
Proceedings of the Edinburgh Mathematical Society (1992) 35, 493-500 ©

PRODUCTS OF IDEMPOTENT ENDOMORPHISMS OF AN
INDEPENDENCE ALGEBRA OF FINITE RANK

by JOHN FOUNTAIN and ANDREW LEWIN
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Products of idempotents are investigated in the endomorphism monoid of an algebra belonging to a class of
algebras which includes finite sets and finite dimensional vector spaces as special cases. It is shown that every
endomorphism which is not an automorphism is a product of idempotent endomorphisms. This provides a
common generalisation of earlier results of Howie and Erdos for the cases when the algebra is a set or vector
space respectively.

1991 Mathematics subject classification (1985 Revision): 20M20

Introduction

For a mathematical structure M we denote the set of endomorphisms of M by
End(M) and the set of automorphisms of M by Aut(M). Under composition of
mappings, End(M) is a monoid and Aut(JVf) is a subgroup of this monoid. We let E
denote the set of non-identity idempotents of End(M). Over the last twenty-five years
considerable effort has been devoted to describing the subsemigroup <£> generated by
E. The first results were obtained by Howie in [7] where a set-theoretic description of
<£> is given when M is simply a set and End(M) is the full transformation semigroup
on M. For the case when M is a finite set, the result is:

<£> = End(M)\Aut(M).

When M is a finite dimensional vector space, J. A. Erdos [3] proved the same result. An
alternative proof was given later by Dawlings [1].

The object of the present paper is to prove the result for a class of algebras, called
independence algebras, of which sets and vector spaces are specific instances. We thus
obtain a common generalisation of the theorems of Howie and Erdos.

In [7], Howie also described <£> when M is an infinite set and the analogous result
for an infinite dimensional vector space M was found by Reynolds and Sullivan [11]. A
common generalisation of these theorems for a special class of independence algebras is
the subject of a subsequent paper.

Independence algebras were defined by Gould in [4] where she describes the basic
semigroup structure of the endomorphism monoids of such algebras. In fact, indepen-
dence algebras are precisely the u*-algebras introduced by Narkiewicz [10] and

493

https://doi.org/10.1017/S0013091500005769 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005769


494 J. FOUNTAIN AND A. LEWIN

described in [5]. However, we follow Gould's formulation of the concept as this is
designed to facilitate the study of the endomorphism monoid of the algebra. We give the
appropriate definitions and terminology in Section 1 and follow this with a summary of
some of Gould's results on the endomorphism monoids of independence algebras. The
second section of the paper is devoted to proving the main theorem.

1. Preliminaries

For standard concepts of semigroup theory see, for example, [8]. For universal
algebra terminology and notation we follow [9] with the exception that we denote the
subalgebra generated by a subset X of an algebra A by (X}. If the algebra A contains
constants, that is, values of nullary operations, then we denote the subalgebra generated
by the constants by Con and make the convention that <0> = Con. A subset X of an
algebra A is said to be independent if X = 0 or for every element x of X we have
x£<.Y\{x}>; X is dependent if it is not independent. Clearly, every singleton set
consisting of a non-constant element of A is independent.

A standard Zorn's lemma argument shows that, given subsets Xo, X of A with Xo

independent and contained in X, there is an independent subset Y of A with X0^Y^X
such that Y is maximal among independent sets contained in X. The following result is
from [9, p. 50, Exercise 6].

Proposition 1.1. For an algebra A, the following conditions are equivalent:
(1) For every subset X of A and all elements u, v, of A, ifue(X\j {v}} and u$(X},

then UE<XU{U}>.

(2) For every subset X of A and every element u of A, if X is independent and
then X u {u} is independent.

(3) For every subset X of A, if Y is a maximal independent subset of X, then

(4) For subsets X, Y of A with Y^x, if Y is independent, then there is an independent
set Z with YQZ^X and <Z> =

An algebra A is said to have the exchange property or to satisfy [EP] if it satisfies the
equivalent conditions of Proposition 1.1. A basis for A is a subset of A which generates
A and is independent. It is clear from Proposition 1.1 that any algebra with the
exchange property has a basis. Furthermore, for such an algebra A, bases may be
characterised as minimal generating sets or maximal independent sets, and all bases for
A have the same cardinality. This cardinal is called the rank of A and is written as
rank A.

