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Abstract 

The One Health High-Level Expert Panel’s definition of One Health includes optimizing the 

health of people, animals (wild and domestic), and ecosystems. For many One Health 

practitioners, wildlife that can spread zoonoses are the focus, particularly if they can come in 

contact with people. However, ecosystem health is often best-indicated by less-encountered 

species, for instance, amphibians and reptiles. This review highlights how these taxa can benefit 

human health and well-being, including cultural significance, as well as their impact on plant, 

animal, and environmental health. We highlight current challenges to the health of these species 

and the need to include them in the One Health Joint Action Plan. We conclude with a call to 

action for inclusion of amphibians and reptiles in a One Health approach. 

 

1- Introduction 

The Millennium Ecosystem Assessment, a United Nations report, discussed four categories of 

ecosystem services: provisioning, regulating, supporting, and cultural services. The public may 

not understand that the benefits they obtain from ecosystems are not just due to the wildlife they 

see, but also the cryptic wildlife they may not notice, including reptiles and amphibians. 

Herpetofauna (amphibians and reptiles, also described as herps or herptile species) contribute to 

all of the ecosystem services (Valencia-Aguilar et al. 2013); yet few people recognize that 

human health and well-being is tied to the diversity and health of herptile species. The One 

Health High-Level Expert Panel (OHHLEP), assembled and endorsed by a quadripartite 

coalition consisting of the Food and Agriculture Organization (FAO), World Health 

Organization (WHO), World Organization for Animal Health (WOAH), and United Nations 

Environment Program (UNEP), defines One Health as “an integrated, unifying approach that 

aims to sustainably balance and optimize the health of people, animals, and ecosystems” (One 

Health High-Level Expert Panel (OHHLEP) et al. 2022). Even when tackling complex problems 

using a One Health approach, multi-sectoral teams often focus on wildlife that are commonly 

encountered or observed by people (Cunningham et al. 2017), ignoring the multiple ways in 

which human health is tied to the less-encountered reptiles and amphibians. Healthy forests, 

wetlands, and other ecosystems inhabited by herps benefit human health and well-being (e.g. 

source of clean air, clean water, and food security). Amphibians are indicators of ecosystem 

health and serve as important sources of energy for food webs. For example, salamanders are the 
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greatest sources of biomass or food for forest vertebrates in parts of North America (Semlitsch et 

al. 2014). So why is herptile health rarely integrated into a One Health approach? One of the key 

underlying principles of One Health is equity between sectors and disciplines. Following a 

“Herps and One Health” workshop at the 2022 inaugural Global Amphibian and Research 

Disease Conference, the participants delved deeper into the topic and completed this manuscript. 

Here we review some illustrative examples that provide evidence supporting the critical need to 

integrate herptile species health into an equitable One Health approach and highlight the 

contributions of herpetofauna to ecosystem, plant, animal, and human health. We conclude with 

a call to action that highlights the integral role of herps in the Quadripartite One Health Joint 

Plan of Action. 

 

2- Herps are Indicators of Ecosystem Health  

Reptiles and amphibians contribute to nutrient cycling, seed dispersal and pollination, pest 

control, and energy conversion by ingesting plants and serving as food for predators (Hocking 

and Babbitt 2014). Ectotherms, including reptiles and amphibians, are sensitive to environmental 

change and can serve as indicators of ecosystem health. As such, herps are critical to the United 

Nations Sustainable Development Goals #6 (clean water) and #15 (life on land) (‘THE 17 

GOALS | Sustainable Development’ 2024). The 2022 SDG report highlighted that (1) over 85% 

of the world’s wetlands have been lost over the last 300 years (SDG #6) and (2) ten million 

hectares of intact forest are lost to land-use change every year (SDG #15). Because herptile 

biodiversity and health are impacted by habitat degradation and loss, these species represent key 

bio-indicators of ecosystem health. For example, geographic herptile functional group analyses 

were used in South Korea to guide the identification of biodiversity hotspots and indicate 

ecosystem health (Jeon et al. 2023). Similarly, China (Li et al. 2017), the United States (Adams 

and Muths 2019), and other countries monitor herptile biodiversity to assess ecosystem health.  

