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The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is
investigated using new experimental measurements (7000 � δ+ � 7800), existing lower
Reynolds number experimental (δ+ ≈ 1000) and computational (δ+ < 800) data sets,
where δ+ is the friction Reynolds number. In the present experimental set-up the boundary
layer is under modest APG conditions, where the Clauser PG parameter β is ≤1.8.
Well-resolved hot-wire measurements are obtained at the Flow Physics Facility at the
University of New Hampshire in the region of an APG ramp. Comparisons are made with
zero pressure-gradient turbulent boundary layer (ZPG TBL) experimental data at similar
Reynolds number and numerical simulation data at lower Reynolds number. The main
aims of the present study centre on the inertial sublayer of the APG TBL and the degree
to which its characteristics are similar to those of the ZPG TBL. This investigation utilizes
equation-based analyses and empirical approaches. Among other results, the data suggest
that even though the APG TBL streamwise variance does not exhibit a logarithmic profile
(unlike the ZPG TBL) both ZPG and APG TBLs exhibit distance-from-the-wall scaling
on the inertial sublayer. Theoretical arguments suggest that wall-distance scaling resulting
from a self-similar dynamics is consistent with both a single velocity scale leading to a
log-law in mean velocity profile as well as multiple velocity scales leading to a power-law
mean velocity profile.

Key words: boundary layer structure, turbulent boundary layers

1. Introduction

Owing to their technological significance, turbulent boundary layers have, and continue
to be, the subject of intense study (Klewicki 2010; Smits, McKeon & Marusic 2011;
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Vinuesa et al. 2018). For the purposes of clarifying the simplest and most fundamental
properties of the turbulent boundary layer, the vast majority of studies have focused on the
flat plate turbulent boundary layer where there is no streamwise pressure-gradient (PG)
(i.e. the zero pressure-gradient turbulent boundary layer (ZPG TBL)). Rarely, however,
is the canonical ZPG TBL precisely encountered in practical applications. Indeed, while
many applications involve nominally ZPG TBLs (e.g. TBL flow on a commercial aircraft
fuselage), many others involve streamwise PGs that have a leading-order dynamical
effect. For the purposes of modelling and conceptual understanding, it is thus useful to
know those aspects of PG boundary layers that are describable as an extension of those
found in the canonical flow. Toward this aim, the present study broadly seeks to clarify
the connections between the inertial sublayer of TBLs subjected to moderately adverse
pressure-gradients (APG) and the inertial sublayer (logarithmic layer) of the ZPG TBL.

As a starting point, it is useful to consider time scales relevant to the underlying physics.
In the case of the ZPG TBL, the two important time scales are the viscous diffusion time,
tν = ν/u2

τ , that is relatively small and representative of the inner region, and tΔ = Δ/uτ , a
much larger outer region time scale. Here, ν is the kinematic viscosity of the fluid, uτ is the
friction velocity (≡ √

τw/ρ, where τw is the mean wall shear stress and ρ the fluid density)
and Δ = ∫∞

0 u−1
τ (U∞ − U( y)) dy is the Rotta–Clauser length scale. In these expressions

U( y) is the mean streamwise velocity (a function of the distance-from-the-wall, y, at any
given x) and U∞ is the free stream velocity (e.g. Tennekes & Lumley 1972). Accordingly,
the non-dimensional parameter that describes the ZPG TBL is the ratio of the outer to the
inner time scales:

ReΔ ≡ tΔ
tν

= �uτ

ν
. (1.1)

Note that for a given flow this is equivalent to the usual friction Reynolds number, Reτ ≡
δuτ /ν because Δ is a constant fraction of the ‘usual’ TBL thickness δ, i.e. Δ ≈ 3.5δ,
see for example Morrill-Winter, Philip & Klewicki (2017). A ZPG TBL is deemed to be
‘self-preserving’, as its Reynolds number (Reτ or ReΔ) is only slowly varying in space, and
the local state of the momentum transport across the flow is reflected by (scales with) the
wall shear stress. Note that ZPG TBLs typically grow slowly with x, for example dδ/dx ≈
0.012 at Reτ = 14 500 whereas at Reτ ≈ 8000 dδ/dx ≈ 0.016 (as shown, respectively, by
Chauhan et al. (2014) and Zimmerman et al. (2019)). The present APG TBL measurements
for 7100 ≤ Reτ ≤ 7770 grow at a slightly faster rate, such that 0.016 ≤ dδ/dx ≤ 0.05. The
definition and calculation of δ are made precise later.

In the case of an APG TBL, at subsonic speeds the free stream flow decelerates, and
therefore there is a new time scale associated with the PG, tPG = −(dU∞/dx)−1. This
introduces a new non-dimensional number (the Clauser PG parameter):

β ≡ tΔ
tPG

= �u−1
τ

−(dU∞/dx)−1 . (1.2)

Therefore, the interaction of the outer and PG scales is strongest when β = O(1). Note
that because uτΔ = U∞δ∗, where δ∗ is the displacement thickness, and U∞(dU∞/dx) =
−ρ−1(dP/dx), one can also write

β ≡ δ∗

τw

dP
dx

. (1.3)

As such, self-preserving APG TBLs are characterized by nominally constant β and
Reτ , (e.g. Townsend 1956; Tennekes & Lumley 1972). Herein we consider experimental
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measurements of mild APG flows where Reτ is large and both Reτ and β are changing
rather slowly. The data analyses also consider large-eddy simulation (LES) data of APG
flows for constant β. As seen in various experimental and numerical APG TBL studies,
near or at separation β can reach values greater than 10 (e.g. Skåre & Krogstad 1994;
Krogstad & Skåre 1995; Hickel & Adams 2008; Maciel et al. 2018). In the present paper,
however, the cases studied have much smaller β values, i.e. β ≤ 2. Thus, for all of the
flows studied herein history effects are expected to have only a relatively small influence
on the dynamical structure.

1.1. Inertial sublayer
In classical theory the boundary layer is separated into an inner and outer region that
overlap across the logarithmic layer (e.g. Tennekes & Lumley 1972). The inner region,
where the length scale is order ν/uτ , can be defined by the validity of the law of the wall:

U+= U
uτ

= f ( y+); y+=yuτ

ν
. (1.4)

Here the plus superscript (+) denotes normalization by ν, and uτ . The outer region, where
the length scale is typically the boundary layer thickness, δ, is described by the defect law

U∞ − U
uτ

= F(η); η = y
δ
. (1.5)

It is assumed that there is an overlap region where both (1.4) and (1.5) are valid. By
matching the velocity gradients of (1.4) and (1.5) we find the logarithmic law

U
uτ

= 1
κ

ln
(yuτ

ν

)
+ B, or, U+= 1

κ
ln( y+) + B. (1.6)

While a topic of continuing study, the values of the constants in (1.6) are κ � 0.39
and B � 4.4 (e.g. Österlund et al. 2000; Perry, Hafez & Chong 2001; Hellstedt 2003;
Marusic et al. 2013). Under this construction, the start of the overlap layer is order
ν/uτ and the logarithmic layer is defined empirically as the point where the profile
exhibits an approximately logarithmic variation (e.g. Pope 2000). Thus, under this classical
description of the ZPG TBL the logarithmic layer is taken empirically (from relatively low
Reynolds number data) to extend from y+ � 30 to y/δ � 0.15 (e.g. Tennekes & Lumley
1972; Pope 2000).

The bounds of the logarithmic layer (or more precisely the inertial sublayer) can,
however, also be discerned through an analysis of the mean momentum balance (MMB).
The basis for this approach was first described by Wei et al. (2005) for the ZPG TBL,
channel and pipe flows. Here, the regions of the boundary layer are defined by the
leading-order forms of the MMB. In these flows, the ratio of the viscous force (VF)
term to the turbulent inertia (TI) term of the MMB facilitates identifying the different
regions of the flow and their leading-order structure. The onset of the inertial domain is
thus rationally defined as the point where the VF term loses leading-order dominance. The
MMB analysis of the canonical wall-flows reveals that the y+ onset of the inertial region
is a function of the square root Reynolds number and occurs near y+ = 3

√
δ+, (Wei et al.

2005; Klewicki, Fife & Wei 2009; Klewicki 2013; Marusic et al. 2013; Morrill-Winter
et al. 2017), and therefore not at y+ � 30 as traditionally supposed. Herein, δ+ ≡ δ99uτ /ν

and Reτ are used interchangeably.
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When compared with the ZPG TBL there are significant uncertainties regarding the
bounds of the logarithmic layer in the APG TBL. This is at least partially due to the
increasing wake strength of the mean velocity profile (Samuel & Joubert 1974; Nagano,
Tsuji & Houra 1998; Aubertine & Eaton 2005). Under APG conditions, but at relatively
low Reynolds number, observations suggest that the wake layer of the mean velocity
profile encroaches on the logarithmic layer from the outer region (e.g. Monty, Harun
& Marusic 2011). As described later herein, this connects to the free stream balance
between the PG and mean advection terms in the mean momentum equation. In the ZPG
TBL at sufficiently large Reynolds number, the mean velocity variation with wall-normal
distance within the inertial sublayer is given by the logarithmic law to within a very close
approximation. With the addition of sufficiently large APG the mean velocity profile has
been observed to fall below that given by (1.6) with the noted parameters (e.g. Spalart
& Watmuff 1993; Nagano et al. 1998; Lee & Sung 2008; Monty et al. 2011). It has also
been observed, however, that the classical logarithmic variation and offset (as described
by κ and B) are largely preserved in the APG TBL, with the effect of PG essentially
manifest in a clear increase in wake strength (Aubertine & Eaton 2005). On the other
hand, both Nickels (2004) and Nagib & Chauhan (2008) propose that the value of κ and B
vary depending on the strength of the APG. Various authors have also suggested that the
inertial sublayer mean profile can be described by a half-power law as initially proposed
by Stratford (1959). Stratford (1959) postulates that at separation and closer to the wall
the velocity is proportional to the square root of the distance from the wall. This result
stems from the assumption that the mixing length is ‘proportional to the distance from
the wall’. In connecting the log- and power-law, Brown & Joubert (1969) proposed that
there is an inner logarithmic region defined by (1.6) with the classical parameters, and an
outer region defined by a half-power law. Expanding on these ideas, Knopp et al. (2014)
suggest that the inner region of the inertial sublayer follows (1.6), but with varying κ and B,
and that the outer inertial sublayer can be described by a modified log-law. This modified
log-law reduces to the half-power law of Stratford (1959) for large PGs. This description is
supported by the findings of Knopp et al. (2021), where logarithmic behaviour is observed
in the mean velocity profile at large β and high Reynolds number, but with a reduced
κ . The extent of this region is also observed by Knopp et al. (2021) to be smaller in
comparison with the logarithmic region of the ZPG TBL. A half-power law (the modified
log-law of Knopp et al. 2014) is seen to emerge above the flow domain, where the typical
ZPG TBL logarithmic layer would exist. Herein we investigate an approach for locating
the bounds of the inertial sublayer that does not depend on κ and B. Furthermore, the
uncertainty in the location and properties of the inertial layer is exacerbated by the fact
that there is dependence on both β and Reτ , and most data, although available over a range
of β, are at relatively low Reτ . The present larger Reτ experimental data alleviate some of
these issues.

