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Casselman’s Basis of Iwahori Vectors and
Kazhdan–Lusztig Polynomials

Daniel Bump andMaki Nakasuji

Abstract. A problem in representation theory of p-adic groups is the computation of the Casselman
basis of Iwahori ûxed vectors in the spherical principal series representations, which are dual to
the intertwining integrals. We shall express the transition matrix (mu ,v) of the Casselman basis
to another natural basis in terms of certain polynomials that are deformations of the Kazhdan–
Lusztig R-polynomials. As an application we will obtain certain new functional equations for these
transition matrices under the algebraic involution sending the residue cardinality q to q−1 . We will
also obtain a new proof of a surprising result ofNakasuji andNaruse that relates thematrix (mu ,v)
to its inverse.

1 Statement of Results

We will statemost of our results in this section, with proofs in Section 2. A fewmore
results will be stated in Section 3.

Let q be the residue cardinality of F and let o be its ring of integers. Let T̂(C) be
a split maximal torus in the Langlands dual group Ĝ(C), a reductive algebraic group
overC. LetΦ be the root systemof Ĝ in theweight lattice X∗(T̂) of rational characters
of T̂ that we identify with the group X∗(T) of cocharacters in the maximal torus T
of G that is dual to T̂ . Let B = TU be the Borel subgroup of G that is positive with
respect to a decomposition ofΦ into positive andnegative roots. LetK be the standard
(special) maximal compact subgroup, and let J be the positive Iwahori subgroup. _e
Weyl group is W = NG(T(F))/T(F). We will choose Weyl group representatives
from K.

If z ∈ T̂ , then z parametrizes an unramiûed character χz of T(F). _e correspond-
ing principal series module Vz of G(F) consists of smooth functions f on G(F) such
that f (bg) = (δ1/2 χz)(b) f (g) for b ∈ B(F). If w ∈ W , then choosing aWeyl group
representative from K, and by abuse of notation denoting it also as w, there is an in-
tertwining integral operator Aw ∶Vz → Vwz deûned by the integral

Aw f (g) = ∫
U∩wU−w−1

f (w−1xg) dx .

Here, U− is the unipotent radical of the Borel subgroup B− opposite B, and although
the integral is only convergent for z in an open subset of T̂(C), it extends mero-
morphically to all of T̂(C) by analytic continuation. Casselman [9] and Casselman
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and Shalika [10] emphasized the importance of the functionals f ↦ Aw f (1) on the
∣W ∣-dimensional space V J

z of Iwahori ûxed vectors.
_e space V J

z of Iwahori-ûxed vectors in Vz then have several important bases
parametrized by the Weyl group W . One basis {ϕw} is obtained by restricting the
standard spherical vector to the various cells in the Bruhat decomposition. _at is,
G(F) is the disjoint union over w ∈W of cells Bw J, so if w ∈W , we can deûne

ϕw(bk) =
⎧⎪⎪⎨⎪⎪⎩

(δ1/2 χz)(b) if k ∈ Jw J ,
0 otherwise.

For us, amore useful basis is
ψw = ∑

u⩾w
ϕu ,

where ⩾ is the Bruhat order in W .
Another more subtle basis than the {ϕw} or {ψw} was deûned in [9] to be dual to

the functionals f ↦ Aw f (1). _us,Aw fw′(1) = δw ,w′ . Casselman wrote:
It is an unsolved problem and, as far as I can see, a diõcult one to
express the bases {ϕw} and { fw} in terms of one another.

It seems more natural to ask for the transition function between the bases { fw} and
{ψw}, and we will interpret the “Casselman problem” to mean this question.

_e diõculty of this problem does not prevent the use of the Casselman basis { fw}
in applications, for as Casselman [9] and Casselman-Shalika [10] showed, a small
amount of information about the Casselman basis can be used to compute special
functions such as the spherical and Whittaker functions. _is is an idea that has
been used in a great deal of subsequent literature. Because detailed information about
the Casselman basis is not needed for these proofs, the Casselman problem has not
seemed urgent. Nevertheless, the Casselman problem is very interesting in its own
right because of a deep underlying structure similar to Kazhdan–Lusztig theory.
Before continuing, we remark that we will o�en ûnd functions (u, v) ↦ au ,v on

W ×W such that au ,v vanishes unless u ⩽ v. It is convenient to think of (au ,v)u ,v∈W
as amatrix whose index set is theWeyl group. Its product with another such matrix
(bu ,v) is (cu ,v), where

cu ,v = ∑
u⩽x⩽v

au ,xbx ,v .