  

2a- Herps and Plant Health 

Amphibians and reptiles contribute to overall plant health through seed dispersal and pollination 

and as predators of crop pests (Hocking and Babbitt 2014; Valencia-Aguilar et al. 2013). Herps 

can serve as pollinators when they move from flower to flower, drinking nectar and inadvertently 

transporting pollen for example Xenohyla truncate (de-Oliveira-Nogueira et al. 2023). In another 
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example, the dusky lizard (Liolaemus belii) has been shown to be an important seed disperser of 

a barberry species native to Chile (Celedón-Neghme et al. 2008). This is significant because 

berberine, a popular dietary supplement with medicinal benefits, comes from barberry plant 

species. As predators, 78% of the South American toad’s (Rhinella arenarum) diet includes 

arthropods that damage crops, and it is reported that the loss of R. arenarum and other 

amphibians will decrease this biological pest control for soybean crops (Attademo et al. 2005). 

 

2b- Herps and Animal Health 

An interdependency exists between herpetofauna and other wildlife in their ecosystems. Larval 

amphibians can occur in incredibly high densities in some ecosystems and are likely to have 

significant effects on ecosystem functions, including primary productivity, through changes in 

the food web (Seale 1980). They can act as primary consumers, detritivores, predators, and even 

cannibals, improving water quality of both wild and farm ponds and in turn affecting domestic 

and farm animal health (Gibbons et al. 2006). Reptiles can also impact farm animal health. For 

example, Caiman species can control aquatic snails that serve as intermediate hosts for the 

trematode Fasciola hepatica, which damages the liver of infected cattle and sheep (Valencia-

Aguilar et al. 2013). Herps can also be impacted as a cascade effect; for example, declines in 

neotropical frogs and tadpoles can result in significant declines of frog-eating snake populations 

(Zipkin et al. 2020).  

 

2c- Herps and Human Health  

One of the most common notions connecting herptile species and human health is the 

detrimental presence of poison in amphibians and reptiles. Venomous species inject toxin by 

bite (e.g., cobra) or sting, while humans handling poisonous species may ingest, inhale, or 

absorb toxins (e.g., poison dart frog). Injection or ingestion of toxins may result in illness or 

death. Furthermore, while herptile species can be a food source for humans (e.g., frog legs), 

there is concern over their potential to carry multidrug-resistant strains of important human 

pathogens like E. coli and Acinetobacter spp. similar to other meats (Morrison and Rubin 

2020). The mechanisms of such antimicrobial resistance in wildlife species remain unclear but 

may be tied to persistence of antimicrobial residues in domestic animals and the environment 

(Vittecoq et al. 2016). Given the gravity of emerging antimicrobial resistance, further 
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investigation into drug resistant microbes and wild herpetofauna is warranted. Human health 

and well-being benefit from herptile species, including the development of cancer therapies, 

cardiovascular therapies, and other treatments (Table 1; Bordon et al. 2020).
 

 

3- Cultural Benefits of Herptile Species  

Urbanized societies are becoming more disconnected from nature and wildlife, including 

amphibians and reptiles. Yet, the One Health approach reminds us that we are all linked, 

including the importance that herps play throughout various cultures. Ethnoherpetology 

documents the human connection to herptile species as represented in ancient culture vestiges 

and folklore, with some cultural traditions persisting to this day (Crump 2024); in the earliest 

human civilizations, amphibians and reptiles were deities. Here, we detail the importance of 

some herpetological species across past and present cultures. 

 

Turtles 

Turtles play a prominent role in the creation story of several indigenous peoples and tribes across 

the Americas. The Iroquoi, Ojibwe, Algonquin, Cree, and others believe that North and Central 

America were formed on the back of a large turtle that Great Mother Aataentsic landed on after 

falling through a hole in the sky (Pearce 2005). Contemporarily, turtles are also responsible for 

ecotourism booms to watch and participate in the conservation of sea turtle species during 

nesting on beaches (Jacobson and Lopez 1994).  

