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Abstract—The purpose of the present investigation was to apply a discriminant function analysis (DFA) to
quantitative mineralogical data from 124 Paleogene and Neogene bentonitic clays from the northern
Western Desert of Egypt in order to establish an objective procedure for grouping the samples at three
distinctly recognizable, but partially overlapping, levels of classification. These levels were province or
geographic region, geologic age, and quarry. Quantitative mineralogical data were obtained by means of
X-ray diffraction procedures employing least-squares fitting of simulated and standard mineral patterns
with those from the laboratory. All data were transformed by a log-ratio procedure prior to the DFA.
Fe-rich smectite (Feoct-1.4 a.p.f.u.), coarsely crystalline kaolinite, Fe-poor I-S (random with 60% S layers),
quartz, and illite were the most important discriminator minerals. S-moderate I-S (random with 70% S),
S-rich I-S (random with 80% S), two varieties of finely crystalline kaolinite, feldspar, and amorphous
matter were also present. Calcite and gypsum were present in some samples. The median wt.% values for
Fe-rich smectite, coarsely crystalline kaolinite, Fe-poor I-S, quartz, and illite in all samples were 16.6,
16.0, 15.2, 4.2, and 3.7, respectively. Abundances of quartz and feldspar have a good positive correlation,
and finely crystalline kaolinite and Fe-rich smectite are negatively correlated. Other specific mineral
associations are difficult to interpret visually because of the numbers of classes and variables employed in
the investigation; however, DFA was successful in identifying statistically significant differences amongst
the groups.
At the province level, the back-classification of the samples was successful 92% of the time at the

highest probability level, or 100% if the first plus second probability results were utilized. For samples of
the same age, 80% of the first-choice assignments were correct and >90% were correct when the second
choice was included. At the quarry level, the predictability rate ranged from 76 to >90%. Using both
probability results, only seven of the samples were misclassified. In a blind test of quarry samples, the DFA
assignment was 80% correct. These tests confirm the objective reliability of class assignments based on
DFA. Results based on this data set can be used to classify new samples in future geologic interpretations
and economic exploitation of the deposits in the region.

Key Words—Bentonitic Clay, Clay Mineralogy, Discriminant Function Analysis, Egypt, Geographic
Variability, Smectite.

INTRODUCTION

The mineralogical composition of clay-rich materials

is a major factor in determining their geologic history or

their physical and chemical behavior in industrial

applications. In bentonites, for example, rheological

behavior correlates with cation exchange capacity

derived from the presence of abundant smectite

(Odom, 1984; Ingelthorpe et al., 1993). Variations in

the relative abundance of smectite and the variety of

associated minerals in clay deposits may occur on a

microscopic scale within strata at the mesoscale within

outcrops and quarries or the megascale of a single (or

multiple) sedimentary basin(s). Geological factors pro-

ducing the differences include climate, tectonic activity,

types of rocks in the source terrane, transport processes,

characteristics of the depositional environment, diagen-

esis, metamorphism, and hydrothermal alteration (Galán,

2006). The geochemistry and mineralogy of a deposit

may serve as a guide for the correlation and development

of new commercial prospects and applications

(Eisenhour and Brown, 2009).

Geochemical fingerprinting of K-bentonites using

multivariate statistical analysis (Huff and Kolata, 1990)

is one tool that has been employed successfully for

regional (Christidis, 2001; Bertog et al., 2007) and

intercontinental correlation purposes (Huff et al., 2010).

Clusters of points on bivariate plots of geochemical

parameters are one of the simplest ways to recognize

differences amongst bentonites (Christidis, 2001), dis-

tinctive ash sequences in New Zealand (Moebis et al.,

2011), and Silurian K-bentonites in the Baltic region

(Kiipli et al., 2010). However, most cases do not present

such simple solutions, and multivariate statistics offer a

better analysis.

Mineralogical and geochemical data sets commonly

contain multiple, complexly related variables that are

* E-mail address of corresponding author:

aliomaragha@yahoo.com

DOI: 10.1346/CCMN.2012.0600405

Clays and Clay Minerals, Vol. 60, No. 4, 387–404, 2012.

https://doi.org/10.1346/CCMN.2012.0600405 Published online by Cambridge University Press

https://doi.org/10.1346/CCMN.2012.0600405


difficult to assign to classes or groups (i.e. based on age,

environment, or location). Multivariate statistical proce-

dures identify equations that provide for maximum

separation amongst groups of variables based on two

approaches. Principal component analysis (PCA), prin-

cipal factor analysis (PFA), and various forms of cluster

analysis seek to identify those variables that can be

grouped into consistent classes that were not specified

beforehand (Sanchez and Galán, 1995; Prudencio et al.,

2006; Ekosse and Mwitondi, 2009; Cravero et al., 2010;

Montero-Serrano et al., 2010). Discriminant function

analysis (DFA) identifies those functions that can be

used to assign unknown samples to pre-existing classes

(Hart et al., 1989; Huff and Kolata, 1990; Hart, 1994;

Shane and Froggatt, 1994; Kolata et al., 1996; Ferrell et

al., 1998; Christidis, 2001; Eden et al., 2001). In

addition to fingerprinting for stratigraphic correlation

or analysis of sedimentary environments, multivariate

statistical methods have been applied to groups of

minerals to establish their unique characteristics

(Alberti and Brigatti, 1985; Galán et al., 1998;

Varadachari and Mukherjee, 2004).

The success of DFA for correlation and other

geologic interpretations of geochemical fingerprinting

is derived from its ability to assess subtle associations

among large numbers of variables when the class has

been identified by the investigator. The discriminant

equations separate the variability amongst the groups

and allow unknown samples to be classified with respect

to group membership. Clustering and PFA methods are

applied when the classes are unknown. An important

consideration when applying multivariate statistics to

compositional data is to transform the variables which

may not have a normal abundance distribution to satisfy

the assumption of multi-variable normality (Aitchison,

1986; Hart, 2011a).

