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ALGEBRO-GEOMETRIC VERSION OF NEVANLINNA’S

LEMMA ON LOGARITHMIC DERIVATIVE AND

APPLICATIONS

KATSUTOSHI YAMANOI

Abstract. In this paper we shall establish some generalization of Nevanlinna’s
Lemma on Logarithmic Derivative to the case of meromorphic maps from a
finite analytic covering space over the m-dimensional complex affine space Cm

to a smooth complex projective variety. Then we shall apply this to “the Second
Main Theorem” in Nevanlinna theory in several complex variables.

§1. Introduction

In 1925, R. Nevanlinna [Nev39] proved what is known as the lemma

of the logarithmic derivative for a meromorphic function f defined on the

complex plane C. This lemma was the main technical tool in the proof of

his celebrated Second Main Theorem for a meromorphic function f , and

it has served as a similar function in much of the subsequent work in the

value distribution theory. After Nevanlinna’s work, A. L. Vitter [Vi77]

generalized this lemma to a meromorphic function on the m-dimensional

complex affine space Cm.

Since a meromorphic function f on Cm can be considered as a meromor-

phic map f : Cm
99K P1, it is a natural problem to generalize the lemma of

the logarithmic derivative to the case of a meromorphic map f : Cm
99K X

for a complex projective manifold X. In this direction, J. Noguchi [No77],

[No85] established the lemma of the logarithmic derivative for a meromor-

phic map f : Y 99K X and global logarithmic 1-forms on X, where Y
π
→ Cm

is a finite analytic covering space over Cm. And he established the second

main theorem type inequality for a meromorphic map f : Y 99K X and a

divisorD ⊂ X onX such that there are sufficiently many global logarithmic

1-forms on X with only logarithmic poles on D.

The main purpose of this paper is to establish another geometric for-

mulation of the lemma of the logarithmic derivative for a meromorphic map
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24 K. YAMANOI

f : Y 99K X using the jet bundle over X and the jet lifting of f (Theo-

rem 3.2.1). In the case X = P1, after some observations, one sees that this

formulation is equivalent to the classical Nevanlinna, Vitter type analytic

formulation (see Remark 3.2.5). As far as the author knows, this geomet-

ric formulation was first discussed by R. Kobayashi [Kob91a]–[Kob00] in

the context of his very interesting idea of “Radon transform” and “inte-

gral geometry associated to it”. We shall call this geometric formulation

Algebro-Geometric Version of Nevanlinna’s Lemma on Logarithmic Deriva-

tive (ANLD) after [Kob96a]. Kobayashi [Kob91a], [Kob00] proved this

ANLD when X is an Abelian variety and using this, he proved the sec-

ond main theorem for holomorphic curves in Abelian varieties. Kobayashi

[Kob96a], [Kob96b] also give a sketch of a proof of ANLD for a general X

under some non-degeneracy condition on f and show a plan to approach

the second main theorem for holomorphic curves into X using ANLD. But

at present, as far as the author knows, no detail can be found for these

discussions concerning a general X. In this paper, we shall give a simpler

and direct proof of ANLD for a general X together with some more gen-

eralization of [Kob96a], [Kob96b]. In consequence of our simple proof, we

can prove ANLD without non-degeneracy conditions on f and our ANLD

gives sharp estimates.

After giving these technical improvements, we shall discuss some ap-

plications of our results to the second main theorem in Nevanlinna theory

in several complex variables. The first application is equidimensional value

distribution theory. This theory was established by J. Carlson-P. Griffiths

[CG72], P. Griffiths-J. King [GK73], B. Shiffman [Sh75], J. Noguchi [No76].

Our argument gives a direct connection between the lemma of the loga-

rithmic derivative and the second main theorem for the equidimensional

case. The second application is the second main theorem for holomor-

phic curves in Abelian varieties. This theory was established by Kobayashi

[Kob00] and J. Noguchi-J. Winkelmann-K. Yamanoi [NoWY02]. (The pa-

per [NoWY02] also treats the semi-Abelian cases. See also Section 5 in

this paper.) Here, we apply ANLD to obtain the second main theorem for

holomorphic curves in Abelian varieties, following Kobayashi’s argument in

[Kob91a], [Kob00]. The third application is the second main theorem for

hyperplanes in the projective space Pn. This theory was due to H. Cartan

[C33] and our method is very similar to Cartan’s. We consider some lifting

of holomorphic curves to the anti-canonical bundle of projective space Pn,

while Cartan considered the Wronskian. In these applications, there is a
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somewhat common algebro-geometric structure in the process of deriving

the second main theorem from ANLD. We give a sufficient condition for

the second main theorem for holomorphic curves in a projective manifold

X (Proposition 4.2.1). This condition is an algebro-geometric condition of

the structure of the jet space over X, and we shall show the second and the

third applications above as consequences of the condition. In the case of

equidimensional value distribution theory, we may say that the condition

is ‘always satisfied’, in some sense. Our condition in Proposition 4.2.1 is

also very closely related to the frame-work of negative curvature method in

hyperbolicity problems, which was first discussed by M. Green-P. Griffiths

[GG80] (Corollary 4.2.3).

Contents of this paper are the following. In Section 2, we shall review

notations and well known results in Nevanlinna theory. Since natural com-

pactifications of jet spaces have quotient singularities, we have to prepare

some notations in Nevanlinna theory for singular varieties. In this section,

we shall also define proximity functions with respect to arbitrary closed sub-

schemes. We need the proximity functions with respect to higher codimen-

sional subvarieties for the statement of ANLD. In Section 3, we shall give

a proof of ANLD for a general X. The essential point is Proposition 3.1.1

which gives estimates of Weil functions. In Section 4, we discuss the second

main theorem in the above cases. In Section 5, we shall extend our ANLD

to the case of logarithmic jet spaces, and apply this to holomorphic curves

in semi-Abelian varieties to obtain the second main theorem.

I wish to express my sincere gratitudue to Professor R. Kobayashi.

His beautiful papers and ideas got me started in the subject and inspired

me. I warmly thank Professor J. Noguchi for many helpful suggestions

which helped me to improve these notes and simplify a proof of the main

result. The result of this paper is authors doctoral thesis at RIMS, Kyoto

University, March 2000, and I am deeply indebted to my thesis advisor

Professor Y. Ihara for his continuous and warm encouragements.

§2. Preliminaries

2.1. In this paper, all varieties are irreducible algebraic varieties de-

fined over C. Let V be a quasi-projective variety. Let C(V ) be the set

of all R-valued continuous functions (with respect to the usual Hausdorff

topology) which are defined on some Zariski open sets of V . More precisely,
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C(V ) is the germ of the sheaf

{
U

∣∣∣∣
U ; Zariski open
subset of V

}
7−→

{
g

∣∣∣∣
g : U → R; continuous function with

respect to the usual Hausdorff topology

}

at the “generic point ” of V (note that V is irreducible).

Definition 2.1.1. Let V be a quasi-projective variety. Let g, h ∈
C(V ). We shall write g ≤〈V 〉 h if there is a continuous function α which
is defined on V and satisfies the condition g ≤ h + α on some non-empty
Zariski open set where g and h are both defined. We shall write g ≡〈V 〉 h
if g ≤〈V 〉 h and h ≤〈V 〉 g.

The relation ≡〈V 〉 defines the equivalent relation on the set C(V ), and

≤〈V 〉 defines the order relation on the set C(V )/≡〈V 〉. Let g, h ∈ C(V ).

Then min(g, h) defines the continuous function on some Zariski open set of

V where g and h are both defined. Hence min(g, h) ∈ C(V ).

Lemma 2.1.2. (1) Let g, g′, h, h′ ∈ C(V ), and let g ≡〈V 〉 g
′, h ≡〈V 〉 h

′.

Then

min(g, h) ≡〈V 〉 min(g′, h′).

(2) Let {Uε}ε∈Υ be a Zariski open covering of V . Let g, h ∈ C(V ).
Then

g ≤〈V 〉 h⇐⇒ g ≤〈Uε〉 h for all ε ∈ Υ.

Proof. (1) By our assumptions g ≡〈V 〉 g
′, h ≡〈V 〉 h

′, there are a non-
empty Zariski open set U ⊂ V and a continuous function α on V satisfying
the condition

|g − g′| ≤ α and |h− h′| ≤ α on U.

By g ≤ g′ + α and h ≤ h′ + α, we have min(g, h) ≤ min(g′, h′) + α on U ,
and by g′ ≤ g + α and h′ ≤ h + α, we have min(g′, h′) ≤ min(g, h) + α on
U . Hence we have min(g, h) ≡〈V 〉 min(g′, h′).

(2) The part =⇒ is obvious, so we shall prove the part ⇐= . Since
V is Noetherian, we can take a finite subset Υ′ of Υ such that {Uε}ε∈Υ′

is an open covering of V . Then by our assumption g ≤〈Uε〉 h, there is a
continuous function αε on Uε such that g ≤ h + αε on some Zariski open
subset U ′

ε of Uε. Let {ρε}ε∈Υ′ be a partition of unity on V consists of an open
covering {Uε}ε∈Υ′ . Put α =

∑
ε∈Υ′ αερε. Then α is a continuous function

on V , and we have g ≤ h+ α on
⋃

ε∈Υ′ U ′
ε. Hence we have g ≤〈V 〉 h.
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2.2. Let V be a quasi-projective variety over C. Let Z ⊂ V be a closed

subscheme. We shall define a Weil function λZ for Z to be a continuous

function λZ : V − suppZ → R satisfying a certain condition described

below. Here suppZ is the support of Z. Note that the closed subschemes

Z ⊂ V are in one-to-one correspondence with the ideal sheaves IZ ⊂ OV .

We will often implicitly identify a subscheme Z with its ideal sheaf IZ .

Definition 2.2.1. Let Z ⊂ V be a closed subscheme. A Weil function
λZ for Z is a continuous function λZ : V − suppZ → R satisfying the
condition that there exist an affine Zariski open covering {Uε}ε∈Υ of V and
a system of generators f ε

1, . . . , f
ε
rε
∈ Γ (Uε,OUε) of the ideal Γ (Uε, IZ) ⊂

Γ (Uε,OUε) such that

λZ(P ) ≡〈Uε〉 − log max
1≤i≤rε

|f ε
i (P )|.

Remark 2.2.2. (1) Let D ⊂ V be an effective Cartier divisor on V .
Then D is naturally equipped with the closed subscheme structure (because
D has local equations), and we shall define λD with respect to this closed
subscheme structure. More generally, if D is a Q-Cartier divisor and nD
is a Cartier divisor, then we shall define λD to be 1

nλnD (this definition is
well-defined, cf. Lemma 2.2.9 (2) below).

(2) Let V be non-singular. Let D ⊂ V be an effective divisor on V
and take a Hermitian metric ‖ · ‖ for the corresponding line bundle O(D).
Let σ be a canonical section of O(D) uniquely determined up to a constant
multiple by the condition that the zero divisor of σ coincides with D. Then
the function λD(P ) = − log ‖σ(P )‖ is a Weil function for D.

Proposition 2.2.3. Let V be a quasi-projective variety, and let Z be

a closed subscheme of V . Then we have the followings.

(1) A Weil function λZ exists for every closed subscheme Z ⊂ V .

(2) Let λZ and λ′Z be two Weil functions for Z. Then λZ ≡〈V 〉 λ
′
Z . If

V is projective, then the difference of two Weil functions for Z is bounded,

i.e. Weil function for Z is unique up to O(1).