 

Snakes 

Many traits that are associated with snakes have been likened to human traits - for example the 

sinuous coils of a snake’s body are often related to human hair, becoming a symbol of richness, 

wealth and prosperity in 4th century Roman culture (Lazarou 2018). In one Aboriginal dreaming 

story, the rainbow serpent is referred to as a creator and, like the rainbow, frequently associated 

with water and rainfall. The rainbow serpent is a widespread tradition in pre-colonial Australian 

societies, depicted in the rock art of the Waayni people from Northwestern Queensland (Taçon 

2008). 
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Even to this day, the rod or staff of the Greco-Roman god of healing and medicine, Asclepius, is 

used as a symbol of health care. Evidence suggests that the non-venomous European 

Aesculapian snake (Zamenis longissimus), which derives its name from this god, was allowed to 

roam freely in ‘healing temples’ in ancient Greece and was even used for healing superficial skin 

lesions (Demetrioff 2020). The association of snakes with wisdom is also propounded through 

many early cultures, including Hinduism, where the god Shiva, who typically wears a snake 

around his neck, represents wisdom (Stanley 2008). 

 

Frogs, Toads, and Salamanders 

Many neotropical societies view frogs as good-luck charms or signs of fertility, dating back 

thousands of years (Valencia-Aguilar et al. 2013). Amazonian indigenous tribes have used skin 

secretions of several Dendrobatid frogs to rub on their bodies to gain power or to experience pain 

and euphoria (Valencia-Aguilar et al. 2013). In addition, secretions can be used in making 

‘curare’, a poison used in hunting and medicine (Valencia-Aguilar et al. 2013). In Asia, frogs 

and toads are associated with wisdom and magic in Chinese and Japanese cultures (DeGraaff 

1991).  

 

4-Herptile Biodiversity Loss 

Since the global herptile crisis was first recognized in the 1980s amphibian and reptile 

populations have declined precipitously (Rollins-Smith 2020, Luetdke et al. 2023). Currently, 

21% of the assessed reptile species and 41% of amphibian species are at risk of extinction 

(‘IUCN Red List of Threatened Species’ 2024).  

 

4a- Impacts of Anthropogenic Environmental Degradation and Contamination on Herps  

Global ecosystem changes of the Anthropocene have impacted herptiles more profoundly than 

any other vertebrate taxa (Barnosky et al. 2011). For amphibians, especially, their shared 

terrestrial and aquatic life histories, permeable skin, and adaptation to species-optimal thermal, 

precipitation, and UV radiation conditions make them a good sentinel species for 

environmental health and “canaries in the coalmine” for environmental degradation (Hopkins 

2007). In many areas of the globe, amphibians have been among the first taxa to show 

population-wide responses to genotoxic and teratogenic environmental contaminants like 
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pesticides, herbicides, agricultural runoff, sewage, and pharmaceutical and industrial effluent 

(Egea-Serrano et al. 2012). Population-wide health impacts of environmental contaminants in 

amphibians, like atrazine, have triggered re-evaluation of legally allowed levels of chemicals in 

wastewater and environmental effluent to protect environmental health as well as public health 

(Roy 2002). These chemicals have the potential to induce genotoxic and teratogenic changes in 

exposed humans as well.  

 

Land-use change driven by human influence on the environment is a major driver of global 

biodiversity loss (Isbell et al. 2017). For herpetofauna specifically, habitat loss and degradation 

are considered crucial drivers of species declines (Ford et al. 2020). These declines will have 

profound implications for other organisms and ecosystems. 

 

4b- Impacts of Climate Change on Herp Health 

Climate change is associated with warming global temperatures, changing precipitation patterns, 

sea level rise, and increased extreme weather events. These shifts in climate are altering the 

habitats that amphibians and reptiles reside in, and, as such, suitable environments for their 

survival may be shrinking (McMenamin et al. 2008, Luetdke et al. 2023). Climatic events have 

been linked to local population extinctions, the predicted dispersal of herpetofauna to areas 

outside of their normal ranges, and projections that more herptile species will be listed as 

endangered, threatened, or vulnerable (Olson and Saenz 2013, Luetdke et al. 2023). In Table 2 

we review the potential impacts of climate change on herptile species.  

