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Abstract

We establish a separation principle for a class of fractional order time-delay nonlinear differential systems.
We show that a nonlinear time-delay observer is globally convergent and give sufficient conditions under
which the observer-based controller stabilises the system.
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1. Introduction

Fractional order differential systems have found applications in many areas, such as
electromagnetic systems, dielectric polarisation, economics and image processing.
For an introduction to the theory and applications, see, for example, [13]. However,
the stability of fractional nonlinear systems, of central importance in control theory,
remains an open problem.

Time delay is frequently a source of instability. Necessary and sufficient conditions
for existence and uniqueness of the solutions to a class of nonlinear fractional order
systems with delay are derived in [20]. Stability and asymptotic stability of delayed
systems under various conditions are studied in [5, 6, 15, 16].

In this paper we investigate the stabilisation problem for a class of uncertain time
delay fractional differential systems with a nominal part written in triangular form.
Motivated by similar approaches to time-delay first-order differential systems [3, 9]
as well as [15], we design a state feedback controller to stabilise the origin of the
system and give sufficient conditions for the stabilisation of nonlinear systems with
time-varying delays as linear matrix inequalities.

The paper is organised as follows. In Section 2 we introduce the basic definitions
and lemmas about fractional order systems. In Section 3, we describe the fractional
order system and explain our assumptions. The separation principle and the main
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results on the observer design and stabilisation for a class of nonlinear time-delay
fractional differential systems in triangular form are given in Section 4. In Section 5,
we illustrate our results by a physical model. Finally, in Section 6 we extend the results
to time-varying delay systems.

2. Preliminaries and definitions

In this section, we state definitions and results related to the fractional calculus.

Definition 2.1 [17]. The Riemann–Liouville fractional integral is defined by

t0 Iq
t (x(t)) =

1
Γ(q)

∫ t

t0
(t − s)q−1x(s) ds (q > 0),

where Γ(q) =
∫ ∞

0 e−ttq−1 dt is the usual gamma function, provided the integral exists.

Definition 2.2 [18, 21]. The Riemann–Liouville and Caputo fractional derivatives
respectively of order q on [t0, t] are defined by

t0 Dq
t x(t) =

1
Γ(n − q)

dn

dtn

∫ t

t0

x(s)
(t − s)q+1−n ds (n − 1 ≤ q < n),

C
t0 Dq

t x(t) =
1

Γ(n − q)

∫ t

t0

x(n)(s)
(t − s)q+1−n ds (n − 1 ≤ q < n),

where n is the integer such that q < n ≤ q + 1 and x(t) ∈ Rn is differentiable as many
times as required, provided the integrals exist.

Property 2.3 [1]. When 0 < q < 1,

C
t0 Dq

t x(t) = t0 Dq
t x(t) −

x(t0)
Γ(1 − q)

(t − t0)−q.

In particular, if x(t0) = 0, then C
t0 Dq

t x(t) = t0 Dq
t x(t).

Property 2.4 [13]. If p > q > 0, then the formula

t0 Dq
t (t0 D−p

t x(t)) =t0 Dq−p
t x(t),

holds for all ‘sufficiently good’ functions x(t). In particular, it holds if x(t) is integrable.

Lemma 2.5 [7]. Let x(t) ∈ Rn be a vector of differentiable functions and suppose
0 ≤ q ≤ 1. Then, for any time instant t ≥ t0,

1
2 t0 Dq

t xT (t)Px(t) ≤ xT (t)Pt0 Dq
t x(t),

where P ∈ Rn×n is a constant, symmetric, positive definite matrix.

Lemma 2.6 [14]. Suppose 0 < q < 1 and x(0) ≥ 0. Then

C
t0 Dq

t x(t) ≤ t0 Dq
t x(t).
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Lemma 2.7. For any x, y ∈ Rn and ε > 0,

2xT y ≤ εxT x +
1
ε

yT y.

Lemma 2.8 (Schur complement, [4]). If T1, T2 and T3 are matrices and T3 > 0, then[
T1 T T

2
T2 −T3

]
< 0 ⇐⇒ T1 + T T

2 T−1
3 T2 < 0.

Remark 2.9. For a matrix M, we write MT for the transpose of M, λmax(M) and
λmin(M) denote the maximal and minimal eigenvalues of M, and M > 0 means that
M is symmetric and positive definite. Also, I is an appropriately dimensioned identity
matrix.