The goal of the present report was to apply DFA to

transformed mineralogical data from bentonitic clays in

the northern Western Desert of Egypt to answer two

fundamental questions that are critical to the interpreta-

tion of their origin and industrial utilization: (1) what are

the mean mineral compositions and variability of the

deposits? (2) How does the mineral content vary

geographically and stratigraphically? The analysis will

identify X-ray diffraction (XRD) predictor minerals and

establish objective mineralogical characteristics that will

be useful in establishing the differences among the

deposits.

MATERIALS AND METHODS

Samples

Bentonitic clays, usually smectite-rich, are produced

in four major mining districts (P1, P2, P3, and P4,

Figure 1) including 12 quarries (numbered stars) in the

northern Western Desert, south and west of Cairo,

Egypt. In this presentation, bentonitic clay is used for

any soft, plastic, smectite-rich industrial clay regardless

of its origin as recommended by Grim and Güven (1978)

and Murray (2007). Local reports refer to the deposits as

bentonites, but their derivation from volcanic materials

is not clearly established. The deposits range in age from

the Middle Eocene Epoch in the south to the Upper

Pliocene Epoch in the north. The region around Fayoum

(P4) is that which is mined most extensively. Bentonitic

clay zones interstratified with siltstone, sandstone, or

marly limestone vary in thickness from fractions of a

meter to tens of meters. Typically the deposits are faintly

laminated but more massive beds, or lenses, may occur.

Fresh specimens generally are yellowish to greenish gray

in color and have a waxy luster. Joints and other

structures are frequently covered with Fe-oxyhydrox-

ides. Smectite is the major clay mineral with accessory,

or minor, illite and kaolinite. Weathering of Tertiary

basalts and reworking by sedimentary processes in near-

shore marine environments are implicated in the origin

of the deposits (Abu El Ezz et al., 1993). Beneficiated

clay from some of the deposits has been evaluated for

pharmaceutical and other applications (Hassan and

Abdel-Khalik, 1998; Abdel-Motelieb et al., 2011).

Sixty two samples of representative clay strata were

collected from ~10�20 cm beneath the surface

(Figure 1) from 12 quarry locations during 2009

(Table 1). Each sample was divided into two ~500 g

portions to obtain replicate samples (A and B) for

evaluation of small-scale sample variability at each

location. A small, ~50 g block of each subsample was

kept for scanning electron microscopy (SEM) and other

analyses, while the remainder of the sample was crushed

gently with a mortar and pestle to produce a coarse

powder.

X-ray powder diffraction

Sample preparation. A representative portion of each

sample (10 g) was obtained (using a sample splitter) for

XRD analysis after additional gentle crushing. A 2 g

aliquot designated for bulk mineralogy was ground in a

Micronizer mill with ethanol for ~3 min to reduce the

average particle diameter to ~5 mm. The powder dried at

60ºC was side-loaded into an aluminum holder and

scanned from 2 to 70º2y at 2.0 s per 0.02º2y step with a

Siemens D5000 (Bruker) diffractometer in the reflection

mode utilizing a Cu tube operated at 40 kV and 30 mA.

The other aliquot (8 g) was used to obtain the clay-

sized fraction by gravity settling. Samples were dis-

persed in a 0.01% Na3PO4 solution and left undisturbed

for 3.5 h, after which the top 5 cm was siphoned off (the

<2 mm fraction) and concentrated by high-speed

centrifugation at 12500 rpm giving a relative centrifugal

force (RCF) of 181686g for 35 min. After decanting the

supernatant liquid and homogenization of the clay paste,

an oriented clay aggregate was prepared by smearing on

a glass slide. The slides were scanned between 2 and

36º2y with the same operating conditions as indicated
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Figure 1. Approximate locations of quarries (numbered stars) in the northern part of the Western Desert of Egypt. P1, P2, P3, and P4

indicate the province. More detailed sample-site information is presented in Table 1.

Table 1. Province, quarry name, and age of bentonite sampling sites in the Western Desert of Egypt.

Province Quarry Age (epoch)

P1, south of Alamein city Q1, Deir El Moreir Middle Miocene
P1, south of Alamein city Q2, Deir Abul Hegif Middle Miocene
P1, south of Alamein city Q3, Deir El Harrah Middle Miocene
P2, south of El Hammam city Q4, El Barkan Lower Miocene
P3, Wadi El Natrun Valley Q5, Deir El Baramous Upper Pliocene
P4, El Fayoum Depression Q6, Qasr El Sagha Upper Eocene
P4, El Fayoum Depression Q7, Kom Oshim Upper Eocene
P4, El Fayoum Depression Q8, Girza Middle Eocene
P4, El Fayoum Depression Q9, Qalamshah Middle Eocene
P4, El Fayoum Depression Q10, Cemetery Unknown
P4, El Fayoum Depression Q11, Shaklofa Middle Eocene–Upper Pliocene
P4, El Fayoum Depression Q12, Reigha Unknown
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above. The samples were run after air-drying, after

saturation with ethylene glycol for at least 16 h at room

temperature, and after heating for 1 h at 300 and 550ºC.

Whole-sample XRD analysis. Whole-sample mineral

identification was carried out by matching observed

d values with those in the MacDiff 4.2.5 database

(Petschick, 2004) after peak correction using the 3.34 Å

quartz (101) peak. Quantitative estimates of the amounts

of quartz, feldspars, calcite, gypsum, and total clay

minerals were obtained by multiplying the integrated

peak area of distinctive peaks by the mineral intensity

factors reported by Cook et al. (1975); except that the

total clay-mineral peak intensity factor was increased to

20 according to Ferrell et al. (1998). The precision of the

technique is �10�15% at the 10 wt.% level.

