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Abstract
The proliferation of social networks has caused an increase in the amount of textual content generated by
users. The voluminous nature of such content poses a challenge to users, necessitating the development
of technological solutions for automatic summarisation. This paper presents a two-stage framework for
generating abstractive summaries from a collection of Twitter texts. In the first stage of the framework,
event detection is carried out through clustering, followed by event summarisation in the second stage.
Our approach involves generating contextualised vector representations of tweets and applying various
clustering techniques to the vectors. The quality of the resulting clusters is evaluated, and the best clus-
ters are selected for the summarisation task based on this evaluation. In contrast to previous studies, we
experimented with various clustering techniques as a preprocessing step to obtain better event represen-
tations. For the summarisation task, we utilised pre-trained models of three state-of-the-art deep neural
network architectures and evaluated their performance on abstractive summarisation of the event clusters.
Summaries are generated from clusters that contain (a) unranked tweets, (b) all ranked tweets, and (c) the
top 10 ranked tweets. Of these three sets of clusters, we obtained the best ROUGE scores from the top 10
ranked tweets. From the summaries generated from the clusters containing the top ten tweets, we obtained
ROUGE-1 F score of 48%, ROUGE-2 F score of 37%, ROUGE-L F score of 44%, and ROUGE-SU F score
of 33% which suggests that if relevant tweets are at the top of a cluster, and then better summaries are
generated.
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1. Introduction
The task of gathering information by reading large volumes of documents can be a challenging
endeavour for humans. A document summary allows the reader to quickly and accurately iden-
tify the fundamental components of a document.a This, in turn, enables readers to determine the
document’s relevance and interest and make an informed decision on whether to read the doc-
ument in its entirety. As noted in Manuel and Moreno (2014), creating a summary involves two
essential elements: comprehending the source text and producing a concise and brief version of
it. These elements necessitate extralinguistic skills and knowledge of the document on the part of
the human summariser. Therefore, it is imperative to develop techniques to automatically gener-
ate summary from documents. Automatic text summarisation (ATS) algorithms and techniques
are an approximation of those created by human summarisers. An ATS system is deemed effec-
tive when the summaries generated are similar to those produced by humans in terms of content,

ahttps://www.sciencedirect.com/topics/computer-science/text-summarization
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form, readability, and conciseness. Despite the fact that humans create better summaries, ATS is
more accessible, can be distributed more quickly, and is at a lower cost in terms of time.

Summarisation proves to be a valuable technique when dealing with documents of considerable
length. However, this article aims to delve into the realm of summarisation specifically concern-
ing Twitterb texts. Twitter serves as a microblogging platform where users can post messages
known as “tweets” that are restricted by a character limit. Initially, when Twitter was launched
in 2006, the character limit was set to 140, but in late 2017, it was increased to 280 characters.
The limit of 280 characters still persists even after the conversion of Twitter to X. However, the
character limit has been increased to 25,000 for premium users when Twitter became X. Twitter
users attempt to convey their opinions on a particular topic or report on an event by encapsu-
lating as much information as possible within the given limit. Consequently, Twitter has enabled
the rapid dissemination of news through its platform. The pressing question now arises, “Why
summarise tweets?”. As per data from Internet Live Stats, the average number of tweets published
every second is 6,000, which amounts to 350,000 per minute, 500 million per day, and approxi-
mately 200 billion per year. This extensive volume of content generated on Twitter can become
overwhelming to consume. While not all users may find the voluminous content useful, organ-
isations, for instance, involved in conducting opinion polls during a political campaign, would
only require tweets relevant to their task. Going through each tweet to comprehend the opinions
would not be feasible for such an organisation. Therefore, automatically generated summaries of
the opinions extracted from the tweet collection would be a desirable outcome.

According to the survey conducted by Hasan et al. (2017), an event on Twitter can be defined
as a discussion on a particular subject matter that is driven by users’ interest shortly after its occur-
rence or in anticipation of it. Consequently, tweets can be viewed as brief texts that are generated
in response to events that take place over a specific period of time. As a result, ATS is deemed
essential for generating summaries of such events on Twitter. Twitter has evolved into an exten-
sive collection of real-time information that encompasses a variety of topics. As the volume of
tweets continues to surge, the need for efficient and effective summarisation techniques becomes
increasingly paramount. Abstractive summarisation of Tweets is a solution to the need for dis-
tilling the essence of multiple tweets into coherent summaries that capture the main themes and
sentiments of the conversation. Unlike extractive summarisation, which simply selects and con-
catenates existing sentences from the source text, abstractive summarisation creates new sentences
that may not be identical to the parts/sentences of the original text. This approach has great poten-
tial for improving the accessibility and usability of the vast amount of information available on
Twitter. However, the journey towards achieving a robust and comprehensive abstractive sum-
marisation of tweets is fraught with challenges. Present methodologies often encounter significant
difficulties in effectively encapsulating the subtleties and intricacies that are inherent in tweets.
The conciseness, informal language, use of emojis, slang, and hashtags, as well as the frequent
absence of grammatical structure, all present distinctive hindrances for automated summarisation
systems. Additionally, the rapid and dynamic nature of Twitter conversations, where the context
and sentiment can be altered in a matter of moments with new information, requires adaptability
and real-time processing capabilities, which many existing techniques lack. Due to the difficulties
stated above, the ATS of a single tweet is not feasible as it is already too short. Therefore, ATS
in tweets is rather a multi-document summarisation (Manuel and Moreno 2014) task, where the
objective is to identify the central topic of discussion from a given collection of tweets.

Recently, neural network-based solutions proposed by researchers such as Nallapati et al.
(2016), Cheng and Lapata (2016), Zhou et al. (2018) for ATS from well-formed documents con-
taining texts from books, news articles, and web pages have shown groundbreaking results with
the development of state-of-the-art solutions. However, these solutions were not designed for
summerisation of tweets. Although there are studies (Section 2) on ATS from microblogs such

bTwitter was officially renamed to “X” on July 23, 2023. For brevity, we have used “Twitter/twitter” throughout this article.
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as Twitter, the majority of them concentrate on creating clusters using statistical methods such
as TF-IDF or non-contextualised vectors such as Word2Vec (Mikolov et al. 2013). These stud-
ies typically employ either one or two clustering techniques as a preprocessing step to generate
summaries, without evaluating the impact of the clustering techniques deployed for the sum-
marisation task. In contrast, we investigate the use of contextualised vectors obtained from the
5W1H semantic segmentation of tweets. Unlike previous approaches, we also used four different
clustering approaches and evaluated their influence on summary creation.

This paper reports on the adoption of a pipeline approach for ATS of tweets using pre-trained
models from three state-of-the-art neural network architectures based on Pointer-generator with
coverage mechanism (See, Liu, and Manning 2017), and two transformer (Vaswani et al. 2017)-
based systems: Presumm (Liu and Lapata 2019), and BART (Lewis et al. 2020). The major
contributions of our work are as follows:

• Creation of a Twitter corpus on three general topics: Demonetization,Me too movement in
India, and US Presidential elections of 2016.

• Semantic segmentation of tweets based on the 5W1H concept.
• Applying different clustering techniques on semantically segmented tweets for event

detection.
• Evaluation of the clusters generated as a preprocessing step for summarisation.
• Selection of the most appropriate clusters to generate summaries.
• Generate abstractive summaries from the event clusters with three neural network archi-

tecture and compare the generated summaries.

The rest of the paper is organised as follows. Section 2 discusses related work. Section 3 describes
the workings of the proposed implementation. Section 4 presents our experiments. Results and
analysis are discussed in Section 5. Section 6 presents the time complexity analysis of clustering
and summarisation. The paper is concluded in Section 7.

