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Abstract

Let Bn(Ω) be the set of Cowen–Douglas operators of index n on a nonempty bounded connected open
subset Ω of C. We consider the strong irreducibility of a class of Cowen–Douglas operators FBn(Ω)
on Banach spaces. We show FBn(Ω) ⊆ Bn(Ω) and give some conditions under which an operator
T ∈ FBn(Ω) is strongly irreducible. All these results generalise similar results on Hilbert spaces.
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1. Introduction

Cowen and Douglas [1] introduced and researched a class of important operators, the
Cowen–Douglas operators, on Hilbert spaces. Cowen–Douglas operators were defined
in terms of the notion of holomorphic vector bundles, the first time complex geometry
was applied in operator theory.

Gilfeather [2] introduced the concept of strongly irreducible operators and
Herrero [3] studied the strongly irreducible Cowen–Douglas operators on Hilbert
spaces. Jiang and Sun [8] introduced the concept of completely irreducible operators,
which is equivalent to the concept of strongly irreducible operators, and showed that
it was an approximate replacement of Jordan blocks on infinite dimensional spaces. A
number of questions about the operator structure of Hilbert spaces raised by Herrero
and Jiang have since been answered (see the books [9, 10]). For further recent
developments relating to strongly irreducible Cowen–Douglas operators, see [4–7].

Zhang and Zhong [12, Theorem 2] showed that a Cowen–Douglas operator of
index 1 must be strongly irreducible on Banach spaces. It is obvious that Cowen–
Douglas operators of index 2 are not always strongly irreducible. In [5], the authors
introduced a class of Cowen–Douglas operators on Hilbert spaces and discussed their
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strong irreducibility. In this paper, we will discuss the strong irreducibility of this class
of Cowen–Douglas operators on Banach spaces.

In this paper, all Banach spaces are over the complex field. B(X, Y) denotes the set
of bounded linear operators from a Banach space X to a Banach space Y and B(X, X)
is abbreviated to B(X). The identity on X is denoted by IX and often abbreviated to
I. For an operator T ∈ B(X, Y), its kernel is ker T := {x ∈ X : T x = 0} and its range is
ran T := {T x : x ∈ X}. For a subset A of X, span A and A denote the linear span and the
norm-closure of A, respectively. An operator T ∈ B(X) is said to be quasinilpotent if
limn→∞‖T n‖1/n = 0.

In the following, if there is no special explanation, X is always a Banach space, Ω

is a nonempty bounded connected open subset of C and n is a positive integer.

Definition 1.1 [1]. An operator T ∈ B(X) is said to be a Cowen–Douglas operator of
index n on Ω (defined on X), if the following statements hold:

(1) dim ker(T − ω) = n for all ω ∈ Ω;
(2) ran(T − ω) = X for all ω ∈ Ω;
(3) span{ker(T − ω) : ω ∈ Ω} = X.

Denote the set of Cowen–Douglas operators of index n on Ω (defined on X) by
Bn(Ω)(X), abbreviated to Bn(Ω) when the meaning is clear.

Definition 1.2 [2]. An operator T ∈ B(X) is said to be strongly irreducible if there
exists no nontrivial idempotent in the commutant algebra of T , that is, if P ∈ B(X)
with P2 = P and T P = PT , then P = 0 or P = I.

Definition 1.3 [5]. For an operator T ∈ B(X), if there exists a direct sum decomposition
X = X1 ⊕ X2 ⊕ · · · ⊕ Xn such that T can be expressed as

T =


T1 S 12 · · · S 1n

T2
. . .

...
. . . S n−1,n

0 Tn

 , (1.1)

where Ti ∈ B1(Ω)(Xi) for 1 ≤ i ≤ n and S i j ∈ B(X j, Xi) for 1 ≤ i < j ≤ n with S i,i+1 , 0
and TiS i,i+1 = S i,i+1Ti+1 for 1 ≤ i < n, then we say T ∈ FBn(Ω)(X) or simply T ∈
FBn(Ω).