 

Rises in ambient temperatures may influence reptile biodiversity, especially in species with 

temperature-dependent sex determination because rises in temperature may skew sex ratios to 

levels that cannot sustain populations (Valenzuela et al. 2019); this is especially the case for 

chelonian diversity (Ihlow et al. 2012). It has been suggested that larval development may be the 

most vulnerable amphibian life stage affected by climate shifts due to more regular droughts and 

the general rise in water temperature in amphibian breeding habitats (Sinai et al. 2022). Climate 

change (i.e., high temperatures and increased drought in some regions) may be beneficial or 

harmful to herptile species in terms of changing pathogen dynamics, pathogen pollution by 

invasive species, water stress, and trophic mismatch. 
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Pathogen Dynamics 

The herptile host-pathogen relationship is highly temperature dependent and likely one of the 

most significant drivers determining infectious disease outcomes (Rohr et al. 2008). Higher 

temperatures, in both live animal exposure experiments and wild populations, are associated with 

increased disease occurrence and severity (Price et al. 2019). It has been hypothesized that 

increased drought will reduce the prevalence of the amphibian skin-eating fungus, 

Batrachochytrium dendrobatidis (Bd), because the pathogen is dependent on freshwater for 

reproduction and survival(Fisher et al. 2009). Others argue that Bd is amplified by drought 

conditions (Pounds et al. 1999) because infection of the pelvic patch, important for rehydration, 

would make frogs more vulnerable during dry periods. For reptiles, seasonal climate variations 

that alter overwintering conditions and ambient air temperatures, likely play a crucial role in 

pathogen transmission and disease culmination, which has been suggested for snake fungal 

disease (Albecker and McCoy 2017). In another reptile study, warmer temperatures resulted in 

overall higher ectoparasite infections in wild common lizard (Zootoca vivipara) females, though 

the lizard’s color variety/morphotype varied the rate of infection (Wu et al. 2022). The degree to 

which climate alterations affect disease outcomes of individual pathogen-exposed amphibians 

and reptiles and how this translates to a landscape scale and/or population level, still needs to be 

further elucidated. 

 

Hydric Stress 

While many reptiles are adapted to arid and mesic environments with limited water availability, 

hydric stress can influence thermoregulatory behavior (Ladyman and Bradshaw 2003), influence 

sex ratios in offspring (Dupoué et al. 2019) and stagnate reproduction (Dezetter et al. 2021). 

These scenarios can often lead to reproductive failure and decreases in recruitment (Chandler et 

al. 2017). All amphibians rely on availability of freshwater or moisture for reproduction 

regardless of life history. Because most amphibians display a biphasic life history, eggs, 

tadpoles, and metamorphs are particularly vulnerable to the direct effects of drought such as 

mortality from desiccation or dehydration (Li et al. 2013). Somewhat counterintuitively, reptiles 

under hydric stress show enhanced components of immune function (Brusch et al. 2020), which 

may be a result of adaptation to arid environments, or to counteract the reduced immune capacity 

of reptiles maintaining lower body temperatures when under hydric stress (Ladyman and 
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Bradshaw 2003). This phenomenon deserves further study to investigate how it may influence 

host-pathogen dynamics.  

 

Trophic Mismatches 

Changes in phenology of herpetofauna food sources could result in trophic mismatches upon 

spring emergence (Kharouba et al. 2018), unless phenology shifts in herpetofauna are 

synchronous with shifts in their food sources. Conversely, winters are predicted to be shorter in 

some parts of the globe (Räisänen et al. 2004), which could be beneficial for reptiles and 

amphibians that hibernate, as long as food sources are available. Experimental work suggested 

that a shorter, warmer winter was beneficial for survival and body mass changes during 

hibernation for common toads (Bufo bufo) (Üveges et al. 2016). Alternatively, climate change 

may result in prolonged estivation or behavioral refugia time which could lead to reduced 

foraging or breeding windows, and ultimately population declines (Sinervo et al. 2010). 