Central to the mean velocity profile log-law and the structure of turbulence in the ZPG
TBL is the idea of ‘distance-from-the-wall’ scaling (e.g. Townsend 1976; Wei et al. 2005;
Baidya et al. 2017). ‘A classical’ but less rigorous mixing length argument suggests that
the stress velocity scale (i.e. square root of the Reynolds shear stress (RS)) is proportional
to ydU/dy, where y – the distance-from-the-wall – is the mixing length. For a region with
constant stress, this gives the log-law in U. More rigorous arguments by Morrill-Winter
et al. (2017) that eventually lead to a log-law also show that the appropriate length scale
within the flow follows a y-scaling. Although the concept of distance-from-the-wall is
well appreciated for the ZPG TBL, it has perhaps received less attention in APG TBL
flows.
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Stratford’s (1959) half-power law U-profile relies on a y-scaling of the mixing length.
In fact, Stratford (1959) shows that if the RS ∝ ( y dU/dy)2, and in APG flow since stress
is also ∝ y dP/dx (from the mean momentum equation, cf. equation (2.7)), it follows that
dU/dy ∝ y−1/2√dP/dx, or U ∝ y1/2√dP/dx, which is Stratford’s (1959) half-power law.
Although based on an heuristic mixing length argument, what is highlighted here is that
both log-law (in ZPG flow) and a power-law (in APG flows) are commensurate with the
distance-from-the-wall scaling. A part of the present study focuses on presenting a more
rigorous theoretical argument for y-scaling in APG flows (following on from Fife, Klewicki
& Wei (2009)), and providing experimental support from high Reτ spectral maps, where
length scales appear naturally.

1.2. Present study
The main aims of the present study centre on the inertial sublayer of the APG TBL and the
degree to which its characteristics are similar to those of the ZPG TBL. For the remainder
of this paper the inertial sublayer is defined as the region between where the VF term has
lost leading order and where the streamwise kurtosis has reached the Gaussian value of 3.
This study focuses on four traits of the inertial sublayer: (1) logarithmic behaviour in the
mean velocity profile; (2) position of the inertial sublayer in relation to the RS, uv profile;
(3) properties of the turbulent stresses, including the decay of the streamwise velocity
fluctuation variances, u2; and (4) the distance-from-the-wall scaling of various turbulence
properties. For the remainder of this paper these will be denoted by traits (1)–(4), and
various approaches, both equation-based analyses and empirical, are used to describe and
quantify these inertial sublayer characteristics.

The logarithmic behaviour of the mean velocity profile is investigated using empirical
measures such as the indicator function. The indicator function Ξ ≡ y+(dU+/dy+)
is commonly used to evaluate whether, and locate where, the mean velocity profile
(approximately) exhibits logarithmic dependence. This function is commonly used to
analyse ZPG flows, but has also been used to study APG flows (e.g. Monty et al. 2011).
Such empirical measures are complemented by mean equation analyses. These analyses
are founded in the MMB and related quantities associated with its once-integrated form
(e.g. the stress balances). The stress balance analysis herein clarifies that logarithmic
dependence in the mean profile can be characterized as stemming from the sum of the
inertial terms of the stress balance yielding a subdominant (residual) dU+/dy+ that varies
like 1/y+. Analytical predictions that enjoy empirical support indicate that in the ZPG
TBL the onset of the inertial sublayer nominally coincides with the peak of the RS (Wei
et al. 2005; Klewicki et al. 2009). This spatial coincidence is shown herein to not hold in
the APG TBL. Unlike in the ZPG TBL, it is also revealed that the inertial sublayer in the
APG TBL is not characterized by a logarithmic u2 decay. It is, however, also shown that
the peak in −uv still aligns with the final decay of u2 for both the ZPG TBL and APG
TBL. Stress-balance-based analyses are then augmented through analysis of the MMB –
the y-derivative of the stress balance. This analysis shows that the curvature of the VF
term of the APG TBL maintains certain properties that are held in common with those
of the ZPG TBL. The scaling patch analysis of Fife et al. (2009) tells us that if the mean
dynamics on the inertial sublayer become self-similar (e.g. through increased insulation
from boundary condition effects) and that there is a single velocity scale, then this will
coincide with distance-from-the-wall scaling. It is, however, also possible to have y-scaling
with non-constant velocity scales, as discussed in the Appendix (A). Evidence of this is
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given for the APG TBL, and spectral analyses are used to investigate the existence of
distance-from-the-wall-scaling more deeply.

2. Attributes of the inertial layer

2.1. Indicator function
The indicator function Ξ is used to observe whether the mean velocity profile exhibits a
logarithmic behaviour. If a logarithmic layer does exist, then there will be a range of y+
over which the Ξ becomes nominally constant. In ZPG flows this region is located between
y+ � 3

√
δ+ and y/δ � 0.15 (Wei et al. 2005; Marusic & Adrian 2013; Morrill-Winter

et al. 2017). The indicator functions of the present APG flows are examined relative to
these bounds.

2.2. MMB
The MMB is the Reynolds-averaged streamwise Navier–Stokes equation. We first consider
the MMB for channel flow since its force balance structure contains a PG term that is the
sole driving force of the fluid motion (see Wei et al. 2005; Fife et al. 2009; Klewicki
2013). For channel flows the mean equation is a balance of three terms: VF; TI; PG. The
inner-normalized form of this equation is given by

∂2U+

∂y2+︸ ︷︷ ︸
VF

+ −∂uv+

∂y+︸ ︷︷ ︸
TI

+ 1
δ+︸︷︷︸
PG

= 0. (2.1)

Here the VF term is the gradient of the viscous stress (VS) and the TI term is the gradient of
the RS. The zero crossing of the TI term coincides with the peak location of the RS. On the
wall-ward side of this zero crossing, TI is positive and acts as a momentum source, whereas
beyond the zero crossing, the TI term becomes negative and acts as a momentum sink. The
PG term is only a function of Reynolds number and remains constant with wall-normal
distance.

For the two-dimensional ZPG TBL the equation is still a balance of three terms. Here,
the PG term of the channel is supplanted by the mean inertia (MI) term, which is still a
function of Reynolds number, but is no longer constant in y+ or streamwise distance x+,

∂2U+

∂y2+︸ ︷︷ ︸
VF

+ −∂uv+

∂y+︸ ︷︷ ︸
TI

+
[
−U+ ∂U+

∂x+ − V+ ∂U+

∂y+

]
︸ ︷︷ ︸

MI

= 0. (2.2)

Near the wall (but beyond a few viscous lengths from the wall) in either the channel or
boundary layer, the VF and TI terms are dominant. Because of this, the MMB structure
for the ZPG TBL and channel flow is very similar. The main difference is that small
outer peaks form in the MI and TI terms of the ZPG TBL. For both the ZPG TBL and
channel flow, the onset of the inertial sublayer scales with

√
δ+. Within the context of the

MMB-based framework, the onset of the inertial sublayer is defined as where the VF loses
leading order. This nominally corresponds to the location where the TI term crosses zero.

The MMB for the modest β APG TBL contains four terms. (Note that under large APG,
the turbulence contributions to the advective term become non-negligible, see for example
Castillo & George (2001).) Like in the case of the ZPG TBL, this equation includes a
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(×10–3)
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y+

TI
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2
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y+

TI
MI
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–0.04

0

0.04

0.08

(a) (b)

Figure 1. (a) The MMB of ZPG TBL at Reτ = 490, data set from Schlatter & Örlü (2010). (b) The MMB of
APG TBL at Reτ = 490 at β = 1, data set from Bobke et al. (2017).

non-constant MI term, and like in the channel case the relevant equation also includes a
constant PG term. Where all terms are positioned on the left, for the APG TBL the PG
term is constant and negative, while for channel flow it is positive,

∂2U+

∂y2+︸ ︷︷ ︸
VF

+ −∂uv+

∂y+︸ ︷︷ ︸
TI

+
[
−U+ ∂U+

∂x+ − V+ ∂U+

∂y+

]
︸ ︷︷ ︸

MI

+ U+
∞

∂U+∞
∂x+︸ ︷︷ ︸

PG

= 0. (2.3)

Owing to the additional PG term, the balance changes from that for the ZPG TBL shown
in figure 1(a) to that for the APG TBL shown in figure 1(b). For the APG TBL, the VF
term solely balances the PG term as the wall is approached, while the PG term comes
to identically balance the MI term in the free stream. Like in the ZPG case, the MI term
increases in magnitude as the VF term loses leading order (e.g. near where the VF is
less than 25 % of the balance). As previously mentioned, the position in the ZPG TBL
flow where the VF term loses leading order nominally coincides with where the TI term
crosses zero, as both y+ positions scale with

√
δ+. In the APG TBL flow, however, the TI

term crosses zero well-beyond where the VF term loses dominance, as seen more clearly
in figure 2. In the region where the VF loses leading order the TI term maintains nominally
the same shape as in the ZPG case, but is shifted upwards. Here, subtle changes due to the
MI term are, however, visible. Beyond the location where the VF term approaches zero,
a new inertial balance emerges. This delicate balance involves all three of the remaining
terms, the TI, MI and PG terms.

Overall, the results of figures 1 and 2 indicate that if the beginning of the inertial
sublayer in the APG flow is marked by the loss of a leading-order VF term (as it is in
the ZPG flow), then the inertial balance on this sublayer is more complex than in the
ZPG TBL. Because of this, the TI zero crossing is, for example, no longer a signature
of entering onto the inertial sublayer. Physically, this means that the turbulent motions do
not necessarily behave like a momentum sink on the inertial sublayer. It similarly indicates
that features other than the TI zero crossing constitute the essential mathematical attributes
that define the inertial sublayer.

Self-similar mean dynamics admitted by the MMB and distance-from-the-wall scaling
are compatible concepts. Analytical developments indicate that say if the ‘natural’ length
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(×10–3)

PG

(ZPG)

TI = 0 (APG)

TI = 0

VF

TI

MI

100 101

–8

–6

–4

–2

0

2

4

6

8

y+/�δ+

Figure 2. The MMB in the inertial sublayer at Reτ = 490. The ZPG TBL case plotted with dark thin lines and
APG TBL at β = 1, from Bobke et al. (2017) plotted with thick lines in lighter shades. Zero crossing of the TI
term marked by orange thick circle.

scale of the flow varies as distance-from-the-wall and the velocity scale is constant (e.g.
uτ ), then there is a logarithmic layer, as shown in Fife et al. (2005) via a rescaling of the
MMB and an analysis of scale hierarchies in wall-bounded turbulent flows.

