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TOPOLOGICAL PROPERTIES OF THE SET
OF NORM-ATTAINING LINEAR FUNCTIONALS

GABRIEL DEBS, GILLES GODEFROY AND JEAN SAINT RAYMOND

ABSTRACT.  If X is a separable non-reflexive Banach space, then the set NA of all
norm-attaining elements of X* is not a w*-Gj subset of X*. However if the norm of X is
locally uniformly rotund, then the set of norm attaining elements of norm one is w*-Gj.
There exist separable spaces such that NA is a norm-Borel set of arbitrarily high class.
If X is separable and non-reflexive, there exists an equivalent Gateaux-smooth norm on
X such that the set of all Gateaux-derivatives is not norm-Borel.

I. Introduction and examples. Let X be a Banach space equipped with a norm
Il |I- Let Sy = {x € X : ||x|| = 1}. We denote

NA(|| - | = {f € X* : f(x) = ||f]| for some x € Sx}.

This set will also be denoted NA if there is no ambiguity on the norm. Similarly, we
denote NA (]| - |) = NA(|| - |) N Sx-.

Fundamental results of Bishop-Phelps [1] and James [4] assert that NA is always
norm-dense X*, and is equal to X* exactly when X is reflexive. Since the set

F={) e Xx X" |xl* = /1* = f(0)}

is closed in (X, ||-]|) x (X*, w"), for all separable Banach spaces the set NA(||-||) = m(F) is
w*-analytic in X* [5]. It is shown in [5] that this statement is optimal in the sense that for
any non-reflexive separable space X, there is an equivalentnorm || - || such that NA(]| - ||)
is not norm-Borel.

In this work we conduct a further investigation of the topological properties of the set
NA. In the simplest cases this set is w*-F,. However (Proposition 1) it can be a Borel
set of arbitrarily high class. Theorem 3 asserts that if X is separable and non-reflexive,

the set NA is not w*-Gs. However (Theorem 9.1) if || - || is locally uniformly rotund
(Lu.r)—it is x, — x whenever ||x,|| — |lx|| and || 5= — [lx]l—then NAy(] - [)) is

w*-Gj, and NA(]| - ||) is norm-Gj. This shows in particular that one cannot “convexify” a
norm without altering the structure of the set NA. However, it is possible to “smooth up”
(in the Gateaux sense) a norm without changing the set NA. It follows that there exists
on any separable non-reflexive Banach space an equivalent Gateaux smooth norm || - ||
such that the set NA| (|| - ||) of its Gateaux derivatives is not norm-Borel (Theorem 9.4).

Received by the editors August 26, 1993.
AMS subject classification: Primary: 46B20; secondary: 04A15.
(© Canadian Mathematical Society 1995.

318

https://doi.org/10.4153/CJM-1995-017-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1995-017-3

NORM-ATTAINING LINEAR FUNCTIONALS 319

For any set S we denote by S< the set of all finite sequences of elements of S. The
Cantor set {0, 1}* is denoted 2. Let

Q= {c€2¥: Jips.t. Vi > iy, (i) = 0}.

We will frequently use the following easy consequence of Baire’s theorem: if Z is a
topological space, ®: 2* — Z is a continuous map, and E C Z is such that &~ (E) = Q,
then E is not a G subset of Z.

Before proceeding to the main results, let us present various examples.

EXAMPLES. 1) If the norm || - || of a separable space X is strictly convex, then
NA(||-|) is w*-Borel [5]. It suffices indeed to observe, in the notation of the introduction,
that NA(|| - ||) = m2(F) is the injective image of a countable union of Polish spaces.

2) IfX = (Co(N), I - HOO), then NA is the set of all elements of ¢;(N) with finite
support, and hence NA is w*-F, but not norm-Gjs. For this latter fact we consider the
map ®:2% — £;(N) defined by ®(¢) = (Z‘is(i)) and we observe that ®~'(NA) = Q.