3. System description

Suppose 0 < q < 1. Consider the fractional time-delay system

t0 Dq
t x(t) = f (x(t), x(t − τ)), (3.1)

where τ > 0 is the delay time. The knowledge of x at time t = 0 does not allow us
to deduce x at time t. Thus, an initial condition is specified by a continuous function
ϕ : [−τ, 0]→ Rn.

The state of x at time t determined by (3.1) and the initial condition can be described
as a function segment xt defined by

xt(θ) = x(t + θ), θ ∈ [−τ, 0].

Fractional time-delay systems form a special class of fractional differential equations

t0 Dq
t x(t) = F(t, xt), (3.2)

where, F : R+ × C → R
n and C denotes the Banach space of continuous functions

mapping the interval [−τ, 0]→ Rn and equipped with the supremum norm

‖ϕ‖∞ = max
θ∈[−τ,0]

‖ϕ(θ)‖, ϕ ∈ C,

where ‖ · ‖ is the usual Euclidean norm.
We recall the definition of various forms of stability for the system (3.2).

Definition 3.1. For the system described by (3.2), the trivial solution is called:

• stable, if for any ε > 0 there exists δ > 0 such that

‖ϕ‖∞ < δ⇒ ‖x(t)‖ < ε for all t ≥ 0;

• attractive, if there exists σ > 0 such that

‖ϕ‖∞ < σ⇒ lim
t→+∞

x(t) = 0; (3.3)
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• asymptotically stable, if it is stable and attractive;
• globally asymptotically stable, if it is stable and δ can be chosen arbitrarily large

for sufficiently large ε, and (3.3) is satisfied for all σ > 0.

For a locally Lipschitz functional V : R+ × C → R+ we can define a generalisation
of the fractional derivative of V along the solutions of (3.2).

Definition 3.2 [19]. Suppose 0 < q < 1. Let V(t, ϕ) be differentiable and let xt(t0, ϕ)
be the solution of (3.2) at time t with initial condition xt0 = ϕ. Then the fractional
derivative of V(t, xt) with respect to t and evaluated at t = t0 is defined by

t0 Dq
t V(t0, ϕ) =t0 Dq

t0 V(t, xt(t0, ϕ))|t=t0,xt=ϕ =
1

Γ(1 − q)
d
dt

( ∫ t

t0

V(s, xs)
(t − s)q ds

)∣∣∣∣
t=t0,xt=ϕ

.

The aim of this paper is to design a nonlinear observer-based controller to stabilise
the origin of the following fractional time delay nonlinear system{

t0 Dq
t x(t) = Ax(t) + Bu(t) + f (x(t), x(t − τ), u(t))
y(t) = Cx(t), (3.4)

where x ∈ Rn is the state vector, u ∈ R is the input of the system, y ∈ R is the measured
output and τ is a positive known scalar that denotes the time delay affecting the state
variables. The matrices A, B and C are given by

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


, B =



0
0
...
0
1


, C = [1 0 · · · 0 0].

We suppose that f satisfies the following assumption.

Assumption A. The nonlinearity f (x(t), x(t − τ), u(t)) is smooth, globally Lipschitz
with respect to x and x(t − τ) uniformly with respect to u, well defined for all x(t) ∈ Rn

and satisfies f (0, 0, u) = 0.

In the rest of the paper, the time argument is omitted and the delayed state vector
x(t − τ) is noted by xτ.

Remark 3.3. We will derive a separation principle for the class of systems given by
(3.4). The high-gain observer design framework established in [11] for free delay
systems can be properly extended to this class of time-delay fractional differential
systems. For the same class of systems (3.4) with q = 1, a separation principle and
observer-based stabilisation were studied in [2] and [8, 12] respectively.
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4. Separation principle

4.1. Observer design. In this subsection we will design an observer for system
(3.4). The dynamics of the observer error e = x̂ − x is given by

t0 Dq
t x̂(t) = Ax̂(t) + Bu(t) + f (x̂, x̂τ, u) + L(Cx̂ − y), (4.1)

where L = [l1, . . . , ln]T is selected such that AL = A + LC is Hurwitz. The state
estimation error dynamic is given by

t0 Dq
t e =t0 Dq

t x̂ − t0 Dq
t x = (A + LC)e + f (x̂, x̂τ, u) − f (x, xτ, u). (4.2)

The following inequalities hold thanks to Assumption A:

‖ f (x̂, x̂τ, u) − f (x, xτ, u)‖ ≤ k1‖x̂ − x‖ + k2‖x̂τ − xτ‖ ≤ k‖e‖ + k‖eτ‖, (4.3)

where k1 and k2 are the Lipschitz constants for f with respect to x and xτ and
k = max(k1, k2).