2. Related works
Earlier, there have been several tweet summarisation techniques such as Lexrank (Erkan and
Radev 2004), LSA (Gong and Liu 2001), Luhn (Luhn 1958), MEAD (Radev, Hovy, and McKeown
2002), SumBasic (Nenkova and Vanderwende 2005), SumDSDR (He et al. 2012), and COWTS
(Rudra et al. 2015). The major limitations of these algorithms are that they consider a single
statistical feature that is used to assign a score to each tweet for a summary generation. Sharifi
et al. (2010) introduce a Phrase Reinforcement (PR) algorithm that uses word usage patterns
and retweets to identify key phrases in Twitter posts, generating concise summaries based on
frequency and proximity. The algorithm uses a graph-based approach, weighting phrases based
on frequency and proximity to the topic phrase. The paper reported a ROUGE-1 F1 score of 0.30.
Inouye and Kalita (2011) introduced Hybrid TF-IDF as a statistical measure to generate twitter
summaries. The authors considered a single tweet as a document. However, when computing the
term frequencies (TF), they considered the entire collection of tweets as the document. Therefore,
the TF component of the TF-IDF formula uses the entire collection of tweets, while the IDF com-
ponent treats each tweet as a separate document. The authors normalise the weight of a tweet by
dividing the weight by a normalisation factor so that the algorithm is not biased towards longer
tweets. The tweets are initially grouped into k clusters using cosine similarity. Each cluster is then
summarised by selecting the most weighted tweet, determined by the Hybrid TF-IDF weight-
ing. The authors adopted two cluster-based approaches to generate multiple summaries of tweets
for a Twitter event: k-means++ (Arthur and Vassilvitskii 2007) and bisecting k-means (Zhao
and Karypis 2001) clustering algorithm. The clusters contain the feature vectors of each post in a
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cluster computed by using Hybrid TF-IDF weighing of words. Tweets with the maximum weights
are selected as the most important ones to be included in the summary with a maximum of four
tweets. Their proposed approach reported an average ROUGE-1 F1 score of 0.252. The work pre-
sented by Beverungen and Kalita (2011) normalises the tweet as proposed by Kaufmann (2010)
and expands the tweet terms proposed by Perez-Tellez et al. (2010). Their approach further opti-
mises the clustering process utilising the gap statistic mechanism of Tibshirani et al. (2001). They
evaluated their approach with analysis of variance (ANNOVA) as a statistical significance test. The
evaluation indicates that while the normalisation of posts alone does not affect the summaries,
enhancing clustering and term expansions considerably enhances the quality of the summaries.
Shou et al. (2013) first perform the clustering of tweets and then select some representative tweets
from each group. Then, the arrangement of these tweets is carried out using the graph-based
LexRank (Erkan and Radev 2004) algorithm. They evaluated their work with ROUGE-1 F1 score
but did not specify the obtained score. Another cluster-based approach (SPUR) (Yang et al. 2012)
proposed batch summarisation of the stream of tweets by dividing the input stream into clusters
based on a time window of one hour. For the proposed work, the authors gathered 2,100 hours
of Twitter message streams from June to September in 2010 that contributed a total data size of
5.9GB. Therefore, the clusters are formed by equal-sized batches of one-hour windows, which
are then compressed by replacing individual words with frequently used phrases. The frequently
used phrases are then extracted from the relevant tweets of the event which are then ranked by
their utility values and are finally included in the summary. The authors evaluated their proposed
approach by measuring the false positive rates. “Sumblr” (Wang et al. 2015) is a summarisation
framework that summarises tweet streams with timeline generation. Clusters are generated from
the event-related stream of tweets where the clusters hold information by two data structures
called tweet cluster vector (TCV) and pyramidal time frame (PTF) (Aggarwal et al. 2003). The
k-means clustering algorithm is used to generate the initial clusters with a small number of tweets.
Then the TCVs are initialised accordingly with the initial cluster statistics. Every incoming new
tweet on its arrival either goes to an existing cluster or forms a new cluster based on the cosine
similarity of the tweet with the centroid of the cluster. After that, the summary is generated. They
evaluated their work using ROUGE-1 F1 score with different step sizes between 4,000 and 20,000.
They obtained an average ROUGE-1 score of 0.425.

OnSes (Niu et al. 2016) is a pipeline framework that implements a tweet summarisation system
based on a neural network. They used 2,400,591 short texts and summary pairs provided by Hu
et al. (2015) to train the model for summarisation. Additionally, they have used 18,126 short texts
in total crawled from Twitter. Word vectors are created using Word2Vec (Mikolov et al. 2013),
and then the word vectors are clustered using the k-means algorithm. The relevance between
tweets in a group is then ranked using the BM25 (Amati 2009) ranking algorithm. The top-ranked
tweets within a cluster are then selected to generate the summary. They obtained ROUGE-1 of
0.2283, ROUGE-2 of 0.1067, and ROUGE-L of 0.2143. Doğan and Kaya (2019) proposed a deep
learning-based event summarisation system for thousands of hotel and movie reviews, and sub-
ject hashtags collected from social networks. In this study, a semantic context is created using the
Word2Vec model in the text. A 2-output negative–positive model was formed by training on a
GRU (Gated Recurrent Unit) neural network. The aim is to generate summary text for the user
by gathering comments under a label on Twitter. The model also generated abstract text by asso-
ciating the notion of sense. The study collected comments from twitter and applied sentiment
classification to determine the meaning of most comments. The classified comments are then
summarised with the LSA algorithm. However, the authors did not report on the performance
evaluation of the generated summaries.

He et al. (2020) introduce TWEETSUM, an event-oriented dataset for social summarisation.
The authors present the performance of extractive summarisation methods on TWEETSUM to
establish baselines and report a ROUGE-1 score of 0.44886. This dataset addresses the need
for social summarisation systems to quickly grasp the core information from the vast amount
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of short and noisy messages produced on social media during hot events. The dataset includes
12 real-world hot events with 44,034 tweets and 11,240 users, along with expert summaries and
annotation quality evaluation. It also incorporates additional social signals such as user relations,
hashtags, and user profiles, establishing a user relation network for each event.

Rajaby Faghihi et al. (2022) introduce CrisisLTLSum, the largest dataset of local crisis event
timelines, which is crucial for tasks such as timeline extraction and abstractive summarisation in
the context of emergency response using social media data. The dataset contains 1,000 crisis event
timelines across four domains: wildfires, local fires, traffic, and storms. The authors use a semi-
automated approach to collect data from the public Twitter stream. Initial experiments show a
significant performance gap between strong baselines and human performance on these tasks.
Their best model achieves 0.4705, 0.2540, and 0.3590 in ROUGE-1, ROUGE-2, and ROUGE-L,
respectively.

Bilal et al. (2022) introduce Microblog Opinion Summarisation (MOS) that involves sum-
marising opinions expressed in microblogging platforms, specifically Twitter. The dataset is
based on COVID-19 (Chen, Lerman, and Ferrara 2020) and UK Elections (Bilal et al. 2021)-
related tweets. On the COVID-19 tweets, they achieved 0.2154, 0.0374, and 0.1454 in ROUGE-1,
ROUGE-2, and ROUGE-L, respectively. Whereas, on the UK Elections tweets, they achieved
0.2050, 0.0342, and 0.1363 in ROUGE-1, ROUGE-2, and ROUGE-L, respectively.

Olabisi et al. (2022) introduce the DivSumm dataset, which consists of diverse dialect
tweets and extractive and abstractive summaries written by humans and analyses the extent
of dialect diversity in both human and system-generated summaries. DivSumm consists of
input–summary pairs on a set of 25 topics of tweets written in three different dialects
(African-American (AA) English, Hispanic English, and White English). The dataset includes
corresponding human-generated extractive and abstractive summaries. The authors explore
the diversity-preserving qualities of summarisation algorithms using three approaches: Vanilla,
Cluster-Heuristic (Cluster-H), and Cluster-Automatic (Cluster-A). The Vanilla approach uses a
single set of randomised documents from all dialect groups as input to the summarisation model
without any preprocessing. The Cluster-H approach partitions the input documents into group-
based subsets before generating separate group summaries, which are then combined into a single
document to generate a new combined summary. An attribute-agnostic approach based on auto-
matic clustering (Cluster-A) is used to make summaries when the sensitive group attribute cannot
be reliably observed or inferred. This is done by grouping the data into clusters and joining the
resulting summaries into a single summary. For the abstraction summary generation, the authors
used the BART (Lewis et al. 2020) model that achieved 0.17 and 0.15 in ROUGE-1 and ROUGE-L,
respectively.

Shen et al. (2023) focus on the challenging task of abstractive summarisation for long docu-
ments. While their work is primarily focused on long documents, it offers insights into abstractive
summarisation techniques that may be applicable to event summarisation from Twitter. The arti-
cle employs the concept of unbalanced optimal transport for text alignment, which can potentially
be adapted for aligning and summarising Twitter data. They achieved 0.4887, 0.2034, and 0.4461
in ROUGE-1, ROUGE-2, and ROUGE-L, respectively.