(3) Let λZ be a Weil function for Z. Then for every affine Zariski open

set W ⊂ V and every system of generators g1, . . . , gs ∈ Γ (W,OW ) of the

ideal Γ (W, IZ) ⊂ Γ (W,OW ), we have

λZ(P ) ≡〈W 〉 − log max
1≤i≤s

|gi(P )|.
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Proof of (3). Since λZ is a Weil function for Z, we can take an affine
open covering {Uε}ε∈Υ of V such that for each Uε, there is a system of
generators f ε

1, . . . , f
ε
rε
∈ Γ (Uε,OUε) of the ideal Γ (Uε, IZ) ⊂ Γ (Uε,OUε)

such that

(2.2.4) λZ(P ) ≡〈Uε〉 − log max
1≤i≤rε

|f ε
i (P )|.

Set Wε = W ∩ Uε. Then by Lemma 2.1.2 (2), it suffices to show

(2.2.5) λZ(P ) ≡〈Wε〉 − log max
1≤j≤s

|gj(P )|.

Since f ε
1, . . . , f

ε
rε
∈ Γ (Wε,OWε) and g1, . . . , gs ∈ Γ (Wε,OWε) are two sys-

tems of generators of the ideal Γ (Wε, IZ) ⊂ Γ (Wε,OWε), there exist hj
i ∈

Γ (Wε,OWε) for 1 ≤ j ≤ s, 1 ≤ i ≤ rε such that gj =
∑rε

i=1 h
j
if

ε
i . Then we

have

|gj(P )| ≤
rε∑

i=1

|hj
i (P )||f ε

i (P )| ≤

( rε∑

i=1

|hj
i (P )|

)
max

1≤i≤rε

|f ε
i (P )|.

Hence we have

max
1≤i≤rε

|f ε
i (P )| ≤ max

1≤i≤rε

1≤j≤s

{|f ε
i (P )|, |gj(P )|}

≤ max
1≤j≤s

{
1,

( rε∑

i=1

|hj
i (P )|

)}
max

1≤i≤rε

|f ε
i (P )|.

Put γε = log max1≤j≤s

{
1,

(∑rε

i=1 |h
j
i |

)}
. Then γε is a continuous function

on Wε and we have
∣∣∣∣log max

1≤i≤rε

1≤j≤s

{|f ε
i (P )|, |gj(P )|} − log max

1≤i≤rε

|f ε
i (P )|

∣∣∣∣ ≤ γε(P ).

Hence we have

(2.2.6) log max
1≤i≤rε

1≤j≤s

{|f ε
i (P )|, |gj(P )|} ≡〈Wε〉 log max

1≤i≤rε

|f ε
i (P )|.

By the same argument, we have

(2.2.7) log max
1≤i≤rε

1≤j≤s

{|f ε
i (P )|, |gj(P )|} ≡〈Wε〉 log max

1≤j≤s
|gj(P )|.
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Hence by (2.2.4), (2.2.6) and (2.2.7), we have (2.2.5).

Proof of (2). Let λZ and λ′Z be two Weil functions for Z. By (3), we
have λZ ≡〈V 〉 λ

′
Z . Hence there are a continuous function γ on V and a

non-empty Zariski open subset U ⊂ V − suppZ such that

|λZ(P )− λ′Z(P )| ≤ γ(P ) on U.

(Here note that since U is dense in V − suppZ in the usual Hausdorff
topology, the above inequality also holds on V −suppZ.) Now suppose V is
projective. Then the continuous function γ is bounded, so λZ = λ′Z +O(1).

Proof of (1). Take a finite affine covering {Uε}ε∈Υ of V , and take
a system of generators f ε

1, . . . , f
ε
rε
∈ Γ (Uε,OUε) of the ideal Γ (Uε, IZ) ⊂

Γ (Uε,OUε). Set λε(P ) = − log max1≤i≤rε |f
ε
i (P )|. Then λε is a continuous

function on Uε − Uε ∩ suppZ. Let {ρε}ε∈Υ be a partition of unity on V
consists of an open covering {Uε}ε∈Υ. Set λ =

∑
ε∈Υ ρελ

ε. Then λ is
a continuous function on V − suppZ. Note that, λε|Uε∩Uκ and λκ|Uε∩Uκ

are both Weil functions for Z|Uε∩Uκ . Hence by (2), there is a continuous
function γεκ on Uε ∩ Uκ such that |λε − λκ| ≤ γεκ on Uε ∩ Uκ. We have

|λ− λε| ≤
∑

κ∈Υ

ρκγεκ on Uε.

Since
∑

κ∈Υ ρκγεκ is a continuous function on Uε, we deduce that λ is a
Weil function for Z ⊂ V .

Before going to describe various properties of λZ , we need some more

definitions.

Definition 2.2.8. Let Z, Z ′ be closed subschemes of V .

(i) The intersection of Z and Z ′, denoted Z ∩ Z ′, is the subscheme of
V with the ideal sheaf IZ∩Z′ = IZ + IZ′ .

(ii) The sum of Z and Z ′, denoted Z + Z ′, is the subscheme of V with
the ideal sheaf IZ+Z′ = IZ · IZ′ .

(iii) We say that Z is contained in Z ′, denoted Z ⊂ Z ′, if IZ′ ⊂ IZ .

(iv) Let φ : V ′ → V be a morphism of varieties. The inverse image of Z,
denoted φ∗Z, is the subscheme of V ′ with the ideal sheaf Iφ∗Z = φ−1IZ ·O

′
V

where φ−1IZ · O
′
V is the image in O′

V of the sheaf φ∗IZ .
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Proposition 2.2.9. Let Z, Z ′ be closed subschemes of V . Then

(1) λZ∩Z′ ≡〈V 〉 min{λZ , λZ′}.

(2) λZ+Z′ ≡〈V 〉 λZ + λZ′.

(3) If Z ⊂ Z ′, then λZ ≤〈V 〉 λZ′.

(4) If suppZ ⊂ suppZ ′, then there exists a constant c > 0 such that

λZ ≤〈V 〉 cλZ′ .

(5) Let U ⊂ V be a Zariski open set, and let W be the complement of

U . Suppose that Z|U ⊂ Z ′|U , then there exists a constant c > 0 such that

λZ ≤〈V 〉 λZ′ + cλW .

(6) Let φ : V ′ → V be a morphism of varieties. Then λV ′,φ∗Z ≡〈V ′〉

λV,Z ◦ φ. (Here we write λV,Z in place of λZ so as to better indicate the

underlying variety.)

(7) Let φ : V �
99K V be a meromorphic map. Let U ⊂ V � be a Zariski

open set such that φ|U : U → V is holomorphic. Let Z ⊂ V and Z� ⊂ V � be

closed subschemes of V and V � respectively. Suppose φ|∗UZ = Z�|U . Then

there is a positive constant c > 0 such that

λV �,Z� − c λV �,V �−U ≤〈V �〉 λV,Z ◦ φ ≤〈V �〉 λV �,Z� + c λV �,V �−U .

Proof. (1) Note that by Lemma 2.1.2 (2), it suffices to prove in the
case that V is affine. Let f1, . . . , fr ∈ Γ (V,OV ) and g1, . . . , gs ∈ Γ (V,OV )
be generators of IZ and IZ′, respectively. Since f1, . . . , fr, g1, . . . , gs are
generators of IZ∩Z′, we have

λZ∩Z′ ≡〈V 〉 − log max
1≤i≤r,1≤j≤s

{|fi|, |gj |} ≡〈V 〉 min{λZ , λZ′}.

(2) We may use the same situation of the proof of (1). Since f1g1, . . . ,
figj , . . . , frgs are generators of IZ+Z′, we have

λZ+Z′ ≡〈V 〉 − log max
1≤i≤r,1≤j≤s

{|figj |} ≡〈V 〉 λZ + λZ′ .

(3) If Z ⊂ Z ′, then Z = Z ∩ Z ′, so from (1), we have

λZ ≡〈V 〉 λZ∩Z′ ≡〈V 〉 min{λZ , λZ′} ≤〈V 〉 λZ′ .

(4) If suppZ ⊂ suppZ ′, then the Nullstellensatz implies that there is
an integer m ≥ 0 such that IZ ⊃ I

m
Z′. Thus Z ⊂ mZ ′, so (2) and (3) yield

λZ ≤〈V 〉 mλZ′ .
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(5) Using (2) and (3), it suffices to find an integer m such that Z ⊂
Z ′+mW ; or equivalently, such that IZ ⊃ IZ′Im

W . Since this may be checked
locally, we may assume that V = SpecA is affine, and consider IZ , IZ′, IW
as ideals of A. Writing IW = (h1, . . . , hr), we see that U is the union of
the open sets Ui = Spec(Ahi

). Now the given inclusion Z|U ⊂ Z ′|U says
precisely that IZAhi

⊃ IZ′Ahi
for each 1 ≤ i ≤ r. Hence we can find an

integer m such that IZ ⊃ IZ′hm
i for all i; and so

IZ ⊃ IZ′(hm
1 , . . . , h

m
r ) ⊃ IZ′(h1, . . . , hr)

m′

= IZ′Im′

W .

(Here we may take m′ = rm− r + 1)

(6) We may use the same situation of the proof of (1) and (2). Let
W ⊂ V ′ be a Zariski open set. Then on W , φ∗f1, . . . , φ

∗fr are generators
of Iφ∗Z . Hence, λV,Z ◦ φ ≡〈W 〉 − log max1≤i≤r{|φ

∗fi|} ≡〈W 〉 λV ′,φ∗Z . Hence
by Lemma 2.1.2 (2), we have λV ′,φ∗Z ≡〈V ′〉 λV,Z ◦ φ.

(7) Let µ : Ṽ � → V � be a proper modification such that φ̃ = φ ◦ µ :

Ṽ � → V is holomorphic and µ|U : µ−1(U) → U is an isomorphism. By
φ̃∗Z|µ−1(U) = µ∗Z�|µ−1(U) and (5), we have

λµ∗Z� − c′ λfV �−µ−1(U)
≤

〈fV �〉
λeφ∗Z

≤
〈fV �〉

λµ∗Z� + c′ λfV �−µ−1(U)

for some positive constant c′ > 0. By (4) and supp(Ṽ � − µ−1(U)) ⊂
suppµ∗(V � − U), we have λfV �−µ−1(U)

≤
〈fV �〉

c′′λµ∗(V �−U) for some positive

constant c′′ > 0. Hence by (6), we have

λZ� ◦ µ− c λ(V �−U) ◦ µ ≤〈fV �〉
λZ ◦ φ ◦ µ

≤
〈fV �〉

λZ� ◦ µ+ c λ(V �−U) ◦ µ.
(2.2.10)

for c = c′c′′ > 0.
Now since the map µ : Ṽ � → V � is proper surjective, we have the

following. Let φ, φ′ ∈ C(V �). If φ ◦µ ≤
〈fV �〉

φ′ ◦µ, then φ ≤〈V �〉 φ
′. To show

this statement, it suffices to show that for every continuous function α on
Ṽ �, there is a continuous function β on V � such that α ≤ β ◦ µ. But this
can be checked easily from the fact that µ is proper. Hence (2.2.10) implies
(7).

A quasi-projective normal variety V is said to be Q-factorial variety if

for every Weil divisor D ⊂ V , there is a positive integer n > 0 such that

nD is a Cartier divisor. Hence we can consider Weil functions for all (Weil)

divisors on V in this case (cf. Remark 2.2.2 (1)).
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Lemma 2.2.11. Let V be a quasi-projective normal and Q-divisible va-

riety. Let ϕ be a rational function on V , and (ϕ) = D1 −D2. Here (ϕ) is

the divisor defined by ϕ, and D1, D2 are effective (Weil) divisors. Then

log |ϕ| ≡〈V 〉 λD2 − λD1 .