An important special case is thematrix (au ,v),where au ,v = 1 if u ⩽ v and 0 otherwise.
_en a theorem of Verma, which we will o�en use, is that if (bu ,v) is the inverse
matrix, then bu ,v = (−1)l(v)−l(u) when u ⩽ v. _is is the Möbius function for the
Bruhat order; see [23,25].
Applying Casselman’s functionals to the basis {ψw} gives numbers

mu ,v = Avψu(1),
and these are the subject of this paper, as well as [6]. _is is zero unless u ⩽ v in the
Bruhat order.

We also let m′

u ,v (denoted m̃u ,v in [6]) denote the inversematrix so that

∑
u⩽x⩽v

mu ,xm′

x ,v = δu ,v ,
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where δ is the Kronecker delta. Clearly,

ψu = ∑
v⩾u

mu ,v fv and fu = ∑
v⩾u

m′

u ,v ψv ,

so the essence of the Casselman problem is to understand the mu ,v and m′

u ,v . We
will give a kind of solution to this problem by showing that the mu ,v and m′

u ,v can
be expressed in terms of certain polynomials that are deformations of the Kazhdan–
Lusztig R-polynomials.
First, we review two conjectures from our previous paper [6]. Let Pu ,v be the

Kazhdan–Lusztig polynomials for W , deûned as in [16]. We will also use the inverse
Kazhdan–Lusztig polynomial Qu ,v = Pw0v ,w0u , where w0 is the long Weyl group ele-
ment. Both Pu ,v and Qu ,v vanish unless u ⩽ v.

If α ∈ Φ, let rα denote the corresponding re�ection in W . Assume that u ⩽ v.
Deûne

S(u, v) = {α ∈ Φ+ ∣ u ⩽ v .rα < v} and S′(u, v) = {α ∈ Φ+ ∣ u ⩽ u.rα < v}.

It is a consequence of work of Deodhar [12], Carrell and Peterson [7], Polo [21],
Dyer [13], and Jantzen [15] that the sets S(u, v) and S′(u, v) have cardinality
⩾ l(v) − l(u). Moreover, if the inverse Kazhdan–Lusztig polynomial Qu ,v = 1, then
∣S(u, v)∣ = l(v) − l(u), while if Pu ,v = 1 then ∣S′(u, v)∣ = l(v) − l(u).

In [6] we conjectured that if Φ is simply-laced and Qu ,v = 1, then

(1.1) mu ,v = mu ,v(z) = ∏
α∈S(u ,v)

1 − q−1zα

1 − zα
.

_is formula generalizes thewell-known formula ofGindikin andKarpelevich,which
is actually due to Langlands [17] in this nonarchimedean setting. _is is the special
case where u = 1, so that ψ1 is the K-spherical vector in Vz. However, the method
commonly used to prove the formula of Gindikin and Karpelevich inductively does
not work for general u, and this conjecture still seems diõcult. See [19,20] for recent
work on this problem, and Section 3 below for some new results based on themethods
of this paper.

Similarly, if Pu ,v = 1, then ∣S′(u, v)∣ = l(v) − l(u), and in this case we conjectured
that

(1.2) m′

u ,v = (−1)l(v)−l(u) ∏
α∈S′(u ,v)

1 − q−1zα

1 − zα
.

It was shown by Nakasuji and Naruse [20] that these two conjectured formulas (1.1)
and (1.2) are equivalent. _ey did this by proving a very interesting fact relating the
matrices (mu ,v) and (m′

u ,v), which we will reprove in this paper as _eorem 1.5.
In this paper we will not prove these conjectures. Instead we will strive to adapt

methods of Kazhdan and Lusztig [16] to this situation. For example, the above con-
jectures can be thought of as closely related to their formula (2.6.b).