We emphasise that (4) of Proposition 1.1 tells us that any independent subset of A
can be extended to a basis for A. We also remark that it is clear that if A satisfies [EP],
then so does any subalgebra of A.

We now define an independence algebra to be an algebra A which satisfies [EP] and
also satisfies:
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[F] For any basis X of A and any function <x:X-*A, there is an endomorphism a of
A such that a|^ = a.

Condition [F] is equivalent to asserting that A is free in the variety it generates and
that any basis is a set of free generators. We note that if A is an independence algebra
and 7 is an independent subset of A and a:Y-*A is any function, then there is a
homomorphism a:<Y>->,4 which extends a. This follows from [F] since, by the
exchange property, Y can be extended to a basis X for A and then any extension of a to
X gives rise to an endomorphism of A which restricts to give the required
homomorphism.

It is easily seen that this homomorphism is uniquely determined by <x. Thus if the
endomorphisms 0 and \}i agree on a basis for A, then 6 = 1//.

Familiar examples of independence algebras are sets (where all subsets are indepen-
dent), vector spaces (where the independent subsets are the linearly independent subsets)
and for any group G, free G-sets (where the independent sets are subsets of free
generating sets).

Let A be an independence algebra. The rank of an endomorphism a of A is defined to
be rank of the subalgebra Im a. We quote the following lemma from [4].

Lemma 1.2. Let A be an independence algebra. If a,/?eEnd(>l), then rank afi^min
{rank a, rank /?}.

As a consequence of this lemma, for each cardinal K with K ̂  rank A, the set

TK = {aeEnd(A): rank a g

is an ideal of End(A). When A has finite rank n we also use the notation K(n,r) to
denote Tr for r^n.

The following description of Green's relations on the endomorphism monoid of an
independence algebra is taken from [4].

Proposition 1.3. Let A be an independence algebra. Then for <x,/?eEnd(/4),

(1) <xyp if and only ifIm<x = ImP,

(2) vM$ if and only ifKera = KerP,

(3) a^/S if and only if rank a = rank /?,

(4) ® = f.

It follows from this proposition that the principal ideals of End(A) are precisely the
ideals TK for x^rank A. Other ideals exist only when rank A is infinite and when this is
the case the remaining ideals are the sets

IK = {aeEnd(A): rank <X<K} = \J{TX:A<K}

for limit cardinals K.
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If C o n # 0 , then T o # 0 and TO is a principal factor of End(A). Otherwise, To = 0
and 7\ is a principal factor. The remaining principal factors are the Rees quotients
TK + /TK where K+ is the successor of K, and TJIK for limit cardinals K.

For each positive integer n we denote the principal factor Tn+1/Tn by Pn + l and the
^-class of endomorphisms of rank n by £>„. Then Pn + l=Dn+lKj {0} with the product of
two members of Dn+X being zero if and only if the product in End(/1) is not in Dn+l. If
Con^0, then Pt = TJT0 and Po = T0; otherwise, P1 = T1.

We require two more results from [4].

Proposition 1.4. For each positive integer n, the principal factor Pn is completely
0-simple (or completely simple ifn=\ and Pt = Tt).

In [4] Gould gives an explicit representation of Pn as a Rees matrix semigroup.

L e m m a 1.5. Let a be an endomorphism of an independence algebra A . If {xlt...,xk} is
a basis for / m a and if yly...,yKeA are such that yi<x. = xifor i=l,...,k, then { ^ i , . . , ^ }
is independent.

2. The main theorem

Let A be an independence algebra and E be the set of idempotents in End(A)\Aut(A).
We devote this section to the proof of the following theorem.

Theorem 2.1. / / rank A = n is finite, then

<£> = <£!> = End{A)\Aut(A)

where Ex is the set of idempotents of rank n—\ in End(/4).

The strategy of the proof is inspired by an outline of a proof given in [2] for the case
when A is a vector space. Let

S = K(n, n-l) = End(/l)\Aut(y4).

