
J. Fluid Mech. (2023), vol. 974, A56, doi:10.1017/jfm.2023.838

Pattern evolution and modal decomposition of
Faraday waves in a brimful cylinder

Shimin Zhang1,2, Alistair G.L. Borthwick3,4 and Zhiliang Lin1,2,†
1State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
2Marine Numerical Experiment Center, School of Naval Architecture, Ocean and Civil Engineering,
Shanghai Jiao Tong University, Shanghai 200240, PR China
3School of Engineering, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FB, UK
4School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK

(Received 20 January 2023; revised 23 September 2023; accepted 2 October 2023)

This paper investigates the steady-state pattern evolution of symmetric Faraday waves
excited in a brimful cylindrical container when driving parameters much exceed critical
thresholds. In such liquid systems, parametric surface responses are typically considered as
the resonant superposition of unstable standing waves. A modified free-surface synthetic
Schlieren method is employed to obtain full three-dimensional spatial reconstructions of
instantaneous surface patterns. Multi-azimuth structures and localized travelling waves
during the small-elevation phases of the oscillation cycle give rise to modal decomposition
in the form of ν-basis modes. Two-step surface-fitting results provide insight into
the spatiotemporal characteristics of dominant wave components and corresponding
harmonics in the experimental observations. Arithmetic combination of modal indices
and uniform frequency distributions reveal the nonlinear mechanisms behind pattern
formation and the primary pathways of energy transfer. Taking the hypothetical surface
manifestation of multiple azimuths as the modal solutions, a linear stability analysis of
the inviscid system is utilised to calculate fundamental resonance tongues (FRTs) with
non-overlapping bottoms, which correspond to subharmonic or harmonic ν-basis modes
induced by surface instability at the air–liquid interface. Close relationships between
experimental observations and corresponding FRTs provide qualitative verification of
dominant modes identified using surface-fitting results. This supports the validity and
rationality of the applied ν-basis modes.

Key words: Faraday waves, pattern formation, parametric instability

† Email address for correspondence: linzhiliang@sjtu.edu.cn

© The Author(s), 2023. Published by Cambridge University Press 974 A56-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

83
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:linzhiliang@sjtu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.838&domain=pdf
https://doi.org/10.1017/jfm.2023.838


S. Zhang, A.G.L. Borthwick and Z. Lin

1. Introduction

Faraday waves, first reported by Faraday (1831), are parametrically resonant phenomena
excited by fluid instability at the interface between two fluids. In a vibrating liquid-filled
container, Faraday waves commonly occur in the form of standing surface waves,
oscillating at half the driving frequency, above a critical acceleration threshold. However,
in 1868, Mathiessen observed harmonic Faraday waves that oscillated at the driving
frequency rather than half the driving frequency. To resolve this conundrum, Rayleigh
(1883a) undertook new experiments, and found that the resulting wave frequencies agreed
with Faraday’s observations. Rayleigh (1883b) also developed a theoretical model of
Faraday waves, based on maintained vibrations.

In 1954, Benjamin & Ursell (1954) presented a linear stability analysis of the free
surface of an inviscid liquid undergoing vertical vibration, and derived an amplitude
equation for a given eigenmode of Faraday waves in an inviscid fluid, in the form of a
linearly independent undamped Mathieu equation. The presence of non-overlapping zones
of subharmonic or harmonic solutions confirmed that both subharmonic resonance and
harmonic resonance can arise in a vibrating fluid, validating the different findings by
Faraday, Mathiessen and Rayleigh. In 1994, Kumar & Tuckerman (1994) performed a
linear stability Floquet analysis of the interface between two viscous fluids, and found that
tongue-like stability zones appeared for particular values of amplitude and wavelength
at a given driving frequency. Unlike isolated unstable regions that are bounded by the
zero-acceleration line in inviscid fluids, tongue-like stability zones in viscous fluid systems
experience a minimum acceleration that is always greater than zero. Subsequent validation
experiments on threshold acceleration undertaken by Bechhoefer et al. (1995) and
Lioubashevski, Fineberg & Tuckerman (1997) (amongst others) demonstrated qualitatively
the effect of fluid viscosity on wavelength selection and stability threshold. Meanwhile,
numerical predictions based on viscous stability analysis by Kumar (1996) contributed
to experimental observations of the harmonic response under certain conditions as
determined by Müller et al. (1997), where the wavelengths of the resonant waves were
of the same order as the depth of liquid.

Benjamin & Ursell (1954) also carried out experiments using a small cylinder and found
that the observed mode (2, 1) was in excellent agreement with the prediction from ideal
flow theory. However, the theory was inherently unable to predict dissipation. Bearing
this in mind, Benjamin and Ursell argued that dissipation originating from the contact
line had a greater effect than bulk dissipation on theoretical estimates of damped fluid
motion in the experimental system. They found that contact-line effects through meniscus
waves provided the majority of dissipation in a low-viscosity system. Meniscus waves,
also called edge waves due to their close connection to the spatial geometry of the
edge of the container, cause modal mixing at the onset of a pure mode and have been
reported as harmonic resonance at the forcing frequency (Shao et al. 2021b). To avoid
the contact-line effect, large aspect-ratio containers (that accommodate many wavelengths
in the horizontal direction) with a pinned contact-line condition have commonly been
used in physical tests (Douady 1990; Bechhoefer et al. 1995; Christiansen, Alstrøm &
Levinsen 1995). Moreover, high concentrations of soluble surfactants can alter surface
properties so that meniscus effects are suppressed (Henderson & Miles 1990, 1991).
Kidambi (2009) included meniscus effects in a nonlinear eigenfunction formulation of
viscous Faraday waves, and predicted the stability boundaries for various initial static
contact angles. Kidambi (2013) extended the theoretical work of Benjamin & Ursell (1954)
by including the pinned contact-line condition to generate a system of coupled Mathieu
equations for inviscid Faraday waves. This model predicted a dense intersection of stability
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tongues known as combination resonance tongues (CRTs) that enlarge unstable regions.
At a critical frequency, related to the natural frequencies of several fundamental modes,
almost periodic and even chaotic oscillation may emerge on CRTs.

Many research studies have used parametric experiments to examine pattern formation
involving high spatial symmetry. Experiments conducted in vibrating cylindrical
containers over a wide range of driving frequencies have shown that N-fold rotational
patterns with several standing waves in the radial direction usually develop (Christiansen,
Alstrøm & Levinsen 1992; Kumar & Bajaj 1995; Kudrolli & Gollub 1996; Binks & van
de Water 1997). Apart from the strong correlation with forcing parameters (Miles &
Henderson 1990; Cross & Hohenberg 1993), pattern arrangements of container-bounded
Faraday waves have also been determined that include the effects of fluid dissipation
(Christiansen et al. 1992; Kumar & Bajaj 1995; Wagner, Müller & Knorr 1999) and
the boundary shape of the container (Gollub & Meyer 1983; Ciliberto & Gollub 1985b;
Simonelli & Gollub 1989; Crawford 1991; Umeki 1991; Crawford, Gollub & Lane 1993).
Unbounded Faraday modes with frozen-like patterns composed of stripes, or triangular or
square unit cells have been observed in large aspect-ratio containers, under the influence
of bulk dissipation driven by fluid viscosity (Christiansen et al. 1992; Kudrolli & Gollub
1996; Chen & Viñals 1999; Wagner et al. 1999) or surface stiffness (Kharbedia et al. 2021).
Assorted pattern evolution observed far above the Faraday threshold has triggered interest
in the complex spatiotemporal structures of quasi-periodic and chaotic responses. Pattern
competition leading to chaotic resonance was studied experimentally and theoretically by
Ciliberto & Gollub (1984, 1985b) who found that chaotic oscillations with disorganized
patterns can appear in the overlapping zones of certain tongues. A distinctive star-shaped
resonant wave was discovered, caused by nonlinear and dispersive effects in water
waves and believed to be driven by three-wave resonance (Rajchenbach, Clamond &
Leroux 2013). Analogous experimental evidence addressing issues of pattern selection
demonstrated that multi-wave couplings between waves of different wavenumber vectors
and angular frequencies contribute to the formation of the symmetric pattern (Phillips
1981; Hammack & Henderson 1993). Crucially, such modal patterns are determined by
the dispersion relation that is itself closely related to the forcing and dissipation processes
(Rajchenbach & Clamond 2015).

In analytical studies the free surface of pure Faraday modes in a circular container
is always represented as the sum of Bessel modes (Benjamin & Ursell 1954; Kidambi
2013; Shao et al. 2021b). For resonant waves in a square container, a set of amplitude
equations with wavenumber vectors along two perpendicular directions has been derived
for inviscid infinite-depth capillary waves (Milner 1991). In cases involving a Mathieu
equation with a linear damping term, the Bessel forms mismatch, especially for crystal-like
waves, large-amplitude standing waves and multi-mode dissipative waves (Meron 1987).
Zhang & Viñals (1996, 1997) derived an amplitude equation, valid for weakly damped
Faraday waves excited near the instability threshold. This led to improved prediction
of the stability boundary when extended to a wider damping regime by the weakly
nonlinear theory proposed by Chen & Viñals (1999). The foregoing theoretical hypotheses
were demonstrated to be quantitatively consistent with experimental results conducted by
Westra, Binks & Van De Water (2003).

Analytical approaches based on pattern images have often been employed to extract
key information from experimental data on two-dimensional (2-D) spatial structures
involving frequency components and the resonant magnitude of Faraday waves. Long
exposure, time-averaged imaging has proved successful in visualizing the surface pattern
in shadowgraph form (Bosch, Lambermont & van de Water 1994; Shao et al. 2021a,b).
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Time-varying intensity tracking of images was utilised in early research concerning the
time-resolved analysis of chaotic patterns (Ciliberto & Gollub 1985b). Spectral analysis of
single-point optical data facilitated analysis of the composition of turbulent waves and their
associated energy transfer (Kharbedia et al. 2021). With recent advances in visualisation
and measurement methodologies, experimental studies are no longer constrained to a
2-D view of pattern evolution. Unlike traditional gauge recording approaches that are
intrusive, optical methods (based on analysis of the distortion of the background image)
measure free-surface topography without introducing additional interference during the
measurement process. Nowadays, numerous fully three-dimensional (3-D) spatial surface
reconstruction techniques for surface waves have been developed for high-speed camera
applications (Falcon & Mordant 2022), including Fourier transform profilometry (Takeda
& Mutoh 1983; Cobelli et al. 2009), diffusing light profilometry or photography (Berhanu
& Falcon 2013; Haudin et al. 2016), and synthetic Schlieren (SS) methods (Peters
1985; Kurata et al. 1990; Dalziel, Hughes & Sutherland 2000; Moisy, Rabaud & Salsac
2009). Of these optical techniques, the free-surface synthetic Schlieren (FS-SS) method
developed by Moisy et al. (2009) provides a straightforward reconstruction of the liquid
surface at relatively higher spatiotemporal resolution using inverse analysis of the gradient
field, which is usually obtained by a digital image correlation (DIC) algorithm and
linear transformation. The FS-SS method, based on analysis of the deformed random-dot
background obtained after refraction through the water surface, has been applied in the
measurement of oscillating systems to observe almost pure cross-waves (Moisy et al.
2012), surface three-wave resonant interactions (Abella & Soriano 2019) and the surface
field induced by a bouncing droplet (Damiano et al. 2016).

The paper is organized as follows. Section 2 introduces the experimental set-up and
surface reconstruction based on a modified FS-SS method. Section 3 presents a series of
pure Faraday modes along with their steady-state pattern evolution. A phenomenological
scheme of multi-wave localized interaction is observed in surface pattern evolution,
indicating modal decomposition in the form of multiple azimuths. Section 4 displays the
spatiotemporal surface-fitting results, which enable identification of the principal wave
components. Moreover, an explanation is given of the mechanisms underpinning pattern
formation and energy transfer. Section 5 describes a stability analysis method for inviscid
Faraday waves in a cylindrical container with a pinned contact line and verification of the
existence of dominant modes in experimental observations.