For APG TBLs, and following the framework of Fife et al. (2005, 2009) for channel
flows, the Appendix (A) shows that a modified RS term T+

ε can be constructed. Note
that ε is a subscript on T+ ≡ −uv+ to indicate the modified RS function. Similar to the
analysis carried out for channel and ZPG TBL flows, we introduce the small parameter ε

whose values (within a specified range) are each associated with a ‘scaling patch’. (See,
the Appendix (A.1) for the definition of a scaling patch.) For APG TBLs the modified RS
takes the following form:

T+
ε ( y+) = T+( y+) +

∫ y+

0
MI(y′+) dy′+ + (PG − ε)y+. (2.4)

As PG → 0, (2.4) reduces to the form given in Morrill-Winter et al. (2017) for the ZPG
TBL. The MMB can then be written as

∂2U+

∂y+2 + ∂T+
ε

∂y+ + ε = 0. (2.5)

As discussed in more detail in the Appendix (A), (2.5) can then be made parameterless
(see the steps to transform equation (A2) into (A6)),

∂2Û
∂ ŷ2 + ∂T̂

∂ ŷ
+ 1 = 0, (2.6)

where ·̂ denotes normalization by the characteristic or ‘natural’ velocity and length. On
each of these scaling patches, the MMB reduces to an invariant form.

Continuing further from (2.6), the Appendix (A) clarifies the possibility and
consequences of multiple or a hierarchy of velocity scales represented within the boundary
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Properties of the inertial sublayer

layer (and not a single velocity scale such as uτ ). Under these conditions the logarithmic
U+ is not necessarily present, rather the mean velocity could admit a power-law, but
for which distance-from-the-wall scaling could still hold. Such a condition is a distinct
possibility for APG flows. As such, this analysis provides some credibility to Stratford’s
(1959) heuristic use of distance-from-the-wall scaling in the APG TBL. Identifying the
appropriate velocity scale for APG flows, however, is beyond the scope of this paper.
Instead, primary interests are on examining whether distance-from-the-wall scaling is
seen via empirical means and on discerning how appropriate the friction velocity is for
scaling APG TBLs. The theoretical basis for these arguments and an explanation of scale
hierarchies following Fife et al. (2009) is discussed in the Appendix (A).

2.3. Stress balance
The properties of the once-integrated form of (2.3) are used to further clarify inertial layer
properties. A single integration of the MMB from the wall to a particular y+ location
yields a balance of stresses. The inner-normalized balance of stresses for the APG TBL
becomes

∂U+

∂y+︸ ︷︷ ︸
VS=∫ VF

+ (−uv+)︸ ︷︷ ︸
RS=∫ TI

+
∫ y+

0

[
−U+ ∂U+

∂x+ − V+ ∂U+

∂y′+

]
dy′+

︸ ︷︷ ︸
MIS=∫ MI

+ (−y+P+
x )︸ ︷︷ ︸

PS=∫ PG

= 1, (2.7)

where −P+
x ≡ U+∞(∂U+∞/∂x+) and y′ is a dummy variable of integration. The integrated

VF term becomes the VS (which reaches unity at y = 0) and the integrated TI term
becomes the RS. The stress balance for the ZPG TBL and APG TBL are shown in
figures 3(a) and 3(b), respectively. Here, the focus is on the behaviour of the stress balance
in the region where the VF loses leading order. For the ZPG case, the VS term decays
as (κy+)−1, which is associated with a logarithmic mean velocity. While the behaviour
of the VS term for the present measurements is of interest, it is, however, difficult to
obtain accurate estimates of the VS (or mean inertia stress (MIS)) term from experimental
measurements. This is because VS becomes very small away from the wall relative to other
terms (which are O(1) in this region). On the other hand, the RS and PG can be measured
with reasonable accuracy. By observing the remaining terms in the stress balance, such as
the pressure stress and RS, this behaviour can be examined in greater detail.

2.4. Higher-order statistics
The RS, variance, kurtosis and skewness of the fluctuating velocities, u and v, will be used
to better understand the outer bound of the inertial sublayer. In the ZPG TBL the peak in
the RS nominally corresponds with the onset of the inertial sublayer. In ZPG TBLs at
sufficiently large Reτ , the variance of u exhibits a logarithmic decay with y on the same
domain where U+ varies logarithmically (e.g. Marusic et al. 2013). The kurtosis profiles of
both u and v exhibit an outer peak that reflects the turbulent/non-turbulent intermittency
in the boundary layer (e.g. Klebanoff 1955). This outer peak, and large kurtosis values
in general, indicate that the instantaneous fluctuations tend to be either much smaller
or much larger in magnitude than the standard deviation. Consistently, the u skewness
exhibits large negative values as the free stream is approached. Here the probability of large
excursions exceeding the mean become diminishingly small, while those below the mean
are comparatively common. Comparison of these statistics in the present APG flows thus
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Figure 3. (a) Stress balance of ZPG TBL at Reτ = 490, data set from Schlatter & Örlü (2010). (b) Stress
Balance of APG TBL at Reτ = 490 at β = 1 data set from Bobke et al. (2017).

provides a measure, relative to the ZPG flow, of how deeply the outer boundary condition
influence penetrates into the interior of the flow, thus possibly influencing the upper bound
of the inertial layer.

2.5. Spectra

Analyses of the premultiplied (co)spectra kxE of u2, v2 and uv are used to identify
wall-distance scaling in the inertial sublayer as approximately located using the indicator
function. Here, kx is the streamwise wavenumber and E is the power spectral density,
such that integration of E from kx = 0 to ∞ will recover the corresponding variance or
covariance. Premultiplied spectra evidence wall-distance scaling if their peak locations
scale with y over a range of wall-normal locations. The wavelength λx = 2π/kx (or
wavelength neighbourhood, as kxE is a per decade density rather than a per wavenumber
density) that contributes the most to the variance and RS, as approximated by the peak in
the spectra, is also examined. Wall-distance scaling is seen in the premultiplied spectra in
Zimmerman (2019) for ZPG TBLs and pipe flows at λx/y = 2, and these previous results
are used to guide our investigation of the APG TBL spectra. The spectral analysis also
looks for PG influences on the large scale motions that are observed at λx/δ � 3 in ZPG
TBL flows.

3. Experimental and numerical data sets

3.1. Quantifying the PG
The value of the Clauser PG parameter β distinguishes between the ZPG (β = 0), APG
(β > 0) and favourable pressure-gradient (FPG) (β < 0) cases. A boundary layer will
behave differently depending on how rapidly β is changing and whether β is decreasing
or increasing with the Reynolds number. Herein the focus is on near-self-preserving cases,
where history effects are minimal, i.e. β is nominally constant or changing mildly with
Reynolds number.
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Note that PG can also be quantified by the acceleration parameter,

K ≡ ν

U2∞

dU∞
dx

. (3.1)

To provide context and comparison with other researchers who have used the acceleration
parameter, the present values of K are also given in table 1.

3.2. Facility and ramp
Experiments at relatively large Reynolds numbers were conducted in the Flow Physics
Facility (FPF) at the University of New Hampshire. The nominal configuration of the
FPF is a ZPG wind tunnel with a 2.8 m × 6 m cross-section having a fetch of 72 m in
the streamwise direction (Vincenti et al. 2013). To create a PG, a ramp structure was
installed in the FPF that is nominally based on the experimental design of Aubertine &
Eaton (2005). Unlike the ramp of Aubertine & Eaton (2005), the present ramp structure
was installed on the ceiling of the FPF, instead of the floor. The substantive difference
here is that the present measurements were acquired on the flat floor. Thus, they include
PG effects but not surface curvature effects. The ramp insert extends approximately 15 m
downstream and creates an initial FPG region that reduces the tunnel height by 0.4 m over
a 3.1 m streamwise distance. This is followed by a ZPG flat region (where the flow relaxes
back to a nearly canonical state) extending approximately 7.0 m downstream. That is then
followed by an APG ramp that expands the tunnel height by 0.5 m over a 5.3 m streamwise
distance. Downstream of the ramp system the flow develops under ZPG conditions over a
fetch of approximate 20 m. The focus of the present study is on the hot-wire measurements
acquired along the APG ramp. A schematic of the flow geometry is shown in figure 4. The
blue dots indicate the locations where the measurements were acquired.

3.3. Experimental techniques

3.3.1. Pressure distribution
As mentioned above, the pressure distribution was measured along the floor of the
wind tunnel. This is different from similar ramp experiments, e.g. Aubertine & Eaton
(2005, 2006) and Cuvier et al. (2014), where the surface pressure was measured directly
along the ramp. In their experiments suction peaks were observed near the discontinuous
surface transitions between sections of the ramp structure. Besides the suction peaks, the
behaviour of the pressure distribution remains essentially the same whether the pressure
is measured directly along the ramp or on the opposite surface of the test section, as
seen in Cuvier et al. (2017). Pitot-static tube measurements were taken 10 cm above
the floor of the wind tunnel starting at approximately 15 m upstream of the ramp insert
and extending to approximately 17 m downstream of the ramp insert. The coefficient of
pressure Cp ≡ (P − Po)/(0.5ρU2

o), where P is the local static pressure, Uo is the free
stream velocity taken at a reference location, which is at xscaled = −0.3. The distance,
xscaled, is the streamwise distance normalized by the APG ramp length 5.3 m, where
xscaled = 0 is at the start of the APG ramp and xscaled = 1 is at the end of the APG
ramp. The present Cp distribution was compared with that of Aubertine & Eaton (2005)
to confirm that these pressure distributions were nominally the same, see figure 5. The
pressure distributions were similar to those reported by Aubertine & Eaton (2005) except
for the aforementioned suction peak. The flow initially accelerates due to the FPG ramp
insert causing a strong FPG and subsequently re-establishes a constant free stream velocity
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Type Source Data x β K U∞ uτ δ99 Reθ Reτ �t+s
— — Symbol (m) — (×10−7) (m s−1) (cm s−1) (mm) (×103) — —

Exp. — 0.80 0.9 −0.4 7.91 26 420 20.6 7100 0.30
Exp. — 1.87 1.1 −0.5 7.91 26 430 20.2 7120 0.28
Exp. Present 3.06 1.6 −0.5 7.67 24 460 25.5 7130 0.25
Exp. — 4.12 1.7 −0.5 7.42 23 530 24.4 7640 0.22
Exp. — 5.13 1.8 −0.5 7.11 22 570 26.5 7770 0.20

Exp. Z19 — 0 0 6.47 23 500 17.9 7880 0.24
Exp. — — 0 0 6.57 22 660 23.1 10000 0.23

Exp. V20 — 0 0 1.30 5.2 20 3.00 1050 —
Exp. — — 0.8 −2.5 1.28 5.0 22 3.40 1090 —
Exp. — — 0.9 −2.5 1.25 4.7 23 3.61 1050 —
Exp. — — 1.0 −2.5 1.23 4.5 24 3.85 1070 —

Exp. H13 — 0 0 12.5 46 100 8.16 3020 —
Exp. — — 1.7 −1.1 22.3 66 77 12.0 3200 —

DNS SÖ10 — 0 0 — — — 1.41 → 2.00 490 → 670 —
LES B17 — �1 −4.8 → −2.3 — — — 1.98 → 3.07 490 → 750 —
LES — — � 2 −6.3 → −3.6 — — — 2.32 → 3.59 490 → 750 —

Table 1. Summary of present APG TBL experiments, lower Reynolds number APG TBL experiments and LES, and ZPG TBL experiments and DNS. The distance x (m)
is the distance downstream from the start of the APG ramp section. Here Z19 refers to Zimmerman (2019) experiments, V20 refers to Volino (2020) experiments, H13 refers
to Harun et al. (2013) experiments, SÖ10 refers to Schlatter & Örlü (2010) DNS and B17 refers to Bobke et al. (2017) LES.
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Figure 4. Current flow geometry and measurement locations. Arrow points in flow direction. Symbols given
in table 1.
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Figure 5. Pressure distribution of the present study (black thick dashed) and of Aubertine & Eaton (2005) (red
thick dashed). On the top x-axis the distance is given in metres where x = 0 at the start of the APG ramp. On
the bottom x-axis the distance is normalized by the APG ramp length 5.3 m: xscaled = 0 is at the start of the
APG ramp and xscaled = 1 is at the end of the APG ramp.

along the ZPG portion of the ramp. The presence of the APG ramp detectably influences
flow behaviour from approximately −0.5 ≤ xscaled ≤ 1.6. We also note that unlike the
studies of Aubertine & Eaton (2005, 2006) and Cuvier et al. (2017) the present set-up
features a relatively long flat test section after the FPG section and before the start of the
APG section. This ensures approximately ZPG flow (or at worst a very mild FPG) before
the APG ramp.