We show first that Dn_t generates S; in fact, we show that Dn generates K(n,r). Next we
consider a group ^-class H contained in Da_1. We show that any J^-class in the same
^-class as H or in the same jSf-class as H contains an element which is a product of
idempotents. It then follows from Green's Lemma that Pn_x is generated by HvE^.
Finally, this allows us to show that Pn-l is generated by Et and the theorem follows.

For the remainder of the paper, A denotes an independence algebra of rank n. If
n=\, then either Con = 0 and /C(l,O) = 0 or A contains constant and K(1,O) consists
of all endomorphisms a with Im a = Con. Since all such endomorphisms are idempotent,
it is certainly true that K(l,0) is generated by idempotents. We may therefore assume
henceforth that n>2.
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Lemma 2.2. Let OLeDr-l where r<n. Then there are endomorphisms fi, y in Dr such
that a = /?y.

Proof. If A contains constants, then r can be 1. In this case, let {xly...,xn} be a
basis for A and define PeEnd(A) by specifying x1j? = x1, x,/? = x,a for i = 2,...,n. Then
7m^ = <x1> so that / J e l V Now define yeEnd(yl) by putting x1y = x1a, x,y = x 1 for
i = 2,...,n. Since 2 ^ n , it is clear that y has rank 1. Further, it is equally clear that
x,/fy = x,a for i = 1, . . . , n so that /fy = a as required.

Now suppose that l < r . Then there is a basis { x l 5 . . . , x r _ x } for Im a; this is contained
in a basis { x ^ . . . ^ , , } for A. Choose y 1 , . . . , y r _ 1 in /4 with y,a = x; for i = l , . . . , r — 1 ;
then, by Lemma 1.5, { j ' i , . . . , j ' r - i } is independent and so there is a basis {ylt.. -,yr-i,
yr,...,)/„} for A. For i = r,...,n we have >>Iae<x1, . . . ,x r_1>.

Define endomorphisms /? and y as follows:

fx( f o r l g ^ r

' l P [y.a for

and

{xf for
y,a for i = r
xr for r < i ^ n.

It is readily seen that a = /Jy and that

so that /? and y both have rank r.

As a consequence of this lemma, a set of elements of rank r generates Pr if and only if
it generates K(n, r).

Lemma 2.3. / / <f>, y are idempotents in D n _ i , then there is an idempotent e in Dn_l

such that <l)EyeDn_l.

Proof. Let {xl,...,xn-l} be a basis for Im<p; then xi<f> = xi for i=l,...,n — 1 since <p
is idempotent. Let xneA be such that {xj , . . . ,x n } is a basis for /I. Then

/my = <x1y, . . . ,xny>

and since y has rank n — 1, there is an independent subset of {xjy, . . . ,xny} of cardinality
n-\.
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If {x1y,...,xn_1y} is independent, then since xicj)y = xiy for i=l,...,n— 1, it follows
that <f>y has rank n — 1 and so taking e = <p we have <pey, eeDn_t.

Now suppose that {x1y,. . . ,xB_1y} is dependent; then without loss of generality we
may suppose that {x2y,...,xny} is independent.

If XayeCxj,... ,*„_,>, then xBy = (xny)y is in <x1y,...,xII_1y> so that /my =
<X£y,. . . .x^.jy). But y has rank n— 1 and so we have {xjy,... ,xn_1y} is independent, a
contradiction. Hence x n y^<x! , . . . , x n _ t > and it follows that {x1,. . . ,xn_1,xny} is
independent. Now we define eeEnd(A) by putting x1e = xny, (xny)6 = xny and x,e = x, for
2 ^ i ^ « — 1 . Then e2 = e and e has rank n — 1. We also have (peyeDn^l as required.

Corollary 2.4. Every JV-class contained in Dn_l contains an element which is a
product of idempotents.

Proof. Let H be an Jf-class contained in Dn_t and a be a member of H. Since
End(A) is regular, there are idempotents y,(p in Ra and La respectively. By Lemma 2.3,
there is an idempotent e such that ye<j>eDn-i- From the fact that P n _ ! is completely
0-simple, it follows that y9/lyz<frS£<$> so that ye<p e H.