Karimi et al. (2023) focus on improving event detection by incorporating external information
from news streams. Their approach could be valuable in the context of event summarisation, as
it highlights the importance of leveraging additional data sources to enhance the quality of event
summaries.

Our work is similar to the pipeline framework of OnSes (Niu et al. 2016) which includes
first clustering the tweets and second, generating summaries from each cluster. However, the
significant difference in our approach is the implementation of a contextualised vector repre-
sentation of the tweets instead of non-contextualised vector representations such as Word2Vec.
The previous studies explore only one clustering technique and do not provide much insight into
the effects of choosing a particular clustering technique on the summarisation task. In contrast,
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Figure 1. Framework of the proposed system.

we explore several clustering techniques, evaluate the outcome of each clustering technique, and
then select only those clusters for the summarisation task that describe the topic (sub-topic) or
event (sub-event). For the summarisation task, we explore three state-of-the-art neural network
architectures:

• Pointer-Generator with coverage mechanism (See et al. 2017)
• Presumm: Text summarisation with pre-trained Encoders (Liu and Lapata 2019), a BERT

(Devlin et al. 2019)-based network,
• BART: Bidirectional and Autoregressive Transformers. (Lewis et al. 2020).

Despite recent advancements in these architectures, exemplified by the work of Moirangthem
and Lee (2020), Liu and Liu (2021), liang et al. (2021), and Aghajanyan et al. (2020), we inten-
tionally excluded them from the summarisation task. This decision was made to determine the
individual impact of the three architectures in their fundamental forms. With several experimen-
tal set-ups, we compare the summary generated by each of the three architectures: See et al. (2017),
Liu and Lapata (2019), and Lewis et al. (2020) and report their performance in Twitter abstractive
summary generation task.

3. System overview
There are three major components of our framework: (1) 5W1H segmentation, (2) event detec-
tion by clustering, and (3) event summarisation as shown in Fig. 1. Event detection is done first
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Figure 2. 5W1H BIO sequence labelling example.

by segmenting every tweet into the 5W1H (Who, What, When, Where, Why, and How) semantic
components. On the basis of the semantic similarity of the components, the tweets are then clus-
tered together to represent an event (and/or subevents). The generated clusters are then fed to a
neural network (pointer, transformer, or BART) to generate abstractive summaries. We describe
the components of our proposed approach in the following subsections.

3.1 5W1H semantic segmentation
In the initial stage, we segment the tweets by labelling them with the 5W1H components: who,
what, when, where, why, and how. The 5W1H components are considered essential for covering
a piece of information and therefore form the basis for information extraction. In journalism, a
report is considered complete only if it answers the question of Who did what to whom, when,
where, why, and how. For example, the given sentence “John met Sara privately, in the hall, on
Monday to discuss their relationship” describes the event “someone meeting someone.” We, there-
fore, model the tweets as a sequence of 5W1H (Who, What, When, Where, Why, and How)
semantic components. Let w= {w1,w2, . . .,wn} be the sequence of words in a tweet and A be
the attribute to which w is to be mapped. Therefore, a tweet with the 5W1H components may
be considered as 〈w,A〉, where, A is the tuple 〈WHO,WHAT,WHEN,WHERE,WHY ,HOW〉 in
5W1H. Let w= “John met Sara privately, in the hall, on Monday to discuss their relationship.” In
this example sentence, the 5W1H components will be identified as:

〈
John

〉
[WHO] 〈met Sara〉[WHAT]

〈
privately

〉
[HOW],

〈
in the hall

〉
[WHERE],〈

onMonday
〉
[WHEN]

〈
to discuss their relationship

〉
[WHY]

The set of words contained in the textw is represented byψA (w)which is classified as the attribute
A where A ∈ 5W1H. Therefore, the 5W1H model of tweets can be represented as:

ψ5W1H (w)=
⋃

A ∈ 5W1H
ψA (w) (1)

Equation (1) suggests that a tweet is a sequence of words where the words are grouped into the
5W1H components. Due to its short length, a tweet may or may not have all of the 5W1H com-
ponents present. Therefore, in equation (1), the 5W1H model of the tweets is the union (

⋃
) of

the set ψA containing the words w where A could be any of the 5W1H components. Therefore,
we model 5W1H as a sequence labelling task. Since each 5W1H component is either a single word
or a phrase, we adopted the BIO encoding scheme for labelling the tweets, where a “B” indicates
the beginning of the 5W1H component, an “I” indicates that a word is inside of a 5W1H compo-
nent, and an “O” indicates that the word is outside of 5W1H (does not represent any of the 5W1H
components). The BIO sequence labelling strategy is shown in Fig. 2.

For this purpose, we used a deep neural network system implemented by Chakma, Das, and
Debbarma (2019) that gave an F-1 score of 88.21% with an error of 11.79% on the dataset. Since
there is an error of 11.79%, we corrected them by manually relabelling the misclassified tweets. In
some cases, the deep learning system did not correctly label the BIO-based tag sequences of the
5W1H components. The following example illustrates the misclassification scenario.
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Example Tweet:

the way trump will give his victory speech will define his presidency
The above tweet has two main verbs: give and define. This represents two events (“giving” and
“defining”). If we consider the “giving” event, then the 5W1H sequence tagging/labelling is
done as: 〈

the
〉
B-How

〈
way

〉
I-How

〈
trump

〉
B-Who

〈
will

〉
O

〈
give

〉
verb

〈
his

〉
B-What

〈
victory

〉
I-What〈

speech
〉
I-What

〈
will

〉
O

〈
define

〉
O

〈
his

〉
O

〈
presidency

〉
O

Whereas, if we consider the “defining” event, then the 5W1H sequence tagging/labelling is done as;

〈
the

〉
B-Who

〈
way

〉
I-Who

〈
trump

〉
I-Who

〈
will

〉
I-Who

〈
give

〉
I-Who

〈
his

〉
I-Who

〈
victory

〉
I-Who〈

speech
〉
I-Who

〈
will

〉
O

〈
define

〉
verb

〈
his

〉
B-What

〈
presidency

〉
I-What

In the case of the “defining” event, the Who component covers “trump” which is labelled as〈
trump

〉
I-Who. However, the system misclassified it as

〈
trump

〉
B-Who. Therefore, it is necessary to

manually correct this type of misclassification. We then convert the 5W1H-labelled tweets into a
structural vector representation e5w1h shown in Fig. 3. Then a contextualised vector econtextual is
obtained by concatenating e5w1h with embeddings of tweets and embeddings of verbs:

econtextual =
[
etweet ◦ e5w1h ◦ everb

]
, (2)

where etweet is the word embeddings of the tweet, everb are the verb embeddings, and e5w1h is
the 5W1H embeddings. It is not necessary that all 5W1H components are always present in
a tweet. For example, in the sentence “Donald Trump won the elections,” there is no “When,”
“Where,” “Why,” and “How” components present. Therefore, to generate fixed-sized embed-
dings, the embeddings are padded with zeros (0’s). The input to BERT is given in the format〈
[CLS] tweet [SEP] 5W1H [SEP] verb [SEP]

〉
(Fig. 3), where the sequence [SEP] 5W1H [SEP] is

the Who, What, Where, When, Why, and How encoding of the sentence. A “verb indica-
tor” embedding is then concatenated into the 5W1H encoding to distinguish the verb tokens
from the nonverb ones. The sequences ([etweet , e5w1h, everb]) are then fed into the BERT net-
work to generate contextual embeddings econtextual. Contextual embeddings are obtained by
aggregating (concatenating) them on the last axis, resulting in sentence encoding of 1,536
dimensions.

