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Abstract

Given two finitely generated groups that coarsely embed into a Hilbert space, it is known that their wreath
product also embeds coarsely into a Hilbert space. We introduce a wreath product construction for general
metric spaces X, Y, Z and derive a condition, called the (δ-polynomial) path lifting property, such that
coarse embeddability of X, Y and Z implies coarse embeddability of X oZ Y . We also give bounds on the
compression of X oZ Y in terms of δ and the compressions of X,Y and Z.
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1. Introduction

Ever since the recently discovered relations between the Novikov conjecture and
coarse embeddability [15], this latter property has been the focal point of much
research. Concretely, for a finitely generated group with a word metric relative to a
finite generating subset, coarse embeddability into a Hilbert space implies the Novikov
conjecture. This result was suggested by Gromov in [10, Problems (4) and (5)] and
proved in [15]. Later the same result was proved for embeddings into uniformly
convex Banach spaces, providing one of the motivations for studying embeddings into
lp-spaces for p , 2 [13].

Definition 1.1 (see [11]). Fix p ≥ 1. A metric space (X, d) is coarsely embeddable
into an Lp-space if there exist a measure space (Ω, µ), nondecreasing functions
ρ−, ρ+ : R+ → R+ such that limt→∞ ρ−(t) = +∞ and a map f : X → Lp(Ω, µ) such that

ρ−(d(x, x′)) ≤ ‖ f (x) − f (x′)‖p ≤ ρ+(d(x, x′)) ∀x, x′ ∈ X.

The map f is called a coarse embedding of X into Lp(Ω, µ) and the map ρ− is called
a compression function for f . A metric space (X, dX) is coarsely embeddable into a
Hilbert space if there exists such a map whose codomain is a Hilbert space. We usually
shorten this property to saying that X is CE.
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[2] Embeddability of generalised wreath products 251

In 2004, Guentner and Kaminker introduced a numerical invariant that can be
used to quantify ‘how well’ a metric space (X, d) embeds coarsely into a Hilbert
space [12]. This links coarse embeddability to the well-studied notion of quasi-
isometric embeddability [8].

Definition 1.2. Fix p ≥ 1. Given a metric space (X, d) and a measure space (Ω, µ),
the Lp-compression R( f ) of a coarse embedding f : X → Lp(Ω, µ) is defined as the
supremum of r ∈ [0, 1] such that

∃C,D > 0 ∀x, x′ ∈ X :
1
C

d(x, x′)r − D ≤ ‖ f (x) − f (x′)‖ ≤ Cd(x, x′) + D.

If such r does not exist, then we set R( f ) = 0. The Lp-compression αp(X) of X
is defined as the supremum of R( f ) taken over all coarse embeddings of X into all
possible Lp-spaces.

In the setting of groups, compression is related to interesting group-theoretic
properties. For example, it is known that finitely generated groups with nonequivariant
compression > 1

2 satisfy property A (which is equivalent to exactness of the reduced
C∗-algebra) [12]. The converse is not true [1]. Other interesting facts occur in the
amenable case. If G is an amenable group, then, given a coarse embedding f : G→H
with compression R( f ), one can always find an affine isometric action of the group on
a Hilbert space such that the associated 1-cocycle also has compression R( f ) [8]. This
is related to properties such as Kazhdan’s property (T ) and the Haagerup property.

Definition 1.3. Let G be a group and (Ω, µ) a measure space. Fix p ≥ 1. A map
f : G→ Lp(Ω, µ) is called G-equivariant if there is an affine isometric action α of G on
Lp(Ω, µ) such that for all g, h ∈G : f (gh) = α(g)( f (h)). A compactly generated, locally
compact, second countable group G equipped with the word length metric relative to
a compact generating subset is said to satisfy the Haagerup property if it admits an
equivariant coarse embedding into a Hilbert space.

A lot of effort has gone into studying the behaviour of coarse embeddability and the
Haagerup property under group constructions [3, 6]. Li gave a proof that the wreath
product of two countable groups with the Haagerup property is again Haagerup [14].
Although using similar ideas, his proof is more concise than that of [7], where
the authors proved a more general statement. Instead of looking only at standard
wreath products G o H, de Cornulier et al. considered permutational wreath products
G oX H := G(X) o H, where X is a countable H-set and H acts on G(X) by shifting
indices. They conjectured that the Haagerup property for G and H would imply the
Haagerup property for any permutational wreath product G oX H, but only proved it in
the case where X = H/L with L co-Haagerup in H. Here a subgroup L < H is called
co-Haagerup if there exists a proper G-invariant conditionally negative definite kernel
on H/L. It was shown that the above-mentioned conjecture is false and so the choice
of X is restricted [4].