3) If X = (&4(N), ]| - |I)), then

NA = {u € £x(N) : 3n > 1 such that ||ul|eo = |u(n)|}

hence NA is w*-F,. The map ®@:2% — £,,(N) defined by
+00 .
D(e) = 3 27 (D1 400)
i=1

is such that ®"!(NA) = Q, and thus NA is not norm-Gj.
4HIfX = (C &), |- ||OO) where K is metrizable and compact, we denote {O, : n > 1}
a basis of the topology of K, and for all n,k > 1 we let

Lk ={x€0,:d(x,K\O) >k '}

By Tietze’s lemma, for all (n, k), (n, k') such that Lt N L¥ = (), there is a continuous

n T
function in Sy which is 1 on ZX and (—1) on L¥,. We denote by {f; : £ > 1} the collection
of these functions. It is clear that

NA = {u € M(K): 3¢ > 1 such that || u|| = p(/)}

hence NA is w*-F,. To check that NA is not norm-Gj if K is infinite, we pick {k, : n > 0}
a convergent sequence of distinct points, and we define ®:2¥ — M(K) by

oe) = i;z—"e(n(ékz, — i)

we have again that ®~'(NA) = Q.
5) We denote

B= {(x,,) € co(N) : fxﬁ"” < 1}.
n=0
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The set B is the unit ball of an equivalent strictly convex and (*°-smooth norm on ¢o(N)
([3]; see [2], Theorem V.1.6). By differentiation, it is easily seen that A = (\,) € NA if
and only if there exist ¢ € R, a = (a,) € ¢o(N) such that

[ = 2n +2)a>"!

n

for all n > 0, and this is equivalent to
lim |\, |/ = 0.
n—0Q

This latter condition implies (see [10]) that NA is a complete F,4-set.

We conclude this list of examples by showing that NA| can be a norm-Borel set of
arbitrarily high class. We use the notation 22 (resp. Hg) for the additive (resp. multi-
plicative) class of Borel subsets of order £ (see [6]). With this notation one has: 5 = F,
and 1Y = G;. In the sequel we shall deal with these notions when the dual space X* is
equipped with the w*-topology, or with the norm topology which in general will not be
separable.

Let I" be some fixed Borel class; we denote by I” the class of all complements of sets
in [ (the dual class), and by T" \ I the class of all sets in I which are not in I". Let S
be a subset of some arbitrary topological space Z; we shall say that S is I'-complete in
Z if for any I'-subset 4 of w* there exists a continuous mapping ¢: w* — Z satisfying
$~'(S) = A. Notice that since there are I \ I subsets in «w*, if S in I" is I'-complete in Z
then necessarily Sisa T\ I" subset of Z. Conversely by a theorem of Wadge ([13]) if Z
is a Polish 0-dimensional space then any I' \ I subset of Z is I'-complete.

We now are ready to prove the following result:

PROPOSITION 1. Let & > 2 be a countable ordinal.

(a) There exists a Banach space X such that NA(X) is Borel in the w*-topology and
¢\ 11 in the norm topology.

(b) There exists a Banach space Y such that NA(Y) is Borel in the w*-topology and
Zg \ l'[g in the norm topology.

PROOF. We first observe the simple

FAcT 2. NA(|- ||) € 22 (resp. I1) if and only if NA(]| - ||) € £{ (resp. [12).

We denote by R} the open half-line (0, +o0). Define the map ¢: (S, || - ||) x R} —
X\ {0} 1] - D by ¥(x,\) = Ax. Fact 2 follows easily from the fact that v is a homeo-
morphism and that y(NA| xR}) = NA\{0}.

We now construct by transfinite induction spaces X and Y such that in the w*-topolo-
gies NA(X) and NA(Y) are Borel, and in the norm topologies NA(X) is Zg—complete
and NA(Y) is H‘g-complete. The conclusion of Proposition 1 will then follow from the
previous remarks.

We start the construction for £ = 2. By example 2) above, if X = (c()(N), I| - ||m)
then NA (|| - ||) is £9 (= F,) but not T19 (= Gs) and NA(|| - ||) is w*-F,. If Y is any space
with a separable dual Y* then Y has an equivalent L.u.r. norm | - | with Lu.r. dual norm
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(see [2], Theorem IL7.1). By Theorem 9 below, NA (| - |) is [1S. Since | - |* is L.u.r., the
w* and norm topologies agree on Sy+, hence NA (| - |) is w*-Gj, and thus NA (] - |) is not
w*-F, by Theorem 9, hence NA,(| - |) is not X9 since again, the w* and norm topologies
agree on Sy-. Thus NA (| - |) is not £9. Since Y* is separable, any norm-Borel subset of
Y* is w*-Borel, hence NA(| - |) is w*-Borel, and I19 in norm since NA(| - |) is. Let us
also observe that NA|(X) is a £9 \ 19 subset of a Polish space, and thus is Z9-complete.
Similarly we see that NA(Y) is T19-complete.