3.2 Event clustering
We group the contextual embeddings generated by BERT into clusters where each cluster cor-
responds to a possible event (or sub-event). For clustering contextual embeddings, we applied
four clustering techniques such as k-means (Jin and Han 2017), Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) (Campello, Moulavi, and Sander 2013),
Hierarchical Agglomerative Clustering (HAC) (Zepeda-Mendoza and Resendis-Antonio 2013),
and Affinity Propagation (AP) (Frey and Dueck 2007). k-means requires the number of clusters to
be specified before starting the algorithm. Since arbitrarily selecting k is not a viable approach; we,
therefore, selected the number of clusters k based on quality metrics such as Silhouette (Rousseeuw
1987) for the given dataset. Silhouette scorec is a method for measuring the similarity of a data
object within the same cluster to that of other clusters. The Silhouette score varies between −1

cshorturl.at/pxETW
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Figure 3. Contextualised vector generation.

and +1. Higher values indicate higher similarity of a data object within its own cluster and poor
similarity with neighbouring clusters. The Silhouette score for a sample s is measured as:

s= b− a
max

(
a, b

) (3)

where an increase in Silhouette score for k represents the suggested number of clusters. We used
the scikit-learnd API for implementing k-means clustering.

HDBSCAN is an extension of the DBSCAN (Ester et al. 1996) algorithm that converts
DBSCAN into a hierarchical clustering algorithm. HDBSCAN views data as a weighted graph
with vertices and edges, with weights equal to the mutual reachability distance between the points.
Using the weighted graph, HDBSCAN extracts flat clustering based on the stability of the clusters.
The algorithm goes through the following steps: (1) Transform the space according to the den-
sity/sparsity of the data distribution, (2) Build the minimum spanning tree of the distance weighted
graph, (3) Construct a cluster hierarchy of connected components, (4) Condense the cluster hierarchy
based on the minimum cluster size, and (5) Extract the stable clusters from the condensed tree. The
algorithm considers dense data distribution as “islands” and sparse noise as “sea.” The objective is
to find the islands of higher density from a sea of sparser noise. That means making "sea" points
more distant from each other and from the “island.” Campello et al. (2013) defines core distance
as the distance of a point to the kth nearest neighbour which is denoted as corek (x) for parameter
k for a point x. The distance metric between points is measured withmutual reachability distance
which is represented as:

dmreach−k(a, b)=max
{
corek(a), corek(b), d(a, b)

}
(4)

where d(a, b) is the original metric distance between a and b. All the low core distance points
remain at the same distance from each other, but the larger core distance points are pushed away to

dhttps://scikit-learn.org/stable/modules/clustering.html\#k-means
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be at least their core distance away from any other point. This process lowers the sea level, thereby
spreading sparse sea points out while leaving land untouched. However, it depends on the choice
of k where larger k values interpret more points as being in the sea. The algorithm then constructs
aminimum spanning treewith the data points as vertices and an edge between any two points with
a weight equal to the mutual reachability distance of those points. The minimum spanning tree is
then converted into a hierarchy of connected components. This is most simply accomplished by
sorting the tree’s edges by distance (in increasing order) and then iterating through, establishing a
newmerged cluster for each edge. The initial phase of cluster extraction involves the condensation
of the intricate and extensive cluster hierarchy into a more concise tree, wherein each node con-
tains a slightly augmented dataset. Upon examination of the aforementioned hierarchy, it is often
observed that a cluster split emerges as a result of one or two points branching off from a cluster.
It is critical to recognise that this split should be viewed as a persistent, single cluster that under-
goes a loss of points, rather than the formation of two new clusters. To solidify this concept, it is
essential to establish a minimum cluster size, which serves as a parameter for HDBSCAN. Once
this minimum cluster size is determined, we can proceed to traverse the hierarchy and inquire at
each split whether one of the newly formed clusters contains fewer points than theminimum clus-
ter size. If this is the case, we declare it as “points falling out of a cluster” and attribute the larger
cluster with the parent’s cluster identity, while recording the points that “fell out” and the corre-
sponding distance value. Conversely, if the split leads to two clusters, each at least as significant
as the minimum cluster size, we acknowledge it as a genuine cluster split and allow it to persist in
the tree. By following this process and traversing the entire hierarchy, we obtain a considerably
smaller tree with only a few nodes, each of which contains information regarding the cluster’s size
at that particular node and the subsequent decrease in size as the distance varies. We used the
pythone-based implementation of HDBSCAN for our purpose.

HAC comes under the family of hierarchical clustering algorithms that build nested clusters by
merging them successively with a bottom-up approach. The merging could be done by either
one of the four approaches: ward, complete linkage, average linkage, and single linkage. Ward
minimises the sum of squared differences within all clusters. Complete linkage minimises the
maximum distance between observations of pairs of clusters. Average linkage minimises the aver-
age of the distances between all observations of pairs of clusters. Single linkage minimises the
distance between the closest observations of pairs of clusters. We used the scikit-learnf API for
implementingHAC clustering with linkage parameters set toward and complete linkage. Forward,
we set the affinity parameter to “euclidean” and for complete linkage to “cosine,” respectively. We
did not observe a significant difference in the generated clusters by both methods. In scikit-learn,
HAC requires a threshold value to be set for either one of the two parameters: n_clusters and dis-
tance_threshold where the former represents the number of clusters to be generated, whereas the
latter represents the linkage distance threshold above which clusters will not bemerged. Selecting a
distance threshold is difficult. Therefore, we specified the number of clusters k based on two eval-
uation parameters: silhouette score and dendogram cutoff . Both Silhouette score and dendogram
cutoff suggested k= 10 for the given contextual embeddings.

In AP, clusters are created by sending messages between pairs of samples until convergence.
A concept called “exemplar” is used which is the most representative of other samples in a given
dataset. The messages actually represent the suitability of one sample to be the exemplar of the
other. This is then updated based on the values received from the others. This updating process
continues iteratively until convergence, and then the final exemplars are chosen thus giving the
final cluster. The messages fall into two categories as per scikit-learn API:g (a) the accumulated
evidence called responsibility denoted as r

(
i, k

)
such that sample k should be the exemplar for a

ehttps://hdbscan.readthedocs.io/en/latest/index.html
fhttps://bit.ly/3dVJrQ4
ghttps://bit.ly/3eN47K7
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sample i and (b) availability denoted as a
(
i, k

)
which is the accumulated evidence that sample i

should choose sample k as its exemplar. The basic idea is that exemplars are chosen by samples if
they are (1) similar enough to many samples and (2) chosen by many samples to be representative
of themselves. The responsibility of a sample to be the exemplar of sample is given by:

r
(
i, k

)← s
(
i, k

)−max
[
a

(
i, k′

)+ s
(
i, k′

) ∀k′ 
= k
]

(5)

where s
(
i, k

)
is the similarity between samples i and k. The availability of sample k to be the

exemplar of sample i is given by:

a
(
i, k

)←min

⎡
⎣0, r

(
k, k

)+
∑

i′s.t.i′ 
εi,k
r
(
i′, k

)
⎤
⎦ (6)

Initially, all values for r and a are set to zero, and the calculation of each iterates until convergence.

3.3 Event summarisation
There are two broad categories of text summarisation: (1) extractive and abstractive. Extractive
summarisation is the task of generating a summary of a document by identifying the most impor-
tant sentences (or phrases) and then concatenating them without the inclusion of any new words.
Abstractive summarisation is the task of generating a summary of a document by paraphrasing
the sentences (or phrases) and producing newer phrases. For our work, we explore the abstractive
summarisation approach. Recently, the natural language processing (NLP) domain has observed
significant growth in neural network-based solutions for the text summarisation task. Encoder–
decoder (Sutskever, Vinyals, and Le 2014) networks are generally used for the summarisation
task where the encoder could be a Recurrent Neural Network (RNN) (Sherstinsky 2020) or a
transformer (Vaswani et al. 2017) network and the decoder could be autoregressive or non-
autoregressive. In the autoregressive approach, the decoder can make current predictions with
knowledge of previous predictions. For the abstractive summarisation task, we explored three
neural network architectures:

• Pointer-generator (Vinyals, Fortunato, and Jaitly 2015)-based network (See et al. 2017)
(we denote it as P-Gen)

• Presumm (Liu and Lapata 2019), a transformer-based implementation.
• BART (Lewis et al. 2020), a combination of Bidirectional andAutoregressive Transformers.

The above-mentioned three architectures have shown promising results in abstractive summari-
sation tasks on state-of-the-art datasets (Hermann et al. 2015). Therefore, we used the pre-trained
models of P-Gen, Presumm, and BART on our dataset and performed several experiments to
evaluate the generated summaries.