In Section 2, we show FBn(Ω) ⊆ Bn(Ω). In Section 3, we give some conditions
under which an operator T ∈ FBn(Ω) is strongly irreducible. These results generalise
the results on Hilbert spaces in [5]. The proofs are different: [5] uses the language of
holomorphic vector bundles, while we use only operator theory on Banach spaces.

2. FBn(Ω) ⊆ Bn(Ω)

In this section, we show FBn(Ω) ⊆ Bn(Ω). In fact, we obtain a more general result.
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Proposition 2.1. Let T be a bounded linear operator on X. Suppose X has a direct
sum decomposition X = X1 ⊕ X2 ⊕ · · · ⊕ Xn and T can be expressed as in (1.1) where
Ti ∈ B1(Ω)(Xi) for 1 ≤ i ≤ n and S i j ∈ B(X j, Xi) for 1 ≤ i < j ≤ n. Then T ∈ Bn(Ω).

Proof. For every ω ∈ Ω and for 1 ≤ i ≤ n, since dim ker(Ti − ω) = 1, we can write

ker(Ti − ω) = span{ei,ω}

with 0 , ei,ω ∈ Xi. Since ran(T1 − ω) = X1, there exists an f1,2,ω ∈ X1 such that
(T1 − ω) f1,2,ω = −S 12e2,ω. Let

g2,ω = f1,2,ω + e2,ω.

Since ran(T2 − ω) = X2, there exists an f2,3,ω ∈ X2 such that (T2 − ω) f2,3,ω = −S 23e3,ω

and then, invoking again ran(T1 − ω) = X1, there exists an f1,3,ω ∈ X1 such that
(T1 − ω) f1,3,ω = −S 13e3,ω − S 12 f2,3,ω. Let

g3,ω = f1,3,ω + f2,3,ω + e3,ω.

Continuing in the same way, we can obtain fi, j,ω ∈ Xi for all 1 ≤ i < j ≤ n such that
(T j−1 − ω) f j−1, j,ω = −S j−1, je j,ω and

(Ti − ω) fi, j,ω = −S i je j,ω −

j−1∑
k=i+1

S ik fk, j,ω (1 ≤ i ≤ j − 2).

Let

g j,ω =

j−1∑
k=1

fk, j,ω + e j,ω.

By the choice of g j,ω it is obvious that ker(T − ω) ⊇ span{e1,ω, g2,ω, . . . , gn,ω}.
Conversely, if x1 + x2 + · · · + xn ∈ ker(T − ω) with xi ∈ Xi for 1 ≤ i ≤ n, then

(Tn − ω)xn = 0. Thus xn = anen,ω for some an ∈ C. Now

0 = (Tn−1 − ω)xn−1 + S n−1,nxn = (Tn−1 − ω)xn−1 + anS n−1,nen,ω

= (Tn−1 − ω)xn−1 − an(Tn−1 − ω) fn−1,n,ω = (Tn−1 − ω)(xn−1 − an fn−1,n,ω),

so xn−1 − an fn−1,n,ω = an−1en−1,ω for some an−1 ∈ C, that is, xn−1 = an fn−1,n,ω +

an−1en−1,ω. Again,

0 = (Tn−2 − ω)xn−2 + S n−2,n−1xn−1 + S n−2,nxn

= (Tn−2 − ω)xn−2 + anS n−2,n−1 fn−1,n,ω + an−1S n−2,n−1en−1,ω + anS n−2,nen,ω

= (Tn−2 − ω)xn−2 − an−1(Tn−2 − ω) fn−2,n−1,ω − an(Tn−2 − ω) fn−2,n−1,ω

= (Tn−2 − ω)(xn−2 − an−1 fn−2,n−1,ω − an fn−2,n−1,ω),

and hence xn−2 − an−1 fn−2,n−1,ω − an fn−2,n−1,ω = an−2en−2,ω for some an−2 ∈ C. Thus
xn−2 = an fn−2,n,ω + an−1 fn−2,n−1,ω + an−2en−2,ω. Continuing in this way, we conclude
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that xi =
∑n

k=i+1 ak fi,k,ω + aiei,ω for some ai ∈ C for 1 ≤ i < n and so

x1 + x2 + · · · + xn =

n∑
k=2

ak f1,k,ω + a1e1,ω +

n∑
k=3

ak f2,k,ω + a2e2,ω + · · · + anen,ω

= a1e1,ω + a2(e2,ω + f1,2,ω) + · · · + an

(
en,ω +

n−1∑
k=1

fk,n,ω
)

= a1e1,ω + a2g2,ω + · · · + angn,ω.