Our algebraic results about mu ,v are independent of the origin of the problem in
p-adic groups. So we can regard q as an indeterminate. If f is a polynomial in q,
following Kazhdan and Lusztig, f will denote the result of replacing q by q−1. If f
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involves z, then z is unchanged in f unless we explicitly indicate a change. We will
also use the notation εw = (−1)l(w) and qw = q l(w) from [16].
Assume that Qu ,v = 1, that Φ is simply-laced so that (1.1) is conjectured, andmore-

over, ∣S(u, v)∣ = l(v) − l(u). Observe that mu ,v satisûes the functional equation

(1.3) mu ,v(z) = qvq−1
u mu ,v(z−1).

_eorem 1.1 Assume that Qu ,v = 1. _en the functional equation (1.3) is satisûed.

Note that this does not require Φ to be simply-laced, even though (1.1) has coun-
terexamples already for B2. Proofs can be found in the next section.

_e key to this and other results is to introduce a deformation of the Kazhdan and
Lusztig R-polynomials, deûned in [16].

_eorem 1.2 _ere exist polynomials ru ,v(z), depending on z ∈ T̂(C) such that
ru ,u = 1 and ru ,v = 0 unless u ⩽ v. _ey have the property that ru ,v(z)→ Ru ,v if z→∞
in such a direction that zα →∞ for all positive roots α ∈ Φ+. _ey can be calculated by
the following recursion formula. Choose a simple re�ection s = sα corresponding to the
simple root α such that sv < v. If su < u, then

ru ,v(z) =
1 − q

1 − z−v−1α ru ,sv(z) + rsu ,sv(z).

If su > u, then

ru ,v(z) = (1 − q) z−v
−1α

1 − z−v−1α ru ,sv(z) + qrsu ,sv(z).

In the recursion, it is worth noting that since sv < v, −v−1α is a positive root. _en
the mu ,v can be expressed in terms of the ru ,v as follows.

_eorem 1.3 Suppose that u ⩽ v. _en

mu ,v = ∑
u⩽x⩽v

rx ,v ,(1.4)

ru ,v = ∑
u⩽x⩽v

εuεxmx ,v .(1.5)

_e proof will be given in the next section. We will deduce (1.3) from this result.
Moreover, we will prove the following general identity. If u ⩽ v, deûne

(1.6) cu ,v = ∑
u⩽x⩽y⩽z⩽v

εx εyq−1
y quPx ,yQy ,zεzεv .

(Let cu ,v = 0 if u is not ⩽ v.)

_eorem 1.4 If u ⩽ v, then

(1.7) mu ,v(z) = qvq−1
u ∑

u⩽w⩽v
cu ,wmw ,v(z−1).

_e proof will be given in the next section. _e coeõcients cu ,v are interesting. If
u = v, then cu ,v = 1, but otherwise they are usually zero. _e 46 pairs u, v with cu ,v /= 1
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and u < v for the A4 Weyl group are tabulated in Figure 1. _is includes all 38 pairs of
Weyl group elements with u ≺ v in the notation of Kazhdan and Lusztig. _is means
that l(v) − l(u) is odd and ⩾ 3, and that the degree of Pu ,v is 1

2 (l(v) − l(u) − 1), the
largest possible. But there are a few other values for which cu ,v /= 0.