3.3.2. Hot-wire anemometry
An in-house manufactured hot-wire probe capable of measuring the instantaneous
streamwise and wall-normal velocities was used, as seen in figure 6. The probe is based
on the design of Kawall, Shokr & Keffer (1983) and consists of three 5 μm diameter
gold-plated tungsten hot-wires: two wires arranged in an ×-array are used to discern the
streamwise and wall-normal velocities simultaneously and one single wire only measures
the streamwise velocity. The gold plating is very thin compared with the overall diameter
of the sensing element (i.e. it is not a Wollaston-type wire), and is included only to allow
soldered connections between the wire and the supporting prongs. The non-dimensional
wire length of the single wire is L+ = 17.6, while the length of the ×-array wires projected
onto the y–z plane is L+/

√
2. The probe’s speed response is calibrated in the free stream

of the wind tunnel before and after each profile. The angular response of the probe is
calibrated via an articulating jet. The calibration process is described in Zimmerman
(2019). The raw sensor output is reduced to velocity following the procedure described
in Morrill-Winter et al. (2015) for a four-wire hot-wire probe, but adapted here for the
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Figure 6. (a) Front-on probe schematic with relative dimensions. Probe centroid is indicated by the symbol ⊕.
The ×-array wires mounted on a shorter prong represented by the symbol ⊗ and a longer prong represented by
the symbol �. Centre single wire mounted on prongs represented by ©. (b) Front-on picture of actual probe.
(c) Side view of probe, schematic. (d) Side view of actual probe.

three-wire probe. Relative to an ×-array alone, the three-wire arrangement reduces the
sensitivity of the transverse velocity output to calibration drift of any one sensor relative
to a typical two-wire ×-array by employing the redundant single wire, see Morrill-Winter
et al. (2015).

The non-dimensionalized sample interval for the hot-wire measurements is �t+s =
(1/fs)u2

τ /ν, where fs is the sampling frequency. Table 1 lists �t+s for the present
measurements and those of Zimmerman (2019).

3.3.3. Measurement parameters
The friction velocity uτ was initially estimated by measuring the wall shear stress
using 1.4 mm and 2.8 mm diameter Preston tubes (≈22 and 44 viscous lengths in the
corresponding ZPG flow, respectively). The PGs are well within the limits proposed by
Patel (1965). To check the validity of the Preston tube measurements the hot-wire-based
mean velocity profiles were compared with the LES mean velocity profiles of Bobke et al.
(2017). Here the LES data revealed that near the wall the U+ versus y+ profiles for mild β

APG flows (β � 2) match those of the ZPG direct numerical simulations (DNS) of Sillero,
Jiménez & Moser (2013) to within ±7 % for y+ � 40. Given the similarity between mild
β APG cases and canonical cases, a method similar to the Clauser chart method for ZPG
TBLs was adopted. A second estimation of uτ was obtained by matching the hot-wire mean
velocity profiles to the LES mean velocity profiles for y+ < 40. The uτ values obtained
from this matched-profile method agreed with the uτ values obtained via the Preston tube
to within ±8 %. Since the matched profile uτ has comparably less scatter with downstream
distance, this uτ is used herein. This might result in a slight but systematic underestimation
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of uτ (and thus overestimation of U+, etc.), but should not affect our interpretation of
the results. The matched-profile uτ values are given in table 1. A corrected Clauser chart
method (known as CCCM) introduced by Dróżdż, Elsner & Sikorski (2018) was also tried.
The uτ values obtained (but not shown here) via the corrected Clauser chart method agreed
with the matched-profile uτ values to within ±2.3 %.

The present mean profile measurements do not have a y-location density in the outer
region sufficient to reliably determine accurate estimates of the boundary layer thickness
δ. Thus, an alternative means for estimating δ was also developed, similar to that described
by Zimmerman (2019). Observation of the constant β cases of Bobke et al. (2017) indicate
that over a range of β and Reynolds numbers the inner-normalized variance profile
exhibits outer similarity in the vicinity of u2+ = 0.44 at y = δ99 (i.e. the location where
U = 0.99U∞). It is also observed that the range of β values from Bobke et al. (2017)
encompasses the β values measured in the FPF. Therefore, in the present experiments we
define δ as the y-location where our u2+ = 0.44. Also note that from the mean velocity this
location indeed visually appears close to the free stream. The values of δ99 and free stream
velocity U∞ are given in table 1. The values of δ99 and U∞ are further corroborated by
the diagnostic plot method. Based on empirical evidence, Vinuesa et al. (2016) calculated
the free stream velocity iteratively such that U/U∞ = 0.99 at u′/(U∞

√
H) = 0.02. Even

though we used a different method to calculate U∞, the diagnostic plot profiles of the
present data at U/U∞ = 0.99 correspond to 0.016 ≤ u′/(U∞

√
H) ≤ 0.018, which are

close to the values used by Vinuesa et al. (2016). For comparison, the APG profile of
Harun et al. (2013) (where β = 1.74 and Reτ = 3200) at U/U∞ = 0.99 has a value of
u′/(U∞

√
H) = 0.018.

3.3.4. Probe performance
To examine the hot-wire probe’s performance, ZPG TBL profiles taken with the
present hot-wire probe at Reτ ≈ 3000 are compared with experimental measurements
of Morrill-Winter (2016) and the LES of Eitel-Amor, Örlü & Schlatter (2014) at similar
Reynolds number. The present hot-wire probe measurements follow essentially the same
data reduction process as Morrill-Winter (2016) and are measured in the same facility.
The profiles are compared within the domain of interest, i.e. beyond the peak of the
RS (y+/

√
δ+ ≥ 3), since interior to the peak experimental measurements become more

challenging. The maximum variation from the Morrill-Winter (2016)’s profiles for U+,
u2+

, v2+
and uv+ are, respectively, ±0.6, ±0.5, ±0.2 and ±0.2. The maximum variation

from the Eitel-Amor et al. (2014)’s LES profiles for the same quantities are, respectively,
±0.5, ±0.5, ±0.2 and ±0.1.

3.4. Data sources
The present APG measurements are compared with the ZPG TBL measurements of
Zimmerman (2019) at similar Reynolds number. The ZPG TBL measurements of
Zimmerman (2019) were also acquired in the FPF. It is noted in Zimmerman et al. (2019)
that the mean velocity profile close to the free stream departs slightly from canonical
behaviour. Although the exact reason for this is not clear, we suspect flow conditioning
at the inlet. Despite this difference to the mean velocity profile close to the free stream,
the turbulence statistics show close agreement with the experimental measurements of
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Baidya (2015), Morrill-Winter et al. (2015) and Samie et al. (2018) in the University of
Melbourne ZPG wind-tunnel at similar Reτ .

Measurements that usefully complement the present experiments have recently been
conducted at lower Reynolds numbers by Volino (2020). The experiments of Volino (2020)
featured a series of adjustable wind tunnel ceiling panels similarly configured to the ramp
insert used in the present study. That is, the flow was initially accelerated through an
FPG contraction, allowed to relax back to near-equilibrium along a ZPG section, and
then decelerated through an APG expansion. Herein our results are compared with the
ZPG TBL measurements and moderate β APG TBL measurements of Volino (2020). The
measurement parameters for these cases are given in table 1.

Harun et al. (2013) also conducted similar experiments at Reτ ≈ 3000. In these
experiments the flow initially accelerates in the FPG region that is created by a contraction
in the wind tunnel. The flow then relaxes along a fixed ceiling ZPG region and then
decelerates along an APG region created by adjustable ceiling panels. The parameters
for these experiments are given in table 1.

In addition to the experimental datasets described above, the present study makes use
of several numerical datasets. The APG TBL LES of Bobke et al. (2017) cover a range
of β at lower Reynolds numbers. To achieve near-equilibrium conditions, the free stream
velocity is defined as a power-law function: U∞ = C(x − xo)

m, where C is a constant, xo
is the virtual origin, and m is the power-law exponent that satisfies the near-equilibrium
conditions of Townsend (1976). A summary is included in table 1.

4. Flow statistics

The outline of this section is as follows. In § 4.1 the indicator function is used to study
trait (1) – the logarithmic behaviour in the mean velocity profile. Then in § 4.2.1 the
variances and RS are examined to discuss (3) – properties of the turbulent stresses.
In § 4.2.2 the effects of the outer boundary conditions on the skewness and kurtosis
profiles are connected to free stream intermittency. Next, in §§ 4.3 and 4.4 the stress
balance and MMB are studied to observe (2) – the position of the inertial sublayer in
relation to the RS profile. Lastly, in § 4.5 the spectra are examined for evidence of (4) –
distance-from-the-wall-scaling.

4.1. Mean velocity
A range of ZPG and APG cases are examined to study (1) the logarithmic behaviour in the
mean velocity profile for an APG TBL. The mean velocity profiles examined are shown in
figure 7.

4.1.1. Indicator function
If the mean velocity profile exhibits a region of approximately logarithmic variation then
the indicator function y+ dU+/dy+ will become (approximately) constant over a range of
distances from the wall. Figure 8 shows indicator function plots for a range of APG cases
at matching β, while figure 9 shows the indicator function plots for a ZPG case and APG
case at matching Reynolds number.