Proof. Suppose nD1 and nD2 are Cartier divisors. Then (ϕn) = nD1−
nD2, hence we can assume without loss of generality that D1 and D2 are
Cartier divisors. By Lemma 2.1.2 (2), we can assume that V is affine
and D1, D2 have local equations f1, f2 ∈ Γ (V,OV ), respectively. Then
f1 = ϕf2h (where h ∈ Γ (V,OV ) is a unit), hence we have

log |ϕ| = − log |f2|+ log |f1| − log |h| ≡〈V 〉 λD2 − λD1 .

2.3. In this subsection, we shall prepare notations and well known

results in Nevanlinna theory. Let π : Y → Cm be a finite analytic covering

space, i.e. Y is an irreducible, normal, complex space with a finite, proper,

surjective holomorphic mapping π. We denote by k its sheet number and

by R (⊂ Y ) the ramification divisor of π : Y → Cm. Let (z1, . . . , zm) be

the natural coordinate system in Cm and set

‖z‖ =

( m∑

i=1

|zi|
2

)1/2

,

B(r) = {z ∈ Cm ; ‖z‖ < r} (r > 0),

Y (r) = π−1
(
B(r)

)
,

φ = π∗ddc‖z‖2 =
i

2π
π∗∂∂‖z‖2,

η = π∗
(
dc log ‖z‖2 ∧ (ddc log ‖z‖2)m−1

)

(η is a 2m− 1 form on Y ),

where d = ∂ + ∂ and dc = (i/4π)(∂ − ∂). For the operators ∂, ∂, see for

example [GH78, p. 24]. Note that

1

k

∫

∂Y (r)
η = 1

where ∂Y (r) = π−1(∂B(r)), and ∂B(r) = {z ∈ Cm ; ‖z‖ = r} for r > 0.

Let D be a Weil divisor on Y , and define the counting function of D by

N (D, r) =
1

k

∫ r

1

dt

t2m−1

∫

Y (t)∩D
φm−1.
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Define the ramification counting function Nπ,Ram(r) of the covering map

π : Y → Cm by

Nπ,Ram(r) = N (R, r).

Now let f : Y 99K X be a meromorphic map from Y to a projective

normal and Q-divisible variety X. Let Z ⊂ X be a closed subscheme such

that f(Y ) 6⊂ suppZ. Take a Weil function λZ for Z. Define the proximity

function of f with respect to Z by

mf,Z(r) = m(r, f, Z) =
1

k

∫

∂Y (r)
(f∗λZ)η.

Since λZ is bounded from below, mf,Z(r) : (0,∞) → R is also bounded

from below, i.e. 0 ≤ mf,Z(r) +O(1). If we change the Weil function λZ to

λ′Z in the above definition of mf,Z(r), we get a new function m′
f,Z(r). But

the difference of these two functions is bounded, i.e. mf,Z(r) = m′
f,Z(r) +

O(1) (cf. Proposition 2.2.3 (2)). We are interested in these functions only

modO(1).

In the case that Z is a Cartier divisor D, by Remark 2.2.2 (2), we

can take the Weil function as λD(P ) = − log ‖σ(P )‖. Hence the proximity

function is

mf,D(r) =
1

k

∫

∂Y (r)
log

1

‖σ ◦ f‖
η.

This is a usual definition of the proximity function (cf. [NoO90, p. 180]),

and our definition is a slight generalization of this.

Next we shall define the counting function for a divisor D on X. If D is

a Cartier divisor, we can define a divisor f ∗D on Y and define the counting

function by

Nf,D(r) = N(r, f,D) = N (f ∗D, r).

In the general case, take n so that nD is a Cartier divisor and put

Nf,D(r) = N(r, f,D) =
1

n
N(r, f, nD).

Finally we define the height function Tf,D(r) modO(1) by

Tf,D(r) = T (r, f,D) = m(r, f,D) +N(r, f,D).

Then first main Theorem in Nevanlinna Theory states:
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Theorem 2.3.1. Let X be a smooth projective variety. If two effective

divisors D and D′ on X are linearly equivalent, then

Tf,D(r) = Tf,D′(r) +O(1).

The proof of this theorem can be found in [NoO90, p. 180].

By this Theorem 2.3.1, we can define the height function for a line

bundle O(D) associated with some effective divisor D to be Tf,O(D)(r) =

Tf,D(r). Since every line bundle L on X can be written as L = O(D) ⊗
O(D′)−1 by some effective very ample divisors D and D ′, we shall define

the height function Tf,L(r) for a line bundle L to be

Tf,L(r) = Tf,O(D)(r)− Tf,O(D′)(r).

Now we again come back to the case where X is a normal projective

variety, which is possibly singular. We shall describe some properties of

mf,Z(r) which can be checked from Proposition 2.2.9 easily.

Proposition 2.3.2. Let X be a normal projective variety. Let Z, Z ′

be closed subschemes of X. Let f : Y 99K X be a meromorphic map such

that f(Y ) 6⊂ suppZ ∪ suppZ ′.

(1) mf,Z+Z′(r) = mf,Z(r) +mf,Z′(r) +O(1).

(2) Let Z ⊂ Z ′. Then, mf,Z(r) ≤ mf,Z′(r) +O(1).

(3) Let suppZ ⊂ suppZ ′. Then there exists a constant c > 0 such that

mf,Z(r) ≤ cmf,Z′(r) +O(1).

(4) Let U ⊂ X be an Zariski open set, and let V be the complement of

U . Suppose that Z|U ⊂ Z
′|U . Then there exists a constant c > 0 such that

mf,Z(r) ≤ mf,Z′(r) + cmf,V (r) +O(1).

(5) Let φ : X → X ′ be a morphism of normal projective varieties. Let

W ⊂ X ′ be a closed subscheme of X ′ and suppose that f(Y ) 6⊂ φ∗W . Then

mf,φ∗W (r) = mφ◦f,W (r) +O(1).

(6) Let φ : X 99K X ′ be a meromorphic map. Let U ⊂ X be a Zariski

open set such that φ|U : U → X ′ is holomorphic. Let Z ⊂ X and W ⊂ X ′
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be closed subschemes such that φ|∗UW = Z|U . Suppose that f(Y ) 6⊂ Z and

f(Y ) 6⊂ X − U . Then there is a positive constant c > 0 such that

mf,Z(r)− cmf,X−U (r) ≤ mφ◦f,W (r) +O(1)

≤ mf,Z(r) + cmf,X−U (r) +O(1).

Proof. Proposition 2.3.2 (1), (2), (3), (4), (5), (6) are obtained directly
from Proposition 2.2.9 (2), (3), (4), (5), (6), (7), respectively. Here we only
demonstrate Proposition 2.3.2 (1).

By Proposition 2.2.9 (2), there is a positive constant c > 0 such that

(2.3.3) λZ+Z′ − c ≤ λZ + λZ′ ≤ λZ+Z′ + c

on some Zariski open subset U ⊂ X − (suppZ ∪ suppZ ′). Since λZ+Z′

and λZ +λZ′ are continuous functions on X − (suppZ ∪ suppZ ′), and U is
dense in X−(suppZ∪suppZ ′), the estimate (2.3.3) holds on X−(suppZ∪
suppZ ′). We denote by N(f) the set of indeterminacy of f . Then N(f) is
an analytic subset of Y . Consider the pull back of (2.3.3) by f . Then we
have

(2.3.4) λZ+Z′ ◦ f − c ≤ λZ ◦ f + λZ′ ◦ f ≤ λZ+Z′ ◦ f + c

on Y − (N(f) ∪ f ∗(suppZ) ∪ f ∗(suppZ ′)). Hence (2.3.4) holds on ∂Y (r)
outside a measure zero subset with respect to η (note that ∂Y (r) has real
dimension 2 dim Y − 1, while N(f) ∪ f ∗(suppZ) ∪ f ∗(suppZ ′) has real di-
mension ≤ 2 dimY − 2). Taking integral

∫
∂Y (r) · η in (2.3.4), we obtain

Proposition 2.3.2 (1).

2.4. We shall fix our notations related to a jet space. Let V be a

smooth algebraic variety over C and x ∈ V be a point of V . Let f ,g :

(C, 0) → (V, x) be germs of holomorphic mappings from neighborhoods of

the origin 0 ∈ C into V with f(0) = g(0) = x ∈ V . For a positive integer

k, we write f
k
∼ g if f(z) and g(z) have the same Taylor expansions in z up

to order k for some holomorphic local coordinate system around x. Then it

is easily checked that the relation “
k
∼ ” is independent of the choice of the

holomorphic local coordinate system around x and defines an equivalence

relation on the set {f | f : (C, 0)→ (V, x)}. Let jk(f) denote the equivalence

class of f and set

Jk(V )x = {jk(f) | f : (C, 0)→ (V, x)}.
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Then Jk(V )x is naturally equipped with complex structure and isomorphic

to Ck dimV . The k-th jet space Jk(V ) over V is

Jk(V ) =
⋃

x∈V

Jk(V )x.

Then Jk(V ) naturally carries the structure of an algebraic variety. (If ϕ ∈
Γ (V,OV ), then the function dlϕ defined below is a holomorphic function

on Jk(V ). This defines the structure of an algebraic variety on Jk(V ).)

In particular, J1(V ) is the tangent space TV . For convenience sake, set

J0(V ) = V . For k ≥ l we have the natural forgetful morphism pk,l :

Jk(V )→ Jl(V ).

Let ϕ be a meromorphic function on V . For an integer l (0 ≤ l ≤ k),

the l-th derivative dlϕ of ϕ is a meromorphic function on Jk(V ) defined as

follows. Let jk(f) ∈ Jk(V ) be the equivalence class of a germ f : (C, 0) →
(V, x). Then the value of the meromorphic function dlϕ at the point jk(f) ∈
Jk(V ) is

dlϕ(jk(f)) =
dl(ϕ ◦ f)

dzl
(0).

The derivative dl is linear and satisfies the Leibniz rule

dl(ϕ+ φ) = dlϕ+ dlφ ,(2.4.1)

dl(ϕφ) =

l∑

i=0

lCid
l−iϕdiφ ,(2.4.2)

where lCi is binomial coefficients. If ϕ is holomorphic, then dlϕ is also

holomorphic.

By Jk(V ), we mean the compactification of Jk(X) obtained by the

following manner. Let jk(f) be the equivalence class of a germ f : (C, 0)→
(V, x), and a ∈ C∗ = C−{0} be a nonzero scalar. Then the map jk(f(z)) 7→
jk(f(az)) defines the C∗-action on Jk(V )x. Consider the C∗-action on C by

z 7→ az where z ∈ C and a ∈ C∗. And consider the diagonal C∗-action on

Jk(V )x × C. Put

Jk(V )x =
(
Jk(V )x × C− (zero)

)
/C∗.

Then Jk(V )x is the weighted projective space. Put

Jk(V ) =
⋃

x∈V

Jk(V )x.
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Then Jk(V ) is a normal algebraic variety and has only quotient singularities,

so a Q-divisible variety. If V is projective, J k(V ) is also projective. In

particular, TV = J1(V ) is smooth. We embed Jk(V )x into Jk(X)x by

sending the point jk(f) ∈ Jk(V )x to the point represented by (jk(f), 1),

which gives the open immersion Jk(V ) ↪→ Jk(V ).

Here we give one proposition.

Proposition 2.4.3. Let V be a smooth affine variety. If ϕ1, . . . , ϕd ∈
Γ (V,OV ) (d = dimV ) form a local coordinate system around every point

of V , then we have

Jk(V ) ' V × Ck dimV ' V × SpecC[dϕ1, . . . , dϕd, . . . , d
kϕ1, . . . , d

kϕd].