2. Experimental methodology

2.1. Experimental set-up
Figure 1(a) shows the experimental set-up we used to excite and visualize Faraday
waves. A circular cylinder of radius R = 45 mm and height H = 5.6 mm was assembled
from a circular plate and two ring-shaped plates (see figure 1b) manufactured from
laser-cut transparent acrylic sheets. The three acrylic plates were tightly bonded together
in order that the liquid depth H was equal to the thickness h0 of the middle plate. The
upper plate of a larger inner radius prevented spillage of oscillating liquid. In each test
case, a random-dot pattern printed on white paper was inserted beneath the lower plate
(thickness hb = 2.85 mm) to enable the displacement field to be determined using a DIC
algorithm. The cylinder was mounted on an electromechanical shaker (ESS-050) capable
of vibrating sinusoidally in the vertical direction for a prescribed driving frequency in
the range Ω0/2π = 5 ∼ 10 000 Hz. The shaker was driven by an acceleration generator
(Amber) and a power amplifier (PA-1200). The stability of the shaker oscillation was
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Figure 1. Experimental set-up: (a) schematic layout; (b) photograph of liquid container composed of three
acrylic plates with a random-dot pattern on paper between the base of the lowest plate and the top panel of the
shaker; (c) transverse geometry of the liquid-filled cylindrical container.

guaranteed by a closed-loop control system, consisting of a function generator, amplifier,
shaker and acceleration sensor. A prescribed oscillating amplitude ξ and driving angular
frequency Ω0 determined the time-varying acceleration A0 cos Ω0t with A0 = ξΩ2

0 . In
the experiments a stable acceleration amplitude A0 was guaranteed by sustained feedback
between the acceleration sensor and shaker as they oscillated together.

The liquid surface pattern was determined from data obtained using a visualization
system comprising a set of LED lamps and a SpeedCam MacroVis EoSens (Germany)
camera with Tokina atx-i 100 mm F2.8 FF MACRO (Japan) lens (see figure 1a). A
ring-shaped light source placed at a suitably raised elevation produced uniform white light.
The high-speed camera was positioned so that it pointed vertically downward at a height
hc = 1.2 m above the sheet containing the random-dot pattern to capture a square area
covering the overall surface domain. High-resolution images (1328 × 1330 pixel2) were
collected to ensure accurate surface reconstruction. In practice, a frame rate of 500 fps
and an exposure time of 2 ms were found to guarantee proper capture of the wave patterns
throughout the driving cycle. Before parametric oscillations were generated, a reference
image was obtained of the flat surface of the liquid in almost still conditions except for
a slight disturbance caused by low-level noise emanating from the standby mechanism of
the shaker. The trigger for camera capture was delayed until the liquid surface pattern
had begun to evolve steadily with periodicity. The elapsed time from shaking onset
to stable pattern formation, herein called the growth time τ , was different for each
parametric vibration case. As with the previous regulation of cross-waves (Moisy et al.
2012), τ was found to have a roughly inverse-proportional relationship with acceleration.
A sufficiently long onset-trigger time of 4 min (> τ ) was set to capture stable surface
patterns.

Previous research has demonstrated that simultaneous superposition of harmonic
meniscus waves and subharmonic Faraday waves would occur when the container is either
over- or under-filled (Shao et al. 2021b). Hence, great care had to be taken to ensure that
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meniscus waves would not form. As illustrated in figure 1(c), the cylindrical container was
filled with ultra-pure water to the inside brim of the middle ring plate. Subsequent addition
or removal of liquid was undertaken until the liquid surface was almost flat, such that the
contact line was pinned at the edge and the static contact angle was π/2, suppressing
both meniscus waves and dynamic contact-line effects. All experiments were carried out
at room temperature (25 ± 0.5 ◦C) so that the properties of pure water remained constant
as follows: water density ρ = 997 kg m−3, dynamic viscosity μ = 10−3 Pa s and surface
tension σ = 72 mN m−1. Hence, the Bond number Bo = ρgR2/σ ≈275, where g is the
gravitational constant g = 9.8 m s−2. Due to the gradual evaporation of water, a meniscus
initially appeared along the interior wall about 15 minutes after filling and so pure water
was added until the meniscus disappeared. Additionally, to confirm the reproducibility
of our experimental observations in an open environment (similar to Henderson & Miles
1991), at about 90 min intervals we emptied and cleaned the container, and changed the
liquid to avoid the apparent drop in surface tension should surface pollution be present.
Hence, it could reasonably be assumed that the surface tension σ , although not measured,
was approximately the same as that of pure water at room temperature.

Stable Faraday waves exist in a limited acceleration window spanning from the critical
Faraday acceleration (AF) to chaotic acceleration (Ac). Furthermore, in order for the FS-SS
method (introduced in § 2.2) to be valid, it was necessary to restrict the deformed liquid
surface to have weak slopes, thus limiting the range of experimental acceleration values.
This was because high-sloping waves, such as large standing gravity waves, alter the light
intensity distribution through refraction causing visible light and dark streaks and modal
patterns to be superimposed on the images. Moreover, the high curvature of the liquid
surface can give rise to ray crossings and light reflection spots in the recorded images.
Upper limits were placed on the driving parameters, amplitude ξ and frequency Ω0/2π,
to prevent contamination of the images by uneven intensity distribution, ray crossings and
light spots.

2.2. Surface reconstruction
The FS-SS method (figure 2a) developed by Moisy et al. (2009) was used to determine
the liquid free-surface topography. The FS-SS method relies on knowledge of the
refracted light and the displacement field of the random-dot pattern to reconstruct the
surface gradient field. Figure 2(b–e) illustrates the application of the FS-SS method.
From refracted images of the flat and deformed interfaces shown in figure 2(b,c), the
displacement vector field δr (figure 2d) was computed using the augmented Lagrangian
digital image correlation (AL-DIC) algorithm proposed by Yang & Bhattacharya (2019).
Interrogation windows of 16 × 16 pixel2 with a subset size of 8 × 8 pixel2 were used in
the computation of the AL-DIC algorithm, resulting in a spatial resolution of 0.68 mm. By
multiplying the pixel scale by the conversion factor determined for each set of experimental
photographs, the spatial length in pixels could convert to physical scale (mm).

Due to the high elevation of the camera above the free surface and the weak surface
slope encountered in the present experiments, the surface gradient ∇η was linearly related
to the vector field δr as

∇η = − δr
(1 − na/nl)hp

, (2.1)
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Figure 2. (a) Side elevation schematic of light refraction in a Faraday wave whereby the local free-surface
slope i results in a corresponding refracted pattern. The reference pattern (b) and deformed pattern (c), captured
experimentally for Ω0/2π = 18.5 Hz and ξ = 0.15 mm, are used to compute the deformation field (d), which
further leads to the 2-D overview of the reconstructed free-surface elevation (e).

where na and nl denote the optical indices of air and liquid, respectively, and hp is the
effective surface-pattern distance including overall optical correction, given by

hp = h0 + nl

nb
hb, (2.2)

where nb is the optical index of the bottom acrylic plane. The derivation of relation
(2.1) was based on three mandatory approximations required by the FS-SS method: a
paraxial approximation, a weak-slope approximation and a weak-amplitude approximation.
In our experiments, the pattern-camera distance hc was substantially larger than the field
size R, thus satisfying the paraxial approximation. The wave slope i was approximately
determined as the ratio of wave amplitude |η| to wavelength λ. In the present tests
the experimental parameters (including the tiny driving amplitude ξ and acceleration ε)
were selected to guarantee that the weak-slope approximation was satisfied. Parametric
excitation of micro-amplitude waves and a sufficiently thick base plate ensured that the
weak-amplitude approximation held. Due to hc � R and ξ � R, the reference patterns,
after marginal alteration, had minimal effect on the calculated displacement field, and
so it was feasible to select the reference pattern captured immediately before vibration
commenced. The modest optical depth and weak surface slope helped prevent ray crossing
(Moisy et al. 2009).

Some additional, unavoidable effects arising from the relative motion between the
visual plane and random-dot pattern were discerned when the FS-SS method resolved
the surface interface in the vibrating system (Damiano et al. 2016). Conventionally,
the background pattern has been assumed to remain stationary in the derivation of the
FS-SS method and in later implementations (Moisy et al. 2009). However, in the present
experiments the shaking amplitude varied from 0.1 mm to 0.25 mm, and scaled patterns
were recorded as the background pattern vibrated. Although zoom and translation effects
were indistinguishable by the naked eye, the error concealed in the deformation field
revealed itself on the reconstructed surface. Detailed analysis of the vibrating patterns
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is given in the following evaluation of a typical test case where ξ = 0.15 mm and
Ω0/2π = 6 Hz.

Figure 3 shows the deformation field δr corresponding to a specific frame, and its
decomposition into primary components by removing the mean slope translation and
applying 2-D Butterworth filters. Theoretically, low-acceleration vibration below the
Faraday threshold should not excite either a harmonic edge wave or a subharmonic
Faraday wave; hence, the ideal reconstructed surface is flat (δr = 0). In practice, however,
concave/convex patterns emerged due to spurious interference of the deformation field.
Moreover, the pinned boundary (static contact angle α = π/2) condition could not be
perfectly satisfied because of a combination of slow evaporation of water and machining
errors of the container, which led to some uniform ripples appearing in the reconstructed
surface even when the shaker was in standby mode. Consequently, the raw deformation
field was divided into the following parts:

δr = δr∗ − δrv − δrc − δro. (2.3)

Here the actual deformation field δr was extracted from the raw deformation data δr∗
by implementing three filters to eliminate the vibration-induced deformation field δrv ,
the high-frequency deformation field δrc produced by machine standby and the (small)
low-frequency noise field δro.

In our experiments, the vibration amplitude was of the order of the wave topography, so
the zoom effect of visual pictures could not be ignored. Besides, the divergence between
the central axes of the camera and the cylindrical vessel caused the overall movement of
the images, referred to as the translation effect. The zoom effect contributed to a scaled
deformation whereas the translation effect resulted in an equivalent deformation in the
visualization system. Both effects were directly related to relative motion between the
camera and the background. For simplicity, the superimposed deformation was expressed
in linear form as

δrv = (cx x + dx) x̂ + (
cy y + dy

)
ŷ, (2.4)

where cx and cy are zoom effect factors, and dx and dy are translation effect factors. Hence,
δrv was subtracted by filtering out the best-fit plane (2.4) from the raw deformation field.
We call this a translation/zoom filter.

Two further effects were uncovered by selectively applying low-pass and high-pass
Butterworth filters. An irregular deformation field δro was linked to ambient fluctuation
arising from inhomogeneity of light intensity, etc. A ripple-shaped deformation field δrc
originated from the shaking standby mode as confirmed by matching the electric current
frequency and the measured wavelength λc (see figure 3). The ripples are harmonic
resonant patterns, and the corresponding wave frequency of measured wavelength λc
(≈5.78 mm) was roughly 51 Hz according to the capillary-gravity wave dispersion relation

ω2 =
(

gk + σ

ρ
k3
)

tanh kH, (2.5)

where k is calculated as 2π/λc. Owing to the standby oscillation of the shaker, whose
frequency is determined by the electric current (50 ∼ 60 Hz), the hypothesis that natural
shaking of the vibrator would result in harmonic ripples was found to be valid.
Furthermore, no ripple-shaped pattern occurred in the reconstructed surface when the
shaker was not operating.

In the tests, the vibration-induced effect δrv dominated the other two effects δrc and δro
in the reconstruction of resonant waves. The free-surface deformation field δr of Faraday
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(a)

Figure 3. Decomposition of deformation fields in the x̂ direction (a) and in the ŷ direction (b) in a
low-acceleration experiment and corresponding reconstructed results η (c) obtained by applying the FS-SS
method (unit: mm). Here, x̂ and ŷ are two unit vectors parallel to the row direction and column direction of the
image pixel, respectively. After multi-step filtering, the raw deformation field δr∗ (see (a i–b i)) is decomposed
into the vibration-induced deformation field δrv , low-frequency deformation field δro and high-frequency
deformation field δrc, which are shown sequentially in (a ii–b ii) to (a iv–b iv).

waves was sufficiently large to mask the aforementioned spurious vibration-induced
deformations and unavoidable multi-frequency deformations, which were hard to detect
by the naked eye. Moreover, given that multiple frequency components coexist in resonant
waves, it was not necessary to remove the relatively minor error deformations at a specific
frequency.