 

5- Herptile Diseases 

For herpetofauna, negative effects on biodiversity are most notable when looking at declines 

caused by the global spread of emerging infectious diseases. One of the best cases exemplifying 

the disastrous results of species loss is frog population collapse due to Bd that led to declines in 

snake species, key amphibian predators (Zipkin and DiRenzo 2022). In addition to over 500 

amphibian species declines, at least ninety amphibian species are believed to have gone extinct 

because of this fungal panzootic (Scheele et al. 2019). In Panama, a comparison of pre- and post- 

Bd epizootic Neotropical snake species richness showed a 20% decline following a 75% decline 

in amphibian abundance (Zipkin et al. 2020). Increases in human malaria cases have been 

associated with the decline of amphibian mosquito predators (Springborn et al. 2022). Overall, 

reptile and amphibian declines can be attributed to two overarching mechanisms: mortality and 

decreased recruitment. Unregulated global trade has introduced deadly pathogens, like chytrid 

(Bd and B. salamandrivorans, Bsal) fungi, Ophidiomyces ophiodiicola (i.e., causative agent of 

snake fungal disease) and ranaviruses, to immunologically-naive herptile populations resulting in 

unchecked spread through native populations. 
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6- Inclusion of Herps in the One Health Joint Plan of Action 

The One Health Joint Plan of Action (OH JPA 2022-2026) developed by the Quadripartite 

Organizations (FAO, UNEP, WOAH, WHO) – includes six action tracks with the last one 

focused on integrating the environment into One Health (Protect and restore biodiversity, 

prevent the degradation of ecosystems and the wider environment to jointly support the health of 

people, animals, plants and ecosystems, underpinning sustainable development). The 

biodiversity and health of herptile species, aligned with ecosystem health, has direct and indirect 

consequences for plant, animal, and human health. The health of these ectotherms, which are 

sensitive to environmental change, needs to be added to the mainstream One Health approach 

(see the OH JPA 2022-2026, Action 6.2).  

 

6a- Developing a holistic approach to manage emerging herp threats 

To apply a true ‘One Health’ approach, we must expand our thinking beyond pathogens/diseases 

of concern and include overall health and determinants of health for monitoring and conservation 

actions. For example, the approach taken by Wittrock et al. (2019) that considers a 

‘Determinants of Health’ model for caribou and sockeye salmon. This model, which has roots in 

public health, considers biotic, abiotic and social contributions that factor into health outcomes 

(Wittrock et al. 2019). Can we foresee something similar for amphibians and reptiles, to broaden 

our approach to managing health with a holistic, systems-based approach? How do we 

accomplish this with limited resources dedicated to herpetofauna? Are there existing systems 

already in place that can be utilized? The following are a few selected examples that might be 

included in One Health approaches. 

 

Engaging Participatory Science into Herp Monitoring Programs 

OH JPA Activity 6.3.8 - Engage with citizen science on data collection for monitoring the health 

of the environment to inform action. 

It is widely accepted that in an environment where professional resources for species monitoring 

are increasingly scarce, community scientists are of greater importance. Despite concerns about 

the robustness of data collected in this way and the biosecurity practices employed, participatory 

science is making a significant contribution in many regions (Schmeller et al. 2009). Perhaps, 

increasing the engagement of the public may prove useful, raising awareness of the plight of 
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herpetofauna and giving the public a role in herpetofauna health and conservation, ultimately 

elevating the popularity status of herpetofauna despite their cryptic nature (for example see Fig. 

1).  