Proof. Consider the morphism

Φ : Jk(V ) −→ V × Spec C[dϕ1, . . . , dϕd, . . . , d
kϕ1, . . . , d

kϕd]

where Φ = (idV ◦pk,0, dϕ1, . . . , dϕd, . . . , d
kϕ1, . . . , d

kϕd). Then Φ is an iso-
morphism, which proves our assertion (cf. [NoO90, Lemma 6.3.1]).

Next, for the convenience of the later use, we describe algebraic setting

of a jet space. Since the fiber bundle p = pk,0 : Jk(V )→ V is locally trivial

in Zariski open set of V and a fiber Jk(V )x is an affine space, p : Jk(V )→
V is an affine morphism, and Jk(V ) = Spec p∗OJk(V ). Here Spec is a

spectrum of a sheaf of algebras (see for example Hartshorne [H77]). The

C∗-action on Jk(V )x defines the C∗-action on p∗OJk(V ) by τa : g(jk(f(z))) 7→
g(jk(f(az))) where g ∈ p∗OJk(V ). We say that g ∈ p∗OJk(V ) is of weight

l, if τa(g) = alg for every a ∈ C∗. Let p∗OJk(V ),l ⊂ p∗OJk(V ) be the sheaf

of subabelian group of all elements of weight l. Then p∗OJk(V ),0 = OV

and dlg ∈ p∗OJk(V ),l for g ∈ OV . We have a decomposition p∗OJk(V ) =⊕
l≥0 p∗OJk(V ),l which make p∗OJk(V ) a sheaf of graded ring. Let C[η∞] be

a graded polynomial ring with a weight of η∞ to be 1. Consider a sheaf of

a graded ring p∗OJk(V )

⊗
OV

C[η∞]. Then Jk(V ) is Proj
(
p∗OJk(V )

⊗
OV

C[η∞]
)
. Let ∂Jk(V ) be the Q-Cartier divisor defined by η∞. Then Jk(V )−

supp∂Jk(V ) = Jk(V ). In general, let α be a homogeneous element of

p∗OJk(V )

⊗
OV

C[η∞]. Then α defines a Q-Cartier divisor (α) and a closed

subscheme V (α) on J k(V ) as follows. First, let l be a weight of α. There

is a positive integer n such that a sheaf (on Proj
(
p∗OJk(V )

⊗
OV

C[η∞]
)
)

associated with a sheaf (on V ) of twisted graded module
(
p∗OJk(V )

⊗
OV
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C[η∞]
)
(ln) is a locally free sheaf of rank 1. Then αn defines the Cartier

divisor (αn), hence α defines the Q-Cartier divisor (α) = 1
n(αn). Next since

α defines the homogeneous ideal of p∗OJk(V )

⊗
OV

C[η∞], hence defines

the closed subscheme V (α). Then a straightforward computation gives the

following assertion: If n is a positive integer such that n(α) is a Cartier

divisor, then we have n(α) ⊂ nV (α) as closed subschemes of J k(V ). Hence

by Proposition 2.2.9 (3), we have

(2.4.4) λ(α) ≤〈Jk(V )〉 λV (α).

For g ∈ OV and l ≤ k, the element dlg, regarded as a section of p∗OJk(V ),

will be written just dlg, and when regarded as a section of p∗OJk(V )

⊗
OV

C[η∞], we shall write dlg ⊗ 1. Hence dlg is a meromorphic function on

Jk(V ) and dlg = (dlg ⊗ 1)/ηl
∞.

Let Z ⊂ V be a closed subscheme of V . We shall define the closed

subscheme Z(l) of J l(V ) as follows. When V is affine, let I = (g1, . . . , gr) ⊂
Γ (V,OV ) be the defining ideal of the closed subscheme Z ⊂ V . Then we

define the closed subscheme Z (l) of J l(V ) by the homogeneous ideal

(g1, . . . , gr, dg1 ⊗ 1, . . . , dgr ⊗ 1, . . . , dlg1 ⊗ 1, . . . , dlgr ⊗ 1)

of p∗OJk(V )

⊗
OV

C[η∞]. Then by (2.4.1), (2.4.2), the above definition of

Z(l) is well-defined. In case V is general, cover V with open affines {Ui}
and make closed subschemes (Z|Ui

)(l) ⊂ J l(Ui). Then by the definition of

(Z|Ui
)(l), we can glue these subschemes and define the subscheme Z (l) of

J l(V ).

Let π : Y → Cm be a finite analytic covering space. Let R (⊂ Y ) be the

ramification divisor of π and let z = (z1, . . . , zm) be the natural coordinate

system in Cm. We regard the vector fields ∂/∂zi as meromorphic vector

fields on Y which are holomorphic on Y − suppR.

Let f : Y 99K V be a meromorphic map to a smooth quasi-projective

variety V . Then by considering f∗(∂/∂zi), we obtain the meromorphic

lifting ∂zi
(f) : Y 99K TV of f . In case dimY = 1, by considering f∗(∂

l/∂zl),

we obtain the lifting jl(f) : Y → J l(V ) where z = z1 and j1(f) = ∂z1(f).

Note that jl(f) is holomorphic on Y in this case. Then by the definition,

for a meromorphic function ϕ on V , we have

(2.4.5)
∂

∂zi
(ϕ ◦ f)(z) = dϕ ◦ ∂zi

(f)(z),
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and in the case dimY = 1, we have

(2.4.6)
∂l

∂zl
(ϕ ◦ f)(z) = dlϕ ◦ jl(f)(z).

Remark 2.4.7. By some straightforward computations using a local co-
ordinate system, we can show

(2.4.8) N(r, jl(f), ∂Jl(V )) ≤ Nπ,Ram(r) +
(
1−

1

l

)
Nπ,Ram(r)

where Nπ,Ram(r) is defined by

Nπ,Ram(r) = N (suppR, r).

2.5. Next Theorem 2.5.1, called Lemma on logarithmic derivatives,

is most basic in our paper. Lemma on logarithmic derivatives is first dis-

cussed by Nevanlinna [Nev39] for a meromorphic function on C, and then

by Vitter [Vi77] for a meromorphic function on Cm. Following general form

is obtained by Noguchi [No85].

Theorem 2.5.1. Let ξ be a meromorphic function on Y considered as

a meromorphic map Y 99K P1. Then for each 1 ≤ i ≤ m, we have

(1)

∫

∂Y (r)
log+

∣∣∣∣∣

∂
∂zi
ξ

ξ

∣∣∣∣∣ η ≤ O(log+ rT (r, ξ,∞)) ‖.

Using (1) successively, we can show that the formula (1) holds if we re-

place ∂/∂zi by ∂j1+···+jm/∂zj1
1 · · · ∂z

jm
m . In the case dimY = 1, we have the

following.

(2)

∫

∂Y (r)
log+

∣∣∣∣∣
∂l

∂zl ξ

ξ

∣∣∣∣∣ η ≤ O(log+ rT (r, ξ,∞)) ‖.

Here the symbol ‖ means that the inequality holds for r ≥ 0 outside a set

of finite linear measure and log+ x = max(0, log x).

§3. Formulation and proof of ANLD

3.1. Let X be a smooth projective variety and Z ⊂ X be a closed

subscheme. Let A, B be sets of rational functions on X. We consider the

following two conditions (a), (b)Z on A, B respectively.
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(a) For every point P ∈ X, there is a Zariski open neighbor-

hood U of P and rational functions ϕ1, . . . , ϕd ∈ A such that

ϕ1, . . . , ϕd are holomorphic on U and form a local coordinate

system around every point of U . Here d = dimX.

(b)Z For every point P ∈ X, there is a Zariski open neigh-

borhood U of P and rational functions ϕ1, . . . , ϕj ∈ B such

that ϕ1, . . . , ϕj are holomorphic on U and ϕ1 = 0, . . . , ϕj = 0

are defining equations for Z on U . Here j depends on P and U .

Since X is smooth and Noetherian, we can find finite sets A and B of

rational functions on X which satisfy conditions (a) and (b)Z respectively.

For an integer n ≥ 1, define the n-fold fiber product

J l(X)n = J l(X)×X · · · ×X J l(X)︸ ︷︷ ︸
n times

over X. Let p̃ : J l(X)n → X be the projection, and let qi : J l(X)n → J l(X)

be the i-th projection for 1 ≤ i ≤ n. Put (cf. 2.2.8)

Z(l),n = q∗1Z
(l) ∩ · · · ∩ q∗nZ

(l).

Then Z(l),n is a closed subscheme of J l(X)n.

Proposition 3.1.1. Let X, Z be as above. Suppose that A and B are

finite sets of rational functions on X satisfing the conditions (a) and (b)Z

respectively. Then we have

λ∂Jl(X) ≤
∑

ϕ∈A

∑

1≤s≤l

log+

∣∣∣∣
dsϕ

ϕ

∣∣∣∣ +O(1) on J l(X),(1)

λZ ◦ p̃ ≤ λZ(l),n +
∑

ϕ∈B

∑

1≤i≤n

∑

1≤s≤l

log+

∣∣∣∣
dsϕ

ϕ
◦ qi

∣∣∣∣ +O(1) on J l(X)n.(2)

Proof. Take P ∈ X. By Lemma 2.1.2 (2), it suffices to check

λ∂Jl(X) ≤〈J l(U)〉

∑

ϕ∈A

∑

1≤s≤l

log+

∣∣∣∣
dsϕ

ϕ

∣∣∣∣(1)′
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and

λZ ◦ p̃ ≤〈J l(U)n〉 λZ(l),n +
∑

ϕ∈B

∑

1≤i≤n

∑

1≤s≤l

log+

∣∣∣∣
dsϕ

ϕ
◦ qi

∣∣∣∣(2)′

for some Zariski open neighbourhood U of P . Let ϕ be a rational function
on X which is holomorphic on U . Then on J l(U) = p−1

l,0 (U) we have

|ϕ|max

(
1,

∣∣∣∣
dsϕ

ϕ

∣∣∣∣
)

= max(|ϕ|, |dsϕ|),

hence

− log |ϕ| = min(− log |ϕ|,− log |dsϕ|) + log max

(
1,

∣∣∣∣
dsϕ

ϕ

∣∣∣∣
)

for 1 ≤ s ≤ l. Since dsϕ = (dsϕ⊗1)/ηs
∞, we have (dsϕ) = (dsϕ⊗1)−s(η∞)

for the Q-Cartier divisors. By Lemma 2.2.11, we have

λV (ϕ) ≤〈J l(U)〉 min(λV (ϕ), λV (dsϕ⊗1) − sλ(η∞)) + log+

∣∣∣∣
dsϕ

ϕ

∣∣∣∣

and

λV (ϕ) + λ(η∞) ≤〈J l(U)〉 min(λV (ϕ) + λ(η∞), λV (dsϕ⊗1)) + log+

∣∣∣∣
dsϕ

ϕ

∣∣∣∣ .

Hence by

min(λV (ϕ) + λ(η∞), λV (dsϕ⊗1))

≤〈Jl(U)〉 min(λV (ϕ) + λ(η∞), λV (dsϕ⊗1) + λV (ϕ))

≡〈Jl(U)〉 min(λ(η∞), λV (dsϕ⊗1)) + λV (ϕ),

and using (2.4.4), we have

(3.1.2) λ(η∞) ≤〈J l(U)〉 min(λV (η∞), λV (dsϕ⊗1)) + log+

∣∣∣∣
dsϕ

ϕ

∣∣∣∣ .