In short, precise adjustment of the vibrating system and post-processing of the raw
deformation field δr∗ helped ensure the reconstructed results were acceptably accurate.
In our systems, a translation/zoom filter was applied to acquire the post-processed
deformation field δr∗ − δrv and a Butterworth band-pass filter was implemented to
identify monochromatic deformation.

The inverse gradient operator ∇−1 was used to reconstruct the surface topography η

from the free-surface gradient field (see figure 2e). For a circular domain D comprising
Q discrete points in figure 4(a), different schemes were utilised in the expression for
height gradient at given points. For those points whose surrounding grid points were not
entirely located in the domain D, a pinned boundary condition was applied to one or two
components of the gradient, and so these points were artificially defined as near-boundary
points. The remaining points inside D were classified as internal points. Third-order
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ŷ
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∂D

sPi,j–2

Pi,j–1

Pi+1, j Pi+2, jPi, j

s

(b)(a)

Figure 4. (a) Classified grid points near the circular boundary (circle, near-boundary point and square,
internal point). (b) Four computational sectors where different differential formats are applied.

four-point differences were used to approximate the x̂-component ∇1η and ŷ-component
∇2η of the gradient ∇η at internal points, with all four grid points involved in each
computation determined according to the quadrant in which the target point lay. Taking
the x̂ component of the gradient as an example, ∇1η at grid points in each of the four
quadrants Di (i = 1, 2, 3, 4; see figure 4b) is given by

∇1η(Pi,j) =
{
(ηi−2,j − 6ηi−1,j + 3ηi,j + 2ηi+1,j)/6s, Pi,j ∈ D1 ∪ D4,
(−2ηi−1,j − 3ηi,j + 6ηi+1,j − ηi+2,j)/6s, Pi,j ∈ D2 ∪ D3,

(2.6)

where s, defined as element size, is the spatial distance between each adjacent grid point.
The ŷ-component ∇2η of an internal point is obtained in a similar manner.

The gradient ∇η components at a point close to the boundary were related to nearby
interior and boundary grid points. We found that the central difference format used by
Moisy et al. (2009) was not sufficient to reconstruct the surface with a curved boundary,
leading to reconstruction without convergence. Hence, three-point difference formats of
higher order were used to approximate the gradient ∇η at point Pi,j as

∇ηi,j =
[

s2 − (x)2

sx(x + s)
ηi,j + x

s(x + s)
ηi+1,j

]
x̂

+
[ −y

s(y + s)
ηi,j−1 + (y)2 − s2

sy(y + s)
ηi,j

]
ŷ, (2.7)

where x, y are the distances from Pi,j to the corresponding boundary points,
respectively. Due to the pinned boundary of the wave surface, a homogeneous Dirichlet
boundary condition (η = 0) was applied at these points on ∂D such that the corresponding
gradient was related to two points. The gradient of a near-boundary point was similarly
quadrant determined, with both components in a four-point format, as was the case
with the x̂ component of ∇η(Pi+1,j). Occasionally, second-order centred differences, or
forward or backward Euler differences, were used to approximate the gradient in cases
where there were insufficient grid points to construct a higher-order difference scheme.
Over-determined linear systems with 2Q × Q elements were generated, and a least-squares
solution was readily obtained using the ‘\’ operator in Matlab.

The accuracy of the surface reconstruction was evaluated in part by considering volume
conservation in terms of a height error defined as the ratio of a discrete integral of volume
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variation to the cross-sectional area of the cylindrical container,

he = 1
πR2

Q∑
i=1

ηis2, (2.8)

in which s is the element size, which is related to the subset size in the AL-DIC
computation. The height error was sensitive to the initial location of reference images, and
so repeatability experiments were utilised to improve results with the smallest he. After
confirming all reconstructed surfaces of experimental modes, the final result, he � ξ , was
valid for every subharmonic case, indicating the remarkable accuracy and applicability of
the FS-SS method in our system. The main reconstruction error arose from two sources:
inevitably inaccurate identification of the circular boundary because of the discrete length
scale (pixel); and possibly poor plane fitting δrv for relatively steep-sloped waves by the
translation/zoom filter.

3. Experimental results

In our experiments we primarily sought symmetric Faraday modes within specific ranges
of driving amplitude ξ and frequency Ω0/2π where the approximate conditions for
the FS-SS method were satisfied. In each vibration experiment, the forcing amplitude
increased rapidly from the standby state to reach the predetermined value for a given
vibration frequency. The liquid system studied herein constitutes a small system in which
the liquid surface patterns are predominantly influenced by the cylindrical boundary.
Parametrically forced surface waves in similar systems have previously been investigated
using experimental and theoretical approaches (Benjamin & Ursell 1954; Ciliberto &
Gollub 1985b; Henderson & Miles 1990; Das & Hopfinger 2008; Puthenveettil &
Hopfinger 2009; Batson, Zoueshtiagh & Narayanan 2013; Kidambi 2013; Rajchenbach
et al. 2013; Shao et al. 2021b; Bongarzone et al. 2022). In such systems only limited
wavelengths, corresponding to certain eigenmodes, are selected by surface instability.
From the rest state to the full-response state, the experimentally observed subharmonic
surface responses exhibit a delay after any change in forcing parameters and then
rapidly approach the final state. The delay time is a function of the non-dimensional
control distance to the Faraday threshold, which is calculated as (A0 − AF)/AF. The
larger the control distance, the greater the nonlinearity of the vibrating system, leading
to complicated harmonics of the subharmonic responses through wave interaction.
Hence, the standing wave response can be regarded as the superposition of unstable
modes oscillating at multiple frequencies. However, hardly any previous literature has
reported on the spatiotemporal decomposition of superposed standing waves excited
much above the critical acceleration. Herein, we present quantitative evaluation of the
instantaneous variation in surface structures at the final steady state, where the amplitudes
of the wave components involved remain nearly constant. The present experiments are
unique in employing a full 3-D spatial reconstruction method to capture high-resolution
spatiotemporal surface structures at arbitrary phases of the Faraday wave cycle.

Figure 5 depicts all the subharmonic resonance modes of only one symmetry covered by
the experiments. Modal structures are distinguished by mode number pairs (ν, ζ ), where ν

denotes the azimuthal mode number and ζ is the radial mode number. For simplicity, the
ζ number of a particular mode is not indicated in the diagram. The wavenumber increases
progressively as the forcing frequency rises, resulting in a smaller radial wavelength
such that a larger ζ correlates with a higher driving frequency to classify these (ν, ·)
modes. The estimated critical accelerations AF for the onset of various Faraday waves
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are approximately located on the linear-fitting line, with the colour band representing the
95 % confidence interval. Below the line, the surface is either essentially flat or exhibits
a small harmonic response (< 10 μm) at the driving frequency. These cylindrical patterns
could be filtered out by selectively applying Butterworth band-pass filters as displayed in
figure 3, but only qualitative results would be obtained because noise interference at the
same frequency would cause large-amplitude spurious height displacement. Note that the
reconstructed surface obtained using the modified FS-SS method is of sufficiently high
resolution for our analysis requirements. Figure 6 shows the observed modes of azimuthal
number ν = 0, 1, 2, . . . , 8 whereby the apparent deformation of surface elevation is
utilised to help discriminate modal pairs (ν, ζ ). Additionally, a variety of slowly evolving
behaviours has been observed in our experiments, including the time delay in triggering
an incipient resonant response, the long duration required to reach the final oscillating
state and pattern competition caused by neighbouring modes interacting with each other
(Ciliberto & Gollub 1984). Such evolution behaviours have previously been studied by
examining the time-dependent variation of mode amplitude on a slow time scale (Meron
& Procaccia 1986). Figure 7 presents examples of instantaneous patterns of competitive
modes excited under specific conditions. The slow evolution of these fascinating surface
structures is truly remarkable, and it is recommended that future research examines pattern
competition using long-duration high-resolution reconstructions (noting that such studies
are extremely time consuming). However, it should be emphasised that the present paper
concerns the periodic motion of surface structures with single symmetry at the final
state when mode amplitudes remain constant. We refer to this as fast or steady-state
pattern evolution due to the rapid change in steady-state surface elevation. Instantaneous
reconstructed surface patterns enable us to evaluate quantitatively the fast combination of
standing harmonics in the parametrically forced wave response, as detailed in the following
experimental cases.

In figure 6 the white curves (η = 0), which demarcate adjacent stationary regions (2νζ

peaks or troughs excepted for axisymmetric modes) of bounded Faraday waves, are almost
exactly radial or circumferential. In practice, the white separating curves become distorted
in certain cases, such as (3, 3), due to the dominant contribution of the harmonics.
Estimates of the spatiotemporal behaviour of wave components are obtained from the
following analysis of the periodic surface motion of the full-response mode (3, 3). The
most deformed patterns are evident in figure 8(a,b) and exhibit an overall π/3 rotational
symmetry compared with each other. In figure 8(c) where the time origin is set such that
it corresponds to the minimal elevation, the oscillation of localized surface elevation at
the peak point P0 is quasi-trochoidal, and the maximal elevation appears prior to TF/2.
Hence, a shift time of about 0.04 s is observed, which may be due to phase differences
among the wave components involved. Our focus is on the transitional processes between
the two most deformed patterns in a wave period. Two groups of small-elevation cases,
each including six successive phases (indicated by the boxes in figure 8c), are selected to
reconstruct the evolving surface patterns for each half-cycle, as shown in figure 8(d,e).
Obviously, similar π/3 rotations hold for these transitional cases. Some remarkable
localized structures were also observed in the small-elevation periods when harmonics
dominated the surface disturbance. Such wave components evolve according to their
inherent cycles and may be examined within their high-expressed phases. It is therefore
useful to study the dynamic behaviour of these intricate interfacial structures within the
small-elevation phases of subharmonic components (η(P0) ≈ 0). By tracing the wave
crests (red coloured in figure 8a,b), the surface peaks collapse into several small waves
travelling along the radius or rings and localized wave interactions occur after a short
while. As a result, a π/3 rotation of the overall pattern occurs after half a wave period.
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Figure 5. Experimentally observed Faraday wave modes of azimuthal number ν with corresponding driving
parameters. Here, various Faraday waves are excited above the critical acceleration, where the driving
amplitude ξ = 0.1 ∼ 0.25 mm and discrete driving frequencies are prescribed to search for stable and
symmetric wave modes distinguished according to the spatial characteristics in 2-D reconstructed patterns.
Here, only modes of azimuthal number ν = 0 ∼ 8 are recorded and the corresponding radial number ζ is not
displayed for simplicity.

(e)(b)

(g) (h) (i)

(a)

( f )

(d )(c)

Figure 6. A 2-D view of reconstructed monochromatic modes (a–i) of azimuthal numbers ν = 0 ∼ 8. Surface
elevation is indicated by the depth of colour (with red for positive η and blue for negative η). Results are shown
for (a) (0, 4), (b) (1, 5), (c) (2, 3), (d) (3, 3), (e) (4, 3), ( f ) (5, 3), (g) (6, 3), (h) (7, 1), (i) (8, 1).

Meanwhile, the processes of collapse and interaction are seemingly time asymmetric due
to nonlinear motions of the thin liquid layer. Later on, we focus on modal decomposition
by conducting profile analysis of this investigated mode.

Before continuing our analysis of the investigated surface dynamics, it is necessary
to introduce the coordinate systems as shown in figure 9(a). At first, the information
of refracted images is stored in the plane Cartesian coordinate system O′-x′y′, and a
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(b)(a) (d )(c) (e)

Figure 7. A 2-D view of reconstructed competitive modes (a–e) excited in the indicated experiments. Surface
elevation is indicated by the depth of colour (with red for positive η and blue for negative η). Results are shown
for (a) 0.1 mm, 24.5 Hz; (b) 0.15 mm, 19 Hz; (c) 0.15 mm, 20 Hz; (d) 0.2 mm, 17 Hz; (e) 0.2 mm, 16.5 Hz.