Clay-fraction mineralogy. Qualitative analysis of the

clay fraction was accomplished by tabulating the mineral

peaks on the air-dried, ethylene glycol-saturated, 300ºC

and 550ºC heated patterns and noting their response to

each treatment. The quantitative interpretation proce-

dures were similar to those described by Ferrell and

Dypvik (2009), where observed ethylene glycol patterns

and simulated Mulcalc patterns (Aparicio and Ferrell,

2001) are matched using the whole-pattern, least-squares

method in CLAY++ (Ferrell, 2006). By adjusting

fractional multipliers, the CLAY++ program matches

composite synthetic pattern intensities created by

Mulcalc 1.0 with actual glycolated pattern intensities

at each data point in the XRD pattern. Finally, the

CLAY++ percentages were multiplied by the total clay

values to obtain their representative weight percentages

in the whole-rock sample. The results are quantitative

representations (QR) of percentage clay mineral content

with an approximate precision of �10%, and are not

strictly weight percentage values.

The simulation parameters used to produce the

synthetic standard patterns included: layer type, octahe-

dral sheet Fe content, interlayer cations, crystallite size

distribution, and stacking sequences. The Fe content in

the smectite (Dis, or dioctahedral smectite) and mica/

illite layers (Dim, or dioctahedral mica) was determined

by trial and error matching of computed patterns with

0�2 Fe atoms in the octahedral sheet. The best ‘fit’ was

obtained with 1.4 Fe atoms in the Fe-rich smectite and

no Fe in the I-S smectite layers. The Fe content and

b-axis dimensions of the Fe-rich smectite were similar to

an Fe-montmorillonite from the Northern Territories of

Australia (Eggleton, 1977). The fractions of smectite

layers in Fe-poor I-S, S-moderate I-S, and S-rich I-S

were 0.6, 0.7, and 0.8, respectively. All the stacking

sequences were random, R = 0. The mineral name, XRD

filename, and parameters for each reference pattern are

listed in Table 2. Actual XRD patterns were used for

both quartz and kaolinite after adjusting for differences

in mineral intensity factors. The quantity of amorphous

material was estimated by calculating the fractional

multiplier for the XRD pattern of a glass slide. A

complete table of all XRD results is available from the

corresponding author. The ‘Goodness of fit index’ or RR

values ranging between 0.007 and 0.029, all below 0.05,

Table 2. Minerals used in a quantitative XRD matching routine.

Mineral XRD file name Simulation parameters

Fe-rich smectite FeDISM
Pure 2EG-Dis: Dis Fe = 1.4. Defect broadening; mean defect-free
distance = 3; high N = 5.

Fe-poor I-S DISM3/IL
0.6 2EG-Dis: Dis Fe = 0 + 0.4 Dim: K = 0.9. Defect broadening;
mean defect-free distance = 3; high N = 5, R = 0.

S-moderate I-S DISM2/IL
0.7 2EG-Dis: Dis Fe = 0 + 0.3 Dim: K = 0.9. Defect broadening;
mean defect-free distance = 3; high N = 5, R = 0.

S-rich I-S DISM1/IL
0.8 2EG-Dis: Dis Fe = 0 + 0.2 Dim: K = 0.9. Defect broadening;
mean defect-free distance = 3; high N = 5, R = 0.

Illite ILLITE
Pure Dim: Dim K = 0.9. Defect broadening; mean defect-free
distance = 7; high N = 40.

Finely crystalline kaolinite K1
Pure kaolinite. Defect broadening; mean defect-free distance = 7;
high N = 35

Kaol2 K2 Actual XRD pattern (finely crystalline)
Coarsely crystalline kaolinite K3 Actual XRD pattern used for whole-rock and clay-fraction analysis
Quartz Clay-sized Qz Actual XRD pattern
Glass Amorphous Glass slide XRD pattern
Feldspar Feld Actual XRD pattern
Calcite Cal Actual XRD pattern
Gypsum Gyp Actual XRD pattern

All patterns are normalized to quartz intensity of 2000 counts. K – kaolinite; I-S � mixed-layer illite-smectite; S � smectite;
Dis � dioctahedral smectite; EG � ethylene glycol saturated; Dim � dioctahedral mica; N � number of crystallites; R �
Reichweite or ordering index.
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indicate an acceptable match between the actual EG

XRD pattern and the simulated composite pattern for all

samples (Ferrell and Dypvik, 2009).

Statistical analysis methods

The XRD data frames are closed arrays that sum to

100% and thereby suffer from the closure problem

typical of compositional data when subjected to multi-

variate statistical analyses requiring a multi-normal

distribution (Chayes, 1960; Aitchison, 1986; Weltje,

2002; von Eynatten et al., 2003: Daunis-I-Estadella et

al., 2006; Martin-Fernandez and Thio-Henestrosa, 2006;

Barbera et al., 2009). The problem originates because

closed arrays of XRD percentages are within simplex

space (S) and have values ranging from 0 to 100% (or 0

to 1), but classical statistics works within real-number

space, which has a range of minus infinity to plus

infinity. Aitchison (1986) developed some procedures

that are applicable to percentage data that involve a log-

ratio transformation to convert the vector from simplex

space to real-number space. The present study used a

log-ratio transformation in which feldspar wt.% was

used as the divisor. Because log transformations cannot

handle zero values, but the lower limit of detection of

XRD-derived variables can be calculated for each

variable, a suitable substitute is 0.05 wt.%. This value

was used for all phases.

Selection of variables for multivariate analysis.

Extensive statistical tests (Hart, 2011b) were applied to

the data frame prior to multivariate analysis to select the

predictor variables to be used in the DFA. Each variable

in the data frame was examined for normality by the eye-

ball method using box plots, followed by a test for

skewness, kurtosis, a P-P plot (percent-percent), and

calculation of the Shapiro-Wilk test (Shapiro and Wilk,

1965) for normality. The R statistical package v.2.10.1

(2009) was used for the DFA.