Figures 8(a) and 8(c) are plotted versus y+, while figures 8(b) and 8(d) are plotted versus
y+/

√
δ+. The location y+/

√
δ+ = 3 is marked in the mean velocity of figure 7 by ‘green’

markers and in figure 8(b,d) and in figure 9 by a vertical line. This position is found to
be located within the region where the indicator function of the ZPG cases in figure 9 are
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Figure 7. Mean velocity profiles: (a) ZPG TBL cases; (b) APG TBL cases. Symbols are given in table 1.
Green markers are plotted at y/

√
δ+ = 3. Magenta markers are plotted at y/δ = 0.15.
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Figure 8. Indicator function y+ dU+/dy+: (a,b) β = 0.9; (c,d) β ≈ 1.8. In panels (a,c) the abscissa is y+,
whereas it y+/

√
δ+ for panels (b,d). Symbols are given in table 1. Vertical line is plotted at y+/

√
δ+ = 3,

whereas the horizontal black line is at the magnitude of 1/κ = 1/0.384 = 2.6. Magenta markers are plotted at
y/δ = 0.15.

most constant. The value of 1/κ is shown by the black horizontal line. Interestingly, close
to where the data first meets the 1/κ horizontal line, for both lower β (figure 8a,b) as well
as for higher β (figure 8c,d) the differing Reτ data show better agreement with each other
when plotted versus y+/

√
δ+ as compared with y+. This is consistent with the theoretical
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Figure 9. Indicator function y+ dU+/dy+: (a) δ+ ≈ 1050; (b) δ+ ≈ 3000; (c) δ+ ≈ 7800. Symbols are given
in table 1. Vertical line is plotted at y+/

√
δ+ = 3, whereas the horizontal black line is at the magnitude of

1/κ = 2.6. Magenta markers are plotted at y/δ = 0.15.

findings of Wei et al. (2005) and experimental findings of Marusic et al. (2013) for the
canonical wall-flows. To further test the y+/

√
δ+-scaling, figure 9(a–c) compares APG

with ZPG data at different β and three different Reτ . Here it is apparent that in the vicinity
of 1 ≤ y+/

√
δ+ ≤ 3, the β = 0 and non-zero β profiles maintain similarity across all Reτ .

Taken in combination, figures 8 and 9 suggest that for a Reτ range spanning over a decade
the onset of the U+( y+) logarithmic-like region is at y+ = O(

√
δ+). For the ZPG case

this region begins at y+ ≈ 3
√

δ+, with the leading coefficient for the APG case perhaps
being slightly smaller, i.e. y+ ≈ 1.5

√
δ+.

We now seek to ascertain the location where the logarithmic region ends. In the
ZPG TBL it is known that the logarithmic region ends at approximately y/δ = 0.15.
This location is denoted using a ‘magenta’ marker in all panels of figures 8 and 9
as well as in the mean velocity profiles of figure 7. A comparison of the indicator
function for the ZPG and APG cases at matching Reynolds number is useful. Over
the given range of Reynolds numbers the value of y+ dU+/dy+ at y/δ = 0.15 in the
APG cases is larger than the ZPG cases, reflecting the significant change in the wake
structure as β increases. At lower Reynolds number in figure 9(a) there is little separation
between y+/

√
δ+ = 3 and y/δ = 0.15, suggesting that a flat part of the curve may be

indiscernible at such low Reynolds number. As the Reynolds number increases, a linear
region appears to emerge, but with a non-zero slope (indicating a slight departure from
purely logarithmic dependence). At larger Reynolds number the ZPG data of figure 9(b,c)
exhibit a possible flat region. This is most evident for the ZPG case at δ+ = 7880, where
a plateau region occurs between y+/

√
δ+ = 3 and y/δ = 0.15. The APG cases, however,

do not exhibit definitive logarithmic behaviour, while the same mean velocity profiles
of figure 7 appear to exhibit logarithmic behaviour in this portion of the flow domain.
This demonstrates the sensitivity of the indicator function. Nevertheless, there is a region
where the curves become less steep in the indicator function. This less-steep region
ends well before y/δ = 0.15, suggesting that the end of the linear-like region for these
APG cases moves inward relative to δ when compared with the ZPG cases. Recall that,
as defined by the properties of the MMB, the inertial sublayer is not purely related to
logarithmic behaviour of the mean velocity profile. Thus these findings also are consistent
with the notion that an inertial sublayer may exist (i.e. an interior region where the
VF is subdominant), even if a logarithmic mean velocity profile is only approximately
evidenced.
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4.2. Turbulent stresses and higher-order statistics

4.2.1. Stresses
For the ZPG TBL the RS maximum, which is also the zero crossing of the TI term,
coincides with the onset of the inertial sublayer since it also approximately marks the
location where the VF term loses dominance. The zero crossing of the TI term for ZPG
flow scales with

√
δ+ and occurs at approximately y+/

√
δ+ ≈ 2 (Morrill-Winter et al.

2017). To see if the
√

δ+ dependence evidenced in § 4.1.1 persists, the uv+ profiles of
the APG TBL LES of Bobke et al. (2017) at low Reynolds numbers are compared in
figure 10 with the low Reynolds number experimental data of Volino (2020) as well as
the present experimental results at higher Reynolds number. Note, that for the present RS
measurements, the probe resolution is L+ = 17.6, and thus, the first measurement location
(21.3 ≤ y+ ≤ 26.4) for each profile is larger than that.

As β increases, the peak in −uv+ also increases and exceeds unity. A distinct possibility
here is that the outer flow is undergoing a transition away from uτ scaling alone. The
−uv+ data are plotted versus y+, y+/

√
δ+ and y/δ coordinates in the bottom row of

figure 10. The location of the −uv+ maximum for the low and high Reynolds number
experimental data remains almost constant with δ scaling over the given range of Reynolds
numbers. A vertical line is plotted at y/δ = 0.15 marking this trend. The LES cases,
however, do not follow the same trend. In fact, more compelling agreement is seen between
the present experimental −uv+ maximum locations and those from the LES when the
location is normalized with

√
δ+. This trend continues in the u and v variance profiles in

figure 10(a–c) and figure 10(d–f ), respectively. The outer peak of the u2+
profiles show

better levels of agreement when the location is normalized with
√

δ+ and also align with
the peak of the −uv+ and v2+

profiles. Although not conclusive, for the given cases
√

δ+
scaling seems to be the most appropriate scaling. Here, it is perhaps unsurprising that
the location of the u2+

outer peak roughly coincides with the peak in the RS since it is
associated with the production of u2.

Addressing trait (3) – properties of the turbulent stresses (including the decay of u2) –
the data of figure 10 support the idea that the portion of the final monotone decay of the
u variance profile, which is approximately logarithmic in the ZPG case, always occurs
after the TI zero crossing. It also supports that the TI zero crossing aligns with the peak
in u2 (right before this decay). While this feature is consistent with the ZPG structure,
the notable difference is that this region of the flow no longer coincides with the inertial
sublayer as it does in the ZPG TBL. This point is further discussed in § 4.4.

4.2.2. Skewness and kurtosis
After observing significant differences in mean and second-order statistics between ZPG
and APG flows, here we consider higher-order statistics. Since we know that higher-order
statistics show sharp changes as the free stream is approached, another purpose here is to
identify the ‘outer edge’ of the boundary layer and if this influence is propagated inside
the boundary layer as we have observed in lower-order statistics. The characteristics of
turbulent/non-turbulent intermittency as well as incursion of free stream fluid into the
boundary layer can be observed in the kurtosis distribution. Kurtosis, Ku(≡ u4/(u2)2),
profiles are shown in the upper panel of figure 11(a) and Kv(≡ v4/(v2)2) in the upper
panel of figure 11(b). The APG and ZPG TBL Ku profiles behave largely the same.
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Figure 10. Inner-normalized variances and RS. (a–c) Variance of u, (d–f ) variance of v, (g–i) RS. The LES
data is at Reτ = 490 and Reτ = 670 for β � 1.0 and ZPG TBL DNS is at the same Reynolds number as the
LES data. Symbols are given in table 1.

The Ku profiles cross the Ku = 3 (dashed line corresponding to the Gaussian value) at
approximately y/δ = 0.4, for both the APG and ZPG cases. Profiles of Kv exhibit little to
no meaningful variation between the APG and ZPG cases. Differences in these profiles at
very small y/δ can be attributed to Reynolds number (i.e. plotting with respect to inner
variables would remove these differences). Similarly, the slight variations at y/δ ≈ 0.5
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Figure 11. Kurtosis (upper profiles) and skewness (lower profiles) for the (a) fluctuating streamwise u
velocity and (b) fluctuating wall-normal v velocity. Symbols given in table 1.

may be more reflective of uncertainty in the estimated values of δ than of genuine
differences between the two flows.

Skewness profiles are shown in the lower panel of figure 11 for the fluctuating
streamwise u and wall-normal v velocities. Both kurtosis profiles and skewness profiles
reach an outer peak near y/δ = 1, which has been previously observed in ZPG flows.
(As an aside, we note that this suggests that our method of finding δ is reasonable.) The
distribution of Su in the lower panel of figure 11(a) at smaller y/δ for the APG cases
remains positive for a slightly larger extent than the ZPG cases. The APG cases also have
an increase in positive skewness for the wall-normal velocity components Sv in the lower
panel of figure 11(b).

The results of figure 11 suggest that the outer boundary condition is felt equally between
the ZPG and APG cases, in terms of intermittency, but is perhaps felt more strongly in
the Kv profiles. Consistent with the meaning of a central moment, these observations
indicate that the turbulence ‘riding on top of the mean’ has not significantly changed.
As a side note, small changes are seen between the K∂u/∂x ZPG and APG profiles (not
shown). These results, however, remain inconclusive, as ∂u/∂x computations are quite
sensitive to high-frequency noise in the hot-wire signal. Intermittency was also measured
(but not shown here) based on the estimated dissipation. Measures of intermittency using
dissipation measurements also yielded indistinguishable results between the ZPG and
APG flows examined.

4.3. Stress balance
It is difficult to accurately estimate the non-constant terms of the MMB from experimental
data. By integrating the MMB from the wall to a particular y+ location one can, however,
alternatively discern the behaviour of the stresses with greater clarity. This section
examines the terms of the stress balance (2.7). Here, the focus is on the region near to
and beyond where the VF first becomes subdominant. The VS (VS ≡ ∫

VF) dU+/dy+
was previously plotted in figure 3 as solid green lines. In figure 12 the VS represented
by the area shaded in grey for two LES flow conditions. Under this representation,
logarithmic behaviour is manifesting as the height of the grey region diminishes like 1/y+.
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Figure 12. Inner-normalized stress balance. Present experimental RS for 7100 ≤ Reτ ≤ 7800 plotted with
− • −, powder blue, symbols. The experimental β values are given in the colour bar. Corresponding 1-PS
plotted with − • −, powder red, symbols. Experimental ZPG TBL RS at Reτ = 7880 plotted with − • −,
black, symbols, from Zimmerman (2019). The LES Reynolds shear stress, 1 − PS, and combination of PS and
MIS are plotted, with – – (powder blue thick dashed), - - - (powder red thick hyphened) and - – - (purple thick
hyphened dashed) lines, respectively. The LES data is at Reτ = 490 and Reτ = 670 for β ≈ 1.0. The ZPG TBL
DNS RS is plotted with – – (black thick dashed) lines. The ZPG TBL DNS is at the same Reynolds number
as the LES data. Magnitude of the VS is represented by the area shaded in grey. The magnitude of the MIS is
represented by the area shaded in yellow. Vertical grey lines at y+/

√
δ+ = 3 and y/δ = 0.15 representing the

bounds of the ZPG TBL at Reτ = 7880.

The emergence of this region is clarified in greater detail by studying the remaining terms
of the stress balance that can be measured experimentally, i.e. RS −uv+ and the ‘pressure
stress’ (PS) (the last term in (2.7)).