By the same argument, we have

(3.1.3) λV (ϕ) ≤〈J l(U)〉 min(λV (ϕ), λV (dsϕ⊗1)) + log+

∣∣∣∣
dsϕ

ϕ

∣∣∣∣ .
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Now take U , ϕ1, . . . , ϕd ∈ A (d = dimX) as condition (a). Then by Propo-
sition 2.4.3, we have

Jl(U) = U × Cld = U × Spec C[dϕ1, . . . , dϕd, . . . , d
lϕ1, . . . , d

lϕd].

Hence we have

J l(U) = U × Proj C[dϕ1 ⊗ 1, . . . , dϕd ⊗ 1, . . . , dlϕ1 ⊗ 1, . . . , dlϕd ⊗ 1, η∞].

Using (3.1.2) for ϕ = ϕ1, . . . , ϕd, we obtain the inequality

(3.1.4) λ(η∞) ≤〈J l(U)〉 min
1≤s≤l

1≤t≤d

{
λV (η∞), λV (dsϕt⊗1)

}
+

∑

ϕ∈A

∑

1≤s≤l

log+

∣∣∣∣
dsϕ

ϕ

∣∣∣∣ .

By Proposition 2.2.9 (1) and V (η∞, d
1ϕ1 ⊗ 1, . . . , dlϕd ⊗ 1) = φ, we have

(3.1.5) min
1≤s≤l

1≤t≤d

{
λV (η∞), λV (dsϕt⊗1)

}
≡〈Jl(U)〉 0.

Then inequalities (3.1.4) and (3.1.5) prove Proposition 3.1.1 (1). Note that
by the definition, we have λ∂Jl(X) = λ(η∞) (∂Jl(X) = (η∞) is the definition).

Next take U , ϕ1, . . . , ϕj ∈ B satisfying the condition (b)Z . Using (3.1.3)
for ϕ = ϕ1, . . . , ϕj and taking compositions with qi’s, we have

min
1≤t≤j

{
λV (ϕt)

}
≤〈J l(U)n〉 min

1≤i≤n
min

1≤s≤l

1≤t≤j

{
λV (ϕt), λV (dsϕt⊗1) ◦ qi

}

+
∑

ϕ∈B

∑

1≤i≤n

∑

1≤s≤l

log+

∣∣∣∣
dsϕ

ϕ
◦ qi

∣∣∣∣ .
(3.1.6)

By condition (b)Z , we have Z = V (ϕ1, . . . , ϕj) and by definition of Z (l) and
Z(l),n, we have Z(l) = V (ϕ1, . . . , d

lϕj ⊗ 1) and Z(l),n = q∗1Z
(l) ∩ · · · ∩ q∗nZ

(l).
Hence Proposition 2.2.9 (1) and (3.1.6) prove Proposition 3.1.1 (2).

3.2. Let π : Y → Cm be a finite analytic covering space, and let

f : Y 99K X be a meromorphic map. Set ∂(f) = ∂z1(f) × · · · × ∂zm(f).

Then ∂(f) is a lifting of f ;

∂(f) : Y 999K TXm = TX ×X · · · ×X TX︸ ︷︷ ︸
m times

.
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In the rest of this paper, S(r, f) denotes any small term satisfying

S(r, f) ≤ O(log+ rT (r, f, E)) ‖.

Here E is an ample line bundle on X. If we take another ample line bundle

E′ onX, we have O(T (r, f, E)) = O(T (r, f, E ′)). Hence our notation S(r, f)

is independent of the choice of an ample line bundle on X.

Theorem 3.2.1. (ANLD) Let X be a smooth projective variety, and let

Z ⊂ X be a closed subscheme. Let π : Y → Cm be a finite analytic covering

space. Let f : Y 99K X be a meromorphic map. Suppose f(Y ) 6⊂ suppZ.

Then we have

m(r, f, Z) ≤ m(r, ∂(f), Z (1),m) + S(r, f).(1)

m(r, ∂(f), q∗1(∂TX) + · · ·+ q∗m(∂TX)) ≤ S(r, f).(2)

Moreover if dimY = 1, we have

m(r, f, Z) ≤ m(r, jl(f), Z(l)) + S(r, f).(3)

m(r, jl(f), ∂Jl(X)) ≤ S(r, f).(4)

Proof. First, note that since X is smooth and projective, we can take
finite sets A and B of rational functions on X which are finite and satisfy
the conditions (a) and (b)Z respectively. Moreover we can take A, B such
that

f(Y ) 6⊂
⋃

ϕ∈A∪B

(ϕ)0 ∪ (ϕ)∞.

This means that ϕ ◦ f is a meromorphic function on Y with ϕ ◦ f 6= 0,∞
for every ϕ ∈ A ∪ B. By pulling back the inequality of Proposition 3.1.1
(2) by meromorphic map ∂(f) (in case l = 1, n = m) and using (2.4.5), we
obtain

λZ ◦ f ≤ λZ(1),m ◦ ∂(f) +
∑

ϕ∈B

∑

1≤i≤m

log+

∣∣∣∣∣

∂
∂zi

(ϕ ◦ f)

(ϕ ◦ f)

∣∣∣∣∣ +O(1).

Then taking the integral
∫
∂Y (r) · η and using Theorem 2.5.1 (1), we prove

Theorem 3.2.1 (1).
Next to prove (2), since we have

m(r, ∂(f), q∗1(∂TX) + · · · + q∗m(∂TX)) =
∑

1≤i≤m

m(r, ∂zi
(f), ∂TX),
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it suffices to check

(3.2.2) m(r, ∂zi
(f), ∂TX) ≤ S(r, f) for 1 ≤ i ≤ m.

This can be checked from Proposition 3.1.1 (1), (2.4.5) and Theorem 2.5.1
(1).

For Theorem 3.2.1 (3), use Proposition 3.1.1 (2) for n = 1 and (2.4.6),
Theorem 2.5.1 (2).

For Theorem 3.2.1 (4), use Proposition 3.1.1 (1), (2.4.6) and Theo-
rem 2.5.1 (2).

Above Theorem 3.2.1 (3) was first observed by Kobayashi [Kob96a],

[Kob96b] in somewhat weak forms (with some non-degeneracy condition on

f and in a weak estimate for the error term). In case that X is an Abelian

variety, another proof for Theorem 3.2.1 (3), (4) can be found in [Kob00].

Remark 3.2.3. By Theorem 3.2.1 (4) and (2.4.8), we have

(3.2.4) T (r, jl(f), ∂Jl(X)) ≤ Nπ,Ram(r) +
(
1−

1

l

)
Nπ,Ram(r) + S(r, f)

for the estimate of the height function.

Remark 3.2.5. For the case X = P1 and a meromorphic map f = ξ :
Y 99K P1, above Theorem 3.2.1 (1), (2) give usual Nevanlinna’s lemma on
logarithmic derivative Theorem 2.5.1 (1).

First, in general we have

m(r, ∂(f), Z(1),m) ≤ m(r, ∂zi
(f), Z(1)) +O(1) for 1 ≤ i ≤ m.

Hence by Theorem 3.2.1 (1), we have

(3.2.6) m(r, f, Z) ≤ m(r, ∂zi
(f), Z(1)) + S(r, f) for 1 ≤ i ≤ m.

By Theorem 3.2.1 (2) and its proof (cf. (3.2.2)), we have

(3.2.7) m(r, ∂zi
(f), ∂TX) ≤ S(r, f) for 1 ≤ i ≤ m.

Set X = P1 = C ∪ {∞} and let t be the coordinate on P1 − {∞}. Let D0

and D∞ be divisors of P1 determined by t = 0 and t = ∞ respectively.
Let p : TP1 → P1 be the projection. Let F0 and F∞ be the divisors
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on TP1 associated to the section at zero and infinity respectively. (Hence
F∞ = ∂TP1.) Consider the rational function dt/t on TP1. Then we have

(dt
t

)
= F0 − p

∗D0 − p
∗D∞ − F∞.

Hence by Lemma 2.2.11, we have

log

∣∣∣∣
dt

t

∣∣∣∣ = λp∗D0+p∗D∞+F∞
− λF0 +O(1).

Hence we have

log+

∣∣∣∣
dt

t

∣∣∣∣ = max

{
0, log

∣∣∣∣
dt

t

∣∣∣∣
}

= max{0, λp∗D0+p∗D∞+F∞
− λF0}+O(1)

= λp∗D0+p∗D∞+F∞
−min{λp∗D0+p∗D∞+F∞

, λF0}+O(1).

By Proposition 2.2.9 (1), we have

(3.2.8) log+

∣∣∣∣
dt

t

∣∣∣∣ = λp∗D0+p∗D∞+F∞
− λ(p∗D0+p∗D∞+F∞)∩F0

+O(1).

Since we have

(p∗D0 + p∗D∞ + F∞) ∩ F0 = D
(1)
0 +D(1)

∞ ,

by pulling back (3.2.8) by ∂i(ξ) : Y 99K TP1 and taking the integral∫
∂Y (r) · η, we have

∫

∂Y (r)
log+

∣∣∣∣∣

∂
∂zi
ξ

ξ

∣∣∣∣∣ η =
(
m(r, ξ,D0)−m(r, ∂zi

(ξ), D
(1)
0 )

)

+
(
m(r, ξ,D∞)−m(r, ∂zi

(ξ), D(1)
∞ )

)

+m(r, ∂zi
(ξ), ∂TP1).

(3.2.9)

From (3.2.6), (3.2.7) and (3.2.9), we deduce Theorem 2.5.1 (1).

§4. Applications to the Second Main Theorem

In this section, we shall discuss applications of our ANLD to the second

main theorem in Nevanlinna theory in several complex variables. In Subsec-

tion 4.1, we shall discuss equidimensional value distribution theory. After

this subsection, we shall consider the case of holomorphic curves, which is

the most basic case in non-equidimensional value distribution theory. After

giving some general technical result (Proposition 4.2.1) in Subsection 4.2,

we shall discuss the second main theorem for Abelian varieties and for the

projective space with hyperplanes in Subsections 4.3 and 4.4 respectively.
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4.1. For a line bundle uL : L→ X on X, we shall denote its dual line

bundle by uL∨ : L∨ → X. Let L = P(OX⊕L) be the compactification of L,

and let uL : L → X be the projection. Let F
[L]
0 (resp. F

[L]
∞ ) be the divisor

on L associated to the section at zero (resp. infinity). Then we have

(4.1.1) u∗
L
L∨ = OL(F [L]

∞ − F
[L]
0 ).

Let KX be the canonical line bundle on X. Let τ∧ be the holomorphic map

τ∧ : TXd = TX ×X · · · ×X TX︸ ︷︷ ︸
d times

−→ K∨
X (d = dimX)

sending (v1, . . . , vd) to v1 ∧ · · · ∧ vd. Let τ∧ be the rational map

τ∧ : TXd = TX ×X · · · ×X TX︸ ︷︷ ︸
d times

999K K∨
X

which is the extension of τ∧.

Lemma 4.1.2. Let D ⊂ X be a simple normal crossing divisor and

write D =
∑

j Dj as a sum of irreducible components. Then we have

∑

j

D
(1),d
j |TXd ⊂ τ∗∧F

[K∨
X ]

0 |TXd = τ∗∧F
[K∨

X ]
0 .

Proof. For every point P ∈ X, there is an open neighborhood U ⊂ X
(P ∈ U), and local functions h1, . . . , hd ∈ Γ (U,OU ) such that

(1) h1, . . . , hd form a local coordinate system around every point on U .

(2) h1 · · · ht = 0 (0 ≤ t ≤ d) is a local equation for D|U .