RESULTS

Qualitative mineral content

A composite pattern produced by adding intensities

from six calcite-free sample patterns from quarry Q1

(Figure 2) contained peaks produced by expandable clay

mineral(s) with 15�12 Å d values (5.92�7.34º2y),
dimica (illite plus muscovite) at 10 Å (8.86º2y), and

kaolinite or chlorite at 7.2 Å (12.28º2y). The total clay

peak (TC) near 4.5 Å (20º2y) represents all phyllosili-

cates present. Quartz (Qz) is represented by peaks at

4.26 Å (20.84º2y) and 3.34 Å (26.66º2y). Small peaks

ranging from 3.25 to 3.19 Å (27.45�27.95º2y) are

attributed to one or more members of the feldspar group.

The remaining peaks represent additional reflections

from minerals above. The d060 reflections between 1.49

and 1.50 Å (62.14�61.96º2y) indicate the presence of

dioctahedral montmorillonite in all samples. Some

samples from quarries Q6, Q8, Q10, and Q12 in El

Fayoum Province (P4) contain calcite.

The XRD patterns for the clay-sized fraction (<2 mm)

of a representative sample following air-drying (AD),

ethylene glycol saturation (EG), 300ºC heating (300),

and 550ºC (550) heating (Figure 3) revealed the presence

of smectite by the shifting of the air-dried 12.9 Å

(6.8º2y) broad peak to ~16.93 Å (5.22º2y) after

saturation with ethylene glycol and its collapse after

Figure 2. Representative composite XRD pattern produced by adding six XRD patterns for randomly oriented powders of calcite-

free samples from quarry Q1 in province P1. The d values of the peaks are numbered. TC = total clay; Qz = quartz; F = feldspar. The

dioctahedral nature of the clays is indicated by the 1.492 Å peak.
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heat treatments to ~10 Å (8.8º2y). The presence of illite

was established by the small 10 Å (8.8º2y) peak in both

AD and EG patterns. The increased intensity of the 10 Å

peak after heating is due to the superposition of

collapsed smectite layers. Kaolinite was identified by

the symmetrical, sharp, and relatively high-intensity

7.2 Å (12.3º2y) peak and the higher order reflections at

3.59 Å (24.8º2y) and 3.38 Å (26.38º2y) that did not

change during the EG and 300ºC treatments, but are

destroyed with the 550ºC treatment. None of the samples

showed any indication of chlorite. Unlabeled peaks are

other reflections from the minerals identified above. The

only non-clay mineral detected in the clay-sized fraction

was quartz (Qz).

The intense, broad peak near 5.2º2y (17 Å) on EG

samples often produced a non-integral series of peaks.

The coefficient of variation (CV) values for the mean

smectite-rich peaks exceed the 0.75% minimal value

required to establish the presence of mixed-layered

materials (Bailey, 1982). In addition, the angular

differences between the mostly 002 and 003 reflection

positions (D2y) are indicative of random interlayered

illite-smectite with 70�75% smectite layers (Moore and

Reynolds, 1989; Środoń, 2006). The observed D2y
(5.92º) and the CV (3.40%) are close to the values

produced by the simulated pattern for a randomly

interstratified illite-smectite containing 80% smectite

layers (S-rich I-S). The variability of the XRD patterns

reveals a more complex mineral assemblage than is

typical for smectite-rich bentonitic clays.

The d00l smectite values obtained at laboratory

relative humidity conditions by all but three of the AD

samples ranged between 12.6 and 13.6 Å. The mean

value of 12.9 Å suggests that Na was the dominant

interlayer cation. However, relative humidity differences

and interlayering between smectite and illite can cause

peak shifting that can lead to misinterpretation of the

smectite exchangeable ions. Actual measurements of the

exchangeable cations were complicated by the presence

of halite, gypsum, and calcite. Preliminary CEC data for

samples with minimal amounts of soluble species

confirmed the dominance of exchangeable Na.

Quantitative X-ray mineralogy

The most abundant minerals (Table 3) with median

values >15 wt.% included Fe-rich smectite, finely

crystalline kaolinite, coarsely crystalline kaolinite, and

randomly ordered mixed-layered I-S with 0.6 smectite

layers (Fe-poor I-S). The median (med.), first quartile

(q1), and third quartile (q3) abundance values were

highly variable, ranging, for example, from 5 to 45 wt.%

for the Fe-rich smectite. Amorphous (Amph) substances

had a median close to 7 wt.% and a wide range of

abundance from 21 to 2.5 wt.%. The least abundant

minerals had medians of <5 wt.% and are represented by

a second kaolinite (KAOL2), illite, quartz, S-moderate

I-S, S-rich I-S, feldspars (Feld), calcite (Cal), and

gypsum (Gyp). Calcite and gypsum were absent from

many of the samples. Quartz, calcite, gypsum, Fe-rich

smectite, amorphous matter, finely crystalline kaolinite,

KAOL2 (finely crystalline sample from Georgia), and

S-moderate I-S distributions were positively skewed

while coarsely crystalline kaolinite, illite, and S-rich I-S

values were negatively skewed. The highly skewed

results supported the need to transform the variables

prior to multidimensional statistical analyses.

Quartz and feldspar; Fe-rich smectite and amorphous

matter (Amor); Fe-rich smectite and finely crystalline

Figure 3. XRD patterns for sample s015 indicating the changes produced by various treatments of the oriented clay fraction sample.