The nonequivariant analogue of the Haagerup property is coarse embeddability. By
the work of Dadarlat and Guentner [5], it follows that G o H is coarsely embeddable
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if G is coarsely embeddable and H has property A. It is known that property A
implies coarse embeddability into a Hilbert space, but the converse is unknown in
the case of finitely generated groups. Li [14] and de Cornulier et al. [7] showed
that coarse embeddability into a Hilbert space is preserved under wreath products,
without referring to property A. Even stronger, for p ∈ [1, 2], Li proved that the
Lp-compression of a wreath product G o H is strictly positive whenever G and H
have strictly positive Lp-compression [14]. Although coarse embeddability and
compression are defined for arbitrary metric spaces, the behaviour of compression
and coarse embeddability had not been studied for any type of permutational wreath
products.

In this paper, we define a general permutational wreath product X oCZ Y of arbitrary
metric spaces X, Y, Z, where C ∈ R+, and we investigate under which conditions the
coarse embeddability of X, Y, Z implies coarse embeddability of X oZ Y . This leads
to the definition of the (δ-polynomial) path lifting property. Precisely, we obtain the
following result. Our proof uses similar ideas as in [7] and [14].

Theorem 1.4 (see Theorem 4.6). Let X, Y, Z be metric spaces and p : Y → Z be a
C-dense bornologous map with the coarse path lifting property. Assume that Y
is uniformly discrete and that Z has C-bounded geometry. If X, Y, Z are coarsely
embeddable into a Hilbert space, then so is X oCZ Y.

We also give bounds on the Hilbert space compression of this wreath product in
terms of δ and the Hilbert space compression of X, Y and Z. The bounds we obtain
coincide with the bounds given in [14] when applied to standard wreath products.

2. Preliminaries

Given two finitely generated groups G and H, the wreath product, written as G o H,
is the set of pairs (f, h), where h ∈ H and f : H → G is a finitely supported function
(that is, f(h) = eG for all but finitely many h ∈ H) together with a group operation

(f, h) · (g, h′) = (f · (hg), hh′),

where (hg)(z) = g(h−1z) for all z ∈ G. One can think of G o H as being the semi-direct
product

⊕
H G o H, where H acts on

⊕
H G by permuting the indices. If finite sets S

and T generate G and H, respectively, then G o H is generated by the finite set

{(e, t) : t ∈ T } ∪ {(δs, eH) : s ∈ S },

where e(h) = eG for all h ∈ H and

δs(h) =

s if h = eH ,

eG otherwise.

The word metric on G o H coming from this generating set can be thought of as
follows. Given two elements (f, x) and (g, y), take the shortest path in the Cayley
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graph Cay(H, T ) going from x to y that passes through the points in Supp(f−1g) =

{h1, . . . , hn}. At each point hi ∈ Supp(f−1g), travel from f(hi) to g(hi) in G. Explicitly,
for (f, x), (g, y) ∈

⊕
g∈H G o H and Supp(f−1g) = {h1, . . . , hn}, define

p(x,y)(f, g) = inf
σ∈Sn

(
dH(x, hσ(1)) +

n∑
i=1

dH(hσ(i), hσ(i+1)) + dH(hσ(n), y)
)
,

where the infimum is taken over all permutations in Sn. The number p(x,y)(f, g)
corresponds to the shortest path between x and y in H going through each element
in Supp(f−1g). Hence, the distance between (f, x) and (g, y) is

dGoH((f, x), (g, y)) = p(x,y)(f, g) +
∑
h∈H

dG(f(h), g(h)).

Suppose that G, H are groups and H acts transitively on a set X. Fix a base point x0 ∈ X
and define the permutational wreath product to be the group G oX H :=

⊕
X G o H,

where ⊕
X

G = {f : X → G : f(x) = eG for all but finitely many x ∈ X}

and H acts on
⊕

X G by permuting the indices. If S and T generate G and H,
respectively, then G oX H is generated by

{(e, t) : t ∈ T } ∪ {(δs, eH) : s ∈ S },

where e(x) = eG for all x ∈ X and

δs(x) =

s if x = x0,

eG otherwise.