 

7- Engaging the IUCN for protecting and restoring biodiversity of Herpetofauna  

Currently, the International Union for Conservation of Nature (IUCN) is composed of a number 

of working groups, including the Amphibian Specialist Group (ASG), the Snake Specialist 

Group (SSG), the Tortoise and Freshwater Turtle Specialist group (TFTSG), Marine Turtle 

Specialist Group (MTSG) and the Crocodile Specialist Group (CSG) where government 

officials, researchers and workers across sectors at the local, national, regional and global levels 

review threats and implement conservation action plans. These include developing shared 

databases and surveillance across different sectors and identifying new solutions that address the 

root causes and links between risk factors and impacts to biodiversity. Using the World Health 

Organization model, the ASG and SSG could implement a One Health approach to integrate 

research along the amphibian, reptile, human, animal, plant, and environmental health interface. 

This integrated framework would identify and promote multi-sectoral approaches to reduce 

health threats, including the transformations required to prevent and mitigate the impact of 

current and future health challenges at regional, country and global levels (Cunningham et al. 

2017). Such an approach could be combined with task forces already in place (e.g., Bsal Task 

Force, https://www.salamanderfungus.org/; https://sosanfibios.org/) to make recommendations 

for research on emerging disease threats and develop long-term global plans of action to avert 

outbreaks. The panel could additionally have a role in investigating the impact of human activity 

on the environment and wildlife habitats, and how this drives disease threats. 

  

8- CALL TO ACTION: Integrating Herps into a One Health Approach 

Integrating herps into the One Health approach would potentially have multiple beneficial 

impacts on public health and well-being. Herein, we implore a call to action for those using a 

One Health approach to integrate reptiles and amphibians, indicators of ecosystem health, into 

their decision-making. The One Health approach requires interdisciplinary collaboration to 

promote a sustainable future for humans, animals, plants, and their shared ecosystems (One 

Health High-Level Expert Panel (OHHLEP) et al. 2022) and is being implemented in the One 
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Health Joint Plan of Action. Unfortunately, we often limit our view of One Health to a few 

closely related disciplines and neglect the broader scope of factors that may be equally 

significant. A One Health team must engage representatives and stakeholders across multiple 

sectors to coordinate and collaborate for an effective, holistic response (Figure 2). This need for 

a holistic response is included in the One Health Joint Plan of Action, emphasizing the 

importance of incorporating the environment sector in One Health approaches (e.g., see OH JPA 

2022-2026, Action 6.4.4). 

 

One Health should be our lifestyle, ingrained in our day-to-day activities, abandoning our 

consumerism for the sake of nature and, hence, our wellbeing. Can we change the way we 

currently live? Is public engagement the answer (the glue) to imploring decision makers and 

high-level committees to consider herpetofauna in One Health approaches? Indeed, to achieve 

health for all life we need a global community working united. 
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Figure 1. Examples of how Citizen Science can be incorporated into herptile One Health 

approaches. Adapted from https://www.usgs.gov/media/images/illustration-participatory-

science-usgs-ecosystems-mission-area. 
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Figure 2. Visual Schematic representing the diverse stakeholders that can contribute to a 

successful One Health approach for herpetofauna. Credit: Natalie Claunch. 
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Table 1. Examples of Connections Between Herptile Species and Human Health  

 

Herptile Class Connectionsto Human Health  References 

Amphibians Direct connections 

● In the 1930s, Xenopus laevis were taken from the wild and used 

to develop a human pregnancy test. Captive rearing was then 

utilized to sustain a steady resource of these toads. 

● A toxin isolated from a dendrobatid frog (Epipedobates tricolor) 

shows promise as non-opiate pain killer and potentially 

derivatives used in treating Parkinson’s disease and Alzheimer’s. 

● Antimicrobial peptides (AMP) from anuran skin can inhibit 

infection of human immune-deficiency virus (HIV).  

● Skin secretions from Phyllomedusa frogs may be useful in 

treating drug-resistant infections. 

 

(Elkan 1938) 

  

(Salehi et al. 2018) 

 

 

 

(VanCompernolle et al. 2005) 

(Azevedo Calderon et al. 

2011) 

 

Indirect connectionsbenefits 

● Amphibian collapse in Costa Rica and Panama is associated with 

increased incidence of the mosquito-borne human malaria. 

● Insights from amphibian regenerative capabilities are informing 

advances in regenerative medicine. 