1.0

P0 P0

(a)

(b)

(d) (e)

(a)

Time

η
(P

0
) 

(m
m

)

0.5

–0.5

0

0 TF/2 TF
– |η|max |η|max

(b)(a)

(e)

(d )

(c)

Figure 8. Cyclic evolution of surface structures of the full-response (3, 3) mode at final steady states. The
two largest-elevation patterns are shown in (a,b), and the periodic variation in localized surface elevation at
the peak point P0 is given in (c). To indicate transitions between pattern (a) and pattern (b), six solid-boxed
cases and six dashed-boxed cases in small-elevation phases are selected, and the reconstructed patterns of
these cases are sequentially displayed in (d,e), respectively. Experimental parameters include ξ = 0.15 mm and
Ω0/2π = 18.5 Hz. The wave period TF is invariably equal to 4π/Ω0. A common colour bar is given for all
patterns, where |η|max denotes the maximal modulus of surface elevation in each pattern. The complete pattern
evolution of this investigated mode over a wave period can be seen in the supplementary animation available at
https://doi.org/10.1017/jfm.2023.838.

unidirectional reversed transformation to another plane coordinate system O′′-x′′y′′ is
carried out as part of the AL-DIC procedure. Then, the reconstructed surface is obtained
in the corresponding Cartesian coordinate system O′′-x′′y′′z′′. To facilitate subsequent
analysis, a cylindrical coordinate system is utilised to eliminate the azimuthal phase
difference θ0 between experimental and target images as identified in figure 9(b). The
system origin is located at the centre of the stationary circular fluid interface, with the
polar line θ = 0 passing through the projection P0 of the standing wave crest point on
the horizontal plane z = 0. Here, instantaneous surface deformation is denoted by the
expression for η(r, θ, t), where r is the dimensionless length scaled by R. Please note that
previous figures are presented in the Cartesian coordinate system O′′-x′′y′′z′′ whereas the

974 A56-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

83
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.838
https://doi.org/10.1017/jfm.2023.838


Pattern evolution and modal decomposition

6

4

2

0
100

80
60

40
20 20

40
60

80 100

(3, 3)

θ = 0

z = 0

(r, θ, z)

z

z

r
θ θ0

x (mm)
y (mm)

P0

θ0

h 
(m

m
)

r

Rz = –H

z′′
y ′′

x ′′

y ′

x′

O ′′

O ′

g O

(b)(a)

Figure 9. (a) Coordinate transformations and cylindrical geometry for Faraday waves in a cylindrical
container. (b) Multi-dimensional views of mode (3, 3) and definition of the azimuthal phase difference θ0.

following reconstructed views of the wave interface are based on the cylindrical coordinate
system shown in figure 9.

As derived by Benjamin & Ursell (1954), the modal structure of ν-fold Faraday waves
with a free contact line can be expanded as a series of eigenmodes, which are typically
sought in the form of cos(νθ) Jν(kν,nr), where the eigennumber kν,n is the nth root
of J′

ν . Similarly, Kidambi (2013) proposed a spatial scheme, cos(νθ) Jν(δν,nr) with δν,n
the nth root of Jν , to describe Faraday waves in a brimful cylinder where the contact
line was pinned. Owing to the decoupling of θ and r, azimuthal structures and radial
profiles correspond to cosine functions and Bessel functions, respectively. However, the
foregoing simple expression is unable to adequately explain the localized structures
observed in the small-elevation cases shown in figure 8(d,e). A more intricate expression
for harmonics is required to capture these structures. We start by examining the variation
of radial profiles at θ = 0 in figure 10(a). Two typical profiles at the large-elevation phase
0.46TF and the small-elevation phase 0.74TF are presented in the bottom subfigure. Note
that the azimuthal profiles at two phases with the same value are also characterized
in figure 10(b–f ) for various radial cases. In figure 10(a) three radial regions of peaks
or troughs (distinguished as inner, middle and outer regions) are identified according
to the Bessel function J3(δ3,3r) with the two separating lines located at r ≈ 0.5 and
r ≈ 0.85, indicated by solid lines and labelled ‘(b)’ and ‘(c)’, respectively. Meanwhile,
two small-elevation periods between the peaks and troughs correspond to the transitions
over two half-cycles. As indicated by arrows, the middle peaks collapse into two localized
contra-travelling waves in radial directions, while the inner and outer peaks each form a
single radial travelling wave. This generation of radial travelling waves is attributed to the
radial surface profiles of harmonics, which may possess five radial nodes as identified from
the radial profile at 0.74TF. Furthermore, the temporal variations of the two separating
lines are displayed in figure 10(b,c), respectively. In both cases, the magnitudes of J3(δ3,3r)
are relatively small, allowing circumferential structures with six and nine high points to
be captured at certain phases, as evident in the corresponding subfigures at the bottom.
This implies that the harmonics are six-fold, nine-fold and even higher 3m-fold (m > 3).
Additionally, figure 10(d–f ) illustrates the temporal evolution of circumferential slice
structures across the inner, middle and outer peaks, respectively, which are indicated by
dashed lines with labels ‘(d)’, ‘(e)’ and ‘( f )’ in figure 10(a). Transitions from peaks to
troughs are observed in the three cases (d–f ) where subharmonic components dominate.
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In the inner and middle cases, each peak evolves into two localized contra-travelling
waves in circumferential directions as marked by arrows in figure 10(d,e), causing six
nodes to develop on the circles during these small-elevation phases as evident in the
profiles at 0.74TF displayed in the two corresponding subfigures. For the outer slice in
figure 10( f ), similar spatiotemporal characteristics related to travelling waves may be
discerned (indicated by the arrows). Nine azimuthal peaks occur in both the large-elevation
phase and the small-elevation phase (as seen in the subfigure). This indicates the presence
of another subharmonic wave component with nine-fold symmetry. Additionally, we can
deduce that the structure of this high-order component has cos 9θ J9(δ9,1r) form, noting
the presence of nine-fold symmetry in figure 10(c) and its absence in figure 10(b,d,e).

The foregoing analysis indicates that the surface structure of symmetric Faraday waves
in our experiments may be represented by the multi-azimuth expressions as follows.
For any given r, the azimuthal structure of mode (ν, ζ ) is ν-fold overall, and localized
symmetries of multiple azimuthal numbers, called multi-azimuth structures, may be
observed during certain phases, especially those related to small-elevation components.
Hence, the azimuthal structures of the wave components of interest can be approximated
by cosine functions cos(mνθ) (m = 1, 2, 3, . . .) and the radial structures fitted by Bessel
functions Jmν(δmν,nr) (n = 1, 2, 3, . . .). Furthermore, resonant surface waves (ν, ζ ) in a
brimful cylinder can be regarded as the superposition of unstable eigenmodes expressed as
functions of cos(mνθ) Jmν(δmν,nr). Defining these eigenmodes as ν-basis modes (m, n)ν ,
we obtain

(ν, ζ ) =
∞∑

m=1

∞∑
n=1

(m, n)ν, (3.1)

where m denotes the azimuthal multiplier and n denotes the radial multiplier. The ν-basis
modes (1, n)ν are different from the eigenmodes proposed by Benjamin & Ursell (1954)
due to the pinned boundary condition in our experiments. It is straightforward to infer
that in the investigated (3, 3) mode, the subharmonic (1, 3)3 component dominates and
its harmonics are mostly composed of (m, ·)3 modes with m ≥ 2. The foregoing analysis
of the outer slice also implies that another possible subharmonic component may relate
to the (3, 1)3 mode. We speculate that the (1, 2)3 mode may also have a large magnitude
given that the outer region is rather narrow, owing to the node restriction on the pinned
boundary (η|r=1 = 0).

4. Modal decomposition

Standing waves excited much above onset are not inherently pure, due to the presence of
harmonics with multi-azimuth structures, which do not align properly with the eigenmodes
derived by Benjamin & Ursell (1954) and Kidambi (2013). These standing waves, which
are not competitive modes, result from the superposition of various unstable modes. Using
the FS-SS method, we have obtained highly accurate, full 3-D spatial reconstructions of
Faraday waves in a cylindrical domain, which have enabled us to quantitatively detect the
fast pattern evolution and achieve modal decomposition of the superposed standing waves
in full-response cases.

4.1. Spatiotemporal surface fitting
We hypothesise that the surface function of a certain mode (ν, ζ ) excited above the Faraday
threshold may be approximated by a series of ν-basis modes (m, n)ν (3.1), such that the
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Figure 10. Localized evolution of circumferential and radial surface profiles for (3, 3) mode. Profile elevation
magnitudes are obtained by 3-D interpolation of reconstructions. For each radial and circumferential profile, the
spatiotemporal variation beyond a wave period and typical structures at two phases, one large elevation (0.46TF)
and the other small elevation (0.74TF), are displayed. The variation of slice structures at θ = 0 is depicted in
(a) where arrows indicate localized travelling waves in the radial direction. Three dominant regions of peaks
or troughs occur in the radial direction and are defined as inner, middle and outer regions. Two solid lines,
r = 0.5 and 0.85, labelled ‘(b)’ and ‘(c)’, roughly separate the three radial regions. The three dashed lines,
r = 0.357, 0.668 and 0.925, labelled ‘(d)’, ‘(e)’ and ‘( f )’, pass through three peaks in the radial direction.
Steady-state evolution processes of circumferential slices across five of the indicated lines are displayed in
(b–f ). Arrows in (d–f ) indicate the localized travelling waves in circumferential directions. The colour bars
refer to surface elevations in units of mm.

spatial decomposition is given by

η(r, θ, t) =
M∑

m=1

N∑
n=1

am,n(t) cos mνθ Jmν(δmν,nr), (4.1)

where the total modal number MN is determined by the calculated limits M and N of two
multipliers m and n, respectively. Normally, N is set to an integer value much greater than ζ

in order to obtain a more accurate expression for radial structures in the deformed surface.
Additionally, an adequately large value of M (M ≥ 2) should be identified because of the
existence of circumferential structures with multiple azimuths, particularly for small local
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(b)

(a)

– |η|max

|η|max

Figure 11. Comparison between (a) reconstructed patterns (see figure 8e) and (b) fitted patterns using 3-basis
modal expressions. A common colour bar is given for all patterns where |η|max denotes the maximal modulus of
surface elevation calculated from the reconstructions of each pattern in the first row (a). The close agreement
demonstrates the validity of the spatial surface-fitting scheme used herein. Complete surface-fitting patterns
over a wave period can be seen in the supplementary animation.

features that occur during the transition period. We commence by fitting the reconstructed
surface, generated by the FS-SS method, with a multi-mode function (4.1) and then
analyse the modal information by examining the fitted coefficients am,n. For example, we
evaluate the observed mode (3, 3) in figure 8 to indicate the accuracy of the 3-basis modal
expression (4.1) using the spatial surface-fitting procedure.

We establish a corresponding equation for every grid point in the circular domain
to generate a linear system containing Q equations and then solve this over-determined
problem with MN unknowns. A similar method ‘\’, which has been employed in the
calculation of the inverse gradient field, is performed to acquire the least-squares solution
of the fitted surface. We set M = 6 and N = 15 (a total of 90 ν-basis modes) to obtain
surface-fitting results for the investigated modes (3, 3). It can be seen in figure 11 that
the spatial expression in the form of (4.1) provides a satisfactory fit to the reconstructed
surface despite the small, complicated displacement of the modal transition. For other
explored modes, the results of spatial fitting with ν-basis expressions are found to be
qualitatively of high accuracy, confirming that resonant modes (ν, ζ ) excited above the
Faraday threshold can be linearly decomposed into corresponding ν-basis modes (m, n)ν .