The metric on G oX H from the generating set can be thought of as follows. Given two
elements (f, x) and (g, y), take the shortest path going from x to y in Cay(H, T ) that
passes through points {h1, . . . , hn} such that Supp(f−1g) = {h1x0, . . . , hnx0}. At each
element hi ∈ Supp(f−1g), travel from f(hix0) to g(hix0) in G. In general, the shortest
path is not necessarily unique.

Explicitly, for (f, x), (g, y) ∈
⊕

x∈X G o H, let I = Supp(f−1g) and let n =

|Supp(f−1g)|. Define PI to be the set

PI := {(h1, . . . , hn) ⊂ Hn : {h1x0, . . . , hnx0} = I}.

In particular, if (h1, . . . , hn) ∈ PI , then any permutation of (h1, . . . , hn) is also in PI .
Hence, the length of the shortest path between x and y in H passing though the points
that project onto Supp(f−1g) is precisely

ρ(x,y)(f, g) := inf
(h1,...,hn)∈PI

(
d(x, h1) +

n−1∑
i=1

d(hi, hi+1) + d(hn, y)
)
.
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Hence, the distance between (f, x) and (g, y) is

dGoX H((f, x), (g, y)) = ρ(x,y)(f, g) +
∑
z∈X

dG(f(z), g(z)).

One can ask whether we can generalise this construction. Suppose that Y and Z are
metric spaces and p : Y → Z is a C-dense map, that is, BZ(p(Y),C) = Z. Given two
points y, y′ ∈ Y and a finite sequence of points I = {z1, . . . , zn} in Z, we define PI to be
the set

PI := {(y1, . . . , yn) ⊂ Yn : ∃σ ∈ Sn such that ∀i, p(yi) ∈ B(zσ(i),C)}.
In particular, if (y1, . . . , yn) ∈ PI , then any permutation of (y1, . . . , yn) also lies in PI .
We now define the length of the path from y to y′ going through I by

pathI(y, y
′) = inf

(y1,...,yn)∈PI

(
dY (y, y1) +

n−1∑
i=1

dY (yi, yi+1) + dY (yn, y′)
)
.

Let X be another metric space and fix a base point x0 ∈ X. Define
⊕

Z X to be the set⊕
Z

X = {f : Z → X : f(z) = x0 for all but finitely many z ∈ Z}.

For f, g ∈
⊕

Z X, define Supp(f−1g) = (Supp(f) ∪ Supp(g))\{z ∈ Z : f(z) = g(z)}. Let
(f, y), (g, y′) ∈

⊕
Z X × Y and let I = Supp(f−1g). Define a metric on the set

⊕
Z X × Y

by
d((f, y), (g, y′)) = pathI(y, y

′) +
∑
z∈Z

dX(f(z), g(z)).

We obtain a metric space (
⊕

Z X × Y, d), which we denote by X oCZ Y . When there
is no risk for confusion, we will omit C from this notation. When X and Y are
graphs, the metric wreath product X oY Y coincides with the wreath product of graphs.
See [9, Definition 2.1].

3. Measured walls
Let X be a set and 2X the power set of X. We endow 2X with the product topology.

For x ∈ X, denoteAx = {A ⊂ X : x ∈ A}. This is a clopen subset in 2X . For two elements
x, y ∈ X, we say that a set A ⊂ X cuts x and y, denoted A ` {x, y}, if x ∈ A and y ∈ Ac

or x ∈ Ac and y ∈ A. Likewise, we say that A cuts another set Y if neither Y ⊂ A nor
Y ⊂ Ac.
Definition 3.1. A measured walls structure on a set X is a Borel measure µ on 2X such
that, for every x, y ∈ X,

dµ(x, y) := µ({A ∈ 2X : A ` {x, y}}) <∞.
Since {A ∈ 2X : A ` {x, y}} = Ax 4 Ay, the set is measurable. It follows that dµ is

well defined and is a pseudometric on X, called the wall metric associated to µ.
If f : X→ Y is a map between sets and (Y, µ) is a measured walls structure, then we

can push forward the measure µ by the inverse image map f −1 : 2Y → 2X and obtain
a measured walls structure (X, f ∗µ), where, for A ⊂ 2X , f ∗µ(A) = µ({ f (B) | B ∈ A, B =

f −1( f (B))}). It follows that d f ∗µ(x, x′) = dµ( f (x), f (x′)).
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Given a family of spaces Xi with measured walls space structures µi and the natural
projection maps pi :

⊕
X j → Xi, the measure µ =

∑
I p∗i µi defines a measured walls

space structure on
⊕

i Xi. The associated wall metric is dµ((xi), (yi)) =
∑

i dµi (xi, yi).