u v cu ,v u ≺ v
s3s2 s3s4s2s3s1s2 q−1 − q−3 s4s1s2 s1s2s3s4s3s2 q−1 − q−2 ✓

s3s1 s3s4s2s3s1 q−1 − q−2 ✓ s4s2 s4s2s3s1s2 q−1 − q−2 ✓

s4s1s2s1 s1s2s3s4s3s2s1 q−1 − q−2 ✓ s3s1s2 s3s4s2s3s1s2 q−1 − q−2 ✓

s2s3s2 s2s3s4s1s2s3 q−1 − q−2 ✓ s1s2s3s2 s3s4s1s2s3s1s2 q−1 − q−2 ✓

s4s2 s2s3s4s3s1s2 −q−1 + q−3 s2s3s2 s2s3s4s1s2s3s1s2 q−2 − q−3 ✓

s3s4s1s2s1 s1s2s3s4s2s3s1s2 q−1 − q−2 ✓ s3s4s3s1 s1s2s3s4s2s3s2s1 −q−1 + q−3

s4s2 s2s3s4s3s2 q−1 − q−2 ✓ s3s4s3s1s2s1 s1s2s3s4s2s3s1s2s1 q−1 − q−2 ✓

s3s1 s1s2s3s2s1 q−1 − q−2 ✓ s4s2s3s1 s2s3s4s1s2s3s2s1 q−1 − q−3

s3s4s1 s1s2s3s4s2s1 q−1 − q−2 ✓ s2 s2s3s1s2 q−1 − q−2 ✓

s2s3s4s2 s2s3s4s2s3s1s2 q−1 − q−2 ✓ s4s1s2s1 s1s2s3s4s3s1s2s1 −q−1 + q−3

s2s3s2 s3s4s2s3s1s2 q−1 − q−2 ✓ s4s2s3s2 s2s3s4s1s2s3s2 q−1 − q−2 ✓

s4s1 s1s2s3s4s3s2s1 q−2 − q−3 ✓ s4s2s3 s2s3s4s1s2s3 q−1 − q−2 ✓

s3s1 s3s4s1s2s3 q−1 − q−2 ✓ s2s3 s2s3s4s1s2s3 q−1 − q−3

s4s2s3s2s1 s2s3s4s1s2s3s2s1 q−1 − q−2 ✓ s4s3s1 s4s1s2s3s2s1 q−1 − q−2 ✓

s1s2s3s4s3s1 s1s2s3s4s1s2s3s2s1 q−1 − q−2 ✓ s3s4s1s2 s1s2s3s4s2s3s1s2 q−1 − q−3

s4s1s2s1 s1s2s3s4s3s1s2 q−1 − q−2 ✓ s3s4s3s1 s3s4s1s2s3s2s1 q−1 − q−2 ✓

s4s2 s2s3s4s1s2 q−1 − q−2 ✓ s3s4s3s1 s1s2s3s4s2s3s1 q−1 − q−2 ✓

s2s3s4s3s1 s2s3s4s1s2s3s2s1 q−1 − q−2 ✓ s4s1s2s3s1 s2s3s4s1s2s3s2s1 q−1 − q−2 ✓

s2s3s2s1 s2s3s4s1s2s3s1 q−1 − q−2 ✓ s3s1 s3s4s1s2s3s1 −q−1 + q−3

s3s4s3s1s2 s1s2s3s4s2s3s1s2 q−1 − q−2 ✓ s2s3s1 s2s3s4s1s2s3 q−1 − q−2 ✓

s4s1s2s1 s2s3s4s3s1s2s1 q−1 − q−2 ✓ s4s2s1 s2s3s4s3s2s1 q−1 − q−2 ✓

s3s4s3s1 s1s2s3s4s3s2s1 q−1 − q−2 ✓ s3 s3s4s2s3 q−1 − q−2 ✓

s3s4s2 s3s4s2s3s1s2 q−1 − q−2 ✓ s1s2s3s4s2 s1s2s3s4s2s3s1s2a q−1 − q−2 ✓

Figure 1: _e pairs u,v in the A4 Weyl group with u < v and cu ,v ≠ 0. _e simple re�ections are
s1 , s2 , s3 and s4 . _is list includes all 38 pairswith u ≺ v in the notation of Kazhdan and Lusztig
(marked with✓). Note that if u ≺ v then cu ,v = q−1 − q−2 but there are a few other pairs u, v
with cu ,v ≠ 0.

Finally, we have a striking symmetry of the coeõcients mu ,v . Equation (1.9) in the
following theorem was proved previously by Nakasuji and Naruse [20]. We will give
another proof based on _eorem 1.2.

_eorem 1.5 (Nakasuji and Naruse [20]) Suppose that u ⩽ v. _en

∑
u⩽x⩽v

ru ,x εx εvrw0v ,w0x = δu ,v ,(1.8)

∑
u⩽x⩽v

mu ,x εx εvmw0v ,w0x = δu ,v .(1.9)
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_e proof will be given in the next section. Because (m′

u ,v) was deûned to be the
inverse of thematrix (mu ,v), the last result can be written m′

u ,v = εuεvmw0v ,w0u . _is
seems a remarkable fact.