AD = air dried; EG = ethylene glycol saturated; 300 = heated at 300ºC for 1 h; 550 = heated at 550ºC for 1 h. The d values of the peaks

are numbered. Qz = quartz.
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kaolinite; and amorphous matter and coarsely crystalline

kaolinite are co-dependent variables (Figure 4). The

‘null’ hypothesis that the variables were not related was

rejected at the 95% percent confidence level. A positive

correlation existed between quartz and feldspar, and

between amorphous substances and Fe-rich smectite. On

the other hand, Fe-rich smectite and finely crystalline

kaolinite, and amorphous substances and coarsely

crystalline kaolinite showed negative correlations. The

four relationships suggested in the scatter-plots exhib-

ited highly significant correlations (p<0.05), but the

quality of the adjusted R2 ranges from good (0.662) to

poor (0.215).

The outcome of the initial statistical appraisal of the

distribution of the individual variables was a rejection

table that helped to identify a smaller number of predictor

variables to be used in the analysis (statistical pre-

processing). The acceptance/non-acceptance decisions for

the original 14 XRD variables are summarized below:

(1) The analysis of All (the complete data frame) is,

geologically, not very relevant to the present study and,

therefore, little weight is attached to its values in the

rejection table.

(2) Analyses of the provinces’ data frames have

geological significance for any regional interpretation.

(3) Analyses of the quarry data frames are of

principal interest in the study.

(4) Clay-sized quartz (Cq), gypsum (G), amorphous

(A), and calcite (C) were removed immediately from the

analysis, mostly because of their absence from a large

number of samples.

(5) The scatter plots for co-dependency (Figure 4)

showed linkage between quartz and feldspar, Fe-rich

smectite and amorphous material, and Fe-rich smectite

with finely crystalline kaolinite, all of which suggest that

quartz and Fe-rich smectite should be kept and the other

correlated variables (finely crystalline kaolinite and

amorphous matter) dropped.

(6) Statistical tests for skewness, normality, and

variance-covariance assumptions identified seven pre-

dictor variables suitable for multivariate analysis of the

data frame: quartz, Fe-rich smectite, illite, finely

crystalline kaolinite (KAOL2), coarsely crystalline

kaolinite, S-moderate I-S, and Fe-poor I-S. These

seven variables were used to relate mineral-abundance

changes to province, age (Epoch), and quarry.

Characteristics of the provinces

The number of XRD predictor variables available for

the DFA at the province level is seven; the number of

classes, provinces, is four; and the smallest N, number of

samples, is eight, allowing three linear discriminant

functions (LD) to be generated. The largest absolute

loading values in each of the functions are associated

with Fe-rich smectite, coarsely crystalline kaolinite,

quartz, and Fe-poor I-S, making them the most important

predictors of variability at the province level.
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The scatter of linear discriminant function 1 (LD1)

and linear discriminant function 2 (LD2) values

(Figure 5) provides evidence that P2 and P3 are easily

distinguished from one another and from P4 and P1.

Large positive values of LD1 and LD2 are present in P2,

while P3 is characterized by high values of LD1 and

negative LD2 values. Although P1 and P4 data points

produce mostly distinct clusters on the graph, they have

some overlap. Seven P1 samples plot within the P4 field

and one P4 result plots within the P1 field. The first

discriminant function (LD1) accounts for 57.2% of the

variation and the second discriminant function (LD2) for

40.35% of the variation seen in the provinces. LD3

accounts for only a minor amount (2.44%) of the

variability.

When each sample was back-classified into the

predicted class, good predictability was observed. Of

the 124 samples, only 10 (8%) were misclassified. The

second choice for the ten samples, the next highest

probability of class membership, turned out to be the

correct classification. The ability to assign samples to a

particular class based on probability estimates of

membership represents a major advantage of DFA. In

characterizing the variability in the provinces using

descriptive statistics, those samples that were incorrectly

classified using the DFA were eliminated and the

reduced (purified) data frame used to provide a ‘tighter’

view of the mineral variability within each province.

Fe-rich smectite has the greatest variation in median

abundance in samples at the province level (Figure 6a).

P2 samples have a median value of 39.1 wt.%, three to

four times greater than in the other provinces (8.7 to

17.9 wt.%), and its range is mostly free of overlap. The

other important smectite-containing mineral, Fe-poor I-S

(Figure 6b), is most abundant in P3 (28.3 wt.%) and the

spread of its median values, 14.5 to 28.3 wt.%, is not as

great as for Fe-rich smectite. Coarsely crystalline

kaolinite (Figure 6c) falls into two groups: the P1 and

Figure 4. Pair plots of selected XRD variables (wt.%). Line of linear best-fit to data and R2 shown in each frame.
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P4 samples have median values between 15 and 20 wt.%

while P2 and P3 medians are <10 wt.%. Quartz

(Figure 6d) is the least important of the four province

predictor variables. It is the least abundant mineral in all

provinces and its values in all locations overlap.

Characteristics of the epochs

The age of ten unknown samples from quarries Q10

and Q12 was predicted with a preliminary DFA employ-

ing seven XRD predictor minerals and five age classes.

The smallest number of samples per class was 10.

Quarry 12 samples were all assigned to the Upper

Eocene Epoch and those from Q10 were assigned to the

Lower Miocene Epoch (with the second choice as Upper

Eocene Epoch) or the Upper Eocene Epoch (with the

second choice Middle Eocene Epoch). Samples from

Q10 exhibited minimal affinity with the Middle Miocene

Epoch samples and no affinity with the Pliocene Epoch

samples.

After adding the predicted age samples to the data

frame, a new DFA for Epochs was run. Five distinct

fields (territories) were revealed in the scatter-plot of

LD1 vs. LD2 for Epochs (Figure 7). The Lower Miocene

and Pliocene Epoch samples are readily distinguished on

the basis of high and moderate LD1 values, and low vs.

high values for LD2, respectively. Results for the other

age samples also plot within distinct clusters, although

with moderate overlap.

The LD1 accounts for 59.8% of the variance and LD2

for 33.7%, a total of 93.5% of the variance seen in the

distribution of the samples by Epoch. Fe-rich smectite,

Fe-poor I-S, coarsely crystalline kaolinite, illite, and

quartz are the main contributors to LD1 and LD2. When

each sample was back-classified into the predicted

Epoch, samples from Q10 and Q11 were misclassified.