Therefore, ker(T − ω) = span{e1,ω, g2,ω, . . . , gn,ω}.
If ai ∈ C for 1 ≤ i ≤ n are such that 0 = a1e1,ω + a2g2,ω + · · · + angn,ω, then

0 = a1e1,ω + a2(e2,ω + f1,2,ω) + · · · + an

(
en,ω +

n−1∑
k=1

fk,n,ω
)

= a1e1,ω +

n∑
k=2

ak f1,k,ω + a2e2,ω +

n∑
k=3

ak f2,k,ω + · · · + an fn−1,n,ω + anen,ω.

Since aiei,ω +
∑n

k=i+1 ak fi,k,ω ∈ Xi (1 ≤ i < n) and anen,ω ∈ Xn, each of these quantities
is 0 and so an = 0. Again, an−1en−1,ω = an−1en−1,ω + an fn−1,n,ω = 0, so an−1 = 0. In the
same way, we conclude that ai = 0 for all 1 ≤ i ≤ n. Thus, e1,ω, g2,ω, . . . , gn,ω are linear
independent. Therefore dim ker(T − ω) = n.

Ifω ∈ Ω and y1 + y2 + · · · + yn ∈ X with yi ∈ Xi for 1 ≤ i ≤ n, since ran(Tn −ω) = Xn,
there exists an xn ∈ Xn such that (Tn − ω)xn = yn. Since ran(Tn−1 − ω) = Xn−1, there
exists an xn−1 ∈ Xn−1 such that (Tn−1 − ω)xn−1 = yn−1 − S n−1,nxn. In the same way, we
obtain xi ∈ Xi for 1 ≤ i < n such that (Ti − ω)xi = yi −

∑n
k=i+1 S i,k xk. By the choice of

the xi we have (T − ω)(x1 + x2 + · · · + xn) = y1 + y2 + · · · + yn and so ran(T − ω) = X.
From the first part of the proof,

X1 = span{ker(T1 − ω) : ω ∈ Ω} = span{e1,ω : ω ∈ Ω} ⊆ span{ker(T − ω) : ω ∈ Ω}.

For ω ∈ Ω, since e2,ω = g2,ω − f1,2,ω ∈ ker(T − ω) + X1 ⊆ span{ker(T − ω) : ω ∈ Ω},

ker(T2 − ω) = span{e2,ω} ⊆ span{ker(T − ω) : ω ∈ Ω}.

Thus X2 = span{ker(T2 − ω) : ω ∈ Ω} ⊆ span{ker(T − ω) : ω ∈ Ω}. Again, for ω ∈ Ω,
since e3,ω = g3,ω − f1,3,ω − f2,3,ω ∈ ker(T − ω) + X1 + X2 ⊆ span{ker(T − ω) : ω ∈ Ω},

ker(T3 − ω) = span{e3,ω} ⊆ span{ker(T − ω) : ω ∈ Ω}.

Thus X3 = span{ker(T3 − ω) : ω ∈ Ω} ⊆ span{ker(T − ω) : ω ∈ Ω}. Continuing in this
way, we conclude that Xi ⊆ span{ker(T − ω) : ω ∈ Ω} for all 1 ≤ i ≤ n. Therefore,

X = X1 ⊕ X2 ⊕ · · · ⊕ Xn = span{ker(T − ω) : ω ∈ Ω}.

This completes the proof that T ∈ Bn(Ω). �

Corollary 2.2. FBn(Ω) ⊆ Bn(Ω).
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Although we have assumed only that S i,i+1 (1 ≤ i < n) is nonzero in Definition 1.3,
its range must be dense, as is shown below.