Then TU = U × Cd and dh1, . . . , dhd form the coordinate system of Cd

(cf. Proposition 2.4.3). Hence, TU d = U × Cd2
and (dhi

j)1≤i,j≤d forms the

coordinate system of Cd2
, where dhi

j = q∗i dhj (here qi : TUd → TU is the
i-th projection). Put

Θ =

∣∣∣∣∣∣∣

dh1
1 · · · dhd

1
...

. . .
...

dh1
d · · · dhd

d

∣∣∣∣∣∣∣
.

Then Θ = 0 is the local equation for τ ∗∧F
[K∨

X ]
0 on TUd. Note that we have

Γ (TUd, IP
j D

(1),d
j

) = (h1, dh
1
1, . . . , dh

d
1) · · · (ht, dh

1
t , . . . , dh

d
t ).
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Hence to check Lemma 4.1.2, it suffices to show

Θ ∈ (h1, dh
1
1, . . . , dh

d
1) · · · (ht, dh

1
t , . . . , dh

d
t )

but this can be checked by straightforward computations.

Next theorem was obtained by Carlson-Griffiths [CG72], Griffiths-King

[GK73], Shiffman [Sh75] and Noguchi [No76]. Here, we shall discuss this in

the context of our method.

Theorem 4.1.3. Let π : Y → Cd be a finite analytic covering space,

and let X be a smooth projective variety. Let f : Y 99K X be a meromorphic

map and let D ⊂ X be a divisor with simple normal crossings. Suppose

dimY = dimX (= d) and f is non-degenerate in the sense that the Jacobian

of f does not identically vanish. Then we have

m(r, f,D) +NRam f (r) + T (r, f,KX) ≤ NRam,π(r) + S(r, f).

Proof. Write D =
∑s

j=1Dj as a sum of irreducible components. Then
by Theorem 3.2.1 (1), we have

m(r, f,D) =

s∑

j=1

m(r, f,Dj) ≤
s∑

j=1

m(r, ∂(f), D
(1),d
j ) + S(r, f).

By Lemma 4.1.2 and Proposition 2.3.2 (6), there is a positive constant c > 0
such that

s∑

j=1

m(r, ∂(f), D
(1),d
j )

≤ m(r, τ∧ ◦ ∂(f), F
[K∨

X ]
0 ) + c ·m(r, ∂(f), TXd − TXd).

Hence by Theorem 3.2.1 (2), we have

m(r, f,D) ≤ m(r, τ∧ ◦ ∂(f), F
[K∨

X ]
0 ) + S(r, f).

Since

m(r, τ∧ ◦ ∂(f), F
[K∨

X ]
0 ) = T (r, τ∧ ◦ ∂(f), F

[K∨
X ]

0 )−NRam f (r) +O(1)
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(note that NRam f (r) = N(r, τ∧ ◦ ∂(f), F
[K∨

X ]
0 ) by definition) and by (4.1.1)

and Nevanlinna’s first main theorem (Theorem 2.3.1), we have

m(r, f,D) +NRam f (r) + T (r, f,KX )

≤ T (r, τ∧ ◦ ∂(f), F
[K∨

X ]
∞ ) + S(r, f).

(4.1.4)

Here, note that by our non-degeneracy condition on f , we have τ ∧◦∂(f)(Y )

6⊂ F
[K∨

X ]
0 . Again, using Proposition 2.3.2 (6) to the case U = TX d, Z = φ,

W = F
[K∨

X ]
∞ , we have

(4.1.5) m(r, τ∧ ◦ ∂(f), F
[K∨

X ]
∞ ) ≤ S(r, f).

Let R be the ramification divisor of π : Y → Cd. We shall show

(4.1.6)
(
τ∧ ◦ ∂(f)

)∗
F

[K∨
X ]

∞ ⊂ R.

We write S(Y ) for the set of singularities of the complex space Y , and N(f)
for the set of indeterminacy of f . Then since codim(S(Y ) ∪N(f)) ≥ 2, to
show (4.1.6), it suffices to prove it on Y − S(Y ) − N(f). Take a point
P ∈ Y − S(Y ) − N(f), and take an open neighborhood WX 3 f(P ) and
WY 3 P such that WY ⊂ Y − S(Y ) − N(f), f(WY ) ⊂ WX . Moreover
we assume that WX , WY are biholomorphic to the open sets of Cd. Set
x = (x1, . . . , xd) and y = (y1, . . . , yd) be the coordinate systems of WX and
WY respectively. Write f in these coordinate systems as

x1 = f1(y1, . . . , yd), . . . , xd = fd(y1, . . . , yd).

Set Jacobian matrix of f(y) as θ(y);

θ(y) =

∣∣∣∣∣∣∣

∂f1

∂y1
(y) · · · ∂f1

∂yd
(y)

...
. . .

...
∂fd

∂y1
(y) · · · ∂fd

∂yd
(y)

∣∣∣∣∣∣∣
.

Let z = (z1, . . . , zd) be the standard coordinate system of Cd (
π
← Y ), and

define the holomorphic function r(y) on WY by

π∗(dz1) ∧ · · · ∧ π
∗(dzd) = r(y)dy1 ∧ · · · ∧ dyd.

Then r(y) = 0 is the local equation for R on WY . Since the restriction of
τ∧ ◦ ∂(f) to WY is

τ∧ ◦ ∂(f)|WY
(y) =

(
f(y),

θ(y)

r(y)

)
∈WX × P1 = K∨

WX
,
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we have (4.1.6) on WY , hence also on Y − S(Y )−N(f) and Y .

Now consider the integral N ( · , r) of (4.1.6). Then we obtain the in-
equality of the counting functions

(4.1.7) N(r, τ∧ ◦ ∂(f), F
[K∨

X ]
∞ ) ≤ NRam,π(r).

Hence (4.1.4), (4.1.5) and (4.1.7) imply Theorem 4.1.3.

4.2. In the rest of this paper, we shall mainly consider the case Y = C,

which is the most basic and simple case in non-equidimensional value dis-

tribution theory. When the following assumption of Proposition 4.2.1 is

satisfied for L = KX , our situation becomes similar to the case of equidi-

mensional value distribution theory. Here we consider the higher jet space

JN (X) instead of TXd.

Proposition 4.2.1. Let X be a smooth projective variety, and let D =
D1 + · · ·+Ds ⊂ X be a divisor. Suppose there is a positive integer N > 0,
a line bundle L

uL−→ X, and a morphism of fiber bundles ψ : JN (X) → L∨

such that D
(N)
1 |JN (X)+· · ·+D

(N)
s |JN (X) ⊂ ψ

∗F
[L∨]
0 . Then for a holomorphic

curve f : C→ X with a non-degeneracy condition jN (f)(C) 6⊂ ψ∗F
[L∨]
0 , we

have
s∑

i=1

m(r, f,Di) +N“Ram”f (r) + T (r, f, L) ≤ S(r, f).

Here we define the term N“Ram”f (r) by N“Ram”f (r) = N(r, ψ◦jN (f), F
[L∨]
0 ).

Proof. By Theorem 3.2.1 (3), we have

s∑

i=1

m(r, f,Di) ≤
s∑

i=1

m(r, jN (f), D
(N)
i ) + S(r, f).

By our assumption D
(N)
1 |JN (X) + · · · +D

(N)
s |JN (X) ⊂ ψ∗F

[L∨]
0 , and Propo-

sition 2.3.2 (6), there is a positive constant c > 0 such that

s∑

i=1

m(r, jN (f), D
(N)
i )

≤ m(r, ψ ◦ jN (f), F
[L∨]
0 ) + c ·m(r, jN (f), ∂JN (X)).
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(Here we consider the holomorphic curve ψ ◦ jN (f) : C → L∨.) Hence by
Theorem 3.2.1 (4), we have

s∑

i=1

m(r, f,Di) ≤ m(r, ψ ◦ jN (f), F
[L∨]
0 ) + S(r, f).

By m(r, ψ ◦ jN (f), F
[L∨]
0 )+N“Ram”f (r) = T (r, ψ ◦ jN (f), F

[L∨]
0 ), (4.1.1) and

Theorem 2.3.1, we have

m(r, ψ ◦ jN (f), F
[L∨]
0 ) +N“Ram”f (r)(4.2.2)

≤ −T (r, f, L) + T (r, ψ ◦ jN (f), F [L∨]
∞ )

= −T (r, f, L) +m(r, ψ ◦ jN (f), F [L∨]
∞ ).

Again by Proposition 2.3.2 (6) and Theorem 3.2.1 (4), we have

m(r, ψ ◦ jN (f), F [L∨]
∞ ) ≤ S(r, f).

Hence we have

s∑

i=1

m(r, f,Di) +N“Ram”f (r) + T (r, f, L) ≤ S(r, f).

The following corollary of Proposition 4.2.1 is the most basic technical tool

for hyperbolicity problems such as Bloch’s theorem ([B26]). This corollary is

established by Y. T. Siu and S. K. Yeung [SiY97] using a negative curvature

method. Though we don’t use it in this paper any more, but it may be

helpful to see how we can apply ANLD to get it. For the application of this

corollary, see for example [GG80].

Corollary 4.2.3. Let X be as above. Let D ⊂ X be an ample divisor.

Suppose there is a positive integer k and a k-jet differential ω on X (i.e.
ω ∈ Γ (X, pk,0∗OJk(X))) such that ω vanishes on D but is not identically

zero on X. Then for any holomorphic curve f : C → X, the pullback f ∗ω
is identically zero on C.

Proof. Let LD be the line bundle over X associated to D. Since our
jet differential ω defines the holomorphic function on Jk(X), it defines the
morphism of fiber bundles Jk(X) → X × C. Since ω vanishes on D, this
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morphism factor the subbundle L∨
D → X×C. Hence we have the morphism

of fiber bundles

ψ : Jk(X) −→ L∨
D

over X.

Now we shall prove our corollary by assuming that there is a holomor-
phic curve f : C→ X such that f ∗ω is not identically zero on C, and derive
a contradiction. Assume that there is a holomorphic curve f : C→ X such

that f∗ω is not identically zero on C. This means jk(f)(C) 6⊂ ψ∗F
[L∨

D]
0 .

Hence by Proposition 4.2.1, we have

T (r, f, LD) ≤ S(r, f) ≤ O(log+ rT (r, f, LD)) ‖.

But this implies that f is rational and factors some morphism φ : P1 → X.
By restricting ψ on P1 by φ, we obtain the morphism of fiber bundles

ψ̃ : Jk(P
1) −→M∨

over P1. Here M is the line bundle over P1 obtained by φ∗LD. Then
by Pic(P1) ' Z, we see that M is ample. Note that ψ̃ is not identically

zero because of jk(f)(C) 6⊂ ψ∗F
[L∨

D]
0 . Now take a holomorphic curve g :

C → P1 such that jk(g)(C) 6⊂ ψ̃∗F
[M∨]
0 and T (r, g,M) ≥ r2. Then by

Proposition 4.2.1, we have

T (r, g,M) ≤ S(r, g) ≤ O(log+ rT (r, g,M)) ‖.

But this is a contradiction. Hence for any holomorphic curve f : C → X,
f∗ω is identically zero on C.

Remark 4.2.4. In Proposition 4.2.1, if we consider a holomorphic curve
f : Y → X, where π : Y → C is a finite analytic covering space, a modifi-
cation of (4.2.2) gives

s∑

i=1

m(r, f,Di) +N“Ram”f (r) + T (r, f, L) ≤ O(Nπ,Ram(r)) + S(r, f)

under the non-degeneracy condition jN (f)(Y ) 6⊂ ψ∗F
[L∨]
0 .
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4.3. We shall explain how to use our Proposition 4.2.1 to obtain the

second main theorem for holomorphic curves into Abelian varieties estab-

lished by [Kob00] and [NoWY02].