Definition 3.2. Let X be a set. A function k : X × X → R+ is a conditionally negative
definite kernel if k(x, x) = 0 and k(x, y) = k(y, x) for all x, y ∈ X and for every pair of
finite sequences x1, . . . , xn ∈ X, λ1, . . . , λn real numbers such that

∑n
i=1 λi = 0,∑

i, j

λiλ jk(xi, x j) ≤ 0.

Proposition 3.3 ([2, Proposition 6.16], see also [7, Proposition 2.6]). Let X be a set
and k : X × X → R+. The following are equivalent:

(1) there exists f : X → L1(X) such that k(x, y) = ‖ f (x) − f (y)‖1 for all x, y ∈ X;
(2) for every p ≥ 1, there exists f : X→ Lp(X) such that (k(x, y))1/p = ‖ f (x) − f (y)‖p

for all x, y ∈ X;
(3) k = dµ for some measured walls structure (X, µ).

In order to prove our main result, we make use of a method of lifting measured walls
structures. First we require some technical definitions. Let W, X be sets and A = 2(X),
the set of finite subsets of X.

Definition 3.4. AnA-gauge on W is a function φ : W ×W →A such that

φ(w,w′) = φ(w′,w) ∀w,w′ ∈ W,
φ(w,w′′) ⊂ φ(w,w′) ∪ φ(w′,w′′) ∀w,w′,w′′ ∈ W.

If W is a group, then φ is called left invariant if φ(ww′,ww′′) = φ(w′,w′′) for all
w,w′,w′′ ∈ W.

Definition 3.5. Let G be a group and X a G-set. A measured walls structure (X, µ) is
uniform if for all x, y ∈ X the map g 7→ dµ(gx, gy) is bounded on G.

Theorem 3.6 [7, Theorem 4.2]. Let X,W be sets,A = 2(X). Let φ be anA-gauge on W
and assume that φ(w,w) = ∅ for all w ∈ W. Let (X, µ) be a measured walls structure.
Then there is a naturally defined measure µ̃ on 2W×X such that (W × X, µ̃) is a measured
walls structure with corresponding pseudometric

dµ̃(w1x1,w2x2) = µ({A ∈ A : A ` φ(w1,w2) ∪ {x1, x2}}).

A consequence of this theorem is that if X, Y, Z are metric spaces, where X has a
fixed point x0 ∈ X, then Supp(f−1g) is an A-gauge on

⊕
Z X, where A = 2(Z). Hence,

if Z has a measured walls structure, there exists a lifted measured walls structure on⊕
Z X × Z.

4. Coarse embeddings of wreath products

Definition 4.1. A metric space (X, d) is uniformly discrete if there exists δ > 0 such
that for all x ∈ X, B(x, δ) = {x}. We say that a metric space has C-bounded geometry
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for some C > 0 if there exists a constant N(C) > 0 such that |B(x,C)| ≤ N(C) for all
x ∈ X. A metric space has bounded geometry if it has C-bounded geometry for every
C > 0.

Example 4.2. Note that C-bounded geometry for some C does not in general imply
bounded geometry. As an easy example, one can consider an infinite metric space
equipped with the discrete metric, that is, d(x, y) = 1 for every x, y ∈ X distinct.

Definition 4.3. Let Y and Z be metric spaces. A C-dense map p : Y → Z has the coarse
path lifting property if there exists a nondecreasing function θ : R+→ R+ such that, for
any z, z′ ∈ Z and y ∈ Y with dY (p(y), z) ≤ C, there exists a y′ ∈ Y with d(p(y′), z′) ≤ C
and d(y, y′) ≤ θ(d(z, z′)).

Definition 4.4. A map between metric spaces f : Y → Z is bornologous if for every
R > 0 there is SR > 0 such that if dY (y, y′) ≤ R, then dZ( f (y), f (y′)) ≤ SR for all y, y′ ∈ Y .

Example 4.5. The path lifting property occurs naturally in the setting of groups. Let
Y = H be a group and let N / H. The most natural way of defining a distance function
on Z := H/N is by setting d(hN,h′N) to be the infimum of d(hn,h′n′) over all n,n′ ∈ N.
The projection map p : H → H/N is a bornologous map and one checks easily that it
satisfies the coarse path lifting property. Actually, one only needs the fact that N is
‘almost normal’ in H, that is, that for every finite subset F of H, there exists a finite
subset F′ ⊂ H with NF ⊂ F′N.