We now examine the spatiotemporal characteristics of the ν-basis modes and perform
further analysis on the time-varying coefficients am,n(t) to reveal the magnitude and
periodicity of (m, n)ν . Many ν-basis modes are applied in the surface-fitting computation,
and intuitive speculation concerning the dominant modes of the observed (ν, ζ ) mode
suggests that the largest two are (1, ζ )ν and (1, ζ − 1)ν due to constraint by the cylindrical
boundary on the spatial structures of (ν, ζ ). Furthermore, it is useful to discern other
relatively dominant wave components in such mode superposition, and so we conduct a
comparative analysis of the am,n(t) coefficients. Figure 12 displays the magnitude γm,n
plots of ν-basis modes for three investigated modes, where γm,n denotes the amplitude of
time varying am,n(t),

γm,n = max
t

∣∣am,n(t)
∣∣. (4.2)

The magnitude of γm,n determines the amplitude of the ν-basis mode (m, n)ν for a
given experimental mode (ν, ζ ), which also demonstrates the corresponding degree of
dominance of the ν-basis mode. In figure 12 the discrete scattered curves of magnitude
γm,n for different m contain multiple peaks, which allow us to deduce the dominant modes.
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Figure 12. Magnitudes γm,n of fitting coefficients am,n for three experimental modes (a–c) with indicated
different vibration driving parameters displayed as a function of azimuthal multiplier m and radial multiplier n.
Major peaks are labelled according to the dominant (m, n)ν modes. Magnitudes γm,n associated with given m
are indicated by the coloured bands. Results are shown for (a) (2, 3) ξ = 0.2 mm, Ω0/2π = 15.5 Hz; (b) (4, 2)

ξ = 0.175 mm, Ω0/2π = 15.2 Hz; (c) (3, 3) ξ = 0.15 mm, Ω0/2π = 18.5 Hz.

These ν-basis modes at peaks associated with each m are referred to as peak modes. The
magnitudes γ1,ζ and γ1,ζ−1 are found to be substantially greater than the other coefficients,
in accordance with our earlier hypothesis. We suggest that the non-peak modes modulate
the radial structures (wavenumbers) of peak modes to satisfy the dispersion relation. For
this reason, our paper focuses solely on these peak modes, which are related to surface
instability or wave interactions.

For a given ν-basis mode with m and n non-equivalent to any of the peak modes, the
magnitude γm,n is negligible, suggesting that wave energy is primarily stored in peak
modes. Hence, the spatial structures of the explored mode (ν, ζ ) mainly depend on those
of peak modes, and a larger number of peak modes leads to a more deformed modal
pattern throughout the wave period. Apart from the peak modes, the magnitudes of the
ν-basis modes (m, n)ν rapidly reduce with progressively larger m and n. Moreover, γm,n
disappears when m and n reach critical integer values, implying weak or no excitation of
the corresponding modes in the experiments. As a result, the upper limits of m and n can
be ascertained in order to obtain a sufficiently precise fitting surface. However, not all peak
modes can be regarded as dominant modes triggered by surface instability, which should
be further classified according to frequency distribution, and so a detailed analysis follows
concerning the temporal fitting results for am,n(t).

We consider several peak modes with m ≤ 3 for three cases of interest, which are
labelled (m, n)ν in figure 12. Further analysis evaluates the periodicity relation for these
peak modes, based on frequency decomposition of the time varying am,n(t). The observed
Faraday modes are subharmonic resonance, excited at frequency ω0 equal to half the
driving angular frequency such that ω0 = Ω0/2. The temporal decomposition is expressed
as the following sum of multi-frequency cosine functions:

am,n(t) =
∞∑

l=0

χl cos lω0t. (4.3)
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Here the fitting coefficients χl are different for various am,n(t). Due to the temporal
difference between the selected frames and expression (4.3), we adopt a more general
form to fit the time-varying coefficient am,n(t) in practical calculations, which reads as

am,n(t) =
∞∑

l=0

χl cos lω0t +
∞∑

l=1

χ̂l sin lω0t, (4.4)

where χ̂l are coefficients corresponding to the additional sine terms sin lω0t
(l = 1, 2, 3, . . .) in the expansion. For computational purposes, the upper limit of l is
truncated to L.

We now let L = 10, and perform linear fitting using the Matlab function lsqcurvefit()
of the approximate expression (4.4) to discrete am,n(t) values for the three experimental
modes. Figure 13(a,c,e) shows the fitting results of indicated dominant modes over an
evolving period TF (= 2π/ω0). It can be seen that the fitted curves of am,n(t) are in
relatively close agreement with the calculated evolution. Close-fit results are also obtained
for the remaining modes in figure 12, confirming that (4.4) (or (4.3)) precisely replicates
the periodicity of ν-basis modes (m, n)ν . We then focus on the fitting coefficients χl and
χ̂l. The right pseudo-colour illustrations in figure 13 show the normalized magnitudes
γ̂m,n,l of frequency components for the indicated modes (m, n)ν , each of which is defined
as

γ̂m,n,l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|χ0|
γm,n

, l = 0,√
χ2

l + χ̂2
l

γm,n
, l > 0,

(4.5)

where χ0, χl and χ̂l (l = 1, 2, . . . , L) are the fitting coefficients of am,n. For simplicity,
we define the component with angular frequency lω0 of am,n(t) as the corresponding lω0
component of the ν-basis mode (m, n)ν , and peak modes with dominant lω0 component as
lω0-dominant modes. As shown in figure 13(b,d, f ), the ω0 and 2ω0 components dominate,
so these modes are purely subharmonic or harmonic. The most dominant (1, ζ )ν modes
of the three different (ν, ζ ) modes oscillate at an angular frequency ω0. The dominant
components of peak modes (2, 5)2, (2, 5)3 and (2, 3)4 are 2ω0 components. On this
basis, peak modes with dominant ω0 or 2ω0 components are denoted as dominant modes,
with (1, ζ )sh

ν invariably the most dominant mode in the modal decomposition of (ν, ζ ).
For these ν-basis modes (m, n)ν with constant m, no more than two dominant modes
usually exist, and one is subharmonic and the other is harmonic if two dominant modes
emerge with the same m, such as (2, 5)sh and (2, 2)h in figure 13(a,b). Meanwhile, the
subharmonic dominant mode (3, 1)3 is indeed observed, as inferred in the discussion for
figure 10.

4.2. Peak modes
It is significant to focus on the spatiotemporal characteristics of peak modes because they
strongly correlate with multi-azimuth structures appearing in the fast wave evolution. The
pseudo-colour illustrations in figure 14(a–c) depict the logarithmic magnitude log10 γm,n
of MN ν-basis modes in a m–n plane for three investigated cases. Deeper red blocks
marked with circles represent peak modes of relatively large magnitude in figure 12;
these dominant modes are marked by blue pentagrams. In the m–n plane we observe
that the peak modes appear to be regulated in a seemingly uniform arrangement within
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Figure 13. Temporal fitting of dominant modes for three experimental cases of Faraday waves: plots
(a,c,e) show the resulting am,n(t) time series; and (b,d, f ) pseudo-colour diagrams, where ω/ω0 equals l, show
the normalized magnitude γ̂m,n,l of multiple frequency components, demonstrating the frequency distribution
of selected dominant ν-basis modes (m, n)ν . Deeper-coloured blocks with larger γ̂m,n,l represent dominant
frequency components of given dominant modes. Results are shown for (a,b) (2, 3) ξ = 0.2 mm, Ω0/2π =
15.5 Hz; (c,d) (4, 2) ξ = 0.175 mm, Ω0/2π = 15.2 Hz; (e, f ) (3, 3) ξ = 0.15 mm, Ω0/2π = 18.5 Hz.

a constrained range of m and n values. We connect these peak modes with solid lines and
dashed lines in two directions in figure 14(a–c). For simplicity, we heuristically refer to
the sequences of uniformly arranged peak modes on solid lines and dashed lines as peak
chains and frequency levels, respectively.

The peak chains starting at (1, ζ )ν for modes (2, 3), (3, 3) and (4, 2) are given by

(1, 3)2 → (2, 5)2 → (3, 7)2 → (4, 9)2 → · · · ,

(1, 3)3 → (2, 5)3 → (3, 7)3 → (4, 9)3 → · · · ,

(1, 2)4 → (2, 3)4 → (3, 4)4 → (4, 5)4 → (5, 6)4 → · · · ,

⎫⎪⎬⎪⎭ (4.6)

where the right arrows specify the primary transmission direction of energy and
spatiotemporal information as discussed in the following sections. Interestingly, the indices
m and n of a particular peak chain are in the order of an arithmetic progression, i.e. the next
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Figure 14. Pseudo-colour diagrams that indicate the magnitude log10 γm,n of the ν-basis modes for three
investigated modes (a–c), with corresponding peak modes in figure 12 marked by hollow circles. These
dominant modes are also marked by blue pentagrams. Peak modes are uniformly arranged in the m–n plane
and connected by solid lines and dashed lines in two directions, which refer to peak chains and frequency
levels, respectively. Four peak chains of mode (3, 3) are identified in (d). The pseudo-colour illustrations
of γ̂m,n,l demonstrate the frequency distribution of peak modes (m, n)ν on a certain peak chain (e) and four
specific frequency levels. Colour scales for log10 γm,n and γ̂m,n,l are given on the right. Results are shown for
(a) (2, 3) ξ = 0.2 mm, Ω0/2π = 15.5 Hz; (b) (4, 2) ξ = 0.175 mm, Ω0/2π = 15.2 Hz; (c) (3, 3) ξ = 0.15 mm,
Ω0/2π = 18.5 Hz; (e) (1, 3)3 → (2, 5)3 → (3, 7)3 → (4, 9)3.

peak mode after (m, n)ν is always (m + 1, n + 2)ν for modes (2, 3) and (3, 3), whereas
that for (4, 2) is (m + 1, n + 1)ν , which is related to the first two peak modes in any
given peak chain. Hence, we suggest that the uniform arrangement of peak modes is
arithmetic-progression-like. Moreover, more than one uniformly arranged peak chain can
be discerned for any arbitrary (ν, ζ ) mode. For example, four peak chains for the (3, 3)

mode are indicated in figure 14(d), where the peak modes are arranged according to the
solid lines and dashed lines in figure 14(c). A similar analysis is next carried out for the
frequency characteristics of peak modes on solid lines (peak chains) and dashed lines
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(frequency levels) for (3, 3). As shown in figure 14(e), the frequency distribution for these
modes in a certain peak chain demonstrates that the dominant frequency components lω0
(deep blocks) are uniformly arranged with increasing l along the peak chains, which is
also arithmetic-progression-like. For example, the lth mode in the peak chains starting
at (1, ζ )ν is lω0 dominant. A more universal rule is that a mode in a certain chain is
lω0 dominant whereas the next mode is (l + 1)ω0 dominant. Figure 14( f ) shows the
frequency distribution of these peak modes at four frequency levels. One can observe
that those modes at the same frequency level possess the same dominant frequency (lω0)
provided that the frequency levels are sorted in a 1, 2, . . . , l, . . . sequence corresponding
to the increasing dominant frequency of modes along the peak chain. White blocks
represent a lack of corresponding frequency components in the peak modes, whose
uniform arrangements in figure 14(e, f ) reveal that these peak modes on peak chains
and frequency levels are either subharmonic (only odd l) or harmonic (only even l).
However, an exception exists for (2, 2) whereby (2, 2)2 and (2, 5)2 have impure frequency
distributions, as evident in figure 13(a,b), due to co-interference. This invariably occurs
when two dominant modes occur with the same azimuthal structures excited by surface
instability.