3.3.1 Pointer-generator (P-Gen)
P-Gen is an encoder–decoder network with Long Short Term Memory (LSTM) at the encoder
side and a pointer-generator network at the decoder side. It is a hybrid of the sequence to sequence
(Nallapati et al. 2016) attention and pointer network. P-Gen also exploits the concept of coverage
(Tu et al. 2016) mechanism which is added to the pointer-generator network. Here, we reuse the
definition of coverage vector and the other parameters defined in P-Gen. Coverage is a vector ct
which is the sum of the attention distributions of all previous decoder time steps represented as:

ct =
t−1∑
t′

at
′

(7)
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where at′ is the attention distribution. The coverage vector is basically a modification of the orig-
inal attention vector of Bahdanau et al. (2015). The modified attention vector is represented as:

eti = vTtanh
(
Whhi +WsSt +wccti + battn

)
(8)

where vT , Whhi, WsSt , wccti , and battn are learnable parameters. P-Gen also define coverage loss
which penalises the decoder for repeatedly attending the same locations. The coverage loss is
represented as:

covlosst =
∑

min
(
ati , c

t
i
)

(9)

The final composite loss function in P-Gen is defined as:

losst =−logP
(
w∗t

)+ λ
∑

min
(
ati , c

t
i
)

(10)

where λ is some hyperparameter.

3.3.2 Presumm
It is an encoder–decoder network with a transformer network on the encoder and decoder
side. Presumm presents a two-stage approach where the extractive summarisation is performed
in the first stage and then the abstractive summarisation in the second stage. The encoder is
therefore fine-tuned twice. Since Presumm is based on the BERT architecture, special tokens
[CLS] and [SEP] are inserted between each sentence to generate positional embeddings. Interval
segment embeddings are generated to differentiate each sentence. For example, assuming a
document D consisting of sentences [sent1, sent2, sent3, sent4], embeddings can be generated as
[EA, EB, EC, ED]. For the extractive summarisation, vector ti of the ith [CLS] token from the
top layer is used to represent senti. Several transformer layers are stacked together to obtain
document-level features for extracting summaries:

h̃l = LN
(
hl−1 +MHAtt

(
hl−1

))
(11)

h̃l = LN
(
hl + FFN

(
hl

))
(12)

where LN is the layer normalisation operation (Ba, Kiros, and Hinton 2016), MHAtt is the
multi-head attention (Vaswani et al. 2017), h0 = PosEmb(T), T denotes the sentence vectors, and
function PosEmb adds positional embeddings to T. Sigmoid is used at the final output layer, which
is represented as:

ŷi = σ
(
WohLi + bo

)
(13)

where hLi is the vector for senti from the top layer (the Lth layer ) of the transformer. For abstractive
summarisation, the presumm, uses the pre-trained encoder of the extractive summariser and a
six-layer transformer for the decoder.

3.3.3 BART
In BART, the sequences are encoded as denoising autoencoders. The training data for BART con-
tain “corrupted” or “noisy” text, which will be mapped to the original or clean text. The training
format is similar to the denoising autoencoders. Noising schemes include Token Masking, Token
Deletion, Text Infilling, Sentence Permutation, andDocument Rotation. The first part of BART uses
the BERT’s bidirectional encoder to find the best representation of the input sequence. For each
sequence of text in the input, the BERT encoder outputs an embedding vector for each token in
the sequence, plus an additional vector containing sentence-level information. After obtaining the
tokens and sentence-level representations of the input text sequence, the decoder must interpret
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them to match the output destination. Therefore, causal or autoregressive models that look only
at past data to predict the future are practical. The decoder section of conventional transformers
and the GPT-1 type shared a similar construction. Only learning from previous tokens can affect
the computation of current tokens because GPT stacks twelve of these decoders sequentially. The
GPT decoder uses feedforward layers with masked multi-head self-recognition blocks, just like
the original transformer decoder. The model is initially pre-trained on tokens t looking back to k
tokens in the past to compute the current token. To enable the model to “learn the language,” this
is done unsupervised on a sizable text corpus:

L1 (T)=
∑
i

logP
(
ti|ti−k, . . ., ti−1; θ

)
(14)

The model is then fine-tuned in a supervised manner to maximise the likelihood of a label y
given feature vectors x1. . .xn:

L2 (C)=
∑
x,y

logP
(
y|x1, . . ., xn

)
(15)

Equations (14) and (15) are combined to get the objective in equation (16), where the lambda
is a learned weight parameter that limits the impact of language modelling:

L3 (C)= L2 (C)+ λL1 (C) (16)

4. Experiments
In this section, we discuss the various clustering and summarisation experiments performed with
the pre-trained models of P-Gen, Presumm, and BART.

4.1 Dataset
We collected tweets on three different topics using twitter4jh API: Demonetization,i US Elections
2016j, and Me Too India Movement.k For Demonetization, we crawled around 14,940 tweets
during two different time periods: one between 22nd and 23rd November 2016; and the other
between 11th and 21st April 2017. The intention for the first period was to extract tweets related
to the Demonetization topic after its announcement by Govt. of India on 8th November 2016.
The second period was intended to extract tweets that discuss the impact of demonetisation
on the new financial year 2017–2018 that began on 1st April 2017. For US Elections 2016, we
crawled 38,984 tweets on the day of the elections, that is, 8th November 2016, and on the
final declaration of the electoral results on 17th January 2017. The tweets were collected with
hashtags such as “#USElections2016,” “#ElectionNight,” “#DonaldTrump,” “#HillaryClinton,”
“#DonaldTrumpWins,” and “#USElections2016Results.” Apart from hashtags, we also used terms
such as “Donald Trump,” “Trump,” “Hillary Clinton,” “Hillary,” and “Clinton.” For the Me Too
topic, we crawled a total of 248,160 tweets with queries such as “#MeToo,” “#MeTooCampaign,”
“#MeTooControversy,” and “#MeTooIndia” from 11th to 24th October 2018.

We performed some preprocessing tasks by lower-casing the tweets, removing Non-English
tweets, and retweets. We observed that approximately 80% of the collected tweets contained
retweets as well as non-English tweets. Therefore, after preprocessing, we finalised a total of
16,375 tweets: 3,484 on “Demonetization,” 6,558 on “Me Too India Movement,” and 6,333 on “US

hhttps://github.com/Twitter4J/Twitter4J
ishorturl.at/mqrAN
jshorturl.at/bktP9
kshorturl.at/clmCX
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Figure 4. Cluster selection process for the summarisation task.

Elections 2016.” Due to data privacy reasons, the corpus is not available publicly. The dataset will
be available on request.

4.2 Cluster selection
In this subsection, we discuss the criteria for the selection of clusters for the summarisation task.
This procedure is shown in Fig. 4. We feed the contextual embeddings econtextual to four clustering
algorithms (k-means, HAC, HDBSCAN, and AP). For k-means and HAC clustering, we choose the
number of clusters k based on the suggested Silhouette score. As shown in Fig. 5(a) and (b), we set
the number of clusters k= 10 for both the k-means and HAC clustering algorithms. Therefore,
both k-means and HAC generated ten clusters. For k-means, we set the following parameters:
n_clusters= best_k, n_jobs=−1, and random_state= seed. The parameter best_k= 10 is chosen
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Silhouette score for k-means

(a) (b)

Silhouette score for HAC

Figure 5. Selection of best value for number of clusters k for k-means and HAC.

based on the Silhouette Score iterations between 2 and 50. The parameter n_jobs refers to the
number of parallel threads to use for the computation. A value of “−1” means that all available
processors will be used for the computation. The parameter random_state= seed determines a
random number generation for centroid initialisation. This is done to produce the same results
across different calls. We use the popular seed value of 42 for the generation of random numbers.
For HAC, we set the following parameters: affinity= ‘euclidean’ or ‘cosine’, linkage= ‘ward’ or
‘complete_linkage’, and n_clusters= 10. For HDBSCAN, we set the standard parameter settings:
min_cluster_size= n,l prediction_data=True, core_dist_n_jobs=−1, and memory= ’data’. For
AP clustering, we use the default parameter settings such as damping= 0.5, preference=None,
and affinity= ‘euclidean’.