We end this section with a conjecture about the poles of mu ,v . As functions of z,
the function ru ,v(z) is analytic on the regular set of T̂ , that is, the subset of z such that
zα /= 1 for all α ∈ Φ.

Conjecture 1.6 _e functions

∏
β∈S(u ,v)

(1 − zβ)mu ,v and ∏
β∈S(u ,v)

(1 − zβ)ru ,v

are analytic on all of T̂(C).

Since mu ,v = ∑u⩽x⩽v rx ,v and S(x , v) ⊆ S(u, v) when u ⩽ x ⩽ v, the statement
about mu ,v follows from the statement about ru ,v . Moreover, the recursion in _e-
orem 1.2 gives a way of trying to prove this recursively. So let us choose a simple
re�ection s such that sv < v. It is suõcient to show that∏α∈S(u ,v)(1 − zβ) cancels the
poles of both rsu ,sv and of (1 − z−v

−1α)−1ru ,sv .
_e factor (1−z−v−1α)−1 that appearswith ru ,sv is cancelled for the following reason.

It only appears if ru ,sv /= 0, that is, if u ⩽ sv. Now if this is so, then the positive root
−v−1α is in S(u, v), because vr−v−1α = sv, and then u ⩽ sv implies −v−1α ∈ S(u, v).

So the statement that∏β∈S(u ,v)(1 − zβ) cancels the poles of ru ,v would follow re-
cursively if we knew that S(u, sv) and S(su, sv) are both contained in S(u, v). Un-
fortunately, this is not always true, as the following example shows.

Example 1.7 Let Φ be the A2 root system,with simple roots α1, α2 and correspond-
ing simple re�ections s1 , s2. Let u = s1, v = s1s2s1, and β = α1 + α2. _en if we take
s = s1, we have β ∈ S(u, sv) and β ∈ S(su, sv) but β ∉ S(u, v). _is means that the
locus of zβ = 1 is a pole of both terms in the recursion, but these poles cancel, and it
is not a pole of ru ,v(z).

At the moment we do not have a proof that such cancellation always occurs, but
o�en it can beprovedusing a diòerentdescent. InExample 1.7withu, v and β as given,
we could take s = s2 instead, and then we ûnd that β ∉ S(u, sv) and β ∉ S(su, sv), so
1 − zβ does not divide the denominator of ru ,v .

2 Proofs

Let H be the Iwahori Hecke algebra of the Coxeter group W , with basis elements Tw
for w ∈ W , such that TwTw′ = Tww′ if l(ww′) = l(w) + l(w′). _us, if s is a simple
re�ection, we have T2

s = (q − 1)Ts + q, and the usual braid relations are satisûed. We
extend the scalars to the ûeld of meromorphic functions on T̂(C). _en the Hecke
algebra has another basis, which we will now describe. Let z ∈ T̂(C). If s = sα is a
simple re�ection, and α is the corresponding simple root, let µz(s) be the element of
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theHecke algebra deûned by

µz(s) = q−1Ts + (1 − q−1) zα

1 − zα
= T−1

s + 1 − q−1

1 − zα
.

It was shown in [6], using ideas of Rogawski [22], that we can extend this deûnition
to µz(w) for w ∈W such that if l(w1w2) = l(w1) + l(w2), then

µz(w1w2) = µz(w2)µw2z(w1).
_e Hecke operator µw(z) models the intertwining operator Aw ∶Vz → Vwz, as is
explained in [22] or [6]. Itwas clariûed byNakasuji andNaruse [20] that the basis µw
is essentially the “Yang–Baxter basis” of Lascoux, Leclerc, and _ibon [18], and the
consistency of the deûnition follows from the Yang–Baxter equation. _e appearance
of the Yang–Baxter equation in the context of p-adic intertwining operators is then
related to the viewpoint in Brubaker, Buciumas, Bump, and Friedberg [5].