We treat simultaneously successor and limit ordinals. If (¢,) is a sequence of ordinals
with &1 > &, forall n, we let £ = sup{&, + 1}. Let (X,, || - ||) be such that NA(|| - ||.)
is w*-Borel and 2 , and NA (|| - [|,) is 2{ -complete for all n. We let

Y= (L a1 1),

It is easily seen that /' = (f,,) € NA(Y) ifand only if f, € NA(X,,) for all n. It follows that
NA(Y) is w*-Borel and Hg‘ Moreover for all Egn subsets 4, of w”, there exists p,: w* —

Sy: continuous such that ¢,,’! (NA(X,,)) = A,. If we define

O — (S3, ] - 1D
X (27"0)

then @ is continuous and

O '(NA(D)) = () 4.

n>1

Thus NA(Y) is TT¢-complete.
If now the Y,,’s are such that NA(Y,) is w*-Borel and H?,,’ and NA(Y,) is l'[gn—com-
plete, we let

X=(Zawl-1).-

It is easily checked that /' = (f,) € NA(X) if and only if there exists # > 1 such that
fo € NA(Y,) and ||f,|l, = sup{|lillx : & > 1}. It follows that NA(X) is w*-Borel and
22. Moreover if B, is a Hgn subset of w”, there exists ¢,: w* — Sy: continuous such that

w"(NAl(Yn)) = B,. Now
W = ()0 — Sx-.

is such that ¥~! (NA;(X)) = Uyz1 By Hence NA (X) is ZP-complete. .
2. Mainresults. The following statement is the main result of this paper. It answers
an implicit question from [5].

THEOREM 3. Let X be a separable non-reflexive Banach space. Then the set NA of
all elements of X* which attain their norm is not a w*-Gs subset of X*.

PROOF.  We will make use of some classical arguments from Pryce’s proof [9] of
James’ theorem, which we recall for completeness.
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Fact4. Pické € (0, 1). There exist (f;) in By-, (x;) in By, such that

(i) Forevery n > 1, lim; f,(x;) >0

(i) w* —lim,(f,) = 0.

PROOF.  Since X is not reflexive we may pick # € X+ C X*** with ||| = 1, and
thenz € X** with ||z||] < 1 and h(z) > 6. If D = {f € Bx- : f(z) > &}, h belongs to the
w*-closure of D in X***. Moreover if f, . hin X***_then f;, -~ 0 in X* since h € X*.

Finally, z can be approximated pointwise on X* by elements of X. An easy inductive
constructive now leads to the conclusion.

FACT 5. Let C = conv{f, : n > 1}. Forevery f € C, ||f]| > 6.
Indeed pick a w*-cluster point ¢ of the x;”s. We have ||¢]] < 1and (f) > 6 forallf € C.

FACT 6. Let V' be a vector space, u,v € V, o,3 > 0,and ¢ = V — R a convex
function. Let w = (o + 8) '(au + 3v). Then
B (ou + Bv) — ploa)] > o [p(aw) — p(0)] + 3 [ (aw) — @(om)].

PROOF. Since (ax + 3)w = au + v, we have

o
aw = QTﬁ (ou + Bv).

Using the convexity of ¢ between (au + 3v) and 0 we get
15

a
¢ < —_ [ -
plaw) < a+ﬂ“r9(all+ﬁjv)+ a+/3¢(0)

Al : atd
hence after multiplication by o

(5% %) ptem) < Zotausm+ 2 00,
The conclusion follows after subtraction of 3! p(ou) and reorganization.
FACT 7.  With the above notation, if 4 is a convex subset of /" and
infa'[p(az) — p(0)] > &
then there is u € A such that
igg’d‘ (o + Bv) — @(au)] > 6.

Moreover if V is a topological vector space and ¢ is continuous, we may pick u from
any prescribed dense subset of A.

PROOF. Indeed pick ¢ > 0 such that

inf o [ip(az) = p(0)] > 6+
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by the definition of the infimum, there is # € 4 such that
infﬁ” [p(az) — p(au)] > —¢
z€A

and if ¢ is continuous this ¥ may be found within a prescribed dense subset. Fact 6

. +
concludes the proof, since w = autfy

o3 belongs to the convex set A whenever « and v do.