Another example can be obtained by taking Z to be the set of right N-cosets of H,
where N is any (not necessarily normal) subgroup of H. In this case, the projection
map p : H → N\H, g 7→ Ng is a bornologous map that has the coarse path lifting
property.

Theorem 4.6. Let X, Y, Z be metric spaces and p : Y → Z be a C-dense bornologous
map with the coarse path lifting property. Let θ : R+→ R+ be a nondecreasing function
satisfying the properties in Definition 4.3. Assume that Y is uniformly discrete and that
Z has C-bounded geometry. If X, Y, Z are coarsely embeddable into an L1-space, then
so is X oCZ Y.

Remark 4.7. Note that, by Proposition 3.3, the conclusion of the theorem also implies
Lp-embeddability of X oZ Y for any p ≥ 1. On the other hand, it is known that Lp

embeds isometrically into L1 for 1 ≤ p ≤ 2. Hence, in the formulation of Theorem 4.6,
we can just as well replace L1-embeddability by Lp-embeddability for 1 ≤ p ≤ 2.

Proof of Theorem 4.6. By Proposition 3.3, there exist measured walls structures
(X, σ), (Y, ν), (Z, µ) and functions ρX , ρY , ρZ , ηX , ηY , ηZ : R+ → R+, increasing to
infinity, such that

ρX(dX(x1, x2)) ≤ dσ(x1, x2) ≤ ηX(dX(x1, x2)) ∀x1, x2 ∈ X, (4.1)
ρY (dY (y1, y2)) ≤ dν(y1, y2) ≤ ηY (dY (y1, y2)) ∀y1, y2 ∈ Y, (4.2)
ρZ(dZ(z1, z2)) ≤ dµ(z1, z2) ≤ ηZ(dZ(z1, z2)) ∀z1, z2 ∈ Z. (4.3)
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By Theorem 3.6, there exists a measured walls structure µ̃ on
⊕

Z X × Z, where, for
(f, z), (g, z′) ∈

⊕
Z X × Z,

dµ̃((f, z), (g, z′)) = µ({A : A ` Supp(f−1g) ∪ {z, z′}}).

We have a projection map p :
⊕

Z X × Y →
⊕

Z X × Z, where (f, y) 7→ (f, p(y)). Using
this, we can pull back a measured walls structure on

⊕
Z X × Y , where

dpµ̃((f, y), (g, y′)) = dµ̃((f, p(y)), (g, p(y′))).

We define three other walls structures, σ̃, ν̃ and ω̃, on X oZ Y , where

dσ̃((f, y), (g, y′)) =
∑
z∈Z

dσ(f(z), g(z)),

dν̃((f, y), (g, y′)) = dν(y, y′),
dω̃((f, y), (g, y′)) = |Supp(f−1g)|.

It is clear from our comments in Section 3 on pushing forward and summing up walls
space structures that σ̃ and ν̃ are indeed walls space structures. To see that the latter
is associated to a measured walls space structure, note that dω̃ is associated as in
Proposition 3.3 to the map Λ :

⊕
Z X × Y → L1(X × Z), (f, y) 7→ Λ(f, y), where

Λ(f, y) : (x, z) 7→

 1
2 if f (z) = x,
0 if f (z) , x.

We now aim to show that we can coarsely embed X oZ Y into an L1-space.
Define λ = pµ̃ + σ̃ + ν̃ + ω̃ to be a measured walls space structure on X oZ Y . By
Proposition 3.3, it suffices to show that for every R > 0, if dλ((f, y), (g, y′)) ≤ R,
then dXoZY ((f, y), (g, y′)) ≤ C1(R) and, if dXoZY ((f, y), (g, y′)) ≤ R, then dλ((f, y), (g, y′)) ≤
C2(R), where C1,C2 are constants depending only on R.

Fix R > 0 and suppose that dλ((f, y), (g, y′)) ≤ R. In particular,

dµ̃((f, p(y)), (g, p(y′))) ≤ R, (4.4)∑
z∈Z

dσ((f(z), g(z)) ≤ R, (4.5)

dν(y, y′) ≤ R, (4.6)
|Supp(f−1g)| ≤ R. (4.7)

Define p(y) = z0 and write Supp(f−1g) = {z1, z2, . . . , zn} for some n ≤ R. By (4.4), it
follows that µ(A : A ` Supp(f−1g) ∪ {p(y), p(y′)}) ≤ R. In particular, dµ(zi, z j) ≤ R for
all zi, z j ∈ Supp(f−1g) ∪ {p(y), p(y′)}. By (4.3), this implies that dZ(zi, z j) ≤ ρ−1