Proposition 2.3. Let X1, X2 be Banach spaces. If T1 ∈ B1(Ω)(X1), T2 ∈ B1(Ω)(X2) and
0 , S ∈ B(X2, X1) with T1S = S T2 then ran S = X1.

Proof. For ω ∈ Ω, since dim ker(T1 − ω) = dim ker(T2 − ω) = 1, we can write

ker(T1 − ω) = span{e1,ω}, ker(T2 − ω) = span{e2,ω}

for some 0 , e1,ω ∈ X1 and 0 , e2,ω ∈ X2. Since

X2 = span{ker(T2 − ω) : ω ∈ Ω} = span{e2,ω : ω ∈ Ω}

and S , 0, there exists an ω0 ∈ Ω such that S e2,ω0 , 0. By [12, Lemma 2], there exist
some neighbourhood Λ ⊆ Ω of ω0 and a holomorphic X2-valued function h defined
on Λ such that, for each ω ∈ Λ, ker(T2 − ω) = span{h(ω)}. Hence h(ω) = a2,ωe2,ω for
some 0 , a2,ω ∈ C. Let

k : Λ→ X1 : k(ω) = S (h(ω)).

Then k is a continuous X1-valued function defined on Λ and

k(ω0) = S (h(ω0)) = S (a2,ω0 e2,ω0 ) = a2,ω0 S e2,ω0 , 0.

Therefore, there exists a nonempty bounded connected open subset ∆ of C with
ω0 ∈ ∆ ⊆ Λ ⊆ Ω such that for each ω ∈ ∆, 0 , k(ω) = a2,ωS e2,ω; so S e2,ω , 0. But
(T1 − ω)S e2,ω = S (T2 − ω)e2,ω = 0, and hence S e2,ω = a1,ωe1,ω for some 0 , a1,ω ∈ C.
Thus,

e1,ω =
1

a1,ω
S e2,ω ∈ ran S .

Since B1(Ω)(X1) ⊆ B1(∆)(X1) by [12, Theorem 1], T1 ∈ B1(∆)(X1). Therefore,

X1 = span{ker(T1 − ω) : ω ∈ ∆} = span{e1,ω : ω ∈ ∆} ⊆ ran S .

Thus ran S = X1. �

3. The strong irreducibility of operators in FBn(Ω)

In this section, we give some conditions under which an operator T ∈ FBn(Ω) is
strongly irreducible. We need two lemmas about Rosenblum operators.

Let Xi be Banach spaces and let Ti ∈ B(Xi) for i = 1, 2. Define the Rosenblum
operator τT1,T2 by

τT1,T2 : B(X2, X1)→ B(X2, X1) : τ(S ) = T1S − S T2 S ∈ B(X2, X1).

We abbreviate τT1,T1 to τT1 : B(X1)→ B(X1).

Lemma 3.1. Let T ∈ B1(Ω). If S ∈ ker τT and S is quasinilpotent, then S = 0.
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Proof. For ω ∈ Ω, since dim ker(T − ω) = 1, we can write

ker(T − ω) = span{eω}

for some 0 , eω ∈ X. Since S ∈ ker τT , TS = S T and (T − ω)S eω = S (T − ω)eω = 0.
Thus S eω = aωeω for some aω ∈ C. Therefore, for all n ∈ N, S neω = an

ωeω. Now

|aω|n‖eω‖ = ‖an
ωeω‖ = ‖S neω‖ ≤ ‖S n‖ ‖eω‖,

which gives
|aω| ≤ ‖S n‖1/n → 0 (n→∞).

Thus aω = 0 and S eω = aωeω = 0. But

X = span{ker(T − ω) : ω ∈ Ω} = span{eω : ω ∈ Ω},

and so we have S = 0. �

Lemma 3.2 [11]. Let T ∈ B(X). If S ∈ ker τT ∩ ran τT , then S is quasinilpotent.

