On certain expansions involving Whittaker's M-Functions

By S. C. Mitra.

(Received 19th January, 1940. Read 3rd February, 1940.)

1. The object of the present note is to obtain expansions of the square of Whittaker's M-Functions in series of M-Functions and also other expansions involving M-Functions.
2. Whittaker's M-Function ${ }^{1}$ is defined as
$M_{k, m}(x)=x^{\frac{1}{4}+m} e^{-\frac{1}{2} x}\left\{1+\frac{\frac{1}{2}+m-k}{1!(2 m+1)} x+\frac{\left(\frac{1}{2} m+m-k\right)\left(\frac{3}{2}+m-k\right)}{2!(2 m+} \frac{1)(2 m+2)}{12}+\ldots\right\}$
where $2 m$ is not a negative integer. The following recurrencerelations are explicitly known or else easily deducible from the wellknown recurrence-relations for the confluent hypergeometric function.

$$
\begin{align*}
& \left(\frac{1}{2}-m-k\right) M_{k, m}(x)=(x-2 k+2) M_{k-1, m}(x)+\left(k-\frac{3}{2}-m\right) M_{k-2, m}(x) \tag{2}\\
& \quad x \frac{d}{d x} M_{k, m}(x)=\left(k-\frac{1}{2} x\right) M_{k, m}(x)+\left(\frac{1}{2}+m-k\right) M_{k-1, m}(x) \tag{3}\\
& \quad x \frac{d}{d x} M_{k, m}(x)=\left\{\frac{k}{2 m-1} x-\left(m-\frac{1}{2}\right)\right\} M_{k, m}(x)+2 m x M_{k, m-1}(x) \tag{4}\\
& \text { and }^{2} \\
& x \frac{d}{d x} M_{k, m}(x)=\left(m+\frac{1}{2}-\frac{k}{2 m+1} x\right) M_{k, m}(x)+\frac{\left(\frac{1}{2}+m+k\right)\left(\frac{1}{2}+m-k\right)}{(2 m+1)^{2}(2 m+2)} x M_{k, m+1}(x) \tag{5}
\end{align*}
$$

3. The functions $M_{k, \pm m}(x)$ satisfy the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\left\{-\frac{1}{4}+\frac{k}{x}+\frac{1}{4}-m^{2} x^{2}\right\} y=0 \tag{6}
\end{equation*}
$$

and $M_{k,{ }_{m}}^{2}(x)$ satisfy the equation

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}=\left(\frac{2 k}{x^{2}}-\frac{4 m^{2}-1}{x^{3}}\right) y+\left(1-\frac{4 k}{x}+\frac{4 m^{2}-1}{x^{2}}\right) \frac{d y}{d x} \tag{7}
\end{equation*}
$$

To obtain a solution of (7), let us assume $y=\Sigma A_{r} x^{\frac{1}{2}} M_{r,-2 m}(2 x)$ and substitute this value in (7).
${ }^{1}$ Whittaker and Watson, Modern Analysis (Cambridge, 1920), 337.
${ }^{2}$ Tohoku Math. Journal, 29 (1928), 321.

Then we get after considerable simplification

$$
\begin{equation*}
\sum A_{r}(x-r) M_{r,-2 m}(2 x)=\Sigma A_{r}(4 r-8 k) x M_{r,-2 m}^{\prime}(2 x) \tag{8}
\end{equation*}
$$

Making use of the recurrence-relations (2) and (3), we get after some simplification

$$
\begin{align*}
\Sigma A_{r}\left(\frac{1}{2}-2 m\right. & -r)(4 k+1-2 r) M_{r-1,-2 m}(2 x) \\
& =\Sigma A_{r}\left(\frac{1}{2}-2 m+r\right)(-4 k+1+2 r) M_{r+1,-2 m}(2 x) \tag{9}
\end{align*}
$$

Hence

$$
\begin{equation*}
A_{r+2}=A_{r} \frac{\left(\frac{1}{2}-2 m+r\right)(-4 k+1+2 r)}{\left(\frac{3}{2}+2 m+r\right)(-4 k+3+2 r)}, \tag{10}
\end{equation*}
$$

and the initial value of r is $2 k+\frac{1}{2}$ or $\frac{1}{2}-2 m$. Hence equating the coefficients of various powers of x, we easily find that

$$
\begin{align*}
& x^{-\frac{1}{2}} M_{k .-m}^{2}(x)=\frac{\Gamma\left(\frac{1}{2}+k+m\right) \Gamma\left(\frac{1}{2}+2 m\right)}{\Gamma(k+m+1) \Gamma} 2^{\left.2 m-\frac{1}{2 m}\right)} \times \\
& \\
& \quad\left\{\begin{array}{l}
2 k+\frac{1}{2},-2 m(2 x)+\frac{\frac{1}{2}\left(\frac{1}{2}-m+k\right)}{1!(k+m+1)} M_{2 k+\frac{1}{2}-2 m}(2 x) \\
\\
\left.\quad+\frac{\frac{1}{2} \cdot \frac{3}{2}\left(\frac{1}{2}-m+k\right)\left(\frac{3}{2}-m+k\right)}{2!(k+m+1)(k+m+2)} M_{2 k+!,-2 m}(2 x)+\ldots .\right\}
\end{array}\right. \tag{11}
\end{align*}
$$

Now applying the test that Σu_{n} is absolutely convergent if

$$
\varlimsup_{n \rightarrow \infty} n\left\{\left\lvert\, \frac{u_{n+1}}{u_{n}}-1\right.\right\}=-1-c
$$

when c is positive, we can prove that the infinite series is absolutely convergent, provided that $m>0$.