The following theorem gives a suitable delay-independent condition that ensures
the asymptotic stability of the observer (4.1).

Theorem 4.1. Consider the time-delay fractional differential system (3.4), under
Assumption A. Let ε1 be a positive scalar. The error system (4.2) is asymptotically
stable if there exist symmetric positive definite matrices P and Q such that

PAL + AT
L P + Q + ε1P2 +

2k2

ε1
I < 0, (4.4)

2k2

ε1
I − Q < 0.

Proof. We consider the Lyapunov–Krasovskii functional candidate

V(et) = t0 Dq−1
t eT Pe +

∫ t

t−τ
eT (s)Qe(s) ds. (4.5)

From Property 2.4, the derivative of (4.5) along the trajectories of (4.2) is

V̇(et) = t0 Dq
t (eT Pe) + eT Qe − eT

τ Qeτ. (4.6)

By Lemma (2.5), taking the derivative of (4.5) yields the estimate

V̇(et) ≤ 2eT Pt0 Dq
t e + eT Qe − eT

τ Qeτ
≤ 2eT P((A + LC)e + f (x̂, x̂τ, u) − f (x, xτ, u)) + eT Qe − eT

τ Qeτ
≤ eT (PAL + AT

L P)e + 2eT P( f (x̂, x̂τ, u) − f (x, xτ, u)) + eT Qe − eT
τ Qeτ

≤ eT (PAL + AT
L P + Q)e + 2eT P( f (x̂, x̂τ, u) − f (x, xτ, u)) − eT

τ Qeτ. (4.7)

From Lemma (2.7),

2eT P( f (x̂, x̂τ, u) − f (x, xτ, u)) ≤ ε1eT PPe +
1
ε1
‖ f (x̂, x̂τ, u) − f (x, xτ, u)‖2.
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From (4.3),
‖ f (x̂, x̂τ, u) − f (x, xτ, u)‖2 ≤ k2‖e‖2 + k2‖eτ‖2 + 2k2‖e‖‖eτ‖

and so (4.7) yields the following upper bound for V̇(et):

eT (PAL + AT
L P + Q)e +

k2

ε1
‖e‖2 − eT

τ Qeτ +
k2

ε1
‖eτ‖2 +

2k2

ε1
‖e‖‖eτ‖ + eT (ε1PP)e.

Using the fact that 2‖e‖‖eτ‖ ≤ ‖e‖2 + ‖eτ‖2, we deduce that

V̇(et) ≤ eT (PAL + AT
L P + Q + ε1PP)e +

2k2

ε1
‖e‖2 +

2k2

ε1
‖eτ‖2 − eT

τ Qeτ

≤ eT
{
PAL + AT

L P + Q + ε1PP +
2k2

ε1
I
}
e + eT

τ

{2k2

ε1
I − Q

}
eτ.

Therefore, V̇(et) is negative definite, which implies that the observation error of the
time-delay fractional differential system (3.4) is asymptotically stable. �

Remark 4.2. To check whether the algebraic Riccati inequality (4.4) can be solved,
it suffices to determine a positive definite solution of an associated Lyapunov matrix
inequality (LMI), and then find sufficient conditions in terms of the solution of the
Lyapunov matrix inequality.

Lemma 4.3. Let ε be a positive scalar. Assume that P is a positive definite matrix
solution of the Lyapunov inequality

AT
L P + PAL + 2Q +

2k2

ε
I < 0.