Cluster formation is shown in Fig. 6 and the population distribution in Fig. 7. As can be seen
in Fig. 6(a) and (b) and Fig. 7(a) and (b), both the k-means and the HAC generated ten clus-
ters, respectively. AP generated a total of 934 clusters (Figs. 6(c) and 7(c)). It produced cluster
sizes between 2 and 115 tweets. The average size of the clusters produced by AP is 17.53 tweets.
HDBSCAN (Figs. 6(d) and 7(d)) was unable to group 10,057 (i.e., 61.4% of 16,375) tweets and
labelled them “−1”. For the remaining 6,318 tweets, HDBSCAN generated 2,356 clusters. It pro-
duced a minimum cluster size of two tweets and a maximum of twenty-three tweets, which makes
it insignificant for generating summaries. We therefore ignored HDBSCAN generated clusters
because 61.4% of the tweets were not considered in any cluster (labelled “−1”). Therefore, exclud-
ing HDBSCAN, we measured the cosine similarity of tweets in each cluster (ci) produced by
k-means, HAC, and AP approaches. As shown in Fig. 4, we set the minimum threshold of the
similarity score to 70%. If more than or equal to 50% of the tweets in a cluster fall below the
minimum similarity threshold of 70%, the cluster and the corresponding clustering method (i.e.,
k-means/HAC/AP) are not considered. Based on observations of cosine similarity scores, only AP
clusters with a cluster size of a minimum of ten tweets are considered for the summarisation task.
The first few tweets from the dataset labelled by k-means, HAC, HDBSCAN, and AP are shown in
Table 1. The table shows the results of applying different clustering approaches to the dataset. For
example, k-means and HAC generated ten clusters with labels 0–9. HDBSCAN could not generate
clusters for more than 60% of the data and labelled them with −1. HDBSCAN generated clusters
only for the remaining 40% of the data with cluster labels between 0 and 2,355. AP generated 934
clusters with labels ranging from 0 to 933.

4.3 Reference summary creation
As there is no available dataset for abstractive summarisation on tweets, we had to build our own
reference summaries (gold summaries). Since the number of clusters produced by AP is large (a
total of 934 clusters out of which we considered only those having a minimum of 10 tweets per

lWe experimented with the different values ofmin_cluster_sizewith a default value of n= 5 up to n= 10 but did not observe
a significant difference.
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Clusters generated by k-means with k =10 Clusters generated by HAC with k =10

Total 934 clusters generated by AP. More than 60% not clustered by HDBSCAN

(c) (d)

(a) (b)

Figure 6. Visualisation of generated clusters.

cluster) as shown in Fig. 7, manually evaluating the clusters for generating reference summaries
is a laborious task. Therefore, we adopted the approach shown in Fig. 8 to generate reference
summaries. In the first step, we applied four extractive summarisation techniques such as Lexrank
(Erkan and Radev 2004), LSA (Gong and Liu 2001), Luhn (Luhn 1958), and Textrank (Mihalcea
and Tarau 2004) to obtain four candidate sets (s1, s2, s3, and s4). Then in the second step, we asked
two annotators to select the references from the candidate sets based on two criteria. The criteria
for selecting references are as follows: (1) the reference is found in at least two candidate sets and
(2) it is relevant to the event/topic. We measured the similarity of the candidate sets in terms of
the ROUGE (Lin 2004) scores shown in Table 2. From Table 2, it is observed that LSA, Luhn,
and Textrank extracted similar tweets compared to the Lexrank technique. The relevance of a
tweet in a candidate set is measured according to the following procedure. We obtained the top
n-grams (unigrams, bigrams, and trigrams) from each set of candidates and formulated queries
based on the n-grams to rearrange the tweets. The distribution of n-grams in a particular cluster is
shown in Fig. 9. Formally, we can represent this as an information retrieval (IR) problem described
below.

Let q be a query of n-grams given over a set of documents D where the IR task is to rank the
documents in D so that the documents most relevant to q appear at the top. In our case, each
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Table 1. A snapshot of the cluster of tweets labelled by k-means, HAC, HDBSCAN, and AP

Cluster labels

Tweet k-means HAC HDBSCAN AP

@amitanatverlal and he is shamelessly showing no sign of
supporting #metoo

3 0 −1 193



empowering women worldwide: https://t.co/hiawhf3c4l
#genderequality #feminism #metoo

1 4 1,834 0



meanwhile rakhi sawant is also trying to recollect some interesting
incidents to participate for #metoo

1 4 855 13



@iowahawkblog offended by spelt ?? #metoo! and any other
grasses for that matter

3 0 −1 300



trumpmocks the #metoomovement in nonsense rant at
pennsylvania rally

0 1 1,446 1



@hvgoenka sir; this gives us confidence that rpg won’t ever be
tagged in #metoo

3 0 −1 42



we as a community need a closure; we have been silenced for long;
the government needs to apologise #metoo #metooindia
#metookashmir

3 0 1227 14



breaking | #metoo: #lasithmalinga named by@chinmayi for sexual
assault

3 0 2,041 179

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

till self motive (work) complete it’s #sweetu and once self motive
completed its #metoo

1 4 −1 303

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i liked a@youtube video https://t.co/oabbpgbwtw #metoo
movement andmj akbar case | bebak ep 3 with abhisar sharma and
dhruv rathee

1 7 2,047 86

Table 2. Average ROUGE F-1 score for candidate summary similarity of Lexrank with other methods

Method ROUGE-1 ROUGE-2 ROUGE-L

Luhn 0.60008 0.46778 0.56358
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LSA 0.21643 0.02337 0.17602
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Textrank 0.61768 0.48855 0.58366

tweet within a candidate set is a document and the particular set is the document pool which is
represented as:

D=
⋃

k=1···n
τk (17)

where τk is the top k tweets retrieved. When k= n, all the tweets from a cluster are retrieved. To
obtain the ranking scores, we used the Sentence BERT (SBERT) (Reimers and Gurevych 2019)
system, which measures the semantic similarity of the tweets in a given cluster. In SBERT, the
cosine similarity between the query and the tweet is measured by computing the cosine of the
query vector u with the tweet vector v. Both vectors u and v have the same dimensions. To rank
the tweets, Spearman’s rank correlation is computed between the cosine similarity of the query
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Figure 7. Population distribution of clusters by k-means, HAC, AP, and HDBSCAN. (a) Ten clusters generated by k-means
clustering with the distribution of 1,466, 2,280, 1,073, 1,481, 2,073, 834, 1,615, 1,768, 2,117, and 1,668 tweets. (b) Ten clusters
generated by HAC clustering with the distribution of 2,267, 2,170, 3,004, 594, 3,928, 1,868, 100, 866, 385, and 293 tweets.
(c) A total 934 clusters were generated by AP with minimum and maximum cluster size of 2 and 115 tweets, respectively.
(d) HDBSCAN failed to cluster 10,057 tweets which is 61.4% of the dataset. The remaining 38.6% are clustered into 2,356
clusters with length between 2 and 23 tweets.

and the tweets which is defined as:

ρ = 1−
∑n

i=1 (ui − vi)2

n(n2 − 1)
(18)

where ui and vi are the corresponding ranks of u and v, for i= 0,· · · , n− 1. For example, in a
particular cluster, the top trigram “mj akbar resigns” forms the query q= “mj akbar resigns.” The
query is then issued to SBERT to retrieve the top k tweets from the given cluster. The annotators
then pick the tweets from each candidate set based on informativeness, fluency, and succinctness
of the contents and write the summaries with up to three sentences. We measured the agreement
ratio between the annotators with standard ROUGE metrics using ROUGE-1.5.5 and obtained
average F ROUGE-1 of 0.828, ROUGE-2 of 0.795, and ROUGE-L of 0.825. The summaries written
by the two annotators are compared and manually aligned (through a consensus) to generate the
final reference summaries.

4.4 P-Gen set-up
For the P-gen set-up, we used the pre-trained model pre-trained_model_tf1.2.1m which is trained
on the CNN/Daily Mail dataset. This model uses a vocabulary of 50K words with 21,50,1265
parameters. This model has 256-dimensional hidden states and 128-dimensional word embed-
dings. We set the parameters max_enc_steps and max_dec_steps to 400 and 10 tokens,
respectively, to restrict the length of the source text and the summary, respectively. For beam
search decoding, we set beam_size to 4.

mshorturl.at/aeOTW
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Figure 8. Gold reference summary creation process for the summarisation task.
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Top unigrams in a particular cluster

(a) (b)

(c)
Top bigrams in a particular cluster

Top trigrams in a particular cluster

Figure 9. n-gram distribution in a particular cluster.