Proposition 3.3. For k = 1, 2, let T (k) ∈ FB2(Ω) and, under the direct sum
decomposition X = X(k)

1 ⊕ X(k)
2 , write T (k) as

T (k) =

T (k)
1 S (k)

0 T (k)
2

 ,
where T (k)

1 ∈ B1(Ω)(X(k)
1 ), T (k)

2 ∈ B1(Ω)(X(k)
2 ) and 0 , S (k) ∈ B(X(k)

2 ,X(k)
1 ) with T (k)

1 S (k) =

S (k)T (k)
2 . If P ∈ ker τT (1),T (2) and P is invertible, then P is a block upper triangular

operator, that is, if P = (Pi j)2×2, where Pi j ∈ B(X(2)
j , X

(1)
i ) for i, j = 1, 2, then P21 = 0.

Proof. Let Q = P−1 = (Qi j)2×2, where Qi j ∈ B(X(1)
j , X(2)

i ) for i, j = 1, 2. Since P ∈
ker τT (1),T (2) , it follows that T (1)P = PT (2) and QT (1) = T (2)Q. Since T (1)P = PT (2),T (1)

1 P11 + S (1)P21 T (1)
1 P12 + S (1)P22

T (1)
2 P21 T (1)

2 P22

 =

T (1)
1 S (1)

0 T (1)
2

 (P11 P12
P21 P22

)

=

(
P11 P12
P21 P22

) T (2)
1 S (2)

0 T (2)
2

 =

P11T (2)
1 P11S (2) + P12T (2)

2

P21T (2)
1 P21S (2) + P22T (2)

2


and, since = QT (1) = T (2)Q,Q11T (1)

1 Q11S (1) + Q12T (1)
2

Q21T (1)
1 Q21S (1) + Q22T (1)

2

 =

(
Q11 Q12
Q21 Q22

) T (1)
1 S (1)

0 T (1)
2


=

T (2)
1 S (2)

0 T (2)
2

 (Q11 Q12
Q21 Q22

)
=

T (2)
1 Q11 + S (2)Q21 T (2)

1 Q12 + S (2)Q22

T (2)
2 Q21 T (2)

2 Q22

 .
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Since P21S (2) = T (1)
2 P22 − P22T (2)

2 and T (2)
2 Q21 = Q21T (1)

1 ,

P21S (2)Q21S (1) = T (1)
2 P22Q21S (1) − P22T (2)

2 Q21S (1)

= T (1)
2 P22Q21S (1) − P22Q21T (1)

1 S (1)

= T (1)
2 P22Q21S (1) − P22Q21S (1)T (1)

2 = τT (1)
2

(P22Q21S (1)) ∈ ranτT (1)
2
.

Since T (1)
2 P21 = P21T (2)

1 and T (2)
2 Q21 = Q21T (1)

1 ,

T (1)
2 P21S (2)Q21S (1) = P21T (2)

1 S (2)Q21S (1) = P21S (2)T (2)
2 Q21S (1)

= P21S (2)Q21T (1)
1 S (1) = P21S (2)Q21S (1)T (1)

2 .

Thus P21S (2)Q21S (1) ∈ ker τT (1)
2
∩ ran τT (1)

2
. By Lemma 3.2, P21S (2)Q21S (1) is

quasinilpotent.
Since T (1)

2 ∈ B1(Ω)(X(1)
2 ), Lemma 3.1 shows P21S (2)Q21S (1) = 0. Also, since

ran S (1) = X(1)
1 , we have P21S (2)Q21 = 0. If Q21 , 0, since T (2)

2 Q21 = Q21T (1)
1 , then

ran Q21 = X(2)
2 by Proposition 2.3. Since ran S (2) = X(2)

1 , this yields P21 = 0 and so P is
a block upper triangular operator. If, on the other hand, Q21 = 0, then Q11 , 0 since Q
is invertible. Since

Q11T (1)
1 = T (2)