FACT 8. Let 4 be a norm-open convex subset of X*, let «g, o, ..., a,+1 > 0 and let
20,81, - -,Ln—1 In X* be such that
Then there exists g, € A4 such that

(i) infgea{ll Xh_o cugi + anngll — | Ziop cugll} > annid,

(i1) Ph—o &k € NA.

n—1

‘lg) g " } > a,d.

n—1

inf ” o+,
QQA{ k};()mgk g

PROOF.  We define p: 4 — Rby ¢(g) = |lg+0-) axgi||- The function ¢ is convex
and continuous on 4 and by assumption

inf a, ' [ip(@g) — p(0)] > o.
geA
By Bishop-Phelps’ theorem (see [2], Theorem 1.3.1), the set
n—1
D=0 {=0a" (¥ mg) +NA(l- )]
k=0
is norm-dense in 4, and thus by Fact 7 we can find g, € D such that

2’25 a;+l| [@(angn + aan) - @(a;1gl1)] > b

and clearly g, satisfies (i) and (ii).
We now proceed to the proof of Theorem 3. Let (f,) be the sequence in By provided
by Fact 4. We fix a sequence (o, ) of positive numbers such that

1 X
® fimen'( 2 ) =0

and forall p > | we let
Ay = conv{fu 1k >0} +2 "By

For showing that NA is not a w*-Gj set, it suffices to construct a continuous map ®: 2% —
(X*,w*) such that @~ '(NA) = Q.
Forany s € 2<%,

sl =" s

ieDom(s)
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and s* € w<* be the increasing enumeration of {i € Dom(s) : s(i) = 1}. Clearly, s* has
length ||s||. We now define a map

GZ 2<w — (X*)<u.)

such that for any s € 2<“ the sequence G(s) = (g}(‘")),‘.<”_vn is of length ||s||, and such that
the following conditions are satisfied
(i) s <t = G(s) < G(r),

(i) g € Ay forall k,0 <k < |s|,

(i) hy = ¥ gl € NA,

(iv) infge s, {ll2s + gl = sl } > a6 with £(s) = s*(lls|| — D+ 1.
It follows from Facts 5 and 8 that such a construction can be completed. We finally define
®:2¥ — X* by

D) = w* — li’rln he,, .

It is easily seen that @ is w*-continuous (and even norm-continuous at every ¢ ¢ Q). If
e € Q there is s € 2<% such that d(¢) = A, and thus by condition (iii), ®(¢) € NA. We
claim that if ¢ ¢ Q then ®(¢) ¢ NA. Indeed by (i) and (ii) we may write

+00
(D(&) = Z Ap8n

n=0

where g, € 4, foralln > 0, with lim p, = +00. By condition (iv) we have foralln > 0,

n—1 n—I1
7 gt anga| >0, + |0 g
k=0 k=0
By (1) we have
+00
Z (ngk“ = o).
k=n+1

If there exists x € X with ||x|| = 1 and ®(e)(x) = ||D(e)||, we may write

D(e)(x) =

n
> (ngkH +o(a,)
)

n—1

> da, +o(ay) + ,)Z ozkng
k=0

n—1
> da, + o)+ Y opgi(x).
k=0

It follows that
liminf g,(x) > 6

but since g, € A4, with limp, = +o0o, we have limg,(x) = 0, and this contradiction
concludes the proof. u

We noticed in Example 1 that NA(]| - ||) is w*-Borel when || - || is strictly convex. We
will see now that various convexity assumptions provide sharper conclusions. However
it is not so for smoothness assumptions.
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THEOREM 9.  Let (X, || - ||) be a Banach space. Then
1) If'|| - || is locally uniformly rotund (1. u.r.), then NA(|| - ||) is @ w*-Gs subset of
Sx-, and NA(|| - ||) is a norm-Gj subset of X*.
2) If X is separable and non-reflexive, then NA, is not both a w*-Gs and w*-F, subset

Of S  X*.

3) If X is separable and the dual norm || - ||* is Gateaux-differentiable, then NA(||-||)
is norm-Fg.

4) If X is separable and non-reflexive, there exists a Gateaux-differentiable equiva-
lent norm || - || on X, such that NA (|| - ||) is not norm-Borel.

PROOF. 1) We start with a statement of independent interest.