Then P is also a solution of the algebraic Riccati inequality (4.4) provided that

ε <
λmin(Q)
λ2

max(P)
. (4.8)

Proof. Since Q is symmetric positive definite, then for all e ∈ Rn,

λmin(Q)‖e‖2 ≤ eT Qe ≤ λmax(Q)‖e‖2. (4.9)
From (4.9), for any vector e ∈ Rn,

eT
(
PAT

L + ALP + Q + εP2 +
2k2

ε
I
)
e ≤ eT (−Q + εP2)e ≤ eT (−λmin(Q) + ε‖P‖2)e,

and it is easy to see from (4.8) that the last quantity is < 0, that is, (4.4) holds. �

Theorem 4.4. Suppose that Assumption A is satisfied and that there exist symmetric,
positive definite matrices P, Q and a positive constant ε1 such that the LMIA

T
L P + PAL + Q + (2k2/ε1)I

√
ε1P 0

√
ε1 P −I 0
0 0 −(2k2/ε1)I + Q

 < 0

holds. Then (4.1) is a global asymptotic observer for the time-delay fractional
differential system (3.4).

Proof. From the proof of Theorem 4.1 and Lemma 2.8 (Schur complement), we
conclude that the observation error is asymptotically stable. �
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4.2. Global stabilisation by state feedback. In this subsection, we establish a
delay-independent condition for the asymptotic state feedback stabilisation of the
nonlinear system (3.4). The state feedback controller is given by

u = Kx, (4.10)

where K = [k1, . . . , kn] is selected such that AK := A + BK is Hurwitz.

Theorem 4.5. Suppose that Assumption A is satisfied and that there are symmetric,
positive definite matrices S , R and a positive constant ε2 such that the LMIA

T
KS + S AK + R + (2k2/ε2)I

√
ε2S 0

√
ε2 S −I 0
0 0 −(2k2/ε2)I + R

 < 0 (4.11)

holds. Then the origin of the closed-loop time-delay fractional differential system
given by (3.4) and (4.10) is globally asymptotically stable.

Proof. The closed-loop system is given by

t0 Dq
t x(t) = (A + BK)x + f (x, xτ, u).

Choose a Lyapunov–Krasovskii functional candidate of the form

W(xt) = t0 Dq−1
t xT S x +

∫ t

t−τ
xT (s)Rx(s) ds. (4.12)

By differentiating (4.12) and using Property 2.4,

Ẇ(xt) = t0 Dq
t (xT S x) + xT Rx − xT

τ Rxτ
≤ 2xT S Dqx + xT Rx − xT

τ Rxτ
≤ xT (AT

KS + S AK + R)x + 2xT S f (x, xτ, u) − xT
τ Rxτ. (4.13)

From Lemma (2.7),

2xT S f (x, xτ, u) ≤ ε2xT S S x +
1
ε2
‖ f (x, xτ, u)‖2.

Since f (0, 0, u) = 0, (4.3) implies that ‖ f (x, xτ, u)‖ ≤ k(‖x‖ + ‖xτ‖) and so (4.13) gives

Ẇ(xt) ≤ xT (AT
KS + S AK + R)x + xT (εS S )x +

k2

ε2
‖x‖2

+
k2

ε2
‖xτ‖2 +

2k2

ε2
‖x‖‖xτ‖ − xT

τ Rxτ.

Using the fact that 2‖x‖‖xτ‖ ≤ ‖x‖2 + ‖xτ‖2, we deduce that

Ẇ(xt) ≤ xT (AT
KS + S AK + R + ε2S S )x +

2k2

ε2
‖x‖2 +

2k2

ε
‖xτ‖2 − xT

τ Rxτ

≤ xT
(
AT

KS + S AK + R + εS S +
2k2

ε
I
)
x + xT

τ

(2k2

ε
I − R

)
xτ.

Therefore, Ẇ(xt) is negative definite by Lemma 2.8 (Schur complement). We conclude
that the closed-loop time-delay fractional differential system (3.4) and (4.10) is
globally asymptotically stable if (4.11) holds. �
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4.3. Observer-based control stabilisation. In this subsection, we implement the
control law with estimated states. We consider the system controlled by the linear
feedback law

u = Kx̂, (4.14)

where the estimate x̂ is provided by the observer (4.1).

Theorem 4.6. Under Assumption A, the origin of the closed-loop time-delay fractional
differential system (3.4) and (4.14) is globally asymptotically stable if there exist two
positive constants ε1 and ε2 and four symmetric, positive definite matrices P, Q, S and
R such that the LMIs

AT
L P + PAL + Q + (2k2/ε1)I

√
ε1P K 0

√
ε1P −I 0 0

KT 0 −I 0
0 0 0 (2k2/ε1)I − Q

 < 0 (4.15)

and 
AT

KS + S AK + R + (2k2/ε2)I
√
ε2S S B 0

√
ε2S −I 0 0

BT S 0 −I 0
0 0 0 (2k2/ε2)I − R

 < 0 (4.16)

hold.