The experimentally measured RS is compared with the PS in figure 12 for the APG and
ZPG cases. The MIS is represented by the area shaded in yellow. Near the wall the MIS
contribution is negligible and the grey shaded area between the RS and 1-PS represents the
magnitude of the VS. Note that according to (2.7), VS + RS + MIS + PS = 1. Because
the MIS is small near the wall, dU+/dy+ is approximately equal to 1 + uv+ + y+P+

x , and
reduces in magnitude farther away from the wall. Accordingly, in the region where the VS
diminishes approximately like 1/y+ (i.e. the region where the indicator function plots in
figure 8(b,d) are most constant) the RS closely tracks the 1-PS profile. Although the VS
becomes small in comparison with the other stresses, its role is still important in the stress
balance. In figure 12, as the VS decreases, 1-PS is the upper limit of the RS −uv+, as
given by (2.7). The PS and RS curves diverge as the MI term becomes dominant in the
MMB in the outer region. Although there is a small offset between 1-PS and −uv+, due to
the growing MIS, it appears that the pressure is mostly responsible for the −uv+ profile.
As the PS increases, the RS also increases, showing that 1-PS dictates the shape of uv+

and causes its peak. Interestingly, the data of figure 10 show that the peaks in u2+
and v2+

also track the uv+ peak. Taken together, the findings of the last two sections suggest that
the peak in u2+

and v2+
are related to the uv+ peak through the production and pressure

strain redistribution terms in the u2+
and v2+

transport equations.
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Figure 13. (a) The MMB of ZPG TBL at β = 0 from 252 ≤ Reτ ≤ 2000, from Schlatter & Örlü (2010) and
Sillero et al. (2013). Top inset are ZPG TBL cases and bottom inset are channel flow cases. Here: VF, dark
green thick solid line; TI, powder blue thick dashed line and powder blue thick hyphened line; MI, purple thick
hyphened dashed line; 1/δ+, powder red thick hyphened line. (b) The MMB of ZPG TBL and APG TBL for
varying β at Reτ = 490, from Schlatter & Örlü (2010) and Bobke et al. (2017), respectively. Here: VF, dark
green thick solid line; TI+MI, powder blue thick dashed line; PG, powder red thick dashed line. The inset is
APG TBL MMB from (a) divided by the local PG term at Reτ = 490 and Reτ = 700. Here -VF/PG, dark green
thick solid line; -TI/PG, powder blue thick solid line; -MI/PG, purple thick solid line; -PG/PG, powder red thick
solid line.

4.4. MMB
We now turn to consideration of the MMB. To establish context with the canonical flow,
it is useful to first examine the Reynolds number variations of the β = 0 TBL MMB and
channel flow MMB over the range of Reynolds number 252 ≤ Reτ ≤ 2000. This is shown
under inner-normalization in figure 13(a). Notable observations of the β = 0 TBL MMB
include that the outer peaks of the MI and TI terms decrease in magnitude and move
outwards with increasing Reτ . For both the β = 0 TBL MMB and channel flow MMB
the location of the inner peaks of the TI and VF terms remain at the same magnitude
and location with increasing Reτ . Furthermore, under inner-normalization, in accord with
previous results (Wei et al. 2005; Morrill-Winter et al. 2017), it is found that the position
where the VF term loses dominance and the location of the TI zero crossing track and
scale with

√
δ+. Specifically, the balance exchange leading to an inertial dominant balance

completes at near y+/
√

δ+ = 3.
Focusing on (2) (the position of the inertial sublayer in relation to the peak in uv) under

outer scaling, the ZPG TI profile crosses zero at approximately y/δ = 0.1 or in correct
scaling y+/

√
δ+ ≈ 2 while in the APG cases TI crosses zero near y/δ = 0.4, as seen

in the inset of figure 13(b). For the ZPG flow, the end of the inertial sublayer occurs
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near y/δ = 0.15, which highlights that the inertial sublayer is a very narrow subregion at
small δ+. If y/δ � 0.15 continues to locate the outer edge of the inertial sublayer in the
APG flow, then the data of figure 13(b) indicate that the TI term for these cases remains
positive and thus behaves like a momentum source to a position well beyond the end of the
inertial sublayer. For ZPG cases it has been previously surmised that the inertial sublayer
is characterized by a TI term that behaves like a momentum sink. This is because the TI
zero crossing nominally coincides with the location where the VF term loses dominance
(i.e. start of the inertial region). It is now clear, however, that the characteristic of the TI
term as a momentum sink is not universal to the inertial sublayer. Unlike the ZPG case,
the MMB layers of the APG TBL cannot be characterized solely on the behaviour of two
terms in the MMB, i.e. the VF term and TI term. This is partly because the ZPG MMB is
a balance of three terms, while the APG MMB is a balance of four terms. By definition
the VF term must not be dominant in the inertial sublayer. With the additional PG term it
is difficult, however, to precisely define where the VF loses dominance in the APG case.
Thus, the existence of the inertial sublayer in the APG TBL is not as tightly connected to
the TI term alone as it is in the ZPG TBL. Instead it depends on the decay rate of the sum
of the other terms in the MMB, since the TI term behaving like a momentum sink is not a
prerequisite for an inertial sublayer.

The MMB of the APG cases are compared for a range of β in figure 13(b) where the MI
and TI terms are added together. The inset in figure 13(b) presents all the terms normalized
by the PG term, since the PG term balances the MI + TI to leading order in the outer
region, and comes to exactly balance the MI term as y → δ. Note that the y+ location of
the outer peak aligns for varying β since we are observing cases at nominally fixed Reτ .
The PG term clearly has a modulating effect on the height of the outer peaks. These data
indicate that the outer peaks still follow outer scaling (as in the ZPG case) over the range
of PGs (0 ≤ β ≤ 4.5) and Reynolds number (490 ≤ Reτ ≤ 700) examined. This suggests
that under near constant β conditions the outer region MMB profiles follow outer scaling
when divided by the local (in x) PG.

In figure 13(b) the combined MI and TI terms reflect the VF term, similar to the TI term
of the channel flow MMB, except that the combined MI and TI terms remain positive. In
particular, the decay of the VF term (since the PG term is a constant) appears essentially
immune to β variations over the given range of β. Overall, the VF term essentially has
the same form in all flows, meaning it has an internal peak and exhibits a monotone decay
into the outer region. This is an apparently universal characteristic of the scaling patch
hierarchy discussed in the Appendix (A).

An apparent difference between the APG and canonical flows has to do with the
influence of boundary conditions on the internal layers of the hierarchy. This line of
reasoning leads one to expect the emergence of (evidence of) self-similar mean dynamics
to occur at larger Reynolds numbers for near-constant β APG cases than for ZPG cases.
As explained in the Appendix (A), these consequences could be (i) a log-law and
ln ∝ y if un is constant (where ln and un are the ‘natural’ length and velocity scales),
or (ii) a power-law and ln ∝ y if un = f ( y) and f ( y) is related to the VF term in a
particular way. Given its association with the two most frequently employed mean velocity
formulations (i.e. the log-law and power-law), in the next section we search for evidence
of distance-from-the-wall scaling via spectral analysis.

4.5. Spectra
The analysis presented in the Appendix (A) indicates that the MMB contains the
possibility of admitting distance-from-the-wall scaling, even for the case where multiple
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characteristic velocity scales are operative. This apparently leads to the possibility
of a power-law mean profile on the inertial sublayer, but turbulence characteristics
that exhibit y-scaling. From § 4.1.1 the mean velocity profile exhibits logarithmic-like
behaviour in the region between y+/

√
δ+ � 3 and y/δ � 0.15, although a possibility

of power-law distribution is not ruled out. Based on existing knowledge of canonical
wall flows, distance-from-the-wall scaling is anticipated to be more apparent where
logarithmic behaviour is evidenced by the indicator function. To highlight this region, in
the premultiplied (co)spectra kxE of u, v and −uv in figure 14 white vertical lines denote
y+/

√
δ+ = 3 and y/δ = 0.15. Recall that the integral of E from streamwise wavenumber

kx = 0 to ∞ equals the corresponding variance (for u and v) or −uv. All of these data are
normalized by their respective (co)variance (to highlight the scaling feature rather than the
actual magnitude) and are presented in terms of streamwise length scale λx(= 2π/kx). This
ostensibly removes dependence on velocity scale and focuses attention on length scale.

Again, note that for the present measurements the probe resolution is L+ = 17.6 and
the sampling rate was always greater than uτ

2/ν, i.e. �t+s < 1. This ensures all significant
energy containing motions are temporally resolved.

To check for trait (4) (wall-distance scaling), the premultiplied spectra are plotted with
an ordinate of λx/y. Proportionality between the wavelength associated with the peak per
decade energy density and distance-from-the-wall evidences wall scaling, since it implies
that wall-distance dictates the geometry of the motions that become the most energetic
(i.e. when integrated across a finite range of wavenumbers) at each y. Figure 14 shows
both an APG case at β = 1.8, Reτ ≈ 7800, and a ZPG case at similar Reynolds number
for comparison. Strong wall-distance scaling is seen in the premultiplied spectra kxEvv .
The peaks align at approximately λx/y = 2, which is very similar to the behaviour seen
by Zimmerman (2019) for pipe flow and the ZPG TBL. This behaviour contributes to the
wall-distance scaling seen in kxEuv where the peaks align at approximately λx/y = 20. The
kxEuu peaks for β = 1.8 and β = 0 align at approximately λx/δ = 3, which is commonly
associated with large scale motions for ZPG TBL (e.g. Monty et al. 2009). Given this,
it is apparent that the wall-distance scaling in the −uv cospectra is inherited from the v

motions.
This seems to indicate that wall-distance dictates the ‘preferred’ length scale about

which the highest per decade uv density is observed. A local peak with respect to y in the
spectrum also represents a zero crossing in the per scale profile of the RS gradient. Thus,
the proportionality of the spectral peaks with y also indicates that wall-distance dictates
(i) the y-position where a particular scale transitions from a net momentum source to a net
momentum sink, and (ii) the ‘cutoff’ between scales that act as a net momentum source
and those that act as a net momentum sink. Given the importance of the uv gradient in
the MMB and the association of the source–sink dichotomy with the onset of logarithmic
behaviour in canonical flows, this constitutes (at least) circumstantial evidence in favour of
distance-from-the-wall as a candidate ‘natural’ length scale, and it is related to the MMB
through the TI term.