 

(Springborn et al. 2022) 

 

 

(Mahapatra et al. 2023) 

Reptiles 

 

Direct connectionsbenefits 

● The venom of Bothrops snakes has important antimicrobial and 

pharmacological properties. 

● Venoms of Heloderma and various snake species are used in 

pharmaceutical drugs to treat things such as hypertension and 

Type 2 diabetes mellitus. 

 

(Ciscotto et al. 2009) 

 

(Bordon et al. 2020) 

Indirect connectionsbenefits 

● The immune system of western fence lizards (Sceloporus 

occidentalis) and southern alligator lizards (Elgaria multicarnata) 

kills the pathogenic agent of Lyme disease in infected, feeding 

ticks. 

 

(Lane and Quistad 1998) 
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Table 2. Summary of potential and demonstrated impacts of climate change on Herptile Health  
 

Climate 

Change 

Category 

Type of Impact Impacts on Herptile Health Examples of References 

Addressing These Impacts 

Average 

Warming 

Global average increases 

in temperature across all 

seasons 

● Increased energy budgets at increased temperatures -

> tradeoffs with immune function 

● Sex-ratio biases in TSD herps 

● Range shrinkage 

● Shifts in seasonal feeding, migration, breeding 

● Potential for increased heat-tolerant pathogen 

presence 

● Heat avoidance behavior may lead to increased host-

pathogen interactions (e.g. certain fungi) 

● Reduction in species richness 

(Lesbarrères et al. 2014) 

 

(Biber et al. 2023) 

 

(Rollins-Smith 2017) 

Severe 

Precipitation 

Events 

 Drought 

● Hydric stress influences immune function (can 

increase it in some reptiles) 

● Lack of rain as seasonal cue 

o Increased aestivation times, potential increased 

energy budgets 

● Range shrinkage  

● Shrinkage or loss of some aquatic habitats 

o Increased competition and decreased resources 

lead to stress 

o Increased interactions between hosts and 

pathogens 

o Breeding grounds disappear 

o Aquatic larvae require rapid 

development/plasticity to survive 

(Moss et al. 2022) 

 

(Sinai et al. 2022) 

 

 Flooding 

● Novel habitat connectivity for hosts and pathogens 

● Increased residence time of aquatic pathogens 

● Water avoidance behavior may increase multi-host 

interactions on “islands” 

(Walls et al. 2013) 
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● Potential for habitat alteration, range shrinkage 

Severe Thermal 

Events 

 Heat Waves 

● Thermal stress influencing immune function 

● Aggregation at thermal refugia- increased host 

interactivity 

● Mortality (genetic bottleneck, population loss) 

● Range shrinkage in deserts, mountain tops etc 

● Change in disease dynamics  

(Song et al. 2022) 

 

 

(Rollins-Smith 2017) 

 

 Cold Fronts 

● Potential for pathogen “flare-ups” while host 

metabolism is low 

● Aggregation at thermal refugia- increased host 

interactivity 

● Mortality (genetic bottleneck, population loss, some 

habitats may become inhospitable) 

● Breeding or development interruption  

(Rollins-Smith 2017) 

Increased Storm   

Intensities 

Habitat Alteration: 

Lightning: Fire 

Frequencies 

● Range shrinkage or expansion: habitat structural 

change leads to changes in refugia, resources 

● pH changes in habitat influence host and pathogen 

(Hossack and Pilliod 2011) 

Habitat Alteration: 

Wind Damage: Canopy 

destruction 

● Range shrinkage or expansion: habitat structural 

change leads to changes in refugia, resources 

● Potential for increased UV exposure with canopy 

loss- influence both pathogens and microbiome at 

forest floors 

(Marroquín-Páramo et al. 2021) 

Habitat Alteration: 

Storm Surge: Saltwater 

Inundation 

● Ecosystem change based on salt-tolerant species 

(host, pathogen, environment) 

● Hydric stress influencing immune function 

● Mass mortality events, range shrinkage, population 

extinction expected for amphibians 

(Albecker and McCoy 2017) 
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