The other expansion which is valid for $m>0$ is

$$
\begin{align*}
x^{-3} & M_{k,-m}^{2}(x)=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1}{2}+m-k\right)}{\Gamma(1-k-m) \Gamma(2 m)} 2^{2 m-1}\left[M_{1-2 m,-2 m}(2 x)\right. \\
& -\frac{(4 m-1)(4 m+4 k-2)}{2 \cdot(4 m+4 k-4)} M_{:-2 m,-2 m}(2 x) \\
& +\frac{(4 m-1)(4 m-3)(4 m+4 k-2)(4 m+4 k-6)}{2.4(4 m+4 k-4)(4 m+4 k-8)} M_{2-2 m,-2 m}(2 x) \\
& -\ldots] . \tag{12}
\end{align*}
$$

Thus we see that $x^{-\frac{1}{y}} M_{k,-m}^{2}(x)$ can be expressed in either of the two forms (11) and (12).
4. We have seen that $M_{k, m}(x)$ satisfies the differential equation (6). To find a solution, let us assume

$$
\begin{equation*}
y=\Sigma A_{r} x^{r+\frac{1}{2}} M_{\frac{1}{2} k, r}(x) . \tag{13}
\end{equation*}
$$

Substituting in (6) and making use of the relations (4) and (5), we find after some simplification,

$$
\begin{align*}
& \sum A_{r}\left\{m^{2}-\left(2 r+\frac{1}{2}\right)^{2}\right\} x^{r-\Sigma} M I_{2, r}(x) \\
& \quad=\Sigma A_{r} \frac{\left(\frac{1}{2}+\frac{1}{2} k+r\right)\left(\frac{1}{2}-\frac{1}{2} k+r\right)}{(2 r+1)} x^{r-1} M_{\leq k, r+1}(x) \tag{14}
\end{align*}
$$

whence

$$
\begin{equation*}
A_{r+1}=A_{r} \frac{\left(\frac{1}{2}+\frac{1}{2} k+r\right)\left(\frac{1}{2}-\frac{1}{2} k+r\right)}{(2 r+1)(2 r+2)\left(m+2 r+\frac{5}{2}\right)\left(m-2 r-\frac{5}{2}\right)} \tag{15}
\end{equation*}
$$

and the initial value of r is $\frac{1}{2} m-\frac{1}{4}$. Hence we obtain the absolutely convergent infinite series,

$$
\begin{align*}
& M_{k, m}(x)=\left\{x^{\leq m+\frac{1}{2}} M_{\vdots k, \leq m-\frac{1}{2}}(x)\right. \\
& -\frac{\left(\frac{1}{2}+m+k\right)\left(\frac{1}{2}+m-k\right)}{(2 m+1)(2 m+3) \cdot 2(2 m+2)} x^{x^{\frac{1}{m}+4} M_{!k, \frac{1}{2} m+3}(x)} \\
& +\frac{\left(\frac{1}{2}+m+k\right)(5+m+k)\left(\frac{1}{2}+m-k\right)\left(\frac{5}{2}+m-k\right)}{(2 m+1)(2 m+3)(2 m+5)(2 m+7) \cdot 2 \cdot 4 \cdot(2 m+2)(2 m+4)} \times \\
& \left.x^{!m+9} M_{1 k, \frac{1}{3} m+\frac{1}{2}}(x)-\ldots\right\} . \tag{16}
\end{align*}
$$

This suggests the following expansion

$$
\begin{align*}
& { }_{1} F_{1}(2 a ; 2 b ; x)=\left\{{ }_{1} F_{1}(a ; b ; x)-\frac{(b-a) a}{b(b+1) \cdot\left(b+\frac{1}{2}\right) 1!2^{2}} x^{2}{ }_{1} F_{1}(a+1 ; b+2 ; x)\right. \\
& \left.+\frac{(b-a)(b-a+1) a(a+1)}{b(b+1)(b+2)(b+3) \cdot\left(b+\frac{1}{2}\right)\left(b+\frac{3}{2}\right)} 2!2^{4} x^{4}{ }_{1} F_{1}(a+2 ; b+4 ; x)-\ldots\right\} . \tag{17}
\end{align*}
$$

Dacca University, India.