Hence, according to the frequency distributions, we define the modal decomposition of
(ν, ζ ) by

(ν, ζ ) =
∞∑

n=1

∞∑
m=1

[
(m, n)sh

ν + (m, n)h
ν

]
, (4.7)

where the quantities m, n and ν indicate spatial characteristics, and the superscripts sh
and h represent temporal characteristics. Accordingly, the temporal expression (4.3) is
rewritten as the following combination of subharmonic and harmonic components:

am,n(t) =
∞∑

l=0

χn
l cos 2 lω0t︸ ︷︷ ︸

harmonic

+
∞∑

l=0

χ̂n
l cos (2l + 1)ω0t︸ ︷︷ ︸
subharmonic

. (4.8)

4.3. Modal interaction with energy transfer
We next pay attention to the mechanism of arithmetic-progression-like arrangements
of peak modes in the m–n plane (see figure 14a–c) and their frequency distributions
(see figure 14e, f ). We recall that the spatiotemporal decomposition of mode (ν, ζ ) is
in the form of ν-basis modes (m, n)ν , and the minimum spatiotemporal component of
(m, n)ν is expressed as cos lω0t cos mνθ Jmν(δmν,nr). To describe the generation of the
arithmetic combination of mode indices, we provide a qualitative derivation based on
the simple multiplication of two minimum spatiotemporal components, which represents
the interaction of the l1ω0 component of mode (m1, n1)ν and l2ω0 component of mode
(m2, n2)ν ,

cos l1ω0t cos m1νθ Jm1ν(δm1ν,n1r) cos l2ω0t cos m2νθ Jm2ν(δm2ν,n2r)

= cos m1νθ cos m2νθ Jm1ν(δm1ν,n1r)Jm2ν(δm2ν,n2r)︸ ︷︷ ︸
(I)

cos l1ω0t cos l2ω0t︸ ︷︷ ︸
(II)

, (4.9)

where m1, m2, n1, n2, l1 and l2 are positive integers; and terms (I) and (II) are spatially
and temporally related products. Self-interaction is approximated by the overall operation
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(4.9) with m1 = m2, n1 = n2 and l1 = l2. Due to the pinned boundary condition, the
zero points of the two Bessel functions in term (I) at r = 1 are coincident, and so the
number of nodes of the Bessel function product in the radial interval (0 < r ≤ 1) is
n1 + n2 − 1. Moreover, the azimuthal terms cos (m1 − m2)νθ and cos (m1 + m2)νθ are
derived from the multiplication of two cosine functions. Hence, we obtain a criterion
that the interaction of (m1, n1)ν and (m2, n2)ν , which both lie on a certain peak chain,
is necessary for a new mode (m1 + m2, n1 + n2 − 1)ν to be created belonging to the same
peak chain. It can be verified that peak chains in figure 14(a–c) satisfy this criterion, and
thus, the rule of arithmetic-progression-like arrangement of peak modes in the m–n plane
follows accordingly. Similarly, for term (II), two frequency components cos |l1 − l2|ω0t
and cos |l1 + l2|ω0t are generated from the interaction between the l1ω0 component and
l2ω0 component. The dominant frequency of these peak modes along the peak chain (4.6)
also increases progressively as shown in figure 14(e), and is consistent with the simple
nonlinear interaction of modes on peak chains. Here, using the simple multiplication
(4.9), we provide typical examples about (4, 9)3 to display mode interaction on peak
chains. The generation of (4, 9)3 originates from (a) the interaction of (1, 3)3 and (3, 7)3
and (b) the self-interaction of (2, 5)3, which both induce three frequency components
(0, 2ω0 and 4ω0) as evident in figure 14(e). Self-interaction is usually a relatively weak
process in wave interaction. Similar nonlinear interactions appear between arbitrary, two
or more, peak modes, and so other peak modes of larger m and n with specific frequency
distributions in peak chains emerge accordingly, which result in the uniform arrangements
of peak modes and dominant frequency components displayed in figure 14. Note that peak
chains (4.6) labelled with right-directed arrows indicate that the two preceding modes
can (self-)interact to generate a third mode, which we refer to as resonance involving
three standing modes. Although nonlinear wave interactions in the present experimental
system are far more complex than represented by simple multiplication (4.9), such schemes
nevertheless enable us to understand the spatiotemporal structures of harmonics induced
by wave interaction.

Furthermore, although the aforementioned results are derived from the surface fitting
of symmetric Faraday waves at the final steady state in experiments where the driving
parameters much exceed the instability threshold, the chain-like dynamics of superposed
standing wave components, identified as ν-basis modes, enable us to backtrack the
pattern formation. Rajchenbach et al. (2013) suggested a mechanism based on three-wave
resonance to explain the triggering of parametrically forced surface waves with certain
symmetries that were observed in the experiments. However, such a nonlinear mechanism
can only describe the initial response and does not account for the presence of high-order
harmonics in the final periodic state. Using modal decomposition, we gain insight into the
mechanism that enhances symmetries triggered during the initial response period as they
evolve to reach steady states. Here, analogous resonant coupling between three standing
waves is used to describe the observed spatiotemporal characteristics of high-order
harmonics, as introduced in (4.9). The interaction between two primary modes, (m1, n1)ν
and (m2, n2)ν , can result in the emergence of a secondary mode (m1 + m2, n1 + n2 − 1)ν ,
allowing for continuous energy supply. By extending the mechanism in Rajchenbach
et al. (2013) and incorporating nonlinear wave interactions, we provide a comprehensive
explanation of overall pattern formation in our experiments. At first, using energy supplied
from the forcing vibration of the shaker, surface instability is triggered resulting in
the emergence of dominant modes, which are either subharmonic (ω0 dominant) or
harmonic (2ω0 dominant). Their symmetries are selected by the contact angle between
two waves involved in three-wave resonance. Once these dominant modes are established,
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they become locked and subsequently grow. Persistent nonlinear wave interactions,
including self-interactions, take place with sustained energy transfer, and peak chains and
frequency levels with specific spatiotemporal characteristics are then uniquely determined.
Consequently, newly formed wave components with complex spatiotemporal structures
originate from the coupled interaction of several dominant waves and simultaneously
extract a small amount of energy. After a certain number of forcing cycles, the pattern
evolution process becomes steady, and a balance is achieved among energy supply, transfer
and dissipation. In this way, energy transfer in each investigated wave (ν, ζ ) primarily
occurs along the peak chain (4.6), and the arithmetic-progression-like arrangement is
determined by dominant modes and wave interactions. Hence, the wave components
involved can be classified as being of two types: dominant modes determined by the
effect of parametric instability at the air–liquid interface; and harmonics induced by wave
interactions. The generation of dominant modes is still not fully understood, and therefore,
it is crucial to provide theoretical verification regarding the selection of these dominant
modes.

5. Theoretical verification

We recall that Faraday wave response of single symmetry involves the superposition of
a few eigenmodes with certain wavelengths selected in a small system. Linear stability
analysis of such a system using appropriate modal solutions (eigenmodes) in inviscid
governing equations has been undertaken to predict the instability threshold for cases of
the free contact-line condition Benjamin & Ursell (1954) and pinned contact-line condition
(Kidambi 2013). The accuracy of these theoretical predictions depended on the selection
of modal solutions, the treatment of viscous damping and the contact-line condition.
A recent study by Bongarzone et al. (2022) carefully incorporated these factors in a
weakly nonlinear analysis. Note that investigated modes observed above the instability
threshold can be regarded as the response that is composed of purely subharmonic modes
near onset caused by strong nonlinearity, primarily determined by the control distance.
We assume that these dominant modes naturally emerge as the selected response due
to surface instability. Based on the definition of eigenmodes (ν-basis modes), we now
introduce a linear stability analysis, inspired by Kidambi (2013), to verify the existence of
the aforementioned dominant modes.

5.1. Theory of inviscid Faraday waves in a brimful cylinder
Consider the vertical forced oscillation of liquid in a brimful cylindrical container of
radius R and height H shown in figure 9(b). The container is filled to the brim with a
low-viscosity liquid (i.e. water) of density ρ and surface tension σ such that the contact line
of the liquid surface and the lateral wall remains pinned during the course of continuous
oscillation. Surface patterns and interface deformation η(r, θ, t), restored by gravity g
and surface tension σ , are generated under the parametric driving force expressed by
dimensionless acceleration amplitude ε and dimensionless angular frequency Ω . Here,
linear spatial dimensions are scaled by R, time by

√
ρR3/σ , velocity potential by

√
σR/ρ

and acceleration by g. Dimensionless governing equations are used in the linear stability
analysis of the free-surface disturbance. Assuming the liquid is inviscid and irrotational,
the velocity potential φ satisfies Laplace’s equation

∇2φ = 0. (5.1)
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No-penetration conditions at the bottom and lateral walls of the container are given by

∂φ

∂z

∣∣∣∣
z=−h

= 0,
∂φ

∂r

∣∣∣∣
r=1

= 0, (5.2a,b)

where dimensionless height h = H/R.
At the free surface, assumed to be at z = 0, the kinematic condition,

∂φ

∂z
= ∂η

∂t
, (5.3)

and the dynamic condition,

∂φ

∂t
+ Bo(1 − ε cos Ωt)η −

(
∂2η

∂r2 + 1
r

∂η

∂r
+ 1

r2
∂2η

∂θ2

)
= 0, (5.4)

both hold under linearisation for small deformation |η| � 1, where Bo = ρgR2/σ , ε =
A0/g and Ω = Ω0

√
ρR3/σ .

The pinned contact-line condition and the volume conservation condition in a
cylindrical domain are given by

η|r=1 = 0 (5.5)

and ∫ 2π

0

∫ 1

0
η(r, θ, t)r dr dθ = 0. (5.6)

In our experiments we explored modes excited above the Faraday threshold where wave
resonance is ubiquitous. Although the modal patterns remained symmetric and periodic,
small deformations occurred (mainly in the transition period) compared with pure modes
at critical conditions. Although the azimuthal mode number ν of a certain mode can be
identified intuitively, ν is not in itself sufficient to express transitional patterns where
azimuthal nodes are typically multiples of ν. We recall that components of multi-azimuth
modes were introduced to indicate the spatial structure of Faraday waves in § 3. Inspired
by the forms of η and φ given by Kidambi (2013) who derived a remarkably applicable
expression for the onset of pure mode oscillation, we utilise the following pair of functions
formed from eigenmodes cos mνθ Jmν with multiple azimuths in a cylindrical domain,

η(r, θ, t) =
∞∑

m=1

∞∑
n=1

am,n(t) cos mνθ Jmν(δmν,nr) (5.7)

and

φ(r, θ, z, t) =
∞∑

m=1

∞∑
n=1

bm,n(t) cos mνθ
cosh kmν,n(z + h)

sinh kmν,nh
Jmν(kmν,nr), (5.8)

where δmν,n is the nth root of the Bessel function Jmν , and kmν,n is the nth root
of function J′

mν . Equations (5.7) and (5.8) are two improved functions comprising
complex components cos mνθ coupled with radial parameter r that satisfy governing
equations ((5.1)–(5.2)) and (5.5). The truncated form of (5.7) is given by (4.1), which
characterizes the spatial structures of the modes investigated in our experiments. It should
be noted that the aforementioned pair of functions only ensure sufficient validity provided
the following constraints are met.
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The volume conservation condition (5.6) holds naturally for non-axisymmetric modes
(ν /= 0). For axisymmetric modes (ν = 0), where multi-azimuth structures are not
observed, volume conservation requires

∞∑
n=1

an

∫ 1

0
J0(δ0,nr)r dr = 0. (5.9)

Similar to the derivation procedure by Kidambi (2013), we obtain coupled Mathieu
equation systems for each m by introducing ((5.7)–(5.8)) into ((5.3)–(5.4)) and solving
coefficients bm,n from coefficients am,n. With truncated limits M and N respectively for m
and n (MN ν-basis modes), the m-determined Mathieu equations are given by

d2am

dT2 + (P − 2Q cos 2T)am = 0, (5.10)

where T = Ωt/2, am is the amplitude vector composed of am,n (n = 1, 2, . . . , N) and
two non-diagonal functional matrices P and Q, whose detailed elements are shown in
Appendix A, are related to the driving parameters, Bond number and given azimuthal
mode number ν. Therefore, M numerical systems comprising coupled Mathieu equations
are obtained. Note that we have included multi-azimuth wave terms cos mνθ Jmν into the
expressions for the free-surface elevation and velocity potential to describe steady-state
pattern evolution, and thus, different coupled Mathieu equations are generated according
to each azimuthal multiplier m. Herein, the stability analysis of parametric resonance above
the Faraday threshold involves coupled analysis of corresponding stability results from M
numerical systems.

The Mathieu equation (5.10) has been widely applied to the mechanics of nonlinear
oscillations (McLachlan 1951; Nayfeh & Mook 1995). Floquet theory is typically used to
identify the solutions and perform a stability analysis of the Mathieu equation. We use
Hill’s infinite determinant method (Hill 1886) to determine the form of the series solution
and the stability regions of the Mathieu equation (5.10) in the Ω–ε plane. In previous
studies of Faraday waves, Nayfeh & Mook (1995) and Kidambi (2013) utilised the infinite
determinant method when conducting stability analysis of the m = 1 mode; here we extend
their work to determine solutions for larger-m modes.