Suppose that s = sα is a simple re�ection. _en it is easy to check by direct com-
putation that

(2.1) µz(s)µsz(s) =
1 − q−1zα

1 − zα
⋅ 1 − q−1z−α

1 − z−α
.

Lemma 2.1 Let s = sα be a simple re�ection. _en for any w ∈ W , we have
µz(w)µwz(s) = c ⋅ µz(sw), where the constant

c =
⎧⎪⎪⎨⎪⎪⎩

1 if sw > w,
1−q−1zw

−1α

1−zw−1α ⋅ 1−q−1z−w
−1α

1−z−w−1α if sw < w.

Proof If sw > w, this follows from the deûnition of µz(sw). In the other case, we
write µz(w) = µz(sw)µswz(s), then apply (2.1).

Let Λ∶H → C(q) be the functional such that Λ(Tw) = 1 if w = 1, and 0 otherwise.
Also, letψw = ∑u⩾w Tu . We are reusing the notationψw used previously to denote cer-
tain Iwahori ûxed vectors, but we are leaving the origins of the problem in the p-adic
group behind, so this reuse should not cause any confusion. FollowingRogawski [22],
there is a vector space isomorphism between the Iwahori ûxed vectors in the principal
series representation and theHecke algebraH, and in this isomorphism, the Iwahori
ûxed vectors ψw correspond to theHecke elements ψw .

In [6], we proved that

mu ,v = mu ,v(z) = Λ(ψuµz(v)).
_is will be the starting point of our proofs.

Lemma 2.2 If u, v ∈W , then

(2.2) Λ(TuTv) =
⎧⎪⎪⎨⎪⎪⎩

qu if u = v−1,
0 otherwise.

Proof Without loss of generality l(u) ⩽ l(v). Assume that Λ(TuTv) /= 0. We will
show that u = v−1 and that Λ(TuTv) = qu . Proof is by induction on l(u), so we
assume that Λ(Tu′Tv) is given by this formula for all u′ < u and for all v. _e formula
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(2.2) is trivial if u = 1, so we can assume that u > 1. Let s be a simple re�ection such
that us < u. Let u′ = us and v′ = sv.

Suppose that v′ < v. _en Tv = TsTv′ and Tu = Tu′Ts . _us,

(2.3) TuTv = Tu′T2
s Tv′ = (q − 1)Tu′TsTv′ + qTu′Tv′ = (q − 1)Tu′Tv + qTu′Tv′ .

_us, either Λ(Tu′Tv) /= 0 or Λ(Tu′Tv′) /= 0. By induction, we have either u′ = v−1 or
u′ = (v′)−1. _e ûrst is not possible, since l(u′) < l(v), so u′ = (v′)−1 and u−1 = v−1.
Now applying Λ to (2.3) gives Λ(TuTv) = qΛ(Tu′Tv′) = qqu′ = qu .

_e case v′ > v is easier. _en Λ(TuTv) = Λ(Tu′Ts iTv) = Λ(Tu′Tv′) = 0, since
l(u′) < l(v′). And u cannot equal v−1, since s is a right descent of u but not v−1.

We will make use of the Kazhdan–Lusztig involution f ↦ f on functions f of q
and z. _is is the map that sends q to q−1 and z to z. We recall from [16] that it is
also themap q ↦ q−1 extended to an automorphism of theHecke algebra by themap
Tw ↦ T−1

w−1 .
We deûne ru ,v = ru ,v(z) by

(2.4) µz(v) = ∑
u⩽v

q−1
u ru ,v Tu−1 .

We will ûrst prove_eorem 1.2 followed by _eorem 1.3 and_eorem 1.1.

Proof of_eorem 1.2 Beginning with (2.4), we can compute ru ,v by calculating the
coeõcient of Tu−1 in

µz(v) = µz(sv) µsvz(s) = ( ∑
x⩽sv

q−1
x rx ,svTx−1)(q−1Ts + (1 − q−1) (svz)α

1 − (svz)α ) .