Of the 124 samples, 26 were misclassified (22%) and the

second choice for class was the correct one in 21 cases

(96% correct). The samples that were incorrectly

classified using the DFA were eliminated in subsequent

calculations of the descriptive statistics relating mineral

content to age.

The general distribution of Fe-rich smectite at the

Epoch level (Figure 8a) is similar to the pattern at the

province level. One class (L. Miocene) has a high

median that is almost four times greater than in the

lowest class (U. Miocene). The Fe-rich smectite median

values are ~10 wt.% (M. Miocene and Pliocene),

14.8 wt.% (M. Eocene), 21 wt.% (U. Eocene), and

37.8 wt.% (L. Miocene). The values are positively

skewed in all Epochs, except the M. Eocene. The

M. Miocene samples have a very narrow abundance

range for Fe-rich smectite that can be partially separated

from U.- and M.-Eocene ones. Fe-poor I-S (Figure 8b)

and illite (Figure 8e) abundances in the Pliocene class

are distinguished from other classes by their high values.

Quartz is least abundant with overlapping distributions

(Figure 8d). The complexities of these associations and

the large number of variables underscore the need for a

multivariate statistical approach to classification.

Geological conditions in the L. Miocene favored the

formation of Fe-rich smectite deposits while optimal

conditions for coarsely crystalline kaolinite accumula-

tion were attained in the U. Eocene and M. Miocene. The

largest quantity of Fe-poor I-S occurs in Pliocene

Figure 5. Scatter plot of LD1 and LD2 results at the province level. Lines have been drawn to outline fields that are mostly free of

overlap.
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sediments. Events favoring the development of these

differences are discussed in a companion paper on the

genesis of the Egyptian bentonitic clays (Agha et al., in

revision).

Characteristics of the quarries

At this level of investigation, the number of classes

is 12 and the smallest N value is 2 (Q10). Only seven

XRD predictor variables are present so the maximum

number of classes (quarries) had to be reduced from 12

to 7 and the smallest N (= 2) had to be increased prior to

DFA. Study of the Epochs suggests that data from

quarries Q1, Q2, and Q3 can be agglomerated as Qc

because they are all of the same age and similar in

composition (now, N = 14). The two quarry 10 results

for the age classification were problematic and were

dropped from further analysis. Quarries Q5 and Q11 are

both Pliocene and are agglomerated (now with the

expanded Q5, N = 12). Quarries Q7 and Q12 are both

Upper Eocene and are agglomerated as data set Qf (N is

now = 26). Thus, the number of classes has been

reduced to seven and the number of members in the

classes has increased.

From the overlapping of the LD1 values (x axis,

Figure 9), some quarries clearly will not separate out

easily on the basis of a single function, except for Q4.

When LD1 and LD2 values are considered, the separa-

tion of Q4 is clearer and, although intermingling

occurred, the other quarry results tend to occur in

separate zones (Figure 9). LD1 accounts for 65% of the

discrimination, LD2 for 16.6% and LD3 for 12.4%, with

the sum of the other three discriminant functions

accounting for ~5.4%. Only the first two functions are

considered, as they account for much of the variability.

The predictors with the greatest power of discrimination,

i.e. largest loading values, are Fe-rich smectite, coarsely

crystalline kaolinite and Fe-poor I-S in LD1, and

coarsely crystalline kaolinite and illite in LD2.

When each sample was back-classified into the

predicted class, 30 of the 122 samples were misclassified

Figure 6. Box plot of XRD predictor-mineral abundances in each province based on class assignments derived from a modified DFA

model. Values are given in Table 4.
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(24.6%), but the second choice for class was correct for

23 of them, raising the acceptance level to 94%. This is

considered a good result considering the type of data

frame analyzed, i.e. compositional. Using the DFA, the

probability that a sample could be assigned to the quarry

of origin based on its mineral content is 75�94%.

At the quarry level (Figure 10), compositional values

exhibit some of the same differences described above,

but more detail is revealed because of the larger number

of classes. The quarries are arranged according to their

age, starting from the left with the youngest one (Q5;

Upper Pliocene) in order to facilitate visual comparison

Figure 7. Scatter plot of LD1 and LD2 results at the Epoch (age) level. Lines have been drawn to outline fields that are mostly free of

overlap.

Table 4. Summary statistics for predictor minerals at the province level. Values in wt.%.

Mineral predictor Statistical parameters P1 P2 P3 P4

Fe-rich smectite

min 6.0 29.9 5.0 4.8
max 10.1 45.0 21.6 40.1
median 8.7 39.1 9.8 17.9
q1 8.0 35.0 5.7 12.0
q3 9.4 42.3 21.0 28.4

Coarsely crystalline
kaolinite

min 15.4 4.6 4.2 8.0
max 21.7 11.2 9.7 25.5
median 19.4 8.4 8.2 16.2
q1 16.5 7.4 7.0 14.1
q3 21.3 9.8 8.7 18.2

Fe-poor I-S

min 13.0 7.8 17.4 4.4
max 20.2 22.8 36.0 23.5
median 14.5 16.7 28.3 15.1
q1 13.7 11.9 19.2 10.5
q3 15.9 19.7 35.7 18.4

Quartz

min 2.9 2.2 2.0 1.2
max 4.8 4.6 8.6 11.4
median 4.0 2.5 6.5 4.5
q1 2.9 2.3 2.8 2.6
q3 4.6 3.2 7.8 6.4
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with the Epoch data (Figure 8). Fe-rich smectite

(Figure 10a) and Fe-poor I-S (Figure 10b) medians are

distinctly higher than the other minerals in Q4 and Q5,

respectively. The range in the respective mineral values

is also distinctly higher than in the other classes. Little

correlation is evident between the smectite-containing

Figure 8. Box plot of XRD predictor-mineral abundances in each Epoch (age) class based on class assignments derived from a

modified DFA model. Values are given in Table 5.
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Figure 9. Scatter plot of LD1 and LD2 results at the quarry level.