Z (R) for
all zi, z j. Starting from y0 = y, by the path lifting property, we can find y1 such that
dZ(p(y1), z1) ≤ C and dY (y, y1) ≤ θ( ρ−1

Z (R)). We can then find y2 with dZ(p(y2), z2) ≤ C
and dY (y1, y2) ≤ θ( ρ−1

Z (R)). Continuing inductively and by the triangle inequality,

n−1∑
i=0

dY (yi, yi+1) + dY (yn, y0) ≤ 2
n−1∑
i=0

θ( ρ−1
Z (R)) ≤ 2Rθ( ρ−1

Z (R)).
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Using (4.6) and denoting y0 = y,

pathI(y, y
′) ≤

n−1∑
i=0

dY (yi, yi+1) + dY (yn, y0) + dY (y, y′) ≤ 2Rθ( ρ−1
Z (R)) + ρ−1

Y (R). (4.8)

Now we can deduce that

pathI(y, y
′) +

∑
z∈Z

dX((f(z), g(z))

≤ 2Rθ( ρ−1
Z (R)) + ρ−1

Y (R) +
∑

z∈Supp(f−1g)

ρ−1
X (R) by (4.1), (4.5) and (4.8)

≤ 2Rθ( ρ−1
Z (R)) + ρ−1

Y (R) + Rρ−1
X (R) by (4.7).

It suffices to set C1(R) = 2Rθ( ρ−1
Z (R)) + ρ−1

Y (R) + Rρ−1
X (R).

Now suppose conversely that dXoZY ((f, y), (g, y′)) ≤ R. In particular,

pathI(y, y
′) ≤ R, (4.9)∑

z∈Z

dX( f (z), g(z)) ≤ R. (4.10)

Let (y1, . . . , yn) ∈ PI be such that

dY (y, y1) +

n−1∑
i=1

dY (yi, yi+1) + dY (yn, y′) ≤ R + 1. (4.11)

As Y is uniformly discrete, we have δY := inf(d(a, b) | a, b ∈ Y) > 0. This implies
that, although some of the yi may be equal, the number of distinct yi is bounded by
(R + 1)/δY . Any point in the support of f−1g lies, by definition, in a C-neighbourhood
of some p(yi). As such neighbourhoods contain at most N(C) elements, we can
conclude that

n = |Supp(f−1g)| ≤ E(R) := N(C)
R + 1
δY

. (4.12)

From (4.11) and the triangle inequality, it follows that

dY (a, b) ≤ R + 1 ∀a, b ∈ {y, y′, y1, . . . , yn}.

As p is bornologous, there exists S = S (R + 1) such that for all z, z′ ∈
{p(y), p(y′), p(y1), . . . , p(yn)}, we have dZ(z, z′) ≤ S . By definition of (y1, . . . , yn) and
the triangle inequality, it follows that dZ(z, z′) ≤ S + 2C for every z, z′ ∈ Supp(f−1g) ∪
{p(y), p(y′)}. By (4.3), it follows that

dµ(z, z′) ≤ ηZ(S + 2C) ∀z, z′ ∈ Supp(f−1g) ∪ {p(y), p(y′)}. (4.13)

Let us enumerate Supp(f−1g) t {p(y), p(y′)} = {p(y) = z0, z1, . . . , zn+1 = p(y′)}. Note
that, if A cuts Supp(f−1g) ∪ {p(y), p(y′)}, then A must cut {zi, zi+1} for some i ∈
{0, 1, . . . ,m − 1}. Hence, dpµ̃((f, y), (g, y′)) ≤

∑n
i=0 dµ(zi, zi+1).
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It now follows by (4.2), (4.10), (4.13) and (4.12) that

dλ((f, y), (g, y′)) = (dν̃ + dpµ̃ + dσ̃ + dω̃)((f, y), (g, y′))

≤ dν(y, y′) +

n∑
i=0

dµ(zi, zi+1) +
∑
z∈Z

dσ(f(z), g(z)) + dω̃((f, y), (g, y′))

≤ ηY (R) +

n∑
i=0

ηZ(S + 2C) +
∑

z∈Supp(f−1g)

ηX(R) + E(R)

≤ ηY (R) + E(R)ηZ(S + 2C) + E(R)ηX(R) + E(R).