Proof. The closed-loop system in the (U,V) coordinates can be represented by

t0 Dq
t x = AK x + BKe + f (x, xτ, u),

t0 Dq
t e = ALe + f (x̂, x̂τ, u) − f (x, xτ, u). (4.17)

Let
U(et, xt) = V(et) + W(xt),

where V and W are given by (4.5) and (4.12) respectively. From the proof of
Theorems 4.1 and 4.5,

U̇(et, xt) ≤ 2xT S t0 Dq
t x + xT Rx − xT

τ Rxτ + 2eT Pt0 Dq
t e + eT Qe − eT

τ Qeτ
≤ xT (AT

KS + S AK + R)x + 2xT S BKe + 2xT S f (x, xτ, u) − xT
τ Rxτ

+ eT (AT
L P + PAL + Q)e + 2eT P( f (x̂, x̂τ, u) − f (x, xτ, u)).

By Lemma 2.6,
2xT S BKe ≤ xT S BBT S x + eT KT Ke. (4.18)

Substituting in the previous estimate for U̇(et, xt) gives

U̇(et, xt) ≤ xT
(
AT

KS + S AK + R + S BBT S + ε2S S +
2k2

ε2
I
)
x

+ eT
{
AT

L P + PAL + Q + KT K + ε1PP +
2k2

ε1
I
}
e

+ xT
τ

{2k2

ε2
I − R

}
xτ + eT

τ

{2k2

ε1
I − Q

}
eτ.
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From Lemma 2.8 (Schur complement), we conclude that the origin of the time-delay
fractional differential system (4.17) is globally asymptotically stable if (4.15) and
(4.16) hold. �

Remark 4.7. There are many effective optimisation algorithms to solve (4.15) and
(4.16) easily, for example, by means of the Hamiltonian matrix [4] or using MATLAB
(LMIs) Control Toolbox [10].

Remark 4.8. From Property 2.4, we can replace the Riemann–Liouville derivative in
the fractional time-delay nonlinear system (3.4) by the Caputo fractional derivative
and, with the same Assumption A, the conclusions of Theorems 4.4–4.6 still hold.

5. Numerical example

This section presents an experimental result based on the orientational motion of
polar molecules acted on by an external perturbation. The physical model corresponds
to a slow relaxation process described by an anomalous exponent α with 0 < α < 1.
Such a model is described by the following system, with the fractional order q = 0.5,
where x(t) is an augmented state vector containing the plant state vector, u denotes
the orientational potential energy and τ is the Debye relaxation time, assumed to be
constant: {

t0 Dq
t x(t) = Ax(t) + Bu(t) + f (x(t), x(t − τ), u(t)),
y(t) = Cx(t),

where

x(t) =

x1(t)
x2(t)
x2(t)

 , A =

0 1 0
0 0 1
0 0 0

 , B =

001
 , C =

[
1 0 0

]
,

f (x(t), x(t − τ), u(t)) =


5
√

2(sin x3 + x2(t − τ) cos u)
5
√

2(cos x2 + sin u)
0

 .
Select L = [−2 −4 −2]T and K = [−20 −15 −20], so that AL and AK are Hurwitz,
and ε1 = 3.6880, ε2 = 88.8160. We find the symmetric positive definite matrices

P =

 2.4543 −0.6269 −0.0198
−0.6269 1.0081 −0.6633
−0.0198 −0.6633 1.0895

 , Q =

 0.8535 −0.1221 0.0095
−0.1221 0.2138 −0.1627
0.0095 −0.1627 0.2441

 ,
R =

36.7479 23.4524 36.6960
23.4524 19.1780 23.8417
36.6960 23.8417 38.2399

 , S =

32.3290 11.2620 2.9435
11.2620 35.6031 3.1391
2.9435 3.1391 2.9052

 .
For our numerical simulation, we choose the delay τ = 1. The corresponding
numerical simulation results are shown in Figure 1.
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Figure 1. State trajectories xi and their estimates x̂i.