Table 5. Summary statistics for predictor minerals at the Epoch level. Values in wt.%.

Mineral predictor Statistical parameters Pliocene M. Miocene L. Miocene U. Eocene M. Eocene

Quartz

min 2.0 2.9 2.2 1.2 1.7
max 8.6 5.7 4.6 11.4 11.2
median 6.5 4.3 2.6 3.2 5.5
q1 2.8 2.9 2.3 2.4 5.1
q3 7.8 4.8 3.2 5.1 7.5

Fe-rich smectite

min 5.0 6.0 29.9 7.2 4.8
max 21.6 10.4 45.0 34.2 32.8
median 9.8 8.7 37.8 21.1 14.8
q1 5.7 8.3 34.6 13.6 10.8
q3 21.0 9.7 41.3 29.5 17.9

Coarsely crystalline
kaolinite

min 4.2 14.3 4.6 12.2 8.7
max 9.7 21.7 10.4 25.5 18.3
median 8.2 18.1 8.4 17.2 14.2
q1 7.0 16.2 6.9 15.7 11.6
q3 8.7 21.2 9.1 20.7 15.6

Fe-poor I-S

min 17.4 10.8 7.8 4.9 13.1
max 36.0 20.2 22.8 20.9 22.7
median 28.3 14.1 16.6 12.2 19.2
q1 19.2 13.0 10.5 8.9 16.4
q3 35.7 14.9 20.5 15.3 20.8

Illite

min 5.3 1.2 2.2 0.0 1.9
max 12.6 5.7 8.3 5.5 8.0
median 6.6 3.6 4.2 3.3 3.9
q1 5.7 3.0 3.3 1.5 3.3
q3 12.2 4.8 5.1 3.8 4.3
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samples and the coarsely crystalline kaolinite

(Figure 10c). As at the other levels of investigation,

quartz is generally the least abundant of the predictors

and exhibits considerable overlap of values for the

different classes (Figure 10d).

Summary of DFA results

The statistical analysis succeeded in recognizing

significant mineralogical differences among the

Egyptian bentonitic clay samples on a regional scale

(province), by age (Epoch), and by site (quarry). Based on

previously classified samples, the probability of correctly

assigning a sample at the province level was 92%, 78% at

the Epoch level, and 75.4% at the quarry level when only

the highest probability determinants of class were

considered. The success rate increased to >94% when

the second-highest probability choices were included. A

test of five new, blind samples indicated that the

probability of making the correct assignment to the

quarry of origin was 80%. The most important XRD

predictor variables were Fe-rich smectite, coarsely

crystalline kaolinite, Fe-poor I-S, and less frequently illite

and quartz. Two other XRD predictor variables,

S-moderate I-S, and KAOL2 were not important con-

tributors to the three most heavily weighted linear

discrimination functions at each level of classification.

Seven of the 14 measured XRD mineral abundances could

be excluded from the DFA due to their correlation with

other predictors, or their highly skewed (non-normal)

distribution. The reduction in the number of variables

made it easier to determine differences in mineral content

that occur on the region, age, and quarry levels.

DISCUSSION

A DFA of the XRD-determined mineralogical content

of Egyptian bentonitic clays established an empirical

basis for the separation and classification of samples that

Figure 10. Boxplot of XRD predictor-mineral abundances in each quarry based on class assignments derived from a modified DFA

model. Values are given in Table 6.
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were successful at the 94�100% level based on first and

second highest probabilities for back-classification of

the samples in the training set and 80% successful in

classifying blind samples at the quarry level. The goals

to classify samples at the province (mining district), age,

and quarry levels, and to identify the mean mineral

content of the classes were achieved. The assignment to

class based on probability estimates of membership is a

major advantage of DFA.

The reduction in the number of components in the

XRD results from 14 to 5 established the roles of Fe-rich

smectite, Fe-poor I-S, coarsely crystalline kaolinite,

illite, and quartz as predictor minerals, and made it

easier to identify the important compositional differ-

ences due to province (mining district), age, and in

individual quarries. Changes in the abundances of the

XRD predictors are statistically significant. In Egypt,

differences are observed in the clays of different ages

from different quarry locations and geographic pro-

vinces.

Misclassification of samples is the most frequently

encountered problem in the use of DFA and usually

results from errors due to the incorrect assignment of a

sample to one of the a priori classes, mistakes in

laboratory procedures, or small-scale stratigraphic var-

iation which field-sample replication does not identify.

In extreme cases, the errors may prevent closure of the

analysis. Attention to stratigraphic details during sample

collection and quality-control procedures in the labora-

tory will minimize the occurrences. When problems are

suspected, or simply to understand the sample variation,

the original training set can be purified to eliminate

problematic sample results and improve the classifica-

tion. Procedures are also available to identify outliers so

that they may be excluded from the training data (Hadi,

1992).

All of DFA, cluster, factor, and PCA seek to define

those associations of variables that define unique groups

(classes). The DFA has its strength in the fact that the

populations (classes) are known from knowledge of the

geology and characteristics of the samples. In cases

where the starting point is a dataset with unknown

classes, the classes established by cluster, factor, and

principal-components analysis can be improved and

consolidated by later applying DFA. As the results of a

DFA are given in terms of probability of membership in

a given class, the decision based on multivariate

statistical procedures is presented in terms ranging

from most likely to least likely. The method provides a

logical and empirical basis for decisions regarding the

similarities or differences amongst samples. The relia-

bility of DFA in general has been established in a large

number of publications over the past 30 y (e.g. Johnson

and Winchern, 2007).