LEMMA 10.  Let (X, || - ||) be a Banach space. The following are equivalent:
a) || |lislu.r
b) There exists o:NA (|| - ||) — Sx which is w*-to-norm continuous, and such that

(f,o(N) = 1 forall f € NAL(]| - |)).

PROOF OF LEMMA 10. a) = b): Since || - || is in particular strictly convex, every
f € NA((]| - ||) attains its norm in a unique x € Sy and this determines o(f). For a given
e < 0, there i1s a § > 0 such that

<1 oD +x1l>2=8= llo¢) -yl <e.

If g € NA (|| - ||) satisfies g(a(f)) > 1 — 4, we have

glo(N+o(g) >2-6

and thus ||o(f) — o(g)|| < e. Hence o is (w* — || - ||)-continuous.
b) = a): Note first that if there exists such a map ¢ which is only norm-to-norm
continuous then the norm || - || is strictly convex. Indeed, since NA (]| - ||) is norm-dense

in Sx-, we may extend o to 6: Sy« — Sy~ by taking 5(f) (f € Sx-\NA((]|- II)) aw*-cluster
point in X** of o(g) (g € NAI([| - [I), llg —f1l — 0). Then

< 6N —a@. N+ Il — gl

which is less than & if g is chosen in NA (|| - ||) such that ||f — g|| < 5 and
|(6(f) — o(g),/)| < 5. Thus (6(f),/) = 1 for any f any Sy-.

Since the bidual norm is w*-l.s.c., § is still norm-to-norm continuous at all points of
NA;(|| - ). Indeed, if f € NA (|| - ||), for each £ > 0, there is a & > 0 such that

gENA(([ D and lg =/l >6=llo(g) —a(NI| <e.

Then, for any fy € Sy such that ||/ — fo|| < &, 6(fy) is w*-cluster point of points o(g)
lying in o(f) + € - Bx-«. Thus 6(fy) € o(f) + € - By-.
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And thus (see [2], Lemma [.4.13) the dual norm is Fréchet-smooth at these points.
Now Smulyan’s lemma (see [2], Theorem I.1.4) shows that all x € Sy are strongly ex-
posed and a fortiori || -|| is strictly convex. If {| - || is not Lu.r. there existx € Sy, (x,) C S
and ¢ > 0 such that lim ||x+x,|| = 2 and ||x —x,,|| > ¢ forall n. Let f, € Sx- be such that

.f;l(x +x,) = ”x + .\’,,H.

Since lim f,(x + x,) = 2, we have limf,(x) = 1, hence any w*-cluster point / of {/,}

satisfies f(x) = 1. If we let
x+x,

I el

we have f,(v,) = |[yall = 1. Since || - || is strictly convex, o(f) = x and o(f,) = y,,. But
for all n, ||x — ya|| > /2, and this contradicts the w*-to-norm continuity of o. .

We now come back to the proof of 1). We use the notation of Lemma 10. Since
NA (]| -]]) is w*-dense in By, o has a continuous extension ¢ to a w*-Gy subset Q of By-.
Indeed if £ is a topological space, (M, d) a complete metric space,ando =D — Misa
continuous map from a dense subset D of E to M, then o canbe extended to Q = (> O,,
where O, is the union of all open subsets V' of E such that

sup{d(o(x),0(y)) :x,y € VND} <n .

Indeed if x € Q, it suffices to let

6(x) = lim o(y)

veD

since this limit exists by definition of . )

We observe now that (f, 5(f)) = 1 = ||6(f)|| for all / € Q. It follows that QN Sy =
NA (]| - |) and thus NA (]| - ||) is w*-Gy in Sx-.

Since NA (]| - ||) is w*-Gj in Sy, it is a fortiori norm-Gs, hence by Fact 2 NA(|| - ||)
is norm-Gjy as well. This shows 1). n

2) For any Banach space X, Sy- is a Gs-subset of the compact set (By-, w*) and thus
(Sx+, w*) is a Baire space. Hence 2) follows from Baire’s theorem and the following.

LEMMA 1. Let X be a separable non-reflexive space. The set NA| has an empty
interior in (Sy-, w*).

PROOF OF LEMMA 11. Let ¥ # ) be a w*-open subset of S-. It is easy to construct
a convex w*-open subset U of By- such that for all g € U, (||g]| ")g € V. We will
localize to U the construction of the proof of Theorem 3.