1 Q11 + S (2)Q21 = T (2)
1 Q11,

it follows that ran Q11 = X(2)
1 by Proposition 2.3. Since PQ = I,(

P11Q11 P11Q12 + P12Q22
P21Q11 P21Q12 + Q22P22

)
=

(
P11 P12
P21 P22

) (
Q11 Q12
0 Q22

)
=

(
I 0
0 I

)
and so P21Q11 = 0. Thus P21 = 0 and again P is a block upper triangular operator. �

Proposition 3.4. For k = 1, 2, let T (k) ∈ FBn(Ω) and, under the direct sum
decomposition X = X(k)

1 ⊕ X(k)
2 ⊕ · · · ⊕ X(k)

n , write T (k) as

T (k) =


T (k)

1 S (k)
12 · · · S (k)

1n

T (k)
2

. . .
...

. . . S (k)
n−1,n

0 T (k)
n


,

where T (k)
i ∈ B1(Ω)(X(k)

i ) for 1 ≤ i ≤ n and S (k)
i j ∈ B(X(k)

j , X
(k)
i ) for 1 ≤ i < j ≤ n with

S (k)
i,i+1 , 0 and T (k)

i S (k)
i,i+1 = S (k)

i,i+1T (k)
i+1 for 1 ≤ i < n. If P ∈ ker τT (1),T (2) and P is invertible,

then P is a block upper triangular operator, that is, if P = (Pi j)n×n, where Pi j ∈

B(X(2)
j , X

(1)
i ) for 1 ≤ i, j ≤ n, then Pi j = 0 for 1 ≤ j < i ≤ n.

Proof. The proof can be given by induction on n. From Proposition 3.3, the result
holds for n = 2. Suppose that it holds for n < m. As in the proof of [5, Proposition 3.2],
we can obtain the result for n = m to complete the proof. �
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Proposition 3.5. Let T ∈ FBn(Ω)(X) and express T in block upper triangular form as
in Definition 1.3. If P ∈ ker τT , then P is a block upper triangular operator, that is, if
P = (Pi j)n×n, where Pi j ∈ B(X j, Xi) for 1 ≤ i, j ≤ n, then Pi j = 0 for 1 ≤ j < i ≤ n.

Proof. The proof is similar to the proof of [5, Proposition 3.3]. �

Theorem 3.6. Let T ∈ FBn(Ω)(X) and express T in block upper triangular form as in
Definition 1.3. If S i,i+1 < ran τTi,Ti+1 for 1 ≤ i ≤ n − 1, then T is strongly irreducible.

Proof. Suppose that P ∈ B(X) with P2 = P and T P = PT . Let P = (Pi j)n×n with
Pi j ∈ B(X j, Xi) for 1 ≤ i, j ≤ n. Then Pi j = 0 for 1 ≤ j < i ≤ n by Proposition 3.5. Now
write

(Ui j)n×n = T P = PT = (Vi j)n×n, (Wi j)n×n = P2 = P = (Pi j)n×n,

where Ui j = Vi j = Wi j = 0 for 1 ≤ j < i ≤ n and

Ui j =

j∑
k=i

S ikPk j, Vi j =

j∑
k=i

PikS k j, Wi j =

j∑
k=i

PikPk j

for 1 ≤ i ≤ j ≤ n, where S ii = Ti. For 1 ≤ i ≤ n, these equations yield

TiPii = Uii = Vii = PiiTi, P2
ii = Wii = Pii.

Since Ti ∈ B1(Ω)(Xi), Ti is strongly irreducible by [12, Theorem 2]. Thus Pii = 0 or I.
Suppose Pll = 0 and Pl+1,l+1 = I for some l with 1 ≤ l ≤ n − 1. Since

TlPl,l+1 + S l,l+1 = TlPl,l+1 + S l,l+1Pl+1,l+1 = Ul,l+1

= Vl,l+1 = PllS l,l+1 + Pl,l+1Tl+1 = Pl,l+1Tl+1,

it follows that

S l,l+1 = Tl(−Pl,l+1) − (−Pl,l+1)Tl+1 = τTl,Tl+1 (−Pl,l+1) ∈ ran τTl,Tl+1 ,

which is a contradiction. If Pll = I and Pl+1,l+1 = 0 for some 1 ≤ l ≤ n − 1, similarly
we reach a contradiction. Thus Pii = 0 for all 1 ≤ i ≤ n or Pii = I for all 1 ≤ i ≤ n.