Theorem 4.3.1. Let A be an Abelian variety, and let D be an effective

divisor on A. Let f : C → A be a holomorphic curve such that f(C) 6⊂
suppD. Then we have

m(r, f,D) ≤ S(r, f).

Proof. First, we shall reduce the proof to the case f is non-degenerate,
i.e. the Zariski closure of f(C) is equal to A. Let B be the Zariski closure
of f(C). Then by Bloch-Ochiai’s theorem, B is a translate of an Abelian
subvariety of A. From the condition f(C) 6⊂ D, we have m(r, f,D) =
m(r, f,D ∩B) by Proposition 2.3.2 (5). Thus it suffices to prove Theorem
for the case A is B and D is B∩D, but this is the case f is non-degenerate.

Next we show that there is a positive integer k > 0 and a morphism

of fiber bundles ψ : Jk(A) → K∨
A such that D(k)|Jk(A) ⊂ ψ∗F

[K∨
A]

0 and

jk(f)(C) 6⊂ ψ∗F
[K∨

A]
0 . This part of the argument is motivated by Kobayashi

[Kob91a]. Note that we have canonically Jk(A) ' A × Ck dim A. Let rk be

the projection Jk(A)
rk−→ Ck dimA. We first show that there is a positive

integer k such that

rk ◦ jk(f)(0) 6∈ rk(suppD(k)|Jk(A)) ⊂ Ck dim A.

Suppose that rk ◦ jk(f)(0) ∈ rk(suppD(k)|JN (A)) for all k ≥ 0. Then we
have

suppD(k)|JN (A) ∩ r
−1
k (rk ◦ jk(f)(0)) 6= φ

for all k ≥ 0, thus we have

Vk
def
= pk(suppD(k)|JN (A) ∩ r

−1
k (rk ◦ jk(f)(0))) 6= φ

for all k ≥ 0, where pk is the projection pk : Jk(A) → A. Note that Vk

is Zariski closed, (this is because pk : Jk(A) → A has a section idA×{rk ◦
jk(f)(0)} : A ↪→ Jk(A), and Vk is just pull back of suppD(k)|JN (A) by this
section) and note that Vk ⊃ Vk+1. Thus we have the sequence of Zariski
closed sets,

D ⊃ V1 ⊃ V2 ⊃ V3 ⊃ · · ·
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that eventually stabilizes at the variety V . Since we are assuming Vk 6= φ
for all k, we have V 6= φ. Let a ∈ V , and translate holomorphic curve f by
a − f(0) and put f̃(z) = f(z) + a − f(0). Then by construction of f̃ , we
have

f̃(0) = a and jk(f̃)(0) ∈ suppD(k)|JN (A).

Observing the Taylor series, we get f̃(C) ⊂ suppD, and hence a contradic-
tion since we are assuming f to be non-degenerate.

Now, we can take k > 0 such that rk ◦ jk(f)(0) 6∈ rk(suppD(k)|JN (A)).

Since A is projective, rk is a closed morphism, so rk(suppD(k)|JN (A)) is

Zariski closed. Thus we can take a divisor H of Ck dim A such that

rk ◦ jk(f)(0) 6∈ H and rk(suppD(k)|JN (A)) ⊂ H.

Consider the pull back divisor r∗kH on JkA. Then since we have
suppD(k)|JN (A) ⊂ supp r∗kH, the proof of Proposition 2.3.2 (3) implies that
there is a positive integer n > 0 such that

D(k)|JN (A) ⊂ nr
∗
kH = r∗k(nH).

Note that there is a morphism ψ′ : Ck dimA → C such that ψ
′∗(0) = nH.

Hence the morphism

ψ = idA×ψ
′ : Jk(A) = A× Ck dimA −→ A× C = K∨

A

satisfies the condition D(k)|JN (A) ⊂ ψ∗F
[K∨

A]
0 and jk(f)(C) 6⊂ ψ∗F

[K∨
A]

0 . By
Proposition 4.2.1, we have

m(r, f,D) +N“Ram”f (r) ≤ S(r, f).

Since N“Ram”f (r) ≥ 0, we have Theorem 4.3.1.

Remark 4.3.2. If we consider a holomorphic curve f : Y → A, where
π : Y → C is a finite analytic covering space, we obtain the following
statement;
Suppose f(Y ) is not contained in a translate of D. Then there is a positive
constant C, depending on f and D, such that

m(r, f,D) ≤ C Nπ,Ram(r) + S(r, f).
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4.4. Next, we shall consider the Second Main Theorem for hyperplanes

in the projective space Pn, which is due to Cartan [C33].

Theorem 4.4.1. Let f : C → Pn be a holomorphic map. Assume

that the image of f is not contained in any hyperplane. Let H1, . . . ,Hs be

hyperplanes in general position. Then

s∑

k=1

m(r, f,Hk) + T (r, f,KPn) +NRam f (r) ≤ S(r, f).

Proof. First we shall observe that there is a morphism of fiber bundles
over Pn

ψ : Jn(Pn) −→ K∨
Pn

such that

(4.4.2) H
(n)
1 |Jn(Pn) + · · ·+H(n)

s |Jn(Pn) ⊂ ψ
∗F

[K∨
Pn ]

0 .

Let (Z0 : · · · : Zn) be a system of homogeneous coordinates on Pn. Then for

0 ≤ i ≤ n, Ui = Pn−(Zi = 0) ' Cn has the coordinates (Z0
Zi
, . . . ,

∨

Zi

Zi
, . . . , Zn

Zi
).

Moreover we have Jn(Ui) ' Cn×Cn2
and T (Ui) ' Cn×Cn. For 1 ≤ j ≤ n,

consider the morphism

ιi,j : Jn(Ui)

(
Z0
Zi

,...,

∨
Zi
Zi

,..., Zn
Zi

,

∨

dj Z0
Zi

,...,dj Zi
Zi

,...,dj Zn
Zi

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ T (Ui).

Then we have the isomorphism ιi = ιi,1 × · · · × ιi,n of fiber bundles over Ui

ιi : Jn(Ui)
∼
−→ T (Ui)×Ui

· · · ×Ui
T (Ui)︸ ︷︷ ︸

n times

.

Under this isomorphism ιi, we have

(4.4.3) ι∗iH
(1),n|Jn(Ui) ' H

(n)|Jn(Ui)

for a hyperplane H ⊂ Pn. Next consider the morphism of fiber bundles

ψi = τ∧ ◦ ιi : Jn(Ui) −→ K∨
Ui
' {Ui} × C.
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Set ωi = dZ0
Zi
∧· · ·∧

∨

dZi

Zi
∧· · ·∧dZn

Zi
. Then K∨

Ui
has coordinates (u, ωi) where

uK∨
Ui

: K∨
Ui
→ Ui is the projection. Now we shall show ψi = ψj on Ui ∩ Uj

to obtain ψ : Jn(Pn)→ K∨
Pn . Since ωi = (−1)i−j Zn+1

j

Zn+1
i

ωj on Ui ∩ Uj , and

ωi ◦ ψi =

∨∣∣∣∣∣∣∣

dZ0
Zi

· dZi

Zi
· dZn

Zi

...
. . .

...

dn Z0
Zi
· dn Zi

Zi
· dn Zn

Zi

∣∣∣∣∣∣∣
= (−1)i

i+1
^∣∣∣∣∣∣∣∣∣∣

Z0
Zi

· 1 · Zn

Zi

dZ0
Zi

· 0 · dZn

Zi

...
. . .

...

dn Z0
Zi
· 0 · dn Zn

Zi

∣∣∣∣∣∣∣∣∣∣

= (−1)i 1

Zn+1
i

∣∣∣∣∣∣∣

Z0 · · · Zn
...

. . .
...

dnZ0 · · · dnZn

∣∣∣∣∣∣∣
= (−1)i−j

Zn+1
j

Zn+1
i

ωj ◦ ψj ,

we have ψi = ψj . Gluing ψi’s, we obtain ψ : Jn(Pn) → K∨
Pn . Consider the

divisor ψ∗F
[K∨

Pn ]
0 . From Lemma 4.1.2 and (4.4.3), we have (4.4.2). Moreover

for a holomorphic curve f : C→ Pn, we have

f(C) ⊂ ψ∗F
[K∨

Pn ]
0 ⇐⇒ f(C) ⊂ H for some hyperplane H ⊂ Pn.

Now consider a holomorphic curve f : C → Pn such that the image of f

is not contained in any hyperplane. Then we have f(C) 6⊂ ψ∗F
[K∨

Pn ]
0 . By

Proposition 4.2.1, we have

s∑

k=1

m(r, f,Hk) + T (r, f,KPn) +N“Ram”f (r) ≤ S(r, f).

But by a straightforward computation, we can show that the term
N“Ram”f (r) is a usual term NRam f (r) such as Lang’s book [L87]. Hence
we have Theorem 4.4.1.

§5. Extensions to the logarithmic jet space

5.1. We shall extend our results to the Logarithmic jet space due to

Noguchi [No86]. Let V be a smooth quasi-projective variety. Let D ⊂ V

be a divisor with only simple normal crossings. For an integer k ≥ 0, we

can construct the Logarithmic k-th jet bundle Jk(V ; logD) along D, and a

morphism

ψk : Jk(V ; logD) −→ Jk(V ).
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For k ≥ l, we have a natural forgetful morphism

plog
k,l : Jk(V ; logD) −→ Jl(V ; logD).

We have J0(V ; logD) = V , and plog
k,0 : Jk(V ; logD)→ V is the fiber bundle

whose fibers are Ck dimV . In the following, we shall write plog
k,0 simply as

pk. For φ ∈ Γ (V,OV ) and an integer l (0 ≤ l ≤ k), we have dl
logφ ∈

Γ (Jk(V ; logD),OJk(V ;log D)) by dl
logφ = dlφ ◦ ψk. Then dl

log also satisfies

the Leibniz rule (2.4.1), (2.4.2). We have the following proposition.

Proposition 5.1.1. Let V , D be as above. Suppose V is affine. Let

ϕ1, . . . , ϕd ∈ Γ (V,OV ) (d = dimV ) form a local coordinate system around

every point of V , and let D = (ϕ1 · · ·ϕi), i.e. ϕ1 · · ·ϕi = 0 defines D. Then

we have

Jk(V ; logD) = V × SpecC

[
dlogϕ1

ϕ1
, . . . ,

dlogϕi

ϕi
, dlogϕi+1, . . . , dlogϕd,

. . . ,
dk
logϕ1

ϕ1
, . . . ,

dk
logϕi

ϕi
, dk

logϕi+1, . . . , d
k
logϕd

]
.

Proof. See [No86, p. 234].

The sheaf of OV algebra pk∗OJk(V ;log D) is naturally the sheaf of graded

algebra such that the weight of dl
logφ is l and the subalgebra of weight 0

elements is OV . We have

Jk(V ; logD) = Spec pk∗OJk(V ;log D)

and we shall compactify Jk(V ; logD) by

Jk(V ; logD) = Proj pk∗OJk(V ;log D)

⊗
OV

C[ηlog
∞ ]

where the weight of ηlog
∞ is 1. As in Section 2, we shall use the notations

dl
logφ ⊗ 1 (we have dl

logφ = (dl
logφ⊗ 1)/(ηlog

∞ )l) and ∂Jk(V ; logD) = (ηlog
∞ ),

which is a Q-Cartier divisor on J k(V ; logD).