Only x = u or su can contribute to the coeõcient of Tu−1 . Comparing the coeõcients
of Tu−1 and noting that (svz)α = z−v

−1α , the recursion formula is obtained.
Now the Kazhdan–Lusztig R-polynomials satisfy a similar recurrence, at the be-

ginning of [16, Section 2]. So specializing z → ∞ in such a way that zα → ∞ for all
positive roots, we see that ru ,v → Ru ,v . For this it is important that when s is a le�
descent of v, the root −v−1α that appears in the recursion is positive.

_eorem 1.2 has the following implication for the Yang–Baxter basis µz(w),which
was pointed out to us by the referee. Suppose that we specialize z → ∞ as in _eo-
rem 1.2. _en since ru ,v(z)→ Ru ,v , using [16, (2.0.a)] and the fact that Ru ,v = Ru−1 ,v−1 ,

µz(v)Ð→∑
u

q−1
u Ru ,vTu−1 = T−1

v .

Proposition 2.3 We have ru ,v = 0 unless u ⩽ v, and rv ,v = 1. Moreover, ru ,v =
εuεvquq−1

v ru ,v .

Proof Both assertions follow from _eorem 1.2 by induction on l(v).

If u ⩽ v in W , we will denote by [u, v] the Bruhat interval {x ∈W ∣u ⩽ x ⩽ v}.

Proof of_eorem 1.3 By deûnition

mu ,v = Λ(ψuµz(v)) = ∑
x⩾u
∑
y⩽v

q−1
y ry ,vΛ(TxTy−1).
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Equation (1.4) now follows from Lemma 2.2. By Verma’s theorem, theMöbius func-
tion on the Bruhat interval [u, v] is (x , y)↦ εx εy . (See [23].) _us, (1.5) follows from
(1.4).

Lemma 2.4 We have µz(w) = qwµz−1(w).

Proof _is reduces to the case where w is a simple re�ection, and this case is easily
checked from the deûnition.

Proposition 2.5 We have

(2.5) ∑
u⩽w⩽t⩽v

Qu ,w εw εtmt ,v(z−1) = quq−1
v ∑

u⩽y⩽v
Qu ,yry ,v(z).

Proof Using Lemma 2.4,

qv ∑
u⩽v

q−1
u ru ,v(z−1)Tu−1 = qvµz−1(v) = µz(v) = ∑

y⩽v
qyry ,v(z)T−1

y .

Bearing inmind thatRu ,v = Ru−1 ,v−1 , [16, (2.0.a)] implies thatT−1
y = ∑u⩽y Ru ,yq−1

u Tu−1 .
Substituting this on the right-hand side, and comparing the coeõcients of Tu−1 , gives

ru ,v(z−1) = q−1
v ∑

u⩽y⩽v
qyRu ,yry ,v(z).

_en by _eorem 1.3,

mu ,v(z−1) = ∑
u⩽x⩽v

rx ,v(z−1) = ∑
u⩽x⩽y⩽v

q−1
v qyRx ,yry ,v(z).

By Verma’s theorem [23,25],

∑
u⩽t⩽v

εuεtmt ,v(z−1) = ∑
u⩽t⩽x⩽y⩽v

εuεtq−1
v qyRx ,yry ,v(z) = ∑

u⩽y⩽v
q−1
v qyRu ,yry ,v(z).

_us,
∑

u⩽w⩽t⩽v
Qu ,w εw εtmt ,v(z−1) = ∑

u⩽w⩽y⩽v
Qu ,wq−1

v qyRw ,yry ,v(z).

Now we require the identity

Qu ,y = q−1
u qy ∑

u⩽w⩽y
Qu ,w ⋅ Rw ,y ,

which can be deduced from [16, (2.2.a)]. Applying this gives (2.5).

_e following property of Kazhdan–Lusztig polynomials is due to Carrell and Pe-
terson [7].

(2.6) If u ⩽ v and Pu ,v = 1, then Px ,v = 1 for u ⩽ x ⩽ v .

_is is also proved in [1], where the result is stated on page 77, and the proof is con-
tained in the proof of_eorem 6.2.4.
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Proof of_eorem 1.1 Using (2.6), since Qu ,v = 1, we have Qu ,x = 1 for all x ∈ [u, v].
_us, (2.5) reads

∑
u⩽s⩽t⩽v

εsεtmt ,v(z−1) = quq−1
v ∑

u⩽y⩽v
ry ,v(z) = quq−1

v mu ,v .