According to Floquet theory, we use a solution of the mth system (5.10) in a truncated
form of Fourier expansion with 2L + 1 unknown coefficient vectors with N components,
αl (l = 0, 1, . . . , L) and β l (l = 1, 2, . . . , L), such that

am(T) = e�mT

( L∑
l=0

αlei2 lT +
L∑

l=1

β le
−i2 lT

)
, (5.11)

in which �m is the characteristic exponent related to the azimuthal multiplier m. The
vector am has period 2π for subharmonic resonance and π for harmonic resonance, and
�m = i (or 0) is selected to obtain the subharmonic (or harmonic) solution (Kidambi 2013).
As previously mentioned, (4.8) provides a highly accurate description of the temporal
decomposition of the ν-basis mode (m, n)ν . In practice, the selection of �m is closely
linked to the periodicity of each mode mentioned in § 4.1, and so we set �m = i for
subharmonic components (m, n)sh

ν (or 0 for harmonic components (m, n)h
ν) to obtain

subharmonic (or harmonic) resonance regions. Equation (4.8) combines the real form
of (5.11) for �m = i with that for �m = 0. In this way, the final subharmonic solution
of the explored modes, which is ω0 dominant in our experiments, comprises the sum of
subharmonic and harmonic components.
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Substituting (5.11) into (5.10) and taking orthogonality of the Fourier series eil2T (l =
0, ±1, ±2, . . .) into consideration, we obtain the m-determined equation system, whose
detailed generation is in Appendix B, given by

Gv = εHv, (5.12)

where G and H , both (2L + 3)N × (2L + 1)N, are two functional matrices originating
from P and Q/ε, respectively, and v is the solution vector given by

v = [v̂1; · · · ; v̂n; · · · v̂N], v̂n = [αn
0, . . . , αn

L, βn
1 , . . . , βn

L]T. (5.13a,b)

Note that the additional 2N-row elements in matrices G and H are relevant to the terms
e±i2(L+1)T arising from the expansion of cos 2Te±i2LT and so the corresponding rows of
G are zero. We adjust these zero rows to the bottom to obtain the following sub-matrices:

G =
[

Ĝ1
0

]
, H =

[
Ĥ1
Ĥ2

]
. (5.14a,b)

Here Ĝ1 and Ĥ1 are (2L + 1)N-tuple sparse matrices, and Ĥ2 is the coefficient matrix of
the 2N equations related to terms e±i2(L+1)T .

Since the matrices G and H are not square, the system (5.12) is over-determined and so
is difficult to solve. Hence, (5.12) needs to be altered so that it is solvable as an eigenvalue
problem. To achieve this, two approximate methods are introduced. The first involves
pre-multiplying (5.12) by a (2L + 1)N × (2L + 3)N matrix H† and H†H = I (identity
matrix) so that

Cv = εv, C = H†G. (5.15a,b)

Then a least-square solution to the generalized inverse matrix H† can be easily obtained
with Matlab operator ‘/’, i.e. H† = I/H . The second method involves neglecting equations
involving ei2(L+1)T and e−i2(L+1)T so that a straightforward generalized eigenvalue
problem is generated as

Ĝ1v = εĤ1v. (5.16)

In practice, the predictions of eigenvalue ε by the two methods are relatively close. The
accuracy of the first method mainly depends on the inverse calculation of H†, and the
method may not work well when N is very small. Although the second method incurs
some error, the highly sparse structure of the bottom blocks of G and H indicate that there
is little impact on the eigenvalues (see also Kidambi 2013). Note that the stability analysis
in this paper is based on the eigenvalue problem (5.16) for these non-axisymmetric modes
(ν /= 0), but for the axisymmetric modes, additional equations (5.9) should be taken into
account.

In the numerical procedure, for given Ω and constant experimental parameters, we
generate the matrices P, Q, G and H sequentially, and solve (5.16) using the Matlab
eig() function to obtain the ε eigenvalues. Then, stability regions for given ν and m are
reproduced in the Ω–ε plane by real eigenvalues (Im(ε) = 0) as they intercept the complex
space of ε. It should be noted that, for a certain ν, different m lead to different G, H
resulting in 2M stability diagrams corresponding to ν-basis modes (m, ·)sh

ν and (m, ·)h
ν ,

where m = 1, 2, . . . , M. Hence, joint analysis of 2M stability diagrams is necessary to
confirm the presence of the dominant modes in figure 12.
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5.2. Dominant modes triggered by surface instability
To connect the theoretical predictions with the experimental data, we consider stability
analysis of the excited modes in figure 12. Recall that the surface expression (5.7)
comprises the sum of ν-basis modes (m, n)ν where the upper limits of the modal indices
are set to m = M and n = N. The surface-fitting results in figure 12 indicate that: N should
be sufficiently large to obtain converged results for each m; and the combination of ν-basis
modes with a restricted m should provide a fair representation of the spatial structure of
the modes of interest. To this end, we first compute the stable and unstable regions, known
as stability tongues, with increasing N (= 1, 2, 3) and constant L (= 5) for subharmonic
(1, ·)sh

3 and harmonic (1, ·)h
3 modes. Figure 15(a,b) depict the bottom boundary of unstable

tongues for subharmonic cases and harmonic cases, respectively. Unstable tongues in the
dimensionless Ω–ε plane, determined from the eigenvalue equation (5.16), intersect to
form fundamental resonance tongues (FRTs) whose bottoms correspond to ε = 0 due to
the neglect of viscous damping in the analysis. Combination resonances, which normally
appear on the FRTs when Bo (≈ 275 herein) is finite, have two effects: the parametric
range of unstable resonances increases; and the oscillatory evolution of corresponding
modes is non-periodic (Kidambi 2013). The FRTs emerge at fundamental frequencies
(the bottom of tongues) where pure Faraday modes (m, n)ν are excited. The CRTs arising
from the combination frequencies densely overlap with FRTs, thus contributing to larger
unstable regions. Additionally, the narrower harmonic tongues indicate that subharmonic
resonances are more readily excited in vibration experiments. Both FRTs and CRTs
increase with radial multiplier n, and the number of FRTs calculated using N modes
is always equal to N. Given that these FRTs are closely correlated with ν-basis modes
(m, n)ν , we artificially label the FRTs (from left to right) as (1, n)sh

3 or (1, n)h
3 (n = 1, 2, 3).

For other cases with varying m and ν, FRTs in the Ω–ε plane can be named similarly to
those in the selected cases. Kidambi (2013) calculated CRTs by means of mapping at a
period and found the corresponding oscillatory states were non-periodic. Combination
resonances at the boundaries of the CRTs may be regarded as wave couplings among
different modes of the same symmetry and slowly evolving amplitude, unlike the pattern
competition in different symmetries discussed by Ciliberto & Gollub (1984, 1985a).
It is challenging to observe such quasi-periodic or chaotic combination resonances in
experiments due to the narrow frequency bandwidths of CRTs and the requirement for
careful selection of driving parameters to ensure other symmetric modes are absent.
An experimental investigation of non-periodic CRTs is beyond the scope of the present
paper, and so we restrict our discussion of modal verification to comparison of periodic
observations with corresponding FRTs.

Subsequently, larger truncation limits were incorporated to obtain converged
calculations. In analysing the emergence of dominant modes through spatiotemporal
surface fitting, we primarily focus on the narrow domain of 0 ≤ ε ≤ 0.4 because
our experimental condition (ε < 0.4) is slightly above the Faraday threshold. This
restricted-ε range can embrace small CRTs while avoiding the perplexing intersection
of resonance tongues at large ε, thus improving stability analysis for verifying the
foregoing dominant ν-basis modes. In the case of small Bo = 275 (as investigated in
the experiments), convergence necessitates numerous modes (large N) (Kidambi 2013).
As demonstrated in figure 16, converged FRTs are achieved with N = 15 and L = 5,
signifying the parameter selection for fitting spatiotemporal structures of the experimental
modes considered herein. Herein, the phenomenological criterion of a close positional
relationship between experimental observations and stability tongues in the Ω–ε plane
is used to verify the existence of dominant modes. In figure 16 the symbols denoting
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Figure 15. Predicted resonance tongues of harmonic modes (a) and subharmonic modes (b) obtained for
N = 1, 2, 3, m = 1, ν = 3 and L = 5. The fundamental resonance tongues (FRTs) are labelled sequentially
according to corresponding ν-basis modes. The insets show CRTs that emerge as N increases, and which
usually intersect with FRTs. Only the bottom boundaries of the resonance tongues are displayed here.

0.4

0.3

(1
, 
2
) 3sh

(1
, 
3
) 3sh

(1
, 
4
) 3sh

(1
, 
5
) 3sh

0.2

0.1

0
80 100 120 140 160 180 200 220

(3, 2)

(3, 3)

(3, 4)

(3, 5)

N = 15, L = 5

N = 15, L = 6

N = 16, L = 5

ε

Ω

Figure 16. Converged stability plot for four subharmonic dominant tongues (1, ·)3 in a local window of small
ε. The four corresponding experimental modes are in one-to-one correspondence with these FRTs.

the driving parameters of four experimental modes (3, ζ ) (ζ = 2, 3, 4, 5) are situated
reasonably near the left boundary of the corresponding subharmonic FRTs (1, ζ )sh

3 (ζ =
2, 3, 4, 5), indicating that these most dominant ν-basis modes (1, ζ )sh

3 (as described earlier
in the analysis of surface-fitting results) can be possibly excited by the indicated driving
parameters.

By utilising the close positional relationship between an investigated mode (ν, ζ ) and
the (sub)harmonic FRTs (m, n)ν in the Ω–ε plane, we are able to confirm qualitatively
the potential existence of such dominant modes, denoted in figure 12. Figure 17 compares
stability plots obtained for the driving parameters (Ω, ε) and the corresponding FRTs
calculated by varying m and �m for three investigated modes (2, 3), (3, 3) and (4, 2).
Several ν-basis modes can be identified based on their close positional relationships, which
invariably agree with the spatiotemporal surface-fitting results. For modal interaction
(ν, ζ ), the principal subharmonic mode is typically (1, ζ )sh

ν and the principal harmonic
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Figure 17. Stability plots for subharmonic tongues (a,c,e) and harmonic tongues (2, ·)h
ν (b,d, f ) corresponding

to three experimental modes (2, 3), (3, 3) and (4, 2). Black triangles denote the indicated parameters of the
three investigated modes. Only overlapping CRTs associated with these FRTs representing tongues (m, n)sh

ν

and (m, n)h
ν are displayed here. The close positional relationships between the experimental observations and

stability tongues indicate the dominant modes excited by surface instability. Results are shown for (a,b) (2, 3)

ξ = 0.2 mm, Ω0/2π = 15.5 Hz; (c,d) (4, 2) ξ = 0.175 mm, Ω0/2π = 15.2 Hz; (e, f ) (3, 3) ξ = 0.15 mm,
Ω0/2π = 18.5 Hz.

mode is (2, ζ̂ )h
ν , where ζ̂ is determined by the dispersion relation. The existence

of secondary subharmonic modes (2, 2)sh
2 and (3, 1)sh

3 is also confirmed, indicating
the potential emergence of more than one subharmonic mode. These identified wave
components are considered to be dominant modes triggered by surface instability,
which are coincident with ω0-dominant or 2ω0-dominant peak modes. Meanwhile, other
incompatible modes, such as (1, 2)sh

3 , (1, 4)sh
3 and (3, 2)sh

3 for the (3, 3) case, appear to
exhibit no or only a weak response in the cases studied. Additional wave components
with relatively weak amplitudes at the ω0-dominant or 2ω0-dominant frequency levels can
be identified from stability analyses for different m and �m. Hence, it is both significant
and convenient to classify qualitatively these dominant peak modes through linear stability
analysis, enabling us to achieve a deep understanding of the mechanism behind the full-life
wave response, as explained in § 4.3.