5. Conclusions

The main aim of the present study focused on examining traits of the inertial sublayer for
the APG TBL and contrasting them with the ZPG TBL and other canonical flows. The
following traits were studied: (1) logarithmic behaviour in the mean velocity profile; (2)
position of the inertial sublayer in relation to the peak in uv; (3) properties of the turbulent
stresses (including the decay of u2); and (4) distance from-the-wall scaling.
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Figure 14. Premultiplied (co)spectra of (a,b) streamwise velocity (c,d) wall-normal velocity, and (e, f ) RS,
normalized at each y by (co)variance such that all vertical slices integrate to unity, versus λx/y. Here (a,c,e)
β = 0 at Reτ = 7880 from (Zimmerman 2019), (b,d, f ) β = 1.8 at Reτ = 7770. The green and blue triangle
symbols represent the peak magnitude of kxE as a function of wall distance for ZPG cases and APG cases,
respectively. Vertical white lines representing the bounds of the logarithmic layer as identified by the indicator
function are at y+/

√
δ+ = 3 and y/δ = 0.15. See the line-type labels at the bottom of the figure for λx/δ = 3,

λx/y = 2 and λx/y = 20. Here: (a) uu, C = 0.3; (b) uu, C = 0.3; (c) vv, C = 0.4; (d) vv, C = 0.4; (e) uv, C =
−0.4; ( f ) uv, C = −0.4.
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5.1. Logarithmic behaviour in the mean velocity profile
In the ZPG TBL the mean velocity profile exhibits logarithmic-like behaviour across the
inertial sublayer, without ruling out the possibility of a power-law distribution. Over a
range of Reynolds numbers similarity was seen in the indicator function y+ dU+/dy+
between the ZPG and APG cases suggesting that the onset of the inertial region remains
O(

√
δ+) for 0 ≤ β ≤ 2.

5.2. Position of inertial sublayer in relation to the peak in uv

The experimental and LES data showed better agreement with
√

δ+ scaling for both
the maximum of −uv+ and the outer peak of u2+

. This observation, however, may be
reflective of the relatively small value of β investigated.

The classical notion of the logarithmic layer corresponding to a constant stress layer
(Reynolds or total) is clearly not tenable for the APG case. Unlike the ZPG TBL, the
location where the TI term crosses zero (the location where −uv+ reaches its maximum)
does not correspond to the start of the inertial sublayer for the APG TBL. In fact, the
existence of the inertial sublayer does not seem to depend on the TI term alone since
the TI term becoming negative (corresponding physically to a momentum sink) is not a
prerequisite for the VF to lose leading-order dominance. The stress balance analysis and
indicator function show that logarithmic behaviours manifest when the VS diminishes
like 1/y+ as the inertial terms of the stress balance grow in importance. Through the
MMB-based theory this coincides with a specific rate of decay of the TI term. In the APG
flow the TI term is shifted upward (primarily owing to the PG effect), but largely retains a
region of decay rate after the peak that mimics that seen in the ZPG flow.

5.3. Properties of the turbulent stresses including decay of u2

The final monotone decay of the u2 profile features a region that is approximately
logarithmic in the ZPG TBL (at sufficiently large Reτ ) and occurs after the zero crossing
of the TI term. The outer peak of u2 aligns with the peak in −uv, which nominally
corresponds to the onset of the inertial sublayer in the ZPG TBL. This feature is also
apparent in the APG TBL, but no longer coincides with the inertial sublayer. Thus, the
coincidence of the final region of variance decay (logarithmic or not) and the logarithmic
mean profile in the ZPG TBL is likely to constitute a degenerate case of the more general
possibilities admitted by turbulent wall-flow physics.

5.4. Distance-from-the-wall scaling of variance turbulence properties
The premultiplied spectra kxEvv indicate that the wall-normal velocity fluctuations
contribute to wall-distance scaling of uv between y+/

√
δ+ � 3 and y/δ � 0.15 for both

the ZPG TBL and APG TBL. From a turbulence perspective, little change was seen in
the turbulence when self-normalized, e.g. see the Su and Ku profiles of figure 11. This
suggests that for the range of β examined the outer boundary condition is felt equally
between the ZPG and APG cases for turbulence quantities. Despite many differences
(particularly in the Reynolds stresses (shear and normal)), distance-from-the-wall scaling
is still evident. Thus, it is possible that a logarithmic layer may emerge if a single velocity
scale is appropriate over a finite subdomain that also exhibits y-scaling. Another alternative
(as explored in the Appendix (A)) is that this distance-from-the-wall scaling begets a
power-law region if a particular hierarchy of y-dependent velocity scales is operative.
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The wall-distance scaling is also a possibility if multiple velocity scales are present, which
then leads to a power-law. Therefore, Stratford’s (1959) heuristic arguments that led to his
famous half-power law are shown to gain a firmer theoretical footing.

5.5. Closing comments
The present findings suggest that the defining characteristics of an inertial sublayer require
modification. This is highlighted by the fact that the zero crossing of the TI term no longer
corresponds to the location where the VF term loses dominance, i.e. the onset of the
inertial sublayer. Owing to the additional PG term (relative to the ZPG TBL) the balance
of dominant terms changes within this region. Some attributes connected to the inertial
sublayer of the canonical turbulent boundary layer are not present. For example, the final
decay of u2+

no longer coincides with the inertial sublayer, even for the relatively mild
range of APG cases examined. The u2+

profiles are also no longer self-similar and do not
exhibit a logarithmic decay, indicating that the arguments used by Townsend (1976) and
Perry & Chong (1982) in the analysis of the ZPG TBL are not directly applicable to the
APG TBL flow. These differences are apparent even when the PG is relatively small, i.e.
β = 1. For the ZPG TBL, −uv+ is bounded by 1, which is indicative of the communication
(relative to momentum transport) between the inner and outer regions. As presented in
§ 4.2.1 several of the APG TBL −uv+ profiles exceed the value of 1 although β is small,
suggesting that the local uτ may not be the appropriate scaling velocity. There is a likely
a transition from uτ scaling to a pressure-dependent scaling as β increases. Interestingly,
the effects of β appear to diminish as Reynolds number increases. This is seen in the
−uv+ profiles, where the high Reynolds number experimental profile at β � 1.8 behaves
similarly to the low Reynolds number LES profile at β � 1. Similar conclusions are also
drawn from the analyses of Sanmiguel Vila et al. (2017, 2020).

To investigate the effects of Reynolds number in APG TBLs and to better understand
APG cases as a departure from ZPG cases, the present findings suggest the need to examine
smaller β for large and increasing Reynolds number. In this regard, note that there is a clear
jump in the behaviours from β = 0 to β = 1 in figure 10. Recall that β = O(1) implies
that the time scales of the PG and the outer scale are of the same order. Thus, future
studies that investigate low β ≤ 1 or β near 0 conditions should clarify these phenomena.
As far as the authors are aware such experiments have not been conducted for 0 < β <

1 at large Reynolds numbers (e.g. Reτ > 7000). A study within this range of β and as
Reτ → ∞ would have a diminishing PG effect. This would also increase the size of the
inertial sublayer, allowing for a detailed investigation of the logarithmic mean profile and
the inertial sublayer behaviours more generally for Reτ → ∞.
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Appendix A. Independence of velocity scale with distance-from-the-wall

The scaling patch analysis of Fife et al. (2009) provides an analytical basis for the existence
of a distance-from-the-wall scaling domain in turbulent wall-flows. The APG TBL MMB
transformation is a natural extension of the transformation used for canonical flows. To
provide context, this Appendix begins by reviewing the transformation for the simpler
channel flow MMB, which reflects the basic elements of the transformation. Key aspects of
this analysis are revisited here to clarify the conditions under which distance-from-the-wall
scaling (and thus log or power-law distribution in U) may be expected to emerge in
APG TBLs. For a more thorough mathematical exposition of scaling patches and their
application to plane Couette and channel flow, the reader is referred to Fife et al. (2009).

A.1. Basic notion of scaling patches
First, a ‘scaling patch’ is an interval I(ε) (i.e. a subdomain) wherein a space variable
x ∈ I(ε) and a function of that space variable φ(x, ε) can both be rescaled such that the
derivatives of the rescaled function φ̂ with respect to the rescaled space variable x̂ are
≤ O(1) on the interval. The width of the interval I(ε) is also O(1) in terms of x̂. Here,
ε is a small parameter that simply determines the location of the scaling patch in the
overall flow domain. The scaling factors α(ε) and γ (ε) that realize a scaling patch for a
particular function and space variable can be thought of, in a sense, as the ‘natural’ scales
for the problem. Here the example cited by Fife et al. (2009) is instructive. Consider the
case where φ(x, ε) = e−x/ε on the interval I(ε) = [0, ε]. After rescaling the increments
of x and φ as dx = α(ε) dx̂ and dφ = γ (ε) dφ̂ with the scaling factors α(ε) = ε and
γ (ε) = 1, one can write dφ̂/dx̂ = −e−x/ε . The magnitude of dφ̂/dx̂ (and subsequent
derivatives with respect to the rescaled variables) is bounded on the interval in contrast to
the unscaled derivative dφ/dx = −ε−1e−x/ε . By construction, the scaling factors ensure
that the derivatives of φ̂ with respect to x̂ remain O(1) on the scaling patch. Evidently,
the scaling factors are ‘natural’ scales in the same sense that ε is the ‘natural’ scale for the
function φ = e−x/ε . The notion of scaling patches thus provides a useful framework within
which to analyse the MMB equation for wall-bounded flows; the ‘natural’ scaling factors
that realize these ‘scaling patches’ in the MMB equation invite comparisons with length
and velocity scales found in the literature. It also allows one to derive mathematically
precise conditions under which distance-from-the-wall scaling (for example) becomes
a proper ‘scaling factor’ (and thus the natural scale), along with the consequent mean
velocity profile.

A.2. Application of scaling patch to wall-flow mean momentum equation
To illustrate how this framework can be applied to APG TBLs, we begin with the simpler
channel flow MMB (e.g. see Fife et al. 2005; Wei et al. 2005), which can be written as

d2U+

dy+2 + dT+

dy+ + δ+−1 = 0, (A1)

where T+ ≡ −uv+. The small parameter ε whose values (within a specified range) are
each associated with a scaling patch is then introduced by defining a modified RS term
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T+
ε ≡ T+ + (δ+−1 − ε)y+ such that (A1) can be rewritten as

d2U+

dy+2 + dT+
ε

dy+ + ε = 0. (A2)

Note that the small parameter ε has most often been denoted by ‘β’ in earlier studies; the
different notation herein is chosen to avoid confusion with the Clauser parameter.

A.2.1. Properties that guarantee the existence of scaling patches
The channel flow (and/or boundary layer) boundary conditions virtually guarantee that
the global magnitude maximum of the first term in (A1) will be internal to the flow
(i.e. that it will not occur at either boundary). This then guarantees that scaling patches
can be constructed over a subdomain of the flow. The argument for the existence of the
internal peak is as follows. At the wall the no-slip condition dictates that the viscous term
must balance the PG term (e.g. see Klewicki 2010). As noted above, for channel flows the
pressure gradient can be expressed in terms of the Reynolds number as δ+−1. If one then
assumes that there is a point ym at which T+ ≈ 1, then the peak magnitude of the turbulent
inertia term is larger than the PG term, since

max
(

dT+

dy+

)
� 1

y+
m

>
1
δ+ . (A3)

In order for (A1) to balance, the global maximum magnitude of the viscous term therefore
must also exceed δ+−1 (i.e. its own magnitude at y = 0). Furthermore, the magnitude of
the viscous term must also become arbitrarily small relative to the other two terms at
the centreline. This follows from the stress balance T+ + dU+/dy+ = 1 − y/δ and the
notion that dU/dy becomes vanishingly small at fixed y/δ as Reynolds number increases.
From this, one can show that dT+/dy+ = −δ+−1 at the centreline (in the limit of infinite
Reynolds number), and thus the viscous term at this location must tend to zero. Note
that for external flows the argument is even simpler, since all gradients must vanish as
y → ∞. This establishes that the viscous term is small at both boundaries relative to
some point internal to the flow for both channel flows and boundary layers, and thus the
function has an internal magnitude peak. As will be explained below, scaling patches are
guaranteed to exist over the subdomain beyond the peak in the viscous term where it
decreases monotonically (i.e. where dU/dy is convex). This includes, for example, the
classical log-layer for channel flows, which gives dU+/dy+ = (κy+)−1.