Hence, it suffices to set C2(R) := ηY (R) + E(R)(ηZ(S + 2C) + ηX(R) + 1). This shows
by Proposition 3.3 that X oZ Y embeds coarsely into an Lp-space. �

Remark 4.8. The only time we used the condition that Y is uniformly discrete was
to show that (4.9) and (4.10) imply that |Supp(f−1g)| is bounded by some function of
R. One checks easily that this condition can be replaced by the condition that Y has
bounded geometry. Alternatively, it would also be sufficient to require nothing on Y
and Z but to ask that X is a uniformly discrete metric space.

5. The compression of X oZ Y in terms of X, Y, Z

We can modify the previous proof to give information on the L1-compression of
X oZ Y in terms of the growth behaviour of θ and the L1-compression of X,Y and Z.

Definition 5.1. Let Y and Z be metric spaces and let p : Y → Z be a C-dense map
with the coarse path lifting property, that is, there exists a nondecreasing function
θ : R+ → R+ such that for any z, z′ ∈ Z and y ∈ Y with dY (p(y), z) ≤ C, there exists a
y′ ∈ Y with d(p(y′), z′) ≤ C and d(y, y′) ≤ θ(d(z, z′)). If δ > 0 is such that θ(r) . rδ + 1
for every r ∈ R+, then we say that p has the δ-polynomial path lifting property. We say
that p has the polynomial path lifting property if it has the δ-polynomial path lifting
property for some δ > 0.

Theorem 5.2. Let X, Y, Z be metric spaces and p : Y → Z be a C-dense bornologous
map with the coarse path lifting property, where Y is uniformly discrete and Z
has C-bounded geometry. Let θ : R+ → R be a nondecreasing function satisfying
the properties in Definition 4.3. Suppose that there are constants a, b > 0 such
that dZ(p(y), p(y′)) ≤ adY (y, y′) + b for every y, y′ ∈ Y. If p has the δ-polynomial
path lifting property for some δ > 0 and if X, Y, Z have L1-compression equal to
α, β, γ, respectively, then the L1-compression of X oCZ Y is bounded from below by
min(α, β, γ/(γ + δ)).

Remark 5.3. Our bound generalises the bound of [14, Theorem 1.1]. Note further that,
as both X and Y can be considered as metric subspaces of X oZ Y , one also has an upper
bound, namely min(α, β), for the compression of X oZ Y . As in the previous remark,
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we can replace the assumption on Y by supposing that Y has bounded geometry or
requiring nothing of Y and Z and assuming that X is uniformly discrete.

Proof of Theorem 5.2. The starting point for this proof is the proof of Theorem 4.6
and we will often refer to inequalities stated there. For now, assume that α, β, γ are real
numbers and that f1 : X → L1, f2 : X → L1 and f3 : Z → L1 are large-scale Lipschitz
functions into L1-spaces such that

dX(x, x′)α . ‖ f1(x) − f1(x′)‖1,

dY (y, y′) β . ‖ f2(y) − f2(y′)‖1,
dZ(z, z′)γ . ‖ f3(z) − f3(z′)‖1.

Here . denotes inequality up to a multiplicative constant. The reason that we can
take the lower bounds as above is that by taking the direct sum of fi with the coarse
embedding f̃i : W → l2(W),w 7→ δw, where W = X,Y or Z, we can always assume that
‖ f1(w) − f1(w′)‖1 ≥ 1 for distinct w,w′.

Let dσ, dν and dµ be the measured walls space structures associated to the functions
f1, f2, f3 by Proposition 3.3. Define the measured walls dpµ̃, dµ̃, dσ̃, dω̃ on X oZ Y as in
Theorem 4.6. As a first step, we are going to show that the function associated to the
measured wall dλ = dpµ̃ + dµ̃ + dσ̃ + dω̃ is Lipschitz. That is, there is a constant C̃ ∈ R
such that for every (f, y), (g, y′) ∈ X oZ Y ,

dpµ̃((f, y), (g, y′)) + dν̃((f, y), (g, y′)) + dσ̂((f, y), (g, y′)) + dω̃(((f, y), (g, y′))
≤ C̃dXoZY ((f, y), (g, y′)).

By (4.12), it follows that dω̃ corresponds to a large-scale Lipschitz function if Y is
uniformly discrete and Z has C-bounded geometry. Starting from (4.9) and (4.10), one
can easily show the same fact using only uniform discreteness of X.

As dν and dσ both correspond to large-scale Lipschitz functions, this implies that
so does dν̃ + dσ̃:

dν̃((f, y), (g, y′)) + dσ̃((f, y), (g, y′)) = dν(y, y′) +
∑
z∈Z

dσ(f(z), g(z))

. dY (y, y′) +1+
∑
z∈Z

dX(f(z), g(z)) + dω̃((f, y), (g, y′))

. dXoZY ((f, y), (g, y′)) + 1.