An immediate consequence of this corollary and Green's Lemmas (see [8, Lemmas
II.2.1 and II.2.2]) is the following result.

Corollary 2.5. Let H be a group of J f -class in Dn_i. Then every element in Dn_l can
be written as a product of elements from H u Et.

Lemma 2.6. Every element of Dn_t is a product of elements of Ex.

Proof. We use induction on n. When n = 1, Do is the set of endomorphisms of rank
0. Either Do = 0 and there is nothing to prove or A contains some constants and

£)0 = {aeEnd(/4): Ima = Con}.

In this case, Do consists of idempotents and the result is true.
When n = 2, let {x,y} be a basis for A and consider the Jf -class

/ / = {aeEnd(/i): /ma = <>>>, Ker<x = CgA(x,y)}.

Certainly H is a group ^"-class because it contains the idempotent n given by xr/ = y,
yn = y. If cteH, then xa. — ycc = a for some element a of <_y>. Define £j and e2 in End(/1)
by putting xel=yel=x and xe1 = a,yz2=y. Then a = e1e2 and £1,62 are clearly
idempotents of rank 1. Thus every member of H is a product of idempotents (of rank 1)
and it follows from Corollary 2.5 that the same is therefore true of Dx.

Now assume that the result holds for n — 1 where 3gn . Let {x!,...,xB} be a basis for
A and consider the J?-class
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H = {aeEnd{A): /ma=(x2 x,), Kera = CgA(x1,x2)}.

The idempotent 9 is in H where x16 = x29 = x2 and x,0 = X; for i = 3,...,n. Thus fl is a
group Jf-class. For a e f l w e have xxa = x2a and hence

7ma = <x2a,.. . ,xna>

and consequently, {x2a,. . . ,xna} is independent. Since x ^ / m a it follows that
{x1 )x2a, . . . ,xna} is independent and hence this set is a basis for A. We use this basis to
define ipeEnd(A) by putting xlij/ = x2a. and (x,a)i/' = Xia for i = 2, . . . ,« . Then ty is an
idempotent of rank n — 1.

We define 0 to be the idempotent endomorphism of rank n — 1 given by xl(j> = x2<j> =
Xj and x,$ = x, for i = 3 , . . . , n.

Now consider the algebra B = <x2,.. . ,xn> and define the endomorphism /?' of B by
specifying

x2/?' = x3/?' = x3a and x,J?' = x,a for i = 4,. . . ,n.

Then 7w/S' = <x3a,...,xna> so that /?' has rank n — 2. By the induction assumption,
P' = e\...e'k for some idempotents of rank n — 2 in End(B). Now define £,eEnd(/1) for
i = l,....fc by putting x1eJ = x1 and xJe1 = xJe; for j = 2,...,n. Clearly, each £,• is an
idempotent of rank n— 1. If we put P = ei...ek, then it is readily verified that <x = 0/ty so
that the members of / / are products of idempotents of rank n — 1. It now follows from
Corollary 2.5 that every member of Dn_l is a product of idempotent of rank n— 1 and
this completes the proof by induction.

Theorem 2.1 now follows immediately from Lemmas 2.6 and 2.2. We can deduce a
stronger result from Theorem 2.1 and Lemma 2.2. Let £ „ . , be the set of idempotents of
End(/4) having rank r.

Corollary 2.7. If A is an independence algebra of finite rank n, then K(n,r) = <£„_,>
for r=\,...,n— 1.

Proof. The case r = n — 1 is simply a restatement of the theorem and so we may
assume that r<n— 1. In view of Theorem 2.1 every element of the ^-class Dr is certainly
a product of idempotents. Hence by Lemma 1 of [6], any element a of Dr is a product
of idempotents all of which are ^-related to a, that is, in Dr. The result now follows
from Lemma 2.2.

Finally, we remark that both Theorem 2.1 and Corollary 2.7 specialise immediately to
give the corresponding results for the full transformation semigroup on a finite set, the
monoid of endomorphisms of a finite dimensional vector space and the endomorphism
monoid of a free G-set of finite rank.
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