To illustrate how the above properties of d2U+/dy+2 guarantee the existence of scaling
patches, consider the balance of terms in the vicinity of y = δ for some positive ε. Since
the first term in (A2) (or (A1)) is subdominant at the outer boundary, (A2) in this region
reflects (nominally) a two-term balance between the second and third terms. As one
moves to smaller y+, the magnitude of d2U+/dy+2 grows until it is eventually equal to
the magnitude of ε for any ε ∈ [0, max(−d2U+/dy+2

)). At this location, dT+
ε /dy+ must

equal zero (i.e. T+
ε must reach a local maximum), and at still smaller y+ one will observe

a nominal balance between the first and second terms in (A2). This ‘balance breaking and
exchange’ has been explored in great detail (e.g. see Fife et al. 2005; Wei et al. 2005), as
it guarantees the existence of a domain for a given ε wherein all three terms in (A2) are
of leading order – that is, it guarantees that one can realize a scaling patch associated with
(A2) for each suitable value of ε. The location of the zero crossing in dT+

ε /dy+ (i.e. the
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local maximum in T+
ε ), hereafter denoted by y+

ε , is therefore associated with the location
of the scaling patch.

A.2.2. Parameterless form of channel flow MMB
The scaling factors α(ε), γ (ε) and λ(ε) necessary to realize scaling patches for (A2) relate
y+, U+ and T+ (in the scaling patch) to ŷ, Û and T̂ as

dy+=α dŷ, dT+
ε ( y+) = γ dT̂, dU+=λ dÛ. (A4a–c)

Note that α and λ here represent unitless forms of the ‘natural’ length and velocity scales
ln and un discussed briefly in § 4.4, i.e. in this case one could write α = l+n and λ = u+

n .
Substituting (A4) into (A2) and requiring that all terms be of equal order then results in

α =
(
λ

ε

)1/2

, γ = (λε)1/2 (A5a,b)

and the parameterless form of (A2), i.e.

d2Û
dŷ2 + dT̂

dŷ
+ 1 = 0, (A6)

regardless of the particular characteristics of the scaling factors. Here, however, we are
assisted by classical scaling arguments and the preponderance of empirical evidence; the
case where uτ is the appropriate velocity scale across the entire shear layer (i.e. where
the velocity increment across each scaling patch is fixed relative to uτ , for example see
Klewicki (2021)) corresponds to λ = 1, which simplifies the subsequent analysis. It is
shown below how the λ = 1 case (i.e. α = ε−1/2 and γ = ε1/2), along with self-similarity
of the solutions to (A6) over a range of scaling patches, results in a logarithmic mean
velocity profile.

A.2.3. Similarity argument
The similarity argument as presented by Fife et al. (2009) begins with differentiation
of dT+

ε /dy+ with respect to the small parameter ε. Recall that dT+
ε /dy+ = 0 serves

as the ‘anchor point’ about which each scaling patch is constructed (i.e. at yε). This
differentiation creates a term (via the chain rule) that is proportional to dy+/dε, which
is then used to investigate the relationship between the small parameter ε and the location
of the scaling patches. For the present purposes it makes more sense to differentiate the
other two terms in (A2) whose sum is equal and opposite to dT+

ε /dy+, i.e.

d
dε

(
d2U+

dy+2

∣∣∣∣
y=yε

+ ε

)
= 0. (A7)

Distributing the derivative then yields

dy+

dε

d3U+

dy+3 + 1 = 0. (A8)

This expression can then be rewritten in terms of ‘hat’ variables:

dy+

dε

d3Û
dŷ3 λ

−1/2ε3/2 + 1 = 0. (A9)
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The construction of scaling patches fixes the values of Û, dÛ/dŷ and d2Û/dŷ2 at y = yε ,
and ensures that d3Û/dŷ3 is ≤ O(1) over the width of the scaling patch. One may expect,
then, that the particular value of d3Û/dŷ3 at yε (which is ultimately determined by the
boundary conditions for each patch) becomes invariant from patch-to-patch on the scaling
layer (patch) hierarchy for some subdomain that is sufficiently insulated from ‘edge’
effects. One measure of boundary effects is the skewness and kurtosis, which is discussed
in § 4.2.2. This argument shares some features with, for example, the overlap argument
of Millikan (1939), but is grounded in a specific mathematical property of the MMB.
Constancy of this term allows one to integrate (A9) with respect to ε if the functional form
of λ(ε) is known.

A.2.4. Effects of non-constant λ
For illustrative purposes (i.e. to demonstrate the potential effects of non-constant λ), we
proceed under the assumption that λ(ε) may be modelled as λm ≡ ε−σ , where σ ≥ 0 is a
constant. Integration of (A9) with A ≡ d3Û/dŷ3 evaluated at yε , i.e.

y+
ε = A−1

∫
λ1/2ε−3/2 dε (A10)

can proceed using this model λm as follows:

y+
ε = − 2A−1ε−(1+σ)/2 + C1 = −2A−1

(
λm

ε

)1/2

+ C1. (A11)

Recall that the unitless ‘natural’ length scale (i.e. l+n ) for a scaling patch is given by α =
(λ/ε)1/2, and thus

y+
ε = − 2A−1α + C1 = −2A−1l+n + C1. (A12)

Equation (A11) therefore demonstrates that proportionality between the natural
length scale and distance-from-the-wall can follow directly from the assumption of
self-similar mean dynamics, i.e. constant A, even for non-constant λ. Note that this
distance-from-the-wall scaling result is not general for all λ = f (ε). Nevertheless, it
demonstrates that distance-from-the-wall scaling can be realized in the presence of a
non-uniform velocity scale hierarchy.

For every scaling patch, ε is the value that ensures dT+
ε /dy+ = 0 at yε . This can be

restated according to (A2) as ε = −d2U+/dy+2 at y = yε . Plugging this into (A11) and
rearranging then yields

d2U+

dy+2 =
(

A
2

(
y+
ε −C1

))−2/(1+σ)

. (A13)

Finally, this can be integrated twice to yield a ‘log-law’ or a power-law depending on the
value of σ as

U+=

⎧⎪⎪⎨
⎪⎪⎩

4
A2 log

(
y+ − C1

)+ C2y+ + C3, σ = 0,(
4

A2

)1/(1+σ) (
y+ − C1

)2σ/(1+σ) + C2y+ + C3, σ > 0.

(A14)

As indicated in the subsection below, the above arguments for the channel flow can be
extended to APG flows, and that a velocity distribution of the kind (A14) is compatible
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Figure 15. (a) The modified RS term T+
ε ( y+). (b) Gradient of the modified RS term ∂T+

ε /∂y+.
(c) Inner-normalized VF. Lines become lighter with increasing ε. Channel flow DNS at Reτ = 1000 from
Yamamoto & Tsuji (2018) plotted as blue lines. The ZPG DNS at Reτ = 830 from Schlatter & Örlü (2010)
plotted as green lines. The APG LES at Reτ = 800 from Bobke et al. (2017), where β = 1 plotted as solid red
lines and β = 2 plotted as dashed red lines.

with APG flows. Regarding the power-law profile, a deeper investigation of σ is beyond
the scope of the present paper. The present analysis does, however, show that non-zero
σ indicates a power-law solution, as shown in (A14). This is consistent with Stratford
(1959). In fact, from the second equation of (A14) 2σ/(1 + σ) suggests σ = 1/3 for a
half-power-law profile, which is in accord with the condition of σ > 0 within the analysis.

A.3. Applying to APG TBLs
Extending these ideas to APG TBLs (or, really, a variety of similar flows) is possible by
following the steps outlined for the channel flow MMB. In transitioning from (A1) to (A2)
for channel flow, we contrived a modified RS T+

ε that produced (A2) by construction.
Indeed, one can define a T+

ε for any flow that will recover (A2). For APG TBLs this takes
the following form:

T+
ε ( y+) = T+( y+) +

∫ y+

0
MI(y′+) dy′+ + (PG − ε)y+. (A15)

As PG → 0, (A15) reduces to the form given in Morrill-Winter et al. (2017) for the ZPG
TBL. The modified RS term T+

ε ( y+) is plotted in figure 15(a) for a channel flow case, ZPG
case and equilibrium APG cases for β = 1 and 2 at similar Reynolds number. Over a range
of ε the T+

ε ( y+) curves for the various flows behave similarly. Likewise the ∂T+
ε /∂y+

curves plotted in figure 15(b) also behave similarly.
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Fife et al. (2009) describe how the existence of scaling patches for (A2) is then
guaranteed by the fact that ∂T+

ε /∂y features an internal peak near the wall and a zero
crossing farther from the wall. This behaviour is in turn guaranteed for any flow in
which there is an internal magnitude peak in the VF term as described above. As shown
in figure 15(b), there is an internal magnitude peak in ∂T+

ε /∂y+ or equivalently in
∂2U+/∂y+2, as seen in figure 15(c), for a variety of flows. Furthermore, the ∂2U+/∂y+2

profiles for each type of flow shown (channel flow case, ZPG case and APG cases at β = 1
and 2 at similar Reynolds number) behave similarly to one another as the profiles decay.

It is not until one is faced with the determination of scaling factors that a meaningful
difference between channel flow and the APG TBL first arises; there is considerably more
reason to doubt that uτ is the appropriate velocity scale across the full boundary layer
for the APG flow case than for the channel flow case, and thus the argument in favour
of λ = 1 is perhaps more dubious. In this study we present what might be considered
circumstantial evidence, in the form of Reynolds normal and shear stress profiles, of the
failure of uτ as a universal velocity scale. This does not, however, directly address the
question of its suitability for realization of scaling patches, as this can be determined only
through analysis of the derivatives of the mean streamwise velocity (i.e. to ensure that they
remain ≤ O(1)). The question of a suitable form for the scaling factor λ is therefore left
for a future study.

A.4. Summary
The primary takeaways from the MMB analysis presented herein are (i) distance-from-the-
wall scaling can result from an assumption of self-similar mean dynamics, and does not
require primacy of a single velocity scale, and (ii) distance-from-the-wall scaling does not
necessarily imply a logarithmic mean velocity profile; a power-law velocity scale hierarchy
along with self-similar mean dynamics simultaneously produces distance-from-the-wall
scaling and a power-law mean velocity profile. The choice to refer to the (potentially)
self-similar subdomain as the ‘inertial sublayer’ in the present study (rather than the ‘log’
layer) is therefore deliberate given the uncertainty in the appropriate form for λ.
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