It thus remains to show that dpµ̃ corresponds to a Lipschitz function. Denote y0 =

y, yn+1 = y′ and choose (y1, . . . , yn) ∈ PI such that

pathI(y, y
′) ≤

n∑
i=0

dY (yi, yi+1) ≤ pathI(y, y
′) + 1.

Write z0 = p(y), zn+1 = p(y′) and enumerate the elements of Supp(f−1g) as
{z1, z2, . . . , zn}, where each zi lies in a C-ball around p(yi). As p is bornologous, we
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have that dZ(zi, zi+1) ≤ 2C + ad(yi, yi+1) + b for each i. Hence,

dpµ̃((f, y), (g, y′)) ≤
n∑

i=0

dµ(zi, zi+1) .
n∑

i=0

dZ(zi, zi+1) + dω̃((f, y), (g, y′))

≤ n(2C + b) + a
n∑

i=0

dY (yi, yi+1) + dω̃((f, y), (g, y′))

= dω̃((f, y), (g, y′))(2C + b + 1) + a
n∑

i=0

dY (yi, yi+1)

≤ dω̃((f, y), (g, y′))(2C + b + 1) + a + a pathI(y, y
′)

. dXoZY ((f, y), (g, y′)) + 1,

where we used that dω̃ corresponds to a large-scale Lipschitz function. We conclude
that dλ is associated to a large-scale Lipschitz map of X oZ Y into an L1-space.

As a second step, we calculate the compression of dλ. Assume first that
dλ((f, y), (g, y′)) ≤ R for some R > 0 such that (4.4), (4.5), (4.6) and (4.7) are valid.
Enumerate the elements of Supp(f−1g), say z1, z2, . . . , zn. Set z0 = p(y). Denote
y0 = y and then use the path lifting property to take y1 such that dZ(p(y1), z1) < C
and d(y0, y1) ≤ ad(z0, z1)δ + b. Next take y2 such that dZ(p(y2), z2) < C and such that
d(y1, y2) ≤ adZ(z1, z2)δ + b and so on. By definition,

pathI(y, y
′) ≤

(n−1∑
i=0

dY (yi, yi+1)
)

+ dY (yn, y′).

We now obtain

pathI(y, y
′) ≤

n−1∑
i=0

dY (yi, yi+1) + dY (yn, y′) .
n−1∑
i=0

dY (yi, yi+1) + dY (y, y′)

.
n−1∑
i=0

(dZ(zi, zi+1)δ + 1) + dY (y, y′)

. R +

n−1∑
i=0

dZ(zi, zi+1)δ + dν(y, y′)1/β

≤ R +

n−1∑
i=0

dZ(zi, zi+1)δ + R1/β

. R +

n−1∑
i=0

dµ(zi, zi+1)δ/γ + R1/β

. R + RRδ/γ + R1/β,

where the last inequality follows from the fact that

dµ(zi, zi+1) ≤ dpµ̃((f, y), (g, y′)) ≤ R.
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Consequently,

dXoZY ((f, y), (g, y′)) = pathI(y, y
′) +

∑
z∈Z

dX( f (z), g(z))

. R(δ/γ)+1 + R1/β +
∑
z∈Z

dσ( f (z), g(z))1/α

. R(δ+γ)/γ + R1/β +

(∑
z∈Z

dσ( f (z), g(z))
)1/α
. RX ,

where X = max((δ + γ)/γ, 1/α, 1/β). Consequently, the compression of dλ, and hence
of X oZ Y , is bounded from below by

min
(
α, β,

γ

δ + γ

)
. �

Remark 5.4. At the end of [14, Section 2], the author showed that the Lp-compression
α∗p(X) of a metric space X is always greater than max( 1

2 , 1/p)α∗1(X). Moreover, Lp

embeds isometrically into L1 for any p ∈ [1, 2]. So, for p ∈ [1, 2], we deduce that the
positivity of the Lp-compression is preserved under generalised wreath products with
the polynomial path lifting property.
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[2] I. Chatterji, C. Druţu and F. Haglund, ‘Kazhdan and Haagerup properties from the median

viewpoint’, Adv. Math. 225(2) (2010), 882–921.
[3] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg and A. Valette, Groups with the Haagerup property:

Gromov’s a-T-menability, Progress in Mathematics, 197 (Birkhäuser, Basel, 2001).
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