For a closed subscheme Z ⊂ V , we shall define the closed subscheme

Z
(k)
log ⊂ Jk(V ; logD) in the following manner. If V is affine and Γ (V, IZ) is

generated by φ1, . . . , φj ∈ Γ (V,OV ), then Z
(k)
log is defined by a homogeneous

ideal

(φ1, . . . , φj , dlogφ1 ⊗ 1, . . . , dlogφj ⊗ 1, . . . , dk
logφ1 ⊗ 1, . . . , dk

logφj ⊗ 1)
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of pk∗OJk(V ;log D)

⊗
OV

C[ηlog
∞ ]. In the case V is general, take a Zariski open

covering {Uε} of V , and construct (Z|Uε)
(k)
log . Then glue these (Z|Uε)

(k)
log ’s

and define the subscheme Z
(k)
log of Jk(V ; logD).

Next we shall state the logarithmic version of Proposition 3.1.1. Let X

be a smooth projective variety. Let D be a divisor on X with only simple

normal crossings. Following condition (a)′ for a set A of rational functions

on X is a modification of the condition (a).

(a)′ For every point P ∈ X, there is a Zariski open neighbor-

hood U of P and rational functions ϕ1, . . . , ϕd ∈ A such that

ϕ1, . . . , ϕd are holomorphic on U and form a local coordinate

system around every point of U . Moreover D|U is defined by

ϕ1 · · ·ϕi = 0 (0 ≤ i ≤ d). Here d = dimX and i depends on P

and U .

Note that we can find a finite set A of rational functions onX which satisfies

condition (a)′.

Proposition 5.1.2. Let X, D be as above. Let Z ⊂ X be a closed

subscheme. Suppose that A and B are finite sets of rational functions on

X satisfing the conditions (a)′ and (b)Z respectively. Then we have

λ∂Jl(X;log D) ≤
∑

ϕ∈A

∑

1≤s≤l

log+

∣∣∣∣
ds
logϕ

ϕ

∣∣∣∣ +O(1) on J l(X; logD).(1)

λZ ◦ pl ≤ λZ
(l)
log

+
∑

ϕ∈B

∑

1≤s≤l

log+

∣∣∣∣
ds
logϕ

ϕ

∣∣∣∣ +O(1) on J l(X; logD).(2)

Proof. The proof of Proposition 5.1.2 (2) is completely analogous to
that of Proposition 3.1.1 (2), hence we don’t give any detail here.

The proof of Proposition 5.1.2 (1) is analogus to that of Proposi-
tion 3.1.1 (1) except for some modifications. We now present the necessary
modifications. For P ∈ X, we shall take its Zariski open neighborhood
U and rational functions ϕ1, . . . , ϕd ∈ A such as condition (a)′. Then
ϕ1, . . . , ϕd are holomorphic on U and ϕ1 · · ·ϕi = 0 is the defining equation
for D|U . By the straightforward modification of (3.1.2), we have

(5.1.3) λ
(ηlog

∞ )
≤〈J l(U ;log D|U )〉 min(λ

V (ηlog
∞ )

, λV (ds
logϕt⊗1)) + log+

∣∣∣∣
ds
logϕt

ϕt

∣∣∣∣
(for i+ 1 ≤ t ≤ d, 1 ≤ s ≤ l).
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Consider the tautological equality

(5.1.4) 0 = min

(
0,− log

∣∣∣∣
ds
logϕt

ϕt

∣∣∣∣
)

+ log max

(
1,

∣∣∣∣
ds
logϕt

ϕt

∣∣∣∣
)

for 1 ≤ s ≤ l, 1 ≤ t ≤ i. On the other hand, we have the equation

(5.1.5)

(
ds
logϕt

ϕt

)
=

(
ds
logϕt ⊗ 1

ϕt

)
− s(ηlog

∞ )

for the Q-Cartier divisors on J l(U ; logD|U ). Here note that since ds
logϕt/ϕt

is holomorphic on Jl(U ; logD|U ) for 1 ≤ t ≤ i, we have (ds
logϕt ⊗ 1)/ϕt ∈

pk∗OJk(U ;log D|U )

⊗
C[ηlog

∞ ] as weight s element. By Lemma 2.2.11, (2.4.4),
(5.1.4) and (5.1.5), we have

0 ≤〈J l(U ;log D|U)〉 min

(
0, λ

V
(ds

log
ϕt⊗1

ϕt

) − sλ
(ηlog

∞ )

)
+ log max

(
1,

∣∣∣∣
ds
logϕt

ϕt

∣∣∣∣
)
.

Hence we have

(5.1.6) λ
(ηlog

∞ )
≤〈J l(U ;log D|U)〉 min

(
λ

V (ηlog
∞ )

, λ
V
( ds

log
ϕt⊗1

ϕt

)
)

+ log+

∣∣∣∣
ds
logϕt

ϕt

∣∣∣∣

(for 1 ≤ t ≤ i, 1 ≤ s ≤ l).

By (5.1.3), (5.1.6) we have

λ
(ηlog

∞ )
≤〈J l(U ;log D|U )〉 min

1≤s≤l

1≤t≤i

i+1≤u≤d

{
λ

V (ηlog
∞ )

, λ
V
(ds

log
ϕt⊗1

ϕt

), λV (dsϕu⊗1)

}

+
∑

ϕ∈A

∑

1≤s≤l

log+

∣∣∣∣
ds
logϕ

ϕ

∣∣∣∣ .

Hence by Proposition 5.1.1, we have

λ
(ηlog

∞ )
≤〈J l(U ;log D|U )〉

∑

ϕ∈A

∑

1≤s≤l

log+

∣∣∣∣
ds
logϕ

ϕ

∣∣∣∣ ,

which implies Proposition 5.1.2 (1).
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Let Y
π
→ C be a finite analytic covering space. Let f : Y → X be a

holomorphic curve such that f(Y ) 6⊂ suppD. Then there is a logarithmic

l-th jet lifting

jlogl (f) : Y −→ J l(X; logD)

such that ψl ◦ j
log
l (f) = jl(f). The following logarithmic version of Theo-

rem 3.2.1 is obtained from Proposition 5.1.2.

Theorem 5.1.7. (Logarithmic ANLD) Let X be a smooth projective

variety, and D ⊂ X be a divisor with only simple normal crossings. Let

f : Y → X be a holomorphic curve. Let Z ⊂ X be a closed subscheme.

Suppose f(Y ) 6⊂ suppZ ∪ suppD. Then we have

m(r, f, Z) ≤ m(r, j logl (f), Z
(l)
log) + S(r, f).(1)

m(r, jlogl (f), ∂Jl(X; logD)) ≤ S(r, f).(2)

Proof. The proof is completely analogous to that of Theorem 3.2.1.

Next we shall state the logarithmic version of Proposition 4.2.1.

Proposition 5.1.8. Let X, D be as above. Let E = E1 + · · · + Es ⊂
X be a divisor. Suppose that there are a positive integer N > 0, a line

bundle L
uL−→ X, and a morphism of fiber bundles % : JN (X; logD) →

L∨ such that E
(N)
1 log|JN (X;log D) + · · · + E

(N)
s log|JN (X;log D) ⊂ %∗F

[L∨]
0 . Then

for a holomorphic curve f : C → X \ D with a non-degeneracy condition

jlogN (f)(C) 6⊂ %∗F
[L∨]
0 , we have

s∑

i=1

m(r, f, Ei) +N log
“Ram”f (r) + T (r, f, L) ≤ S(r, f).

Here we define the term N log
“Ram”f (r) by N log

“Ram”f (r) =N(r, ψ◦j logN (f), F
[L∨]
0 ).

Proof. The proof is analogous to that of Proposition 4.2.1. We just
note the following fact. If we have a holomorphic curve f : C → X \ D,
i.e. a holomorphic curve f : C → X omitting the divisor D, then we have

N(r, jlogN (f), ∂JN (X;D)) = 0, and N(r, % ◦ j logN (f), F
[L∨]
∞ ) = 0. Hence by

Theorem 5.1.7 (2), we see

T (r, % ◦ jlogN (f), F [L∨]
∞ ) = m(r, % ◦ jlogN (f), F [L∨]

∞ ) ≤ S(r, f).
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The following corollary is the logarithmic version of Corollary 4.2.3. Cf.

[SiY97].

Corollary 5.1.9. Let X, D be as above. Let E ⊂ X be an am-

ple divisor. Suppose there is a positive integer k and a meromorphic k-
jet differential ω on X of at most log-pole singularity along D (i.e. ω ∈

Γ (X, plog
k,0∗OJk(X;D))) such that ω vanishes on E but is not identically zero

on X. Then for any holomorphic curve f : C→ X \D the pullback f ∗ω is

identically zero on C.

Proof. The proof is analogous to that of Corollary 4.2.3. Using the
notations of the proof of Corollary 4.2.3, we just give the necessary modifi-
cations. Suppose f ∗ω is not identically zero on C. Then since f is rational,
we have f(C) = φ(P1 \ {∞}). Hence φ(P1 \ {∞}) doesn’t intersect D, and
we have the morphism Jk(P

1;∞)→ Jk(X;D).

5.2. We shall apply our logarithmic ANLD to the second main theo-

rem for holomorphic curves in semi-Abelian varieties. We shall use

[NoWY02] for the standard reference for this subsection. Let A be a semi-

Abelian variety, and A be its natural compactification (cf. [NoWY02, p. 9]).

Put ∂A = A−A. Let

∂A =

p⋃

j=1

Bj

be the Whitney stratification of the divisor ∂A; that is, Bj consists of

all points x ∈ ∂A such that the number of irreducible components of ∂A

passing x is exactly j. Let D ⊂ A be a divisor. We shall consider the

following boundary condition for D (cf. [NoWY02, Condition 4.11]).

(BC) D does not contain any stratum of Bp.

Note that the strata of Bp are minimal.

Then the following Theorem is established in [NoWY02]. Here we shall

discuss in the context of our logarithmic ANLD.

Theorem 5.2.1. Let A be a semi-Abelian variety, and A be its natural

compactification. Let D ⊂ A be a divisor. Assume that D satisfies the

boundary condition (BC). Let f : C→ A be a holomorphic curve such that

the image f(C) is Zariski dense in A. Then we have

m(r, f,D) ≤ S(r, f).
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Proof. The proof is analogous to that of Theorem 4.3.1, and we only
sketch the necessary modifications. We shall show that there is a positive
integer N , and a morphism of fiber bundles φ : JN (A; log ∂A)→ KA(∂A)∨

such that D
(N)
log |JN (A;log ∂A) ⊂ φ

∗F
[K

A
(∂A)∨]

0 and jlogN (C) 6⊂ φ∗F
[K

A
(∂A)∨]

0 .

By the flat structure of the logarithmic tangent bundle T (A; log ∂A),
we have

Jk(A; log ∂A) ' A× CdimAk,

i.e. a trivialization of the logarithmic jet bundle over A (cf. [No86, p. 233]).
Let rk : Jk(A; log ∂A)→ CdimAk be the projection. Then some complicated
modification of the corresponding argument in the proof of Theorem 4.3.1
gives the following statement.

If D satisfies the boundary condition (BC), then there is a
positive integer N0 such that

rN0 ◦ j
log
N0

(f)(0) 6∈ rN0

(
suppD

(N0)
log |JN0

(A;log ∂A)

)
⊂ Ck dimA.

For the proof of this statement, see [NoWY02, Lemma 5.4]. Then putting
N = N0, we have a morphism of fiber bundles

φ : JN (A; log ∂A) −→ KA(∂A)∨ ' A× C

such that D
(N)
log |JN (A;log ∂A) ⊂ φ∗F

[KA(∂A)∨]
0 and jlogN (C) 6⊂ φ∗F

[KA(∂A)∨]
0 .

Hence Proposition 5.1.8 implies our theorem.
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