4.5 Presumm set-up
From Presumm, we used the bertext_cnndm_transformern pre-trained model for the abstractive
summarisation task. This model is also trained on the CNN/Daily Mail dataset. Presumm uses
Trigram blocking mechanism to prevent redundancy of phrases/sentences in the generated sum-
mary. The transformer decoder has 768 hidden units with a hidden size of 2,048 for all the
feedforward layers. The original model adopted a two-stage fine-tuning approach. The model first
undergoes fine-tuning using an extractive BERT model. This involves training the model to iden-
tify the most important sentences or phrases in the text that should be included in a summary.
Essentially, the model learns to choose relevant content for summarisation from the larger body
of text. After fine-tuning with extractive BERT, the model undergoes fine-tuning with an abstrac-
tive BERT model. In this stage, the model is trained to generate new concise summaries using
its learnt knowledge of the source text. The abstractive model works to create summaries that
are not just extracts from the original text but are rewritten and rephrased to be coherent and
fluent. In our case, we fine-tuned only at the second stage. The following settings were applied
during the training process: - drop_out= 0.2: A dropout rate of 20% was established to help
prevent overfitting by randomly disabling a portion of the neurones during training. This regu-
larisation technique improves the generalisability of the model. - beam_size= 5: A beam size of
5 was chosen for the beam search algorithm. This setting allows the model to consider multiple
possible paths during the generation process, potentially improving the quality and diversity of
the output. - lr= 0.02: A learning rate of 0.02 was used to control the speed of updates to the
model’s parameters. This rate determines how quickly the model learns and adjusts its weights
during training. - train_steps= 15000: A total of 15,000 training steps were specified to con-
trol the duration of the training process. This influences the performance and training time of the
model. - batch_size= 200: A batch size of 200 was selected to indicate the number of samples
processed in each training iteration. This choice affects the efficiency of training and the stability
of the model’s learning process.

nshorturl.at/crtI4
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4.6 BART set-up
For the BART set-up, the bart-large-cnno pre-trainedmodel was utilised. Fine-tuning of themodel
was conducted with the following settings: - TOTAL_NUM_UPDATES= 20000: This specifies the
total number of training iterations applied during the fine-tuning process. The model’s learning
is influenced by this number, impacting the extent of its training. - UPDATE_FREQ= 4: Updates
were applied after every four training steps. This approach allows the model’s learning to stabilise
by accumulating gradients over multiple steps before applying them. - WARMUP_UPDATES= 500:
During fine-tuning, 500 warm-up updates were conducted. This involved gradually increasing
the learning rate from a lower initial value to its target value, which can help prevent sudden large
parameter changes at the start of training. - LR= 3e-05: A learning rate of 0.00003 was set. This
controlled the speed of parameter updates, allowing for careful adjustments to themodel’s weights
and preventing overly rapid changes. - BEAM_SIZE= 4: A beam size of 4 was used in beam search,
an algorithm for decoding that explores multiple possible sequences simultaneously. This helps
to improve the quality and diversity of the output by considering multiple paths during summary
generation. Overall, these settings guide the fine-tuning process to enhance the performance of
the pre-trained BART model on our specific summarisation task.

5. Results and analysis
5.1 Cluster evaluation
On careful analysis, it is observed that the clusters generated by k-means and HAC contain tweets
that discuss on multiple sub-events (or sub-topics) present under the same cluster. For exam-
ple, cluster-1 under k-means contains 2,280 tweets mostly related to the “Me Too Movement.”
However, the same cluster contains tweets that represent latent sub-topics or sub-events such as
“Donald Trump mocking the Me Too Movement” and “Resignation of minister M.J. Akbar due
to Me Too allegations.” All these tweets have been found to be under the same cluster by both
k-means andHAC clustering. In contrast, AP clustering generated 934 clusters with cluster lengths
between 2 and 115 tweets. Therefore, with AP clustering approach, it was possible to detect the
latent sub-topics or sub-events present under the top-level events on our dataset. For example,
for the top-level event of “Me too movement,” the AP clustering detected the sub-events: “Donald
Trump mocking the Me Too movement” and “Resignation of minister M.J. Akbar due to Me Too
allegations.” To evaluate the quality of the clusters, we measured the semantic similarity of the top
ten tweets with SBERT (since we chose 10 as theminimum threshold length of a cluster under AP).
The similarity score in the AP clustering ranges from 0.53 to 0.90, indicating appropriate group-
ing of similar tweets related to an event or subevent. Therefore, these observations suggest that
AP generated the most relevant clusters that are further considered to generate the summaries.
Fig. 10 displays the degree of similarity between ten tweets in a cluster generated by AP.

5.2 Summary evaluation
We evaluated the performances of P-Gen, Presumm, and BART architectures with standard
ROUGE-1, ROUGE-2, ROUGE-L, and ROUGE-SU scores by using ROUGE-1.5.5. The ROUGE
scores are shown in Fig. 11. To evaluate the summaries, we performed three sets of experiments
on the clusters: Unranked, Ranked, and Top 10 ranked. Unranked is the cluster of tweets without
any changes in the ordering of the tweets. Ranked is the cluster of ranked tweets based on their
relevance to the event/topic. Top 10 ranked is the cluster of tweets containing only the top ten
ranked tweets based on their relevance to the event/topic. These three sets are described in more
detail in the following sections.

ohttps://rb.gy/aiz1pb
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Confusion matrix

(a)

(b)

Similar tweets

Figure 10. Similarity of tweets under a particular cluster by AP.

5.2.1 Unranked
For clusters with unranked tweets (clusters without changes in the ordering of the tweets), the
three architectures produced summaries with very low ROUGE scores. The ROUGE-1 F scores
for the three architectures are 0.07, 0.12, and 0.16, respectively (Fig. 11). As stated above, the
gold summaries were prepared based on the top ten ranked tweets in each cluster. Therefore, the
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Figure 11. ROUGE Scores—Precision, Recall, and F-score for ROUGE-1, ROUGE-2, ROUGE-L, and ROUGE-SU.

summaries did not match most of the n-grams of the gold summaries, resulting in very low scores.
These observations also suggest that the three deep learning architectures perform poorly when
the document length is large. The reason for the poor performance is that the summarisers pick
the earlier tweets that appear in a cluster.

5.2.2 Ranked
A significant improvement in ROUGE scores is observed when tweets are ranked within a
group based on query q. In Fig. 11, the rows Ranked P-Gen, Ranked Presumm, and Ranked
BART are the ROUGE scores for all the three architectures, respectively. For the ranked cluster,
BART performed slightly better than the pointer-generator with coverage mechanism P-Gen. The
transformer-based Presumm scored the lowest. BART beat Presumm by 0.01 ROUGE-1 F and 0.02
ROUGE-2 F. For the ROUGE-L score, both P-Gen and BART scored 0.27. Presumm scored the
least with 0.23 in ROUGE-L F. These differences are very marginal among the three approaches,
but a significant improvement over the unranked scores. These observations suggest that the
position of the tweets in a cluster affects the summary generation by all three approaches.

5.2.3 Top 10 ranked
Our final evaluation is based on generating summaries from the clusters that contain the top ten
tweets ranked. We observed a significant improvement in the performance of BART and Presumm
when the clusters with the top ten relevant tweets were considered. A possible reason could be

https://doi.org/10.1017/nlp.2024.47 Published online by Cambridge University Press

https://doi.org/10.1017/nlp.2024.47


24 K. Chakma et al.

that the gold summaries were prepared based on these top ten relevant tweets, which resulted
in high similarity with the n-grams of the generated summaries. The last three rows of Fig. 11
show the ROUGE scores for the summaries generated from the top ten ranked tweets in the clus-
ters. ROUGE-1 F score for P-Gen dropped from 0.30 (Ranked P-Gen) to 0.27 (top 10 P-Gen),
whereas for Presumm and BART, there is a significant improvement from 0.24 (Ranked Presumm)
to 0.46 (top 10 Presumm), and from 0.31 (Ranked BART) to 0.48 (top 10 BART) respectively.
Similar are the cases for ROUGE-2, ROUGE-L, and ROUGE-SU.