6. Extension to time-varying delay systems

In this section, we extend our results to nonlinear systems of the form (3.4) with
time-varying delays. We consider the system{

t0 Dq
t x(t) = Ax(t) + Bu(t) + f (x(t), x(t − h(t)), u(t))
y(t) = Cx(t), (6.1)

where h(t) denotes the time-varying delay. We require an additional assumption to
control h and its derivative.

Assumption B. The time-varying delay satisfies the following conditions.

(i) There exists τ > 0 such that 0 ≤ h(t) ≤ τ.
(ii) There exists β > 0 such that ḣ(t) ≤ 1 − β.

The same observer and state feedback controllers as those presented in Sections 4.1
and 4.2 achieve global asymptotically stability of system (6.1).

Theorem 6.1. Suppose that Assumptions A and B are fulfilled and that there exist two
positive constants ε1 and ε2 and four symmetric, positive definite matrices P, Q, S and
R such that the following LMIs hold:

AT
L P + PAL + Q + (2k2/ε1)I

√
ε1P K 0

√
ε1P −I 0 0

KT 0 −I 0
0 0 0 (2k2/ε1)I − βQ

 < 0
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and 
AT

KS + S AK + R + (2k2/ε2)I
√
ε2S S B 0

√
ε2S −I 0 0

BT S 0 −I 0
0 0 0 (2k2/ε2)I − βR

 < 0.

Then, the system (6.1) is globally asymptotically stable under the observer-based
feedback (4.14).

Proof. We consider the Lyapunov–Krasovskii functional candidate

V(t, et) = t0 Dq−1
t eT Pe +

∫ t

t−h(t)
eT (s)Qe(s) ds.

Denote the observation error by e = x̂ − x. Following the proof of Theorem 4.1,
equation (4.6) becomes

V̇(t, et) = Dq(eT Pe) + eT Qe − (1 − ḣ(t))eT
h(t)Qeh(t).

Using this result and Assumption B,

V̇(t, et) ≤ 2eT PDqe + eT Qe − (1 − ḣ(t))eT
h(t)Qeh(t)

≤ eT (AT
L P + PAL + Q)e

+ 2eT P( f (x̂, x̂h(t), u) − f (x, xh(t), u)) − βeT
h(t)Qeh(t).

Therefore,

V̇(t, et) ≤ eT
{
AT

L P + PAL + Q + ε1PP +
2k2

ε1
I
}
e + eT

h(t)

{2k2

ε1
I − βQ

}
eh(t).

We aim to prove that, under the observer-based controller, the closed-loop system
is input-to-state-stable with respect to the observation error. The closed-loop system
is given by

t0 Dq
t x(t) = AK x + BKe + f (x, xh(t), u).

Choose a Lyapunov–Krasovskii functional candidate of the form

W(t, xt) =t0 Dq−1
t xT S x +

∫ t

t−h(t)
xT (s)Rx(s) ds.

Taking into account (4.18) and using Assumption B, we obtain the estimate

Ẇ(t, xt) ≤ 2xT S t0 Dq
t x + xT Rx − xT

h(t)Rxh(t) + 2eT Pt0 Dq
t e + eT Qe − eT

h(t)Qeh(t)

≤ xT (AT
KS + S AK + R)x + 2xT S BKe + 2xT S f (x, xh(t), u) − xT

h(t)Rxh(t)

+ eT (AT
L P + PAL + Q)e + 2eT P( f (x̂, x̂h(t), u) − f (x, xh(t), u))

≤ xT
{
AT

KS + S AK + R + S BBT S + ε2S S +
2k2

ε2
I
}
x + xT

h(t)

{2k2

ε2
I − βR

}
xh(t)

+ eT
{
AT

L P + PAL + Q + KT K + ε1PP +
2k2

ε1
I
}
e + eT

h(t)

{2k2

ε1
I − βQ

}
eh(t).

By the Lemma 2.8 (Schur complement), the system (6.1) is globally asymptotically
stable under the observer-based feedback (4.14). �
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Remark 6.2. In [15], the Lyapunov method is used to give sufficient conditions for
the asymptotic stability of Riemann–Liouville fractional systems with time-varying
delays. These conditions are generalised in [16] for systems with multiple time-
varying delays. However, the conditions are strong and it is difficult to engineer the
design to achieve the conditions. Our criteria overcome some of the main sources of
conservatism although using the same Lyapunov–Krasovskii functional as in [15, 16].
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