The DFA results can be used in the exploration and

exploitation of bentonite deposits. In the simplest case,

sample results from exploratory programs could be

matched with existing quarry data to determine their

similarity to materials in existing quarries. A match

would suggest that the new materials could be used for

Table 6. Summary statistics for predictor minerals at the quarry level. Values are in wt.%.

Mineral predictor Statistical parameters Q5 Qc Q4 Qf Q6 Q8 Q9

Fe-rich smectite

min 5.0 6.0 29.9 7.2 17.0 10.4 14.8
max 21.6 12.0 45.0 18.6 34.2 18.4 24.6
median 12.0 9.1 37.8 11.0 29.3 14.2 23.5
q1 6.4 8.4 34.6 9.1 26.3 11.6 16.8
q3 20.1 9.9 41.3 15.7 32.1 16.3 24.5

Coarsely crystalline
kaolinite

min 4.2 14.3 4.6 12.4 12.2 8.7 9.7
max 9.7 21.7 10.4 25.5 20.7 18.3 18.2
median 7.7 18.1 8.4 20.8 16.3 15.0 13.9
q1 6.4 16.5 6.9 16.9 13.8 13.4 10.7
q3 8.7 20.9 9.1 24.3 18.0 16.6 17.3

Fe-poor I-S

min 17.4 10.8 7.8 4.9 5.3 13.1 10.1
max 36.0 20.2 22.8 18.0 20.9 22.7 21.1
median 25.9 14.5 16.6 11.8 14.9 20.1 18.8
q1 19.8 13.3 10.5 8.4 10.2 17.7 12.3
q3 34.1 17.2 20.5 13.8 16.2 20.8 20.5

Quartz

min 2.0 2.9 2.2 1.9 1.2 4.9 3.9
max 8.6 5.7 4.6 8.3 11.4 11.2 8.2
median 6.2 4.3 2.6 2.8 4.1 5.5 6.3
q1 3.4 3.2 2.3 2.3 2.7 5.1 4.5
q3 7.5 4.8 3.2 3.2 6.1 7.8 7.8

Qc = Q1 + Q2 + Q3; Qf = Q7 + Q12
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the same purposes. Alternatively, the XRD pattern from

a sample with known desirable properties from a distant

source could be processed to determine which Egyptian

quarry is likely to be a new, local source for the clay.

Detailed XRD procedures based on structural and

chemical details are important sources of basic data for

the DFA. The use of simulated clay patterns allows the

recognition of species that are more specific with regard

to a particular clay mineral rather than simply assigning

the clay peaks to broad groups such as smectite, mixed-

layered clay minerals, or kaolinite. Samples with

different quantities of clay mineral species will have

distinct geologic origins and industrial uses. The Fe-rich

smectite with little mixed layering may be the end

product of submarine alteration of volcanic glasses or

pedogenesis in vertisols (Clauer et al., 1990; Zhang et

al., 1998; Cuadros et al., 1999; Shoval, 2004). Samples

with abundant Fe-rich smectite should have the largest

surface areas and cation-exchange capacities. The

randomly interlayered I-S with 60% smectite layers is

most likely to have formed from the weathering of a

mica precursor as burial diagenetic conditions had not

been achieved. Coarsely crystalline kaolinite, distin-

guished from finely crystalline kaolinite, is indicative of

more advanced crystal growth that could reflect intensity

of weathering in the source terrane. Another major factor

affecting differences in the clay content is segregation of

detrital clay minerals during transport and deposition, or

variable quantities of terrestrial input (Gibbs, 1977;

Bolle et al., 2000).

‘Grade’ is an informal comparative term dependent

on smectite content and sample purity that is used to

indicate the potential uses for a bentonite. An index of

grade, the S/K ratio, can be obtained by dividing the sum

of all smectite-containing phase abundances (Fe-rich

smectite plus the three I-S phases) by the total for all

kaolinites. S/K provides a measure of smectite abun-

dance relative to the most abundant contaminant,

kaolinite. Three quarries have a mean index of >2.0,

six have ratios near 0.5, and three are between 1.0 and

2.0 (Figure 11). Quarries Q4, Q5, and Q10 contain the

highest-grade clays. They represent the highest-purity

bentonite samples to test for use in specific applications

such as drilling muds, pet litter, foundry and binding

sands, pharmaceuticals, pelletizing, or cements (Chang,

2002). The presence of calcite in Q10 may lead to

difficulties in applications based on acid activation such

as oil clarification, or other processes causing calcite

dissolution. The presence of moderately high kaolinite

contents generally restricts the uses of many of these

bentonites.

CONCLUSIONS

The XRD analyses revealed that all the quarries

contain Fe-rich dioctahedral smectite, kaolinite (three

varieties with different crystallite sizes), smectite-illite

mixed-layer minerals (three randomly interlayered

varieties with 60, 70, or 80% Fe-poor smectite layers),

illite, quartz, and feldspars. Some contain gypsum and

calcite. The most abundant minerals are the smectitic

and kaolinite minerals; while illite and non-clay miner-

als are least abundant. Discriminant function analysis

indicated that the three most reliable XRD predictors of

membership in a given class (province, Epoch, or

quarry) are Fe-rich smectite, Fe-poor illite/smectite

with 0.6 expandable layers, and coarsely crystalline

kaolinite, followed by illite and quartz. The abundance

of kaolinite varieties may restrict the utility of bentonites

from certain quarries.

After an Aitchison’s (1986) simple log-ratio trans-

formation of the data, the DFA was able to classify an

individual sample with respect to province, Epoch, and

quarry with a certainty that the first choice selected by

the program was correct 75�92% of the time. Including

the second choice, the predictability exceeded 94%. The

DFA is also very useful in grouping unknown samples

into the various classes, particularly at the quarry level,

that should be an aid in the correlation and exploitation

of bentonitic clay deposits in the region. The results

form a unique mineralogical database the members of

which can be distinguished by multivariate statistical

procedures.
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