Thereis f € U with ||f]] = 1 —n < 1. Pick t € (f + X*) N Sy.-. It is easily seen that
¢ belongs to the w*-closure of U in X™*. It follows that there exists a sequence (f,) in U

such that .
S =w = im0 fr In (X*, W)
llgll > 1—n/2forallg € conv{f, :n>1}.
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These conditions, and Simons’ inequality ([11]; see [2], Lemma 1.3.7) show that there
exists A, > 0, with $7°9 A, = 1, such that

+00
g= 2 Ml ¢ NA
n=1

and we have (||g||"")g € ¥ \ NA,. This proves Lemma 11, and 2). =
3) Since || - ||* is Gateaux-differentiable, the map J: X* — X** defined for all f € X*
by
IVOW? = 111 = 0.1

is norm-to-w* continuous, and NA(|| - ||) = J~'(X). If (x,,) is a dense sequence in X, we

can write -
00 T0OO
X= n U BX**(xnsk_l)
k=1n=1
thus X is w* — K5. Hence NA(|| - ||) is norm-F s in X*. n

4) By [5], there is an equivalent norm | - | on X such that NA(| - |) is not norm-Borel.
Let {x,} be a dense subset of By. We define T: £,(N) — X by

+00
T(@) =3 2 "aux,
n=1

and we let K = T(By,). The set K is convex symmetric and norm-compact. Let || - || be
the norm whose unit ball satisfies

Bx(|| - I = Bx(| - D +K.
Since K is compact, we clearly have
NA([ - [) = NA(| - )

and thus NA(||-|]) is not norm-Borel. Since X'\ {0} is homeomorphic to (Sy x R}) through
x — (|lx]| " "x, lx]|) it follows that NA;(|| - ||) is not norm-Borel. We now compute the
dual norm ||f]|* of /' € X*. By definition

11" = sup{lfx + x| : x| < 1.x" € K}
sup{[f(0)] : |x| < 1} +sup{|/(x')] : x" € K}
1+ sup({|f(70)] -y € B,

= 1"+ IT"(Oll2-
Since T* is one-to-one and || - ||, is strictly convex, it follows that || - ||* is strictly convex,
and thus || - || is Gateaux-smooth. ]

REMARKS. 1) It follows classically from Smulyan’s lemma (see [2], Theorem1.1.4)
that if|| - || is Lu.r. then NA(||-|)) is exactly the set of points where || - ||* is Fréchet-smooth.
This gives an alternative proof of the fact that NA(]| - ||) is norm-Gj and in fact (by [8])
a special kind of norm-Gj, since its complement is “porous”.
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2) The proof of Lemma 10 shows that there exists o NA (|| - ||) — Sx norm-to-norm
continuous such that {f, o(f)) = 1 forall f € NA ifand only if every x € Sy is strongly
exposed in By. Note that it follows from [12] (see [2], Theorem [V.3.5) that such a norm
has an equivalent L.u.r. norm.

3) If I is uncountable, then ¢,(I') equipped with any equivalent norm contains an
isometric copy of £,(N) ([7]), and this copy is 1-complemented since £,(N) is injective.
The set NA(]| - ||oo) is not norm-Borel. To show this we pick a non-trivial ultrafilter U
and we consider the norm-continuous map ®: 2% — £,,(N)* such that

D(e) = > 2 e(i)e; — bq

i>0

where (¢;) is the canonical basis of £;(N). It is easily seen that d(e) € NA if and only
if there is an x in the unit sphere of /. (N) such that x(i) = 1 forall i € A(e) =
{j : () = 1} butlim; ¢;x(i) = —1, that is if and only if A(¢) ¢ U. Since U is not Borel
in 2¢, it follows that £.,(I') has no equivalent norm such that NA is norm-Borel if " is
uncountable.

4) It is easily seen that the weak and norm topologies agree on the unit sphere of
(€R(N), I 1h ) Example 3) shows that this condition does not suffice for ensuring that
NA| is norm-Gj.

We now conclude with

QUESTION A. Do there exist strictly convex norms || - || such that NA(|| - ||) is w*-
Borel of arbitrarily high class?

QUESTION B.  Does there exist a Fréchet-differentiable norm || -|| such that NA (||-])
is not Borel? Can such a norm be constructed on any non-reflexive space with separable
dual?
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