In addition, validation tests of m = 1 were performed by comparisons with experimental
observations by Shao et al. (2021b) and numerical results by Kidambi (2013). Our
calculated results exhibit reasonable agreement with those of Shao et al. (2021b) and
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reproducibility with those of Kidambi (2013). However, the close positional relationships
in our analyses present a slight rightward shift in the discrepancies of instability
tongues, which are strongly influenced by nonlinear effects present in the experiments.
Based on high-resolution surface reconstructions, averaged estimates of local surface
steepness can readily be made to evaluate the effect of nonlinearity. For the surface field
in figure 8(b), the maximum radial steepness η/r|θ=0 ≈ 0.125 and the maximum
azimuthal steepness η/(rθ)|r=0.357 ≈ 0.123 can be calculated using the ratio of
elevation differences (η) to transversal spatial differences (r or rθ ) of neighbouring
peaks and troughs. The maximum local steepness is small but not insignificant, indicating
that the nonlinearity involved is not negligible but instead relatively weak. Additionally,
natural frequencies for the pinned contact-line cases are invariably larger than those with
freely sliding contact-line dynamics (Bostwick & Steen 2015; Wilson et al. 2022). This
suggests that the frequency difference between the experimental case and theoretical
prediction may be due to the non-ideal contact-line condition in our experiments, and
the loss of the pinned end being exacerbated by the strong forcing. Meanwhile, decoupling
analyses for different-m cases cannot explain existing nonlinear wave behaviour, which
is typically described by cubic or higher-order terms in amplitude equations (Meron
1987). The foregoing highlights the need for a coupled, nonlinear analysis of subharmonic
and harmonic solutions for comparison against experimental resonances excited above
the Faraday threshold. However, the foregoing positional relationships are sufficient for
qualitative confirmation of these dominant modes, thus, further supporting the validity
and rationality of modal decomposition.

6. Conclusions

The steady-state pattern evolution of symmetric Faraday waves (ν, ζ ) in a brimful cylinder
was investigated using high-resolution, full 3-D spatial reconstruction based on the
FS-SS method. The resulting surface was validated by considering volume conservation.
Resonant waves excited above the critical threshold gave rise to deformed surface patterns
and localized travelling waves during the small-elevation phases of evolving cycles.
Quantitative analysis showed that existing wave interactions with energy transfer bring
about multi-azimuth structures of multi-frequency wave components in observed Faraday
waves; this is in phenomenological agreement with stability verification. A series of pure
ν = 0 ∼ 8 modes occurred in a narrow acceleration window above the critical acceleration
AF. A spatial expression of multiple azimuths was derived for modal amplitude as the sum
of ν-basis modes (m, n)ν .

The ω0- and 2ω0-dominant peak modes were identified as dominant modes of
(ν, ζ ). The most dominant mode of (ν, ζ ) was invariably (1, ζ )ν , which determined
its spatial structures. Several peak chains and frequency levels were screened out
according to the distribution of peak modes, with their m and n indices regulating
an arithmetic-progression-like arrangement, explained by a simple product operation
between two minimum spatiotemporal components. The frequency distribution of wave
components revealed the resonant energy distribution, from which it was discovered that
the path of energy transfer was synchronous with the wave interactions.

Pattern formation and energy transfer were explained as follows. Surface instability
triggered by parametric forcing caused the emergence and growth of certain dominant
modes causing the surface pattern to appear non-stationary. Wave interactions of dominant
modes led to multiple peak modes comprising multi-frequency components of relatively
large amplitude, accompanied by energy transfer and the transmission of spatiotemporal
information. An analogous linear stability analysis, inspired by Kidambi (2013), verified
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the emergence of dominant modes already identified in the surface-fitting results. Using
specialized functions formed from eigenmodes cos mνθ Jmν with multiple azimuths in
a cylindrical domain, the resulting systems of coupled Mathieu equations generated
m-determined solutions of the dynamics of (m, ·)sh

ν and (m, ·)h
ν modes. The close positional

relationship between the driving parameters and designated FRTs representing ν-basis
modes (m, n)ν qualitatively confirmed the possible excitation of dominant modes in
the surface-fitting results. This further corroborated the proposed mechanism of pattern
formation.

The modified FS-SS method was applied to a circular domain to provide a full
3-D spatial view of the small-scale structures of resonant waves. Due to restrictions
encountered in ensuring the validity of the reconstructed results, we were only able to
determine a limited number of wave modes of weak surface slope within a restricted
window of driving parameters. Hence, our experimental methodology and reconstruction
algorithms require further development to improve the choice of experimental parameters
and calculation efficiency. Although the present paper did not examine initial pattern
growth because the experimental focus was solely on steady-state Faraday waves, the
response process can be backtracked using modal decomposition. Alternative optical
detection methods, such as time-averaged, long exposure imaging (Ciliberto & Gollub
1984, 1985a,b; Shao et al. 2021b) and single-point surface detection methods using laser
Doppler vibrometry (Kharbedia et al. 2021) or position sensitive detectors (Ciliberto &
Gollub 1985b), could be used to capture the wave behaviour throughout the lifespan of
Faraday waves. However, these alternative methods either lack the ability to reveal specific
details of pattern evolution at any cycle phase or else only offer limited spatial information
about the liquid surface. To capture complete spatial patterns, three camera modifications
are available: lower shooting frame rate, stroboscopic imaging (Strickland, Shearer &
Daniels 2015) and lock-in time-series detection (Ciliberto & Gollub 1985a). Although
the exact mechanism that triggers surface instability remains unknown, we suggest that
three-wave or multi-wave resonance (Rajchenbach et al. 2013) may be responsible. In
future work this assertion may be verified through analysis of the early development of
resonant waves when wave interactions of dominant modes are weak. Finally, it should be
noted that the present stability analysis did not consider the damping effects originating
from the liquid viscosity and nonlinear effects induced by the thin layer, pinned boundary
and strong driving forces. Although linear instability analysis can verify the possible
existence of wave components, such analysis appears to be phenomenological and cannot
explain the nonlinear behaviours of wave components, such as phase differences among
dominant modes. Meanwhile, the explanatory schemes for the wave interaction process,
which leads to the emergence of harmonics along with sustained energy transfer, are
seemingly crude. Even so, it is worth noting that discrete stability analysis of various
possible wave components, based on m-determined solutions, provides promising insight
into the detection of wave couplings.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.838.
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Appendix A. The formation of coupled Mathieu equations

In § 5 we introduce a linear stability analysis method that considers multi-azimuth wave
components. Maintaining linear independence of the cosine series, we obtain systems for
each m by introducing (5.7)–(5.8) into (5.3)–(5.4), giving

∞∑
n=1

[
dam,n

dt
Jmν(δmν,nr) − kmν,nbm,n Jmν(kmν,nr)

]
= 0, (A1)

∞∑
n=1

[
dbm,n

dt
coth kmν,nh Jmν

(
kmν,nr

) + am,n

(
Bo + δ2

mν,n − εBo cos Ωt
)

Jmν(δmν,nr)
]

= 0.

(A2)

In the numerical computations, the upper limits of m and n were set to M
and N, and the number of ν-basis modes (m, n)ν truncated to MN. By performing
inner-product operations 〈f (r), Jmν(δmν,nr)〉 = ∫ 1

0 rf (r) Jmν(δmν,nr) dr on (A1)–(A2) and
applying weighted orthogonality of Bessel functions to simplify the equations, we obtain

dam

dt
− Abm = 0, (A3)

B
dbm

dt
+ (P̂ − 2Q̂ cos Ωt)am = 0, (A4)

where am, bm are the mth coefficient vectors denoting am = [am,1, am,2, . . . , am,N]T and
bm = [bm,1, bm,2, . . . , bm,N]T, respectively, and the components of the corresponding N ×
N matrices are given by

Ai,j = kmν,j
〈Jmν(kmν,jr), Jmν(δmν,ir)〉
〈Jmν(δmν,ir), Jmν(δmν,ir)〉 , (A5a)

Bi,j = coth kmν,jh
〈Jmν(kmν,jr), Jmν(δmν,ir)〉
〈Jmν(δmν,ir), Jmν(δmν,ir)〉 , (A5b)

P̂ i,j =
{

Bo + δ2
mν,i, i = j,

0, i /= j,
(A5c)

Q̂i,j =
{
εBo/2, i = j,
0, i /= j. (A5d)

Determining bm from (A3) and substituting into (A4), we obtain

BA−1 d2am

dt2
+ (P̂ − 2Q̂ cos Ωt)am = 0, (A6)

which solely includes the vector am.
Lastly, we convert (A6) to a form that resembles the uncoupled Mathieu equation

d2am

dT2 + (P − 2Q cos 2T)am = 0, (A7)

where T = Ωt/2, P = 4AB−1P̂/Ω2 and Q = 4AB−1Q̂/Ω2.
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Appendix B. The generation of generalized eigenvalue problems

An infinite determinant method based on Floquet theory is applied to derive a procedure
for the generation of generalized eigenvalue problems. The solution of the mth system (A7)
is equivalent to that of a system of 2N first-order ordinary differential equations (ODEs)

ȧm = D(T)am, (B1)

where D(T) is a π-periodic matrix with N × N components. Note that D(T) is closely
associated with P and Q but the generation of D(T) is not discussed in this work.

According to Floquet theory, the bounded periodic solutions of (A7) exhibit a series
angular frequency lω0 with l the order of resonance and ω0 half the driving frequency.
The form of a solution of the resulting ODEs system (B1) can be introduced as

am(T) = e�mTp(T), (B2)

where �m is the characteristic exponent with corresponding characteristic multiplier λm =
e�mπ, and p(T) is a periodic vector satisfying p(T + π) = p(T). In Floquet theory λm
is determined as the maximum-module eigenvalue of the ν-basis matrix, with |λm| ≤ 1
accounting for unstable regions. The vector p(T) is represented by a truncated form of
Fourier expansion with 2L + 1 unknown coefficient vectors with N components, such that
expression (5.11) is obtained.

Then we consider the nth equation of the mth system by substituting (5.11) into (5.10),
and the derived equation is given by

�2
mαn

0 +
N∑

j=1

[
Pn,jα

j
0 − εQ̃n,j

(
α

j
1 + β

j
1

)]

+
L−1∑
l=1

⎡⎣(
�2

m + 4i�ml − 4l2
)

αn
l +

N∑
j=1

{
Pn,jα

j
l − εQ̃n,j

(
α

j
l−1 + α

j
l+1

)}⎤⎦ ei2 lT

+
⎡⎣(

�2
m + 4i�mL − 4L2

)
αn

L +
N∑

j=1

{
Pn,jα

j
L − εQ̃n,jα

j
L−1

}⎤⎦ ei2LT

+
⎡⎣(

�2
m − 4i�m − 4

)
βn

1 +
N∑

j=1

{
Pn,jβ

j
1 − εQ̃n,j

(
α

j
0 + β

j
2

)}⎤⎦ e−i2T

+
L−1∑
l=2

⎡⎣(
�2

m − 4i�ml − 4l2
)

βm
l +

N∑
j=1

{
Pn,jβ

j
l − εQ̃n,j

(
β

j
l−1 + β

j
l+1

)}⎤⎦ e−i2 lT

+
⎡⎣(

�2
m − 4i�mL − 4L2

)
βn

L +
N∑

j=1

{
Pn,jβ

j
L − εQ̃n,jβ

j
L−1

}⎤⎦ e−i2LT

−
N∑

n=1

εQ̃n,jα
j
Lei2(L+1)T −

N∑
n=1

εQ̃n,jβ
j

Le−i2(L+1)T = 0, (B3)

where Q̃ is determined from εQ̃ = Q. Note that (B3) is almost identical to the equation
derived by Kidambi (2013) except for two additional terms related to ei2(L+1)T and
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e−i2(L+1)T . From the orthogonality of the Fourier series eil2T (l = 0, ±1, ±2, . . .), the
functional coefficients vanish leaving (2L + 3)N homogeneous equations for N systems
(B3). Moving the Q̃ terms to the right-hand side and extracting the common divisor ε,
we rewrite the equation system (B3) in matrix form (5.16) such that Gν = εHν. Here, the
matrix G is assembled using the coefficients of left-hand terms, and the right-hand H is
the coefficient matrix of Q̃ terms. Note that (5.16) is over-determined and can be solved by
the two methods indicated in § 5.1.

As previously mentioned, the volume conservation constraint (5.9) for axisymmetric
modes (ν = 0) should be considered in the numerical computation and contributes the
following (2L + 1) additional equations to the system (5.12):

N∑
n=1

αn
l

∫ 1

0
J0(δ0,nr)r dr = 0, l = 0, 1, . . . , L

N∑
n=1

βn
l

∫ 1

0
J0(δ0,nr)r dr = 0, l = 1, . . . , L.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(B4)

Note that the additional equations (B4) should not be ignored in the stability analysis
aimed at determining the characteristics of the coupled Mathieu equations.
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