From the results, we observe that for abstractive summarisation task, in addition to good
ROUGE scores, the number of noble n-grams produced by the summariser are also important.
We observe that transformer-based BART and Presumm comparatively perform better than the
pointer-based P-Gen models in terms of producing noble n-grams.

A one-way ANOVA test was conducted to compare the results of ROUGE scores given in
Fig. 11 in order to confirm if some approach is statistically better. By considering the significance
level (α) set at 0.05, it was observed that the p-value (0.000002574) is less than α, thus leading to
the rejection of the null hypothesis. Furthermore, it was noticed that the averages of certain groups
are not considered equal; in other words, the difference between the averages of some groups is
statistically significant. A p-value of 0.0000025742 was obtained, with p(x≤ F)= 0.999997, indi-
cating a low chance of type 1 error (rejecting a correct null hypothesis,H0), at only 0.000002574. A
smaller p-value strongly supports the alternate hypothesis, H1. The test statistic F was calculated
as 9.899524, which falls outside the 95% region of acceptance: [∞: 2.3053]. Finally, it has been
observed that the following pairs are found to be significantly different when using Tukey’s HSD:
(Unranked P-Gen, top 10 Presumm), (Unranked P-Gen, top 10 BART), (Unranked Presumm,
top 10 Presumm), (Unranked Presumm, top 10 BART), (Unranked BART, top 10 Presumm),
(Unranked BART, top 10 BART), (Ranked P-Gen, top 10 BART), (Ranked Presumm, top 10
BART), (Ranked BART, top 10 BART), and (top 10 P-Gen, top 10 BART).

6. Time complexity analysis
6.1 Clustering time complexity
It can be challenging to determine the precise time complexity of the k-means algorithm for the
detection of events from tweets, as there are a variety of factors that can affect the calculation, such
as the number of tweets, the number of features extracted from tweets, the number of clusters (k),
the convergence criteria, and the initialisation method used. The k-means algorithm is iterative
in nature, and its time complexity is usually expressed in terms of the number of iterations (T),
the number of data points (N), the dimension of the data (D), and the number of clusters (k).
Therefore, the overall time complexity of the k-means algorithm is O

(
T ×N × k×D

)
. In HAC,

the algorithm first computes similarities or distances between tweets, which has a time complexity
of O

(
N2). This is because HAC needs to compare each tweet with every other tweet. HAC ini-

tialises each tweet as a cluster that has a time complexity of O (N). In each iteration, HAC merges
the two closest clusters for (N − 1) iterations. This requires an update in the distances between the
newly formed cluster and the remaining clusters. The time complexity for these updates depends
on the distance metric and the data structure used to store the distances. If a priority queue or a
suitable data structure is used, then each update might take O

(
logN

)
time, leading to an overall

complexity of O
(
NlogN

)
for agglomeration. Once all the clusters are merged into a single cluster,

we have our final result. This step involves O (N) operations. The most influential element of the
process is usually the agglomeration step. Therefore, the total time complexity of HAC for the
detection of tweet events is likely to be approximately O

(
N2 +NlogN

)
, depending on the exact

implementation and the distance measure used. Estimating the time complexity of AP for event
detection from tweets can be a difficult task, as it depends on a variety of elements, such as the
magnitude of the input data, the parameters selected, and the implementation specifics. AP itera-
tively updatesmessage passing values between data points to determine the best exemplars (cluster
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centres) for the data points. The main steps involved in the algorithm are to update the messages
and update the responsibility/availability matrix with a time complexity of O

(
N2), where N is

the number of data points. Following the message update step, the algorithm chooses exemplars
based on responsibility and availability values. This step has a complexity of O

(
N2). The num-

ber of iterations the algorithm needs can vary depending on the data and how it converges. In
the worst case, the number of iterations could increase in relation to the number of data points,
resulting in an overall time complexity of O

(
N3).

For smaller datasets, k-means might perform faster due to its linear dependence on the num-
ber of data points. As the dataset grows, the quadratic dependence of AP on the number of data
points can make it significantly slower than k-means. In general, the HAC time complexity has a
clear dependence on the number of tweets and the chosen linkage criterion. On the other hand,
the complexity of AP is more dependent on the convergence properties of the data and the algo-
rithm parameters. Additionally, AP can discover clusters with irregular shapes, while k-means
assumes that clusters are spherical and equally sized. The choice between these algorithms should
also consider the quality of the clustering results and the suitability of the algorithm for the
underlying data distribution and problem. On our dataset, both the k-means and HAC clustering
algorithms did not generate appropriate clusters that represent the top-level events and the cor-
responding subevents. For example, the event “US Presidential Elections” has several sub-events
such as (a) before the election, (b) on the day of the election, and (c) after the declaration of the
election results. Both k-means and HAC clustering did not generate quality clusters to represent
these subevents. This is because most of the clusters generated by k-means and HAC contain
tweets representing almost all of the subevents. This has a significant impact on the summarisa-
tion task because a cluster consisting of multiple subevents may not be suitable for the appropriate
summary generation.

6.2 Time complexity of summarisation
Comparing the time complexity of various text summarisation models can prove to be a difficult
task, as it depends on various factors, including model architecture, input size, and hardware. The
time complexity may also be subject to variations depending on how the model is implemented
and optimised. The pointer network with coverage (P-Gen) has been introduced for the purpose
of abstractive text summarisation. It is important to note that the time complexity of this model is
primarily influenced by the length of the input document as well as the length of the output sum-
mary. In terms of complexity, it can be approximated asO (n), where n represents the length of the
input document. Presumm employs pre-trained encoder models, such as BERT, for both extractive
and abstractive summarisation. The computational efficiency of these models is primarily based
on the length of the input document and the number of tokens processed by the model. With
regard to BERT-based models, computational efficiency is conventionally characterised by a time
complexity of O (L), where L denotes the number of tokens present in the input. BART is a model
that utilises sequence-to-sequence technology for abstractive text summarisation. As with other
models of this type, the level of complexity is linked to the lengths of both the input document
and the output summary. Given its utilisation of multiple attention mechanisms and transformer
layers, BART’s complexity tends to be greater than that of simpler models. In fact, its complex-
ity can reach a level higher than O (n), sometimes reaching O

(
n2

)
or worse for long documents,

depending on the particular implementation and model size.

7. Conclusion
Studies on ATS from microblogs such as tweets have been in existence for a long time.
Earlier approaches are mostly based on constructing graphs and generating clusters, where the
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summarisation is based on statistical approaches. On the contrary, our approach is based on
semantics that uses contextualised word vectors. In this paper, we presented a pipeline-based
framework that involves clustering in the first phase and then summarisation in the second
phase. We generate contextual embeddings based on the 5W1H semantic components to gen-
erate semantic segments of the tweets. Unlike previous studies, we explored several clustering
techniques, such as k-means, HAC, HDBSCAN, and AP clustering, to cluster tweets targeting the
same topic or event. Among these four clustering techniques, we chose the clusters generated by
AP for the summarisation task based on the quality of the clusters. Wemeasured the quality of the
clusters based on the cosine similarity scores of the tweets within each cluster. Our experiments
show that the selection of the clustering technique plays an important role in representing the
events and sub-events which affects the generated summaries. This suggests that the adoption of a
particular clustering technique as a preprocessing step helps in better representation of events and
sub-events. For the summarisation task, we adopted three state-of-the-art neural network archi-
tectures (P-Gen, Presumm, and BART) and compared the summaries generated by them on our
dataset. The results of our experiments show that the three neural network architectures do not
produce quality summaries when tweets are arbitrarily placed (unranked). We also observed that
better summaries are produced when tweets are ranked in a cluster. Both the transformer-based
models: Presumm and BART performed better than the pointer network P-Gen. The present limi-
tation of this pipeline approach is the time complexity associated with the clustering algorithms.
Applying clustering before summarisation may not be a feasible solution for summarisation of
tweets in real time. The application of clustering as a preprocessing step is useful only when the
notion of real-time processing of tweets is not a concern. The other limitation of our approach is
the use of pre-trained models of P-Gen, Presumm, and BART, which have been trained on formal
texts rather than tweets. In the future, we intend to train the three neural network architectures on
tweets and apply those models for the summarisation of tweets. Furthermore, we intend to apply
our approach to a larger dataset, including multilingual tweets, and perform further analysis.
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