If Pii = 0 for all 1 ≤ i ≤ n, then

Pi,i+1 = Wi,i+1 = PiiPi,i+1 + Pi,i+1Pi+1,i+1 = 0

and
Pi,i+2 = Wi,i+2 = PiiPi,i+2 + Pi,i+1Pi+1,i+2 + Pi,i+2Pi+2,i+2 = 0.

In the same way, we can conclude that Pi j = 0 for all 1 ≤ i < j ≤ n. Hence P = 0. If
Pii = I for all 1 ≤ i ≤ n, in the same way we can prove I − P = 0. Thus P = I. Therefore
T is strongly irreducible by Definition 1.2. �

Corollary 3.7. Suppose T ∈ FB2(Ω)(X) and, under the direct sum decomposition
X = X1 ⊕ X2, express T as

T =

(
T1 S
0 T2

)
,

where T1 ∈ B1(Ω)(X1), T2 ∈ B1(Ω)(X2) and 0 , S ∈ B(X2, X1) with T1S = S T2. Then
T is strongly irreducible if and only if S < ran τT1,T2 .
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Proof. If S < ran τT1,T2 , then T is strongly irreducible by Theorem 3.6.
Conversely, if S ∈ ran τT1,T2 , then S = τT1,T2 (P12) = T1P12 − P12T2 for some P12 ∈

B(X2, X1). Let

P =

(
I P12
0 0

)
.

Then

T P =

(
T1 S
0 T2

) (
I P12
0 0

)
=

(
T1 T1P12
0 0

)
=

(
T1 S + P12T2
0 0

)
=

(
I P12
0 0

) (
T1 S
0 T2

)
= PT

and

P2 =

(
I P12
0 0

) (
I P12
0 0

)
=

(
I P12
0 0

)
= P.

Thus T is not strongly irreducible. �

Corollary 3.8. Let T ∈ B1(Ω)(X) and let

U =


T I · · · S 1n

T
. . .

...
. . . I

0 T

 ,
where S i j ∈ B(X) for 1 ≤ i, j ≤ n with j ≥ i + 2. Then U is a strongly irreducible
operator on Xn.

Proof. By Definition 1.3, U ∈ FBn(Ω)(Xn). If I ∈ ran τT , because I ∈ ker τT , it follows
that I is quasinilpotent by Lemma 3.2, which is a contradiction. Thus I < ran τT .
Therefore U is strongly irreducible by Theorem 3.6. �

Theorem 3.9. Let T ∈ FBn(Ω)(X) be expressed in upper block triangular form as in
Definition 1.3. If S i,i+1 is invertible for 1 ≤ i ≤ n − 1, then T is strongly irreducible.

Proof. For 1 ≤ i ≤ n − 1, let Ri ∈ B(X) be the block diagonal operator with
I, . . . , I, S 12S 23 · · · S i−1,i, I, . . . , I on its diagonal. Let

U = (Ui j)n×n = Rn−1 · · ·R2R1TR−1
1 R−1

2 · · ·R
−1
n−1.

Then U is similar to T and U is a block upper triangular operator. For 1 ≤ i ≤ n,

Uii = (S 12S 23 · · · S i−1,i)Ti(S 12S 23 · · · S i−1,i)−1

= S 12S 23 · · · Ti−1S i−1,i(S 12S 23 · · · S i−1,i)−1 = . . .

= T1S 12S 23 · · · S i−1,i(S 12S 23 · · · S i−1,i)−1 = T1,

and
Ui,i+1 = (S 12S 23 · · · S i−1,i)S i,i+1(S 12S 23 · · · S i,i+1)−1 = I.

Thus U satisfies the conditions of Corollary 3.8. Hence U is strongly irreducible.
Since strong irreducibility is a similarity invariant, T is strongly irreducible. �
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