_e result follows from Verma’s theorem.

Let cu ,v be as in (1.6).

Proof of_eorem 1.4 Using (2.5), write

qv ∑
x⩽y⩽z⩽t⩽v

εx εyq−1
y Px ,yQy ,zεzεtmt ,v(z−1) = ∑

x⩽y⩽t⩽v
εx εyPx ,yQy ,trt ,v(z).

Using the inversion formula [16,_eorem 3.1], the right-hand side is just rx ,v(z). Now
summing over x in [u, v] and using (1.4) gives (1.7).

In preparation for proving _eorem 1.5, deûne r′u ,v to be the inverse of (ru ,v) re-
garded as amatrix on ∣W ∣. _us,

∑
u⩽x⩽v

ru ,x r′x ,v = ∑
u⩽x⩽v

r′u ,x rx ,v = δu ,v .

_en, using Verma’s theorem, it is easy to see that

m′

u ,v = ∑
u⩽x⩽v

εx εvr′u ,x and r′u ,v = ∑
u⩽x⩽v

m′

u ,x .

_e coeõcient r′u ,v(z) specializes to εu εv Ru ,v as z → ∞. _is is clear from [16,
Lemma 2.1(ii)]. Nevertheless, we are not aware of any simple relationship between
the coeõcients r and r′.

_e coeõcients r′u ,v satisfy a recursion similar to _eorem 1.2.

Proposition 2.6 Suppose that su > u. If v < sv,

(2.7) r′u ,v = r′su ,sv +
q − 1

1 − zu−1α r
′

su ,v .

If v > sv,

(2.8) r′u ,v =
(q − 1)zu−1α

1 − zu−1α r′su ,v + qr′su ,sv .

Note that su > u implies that u−1α is a positive root.

Proof Since (r′u ,v) is the inversematrix of (ru ,v), we have

(2.9) Tv−1 = ∑
u⩽v

qvr′w ,v(z)µz(w).

First let us consider the case v > sv. _en T(sv)−1 = Tv−1T−1
s . Moreover, for any

w ∈W , we can write T−1
s as a linear combination of µwz(s) and 1 to obtain

(2.10) T(sv)−1 = ∑
w⩽v

(qvr′w ,v(z)µz(w))( µwz(s) −
1 − q−1

1 − zw−1α ) .
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_enwe can use Lemma 2.1 to compare the coeõcients of µz(su) in this equation and
in (2.9) applied to sv. In (2.10) there are two ways to get a coeõcient of su: we can
either take w = u or w = su. We obtain

qsvr′su ,sv = qvr′u ,v − r′su ,vqv ⋅
1 − q−1

1 − z−u−1α .

Applying the involution and rearranging gives (2.8).
Now let sv > v. _en T(sv)−1 = Tv−1Ts . We can proceed as before, except that now

it is Ts that we are expressing as a linear combination of µwz(s) and 1. We obtain

T(sv)−1 = ∑
w⩽v

(qvr′w ,v(z)µz(w))(qµwz(s) −
(q − 1)zw−1α

1 − zw−1α ) .

Now comparing the coeõcient of µz(sw) gives the identity

qsvr′su ,sv = qqvr′u ,v − qvr′su ,v
(q − 1)z−u−1α

1 − z−u−1α .

Applying the involution and rearranging gives (2.7).

Proof of_eorem 1.5 It is suõcient to prove that deûning

(2.11) r′(u, v) = ε(u)ε(v)rw0v ,w0u

makes the recursion of Proposition 2.6 true. Since w ↦ w0w is a Bruhat-order re-
versing bijection of theWeyl group to itself, we can apply _eorem 1.2 with u, v, and
s being replaced by w0v, w0u, and w0sw0. With this substitution, it is easy to see that
the deûnition (2.11) makes the recursion (2.7)–(2.8) true, so this deûnitionmust agree
with our original one that makes of (r′u ,v) being the inversematrix of thematrix ru ,v .
_is is equivalent to (1.8). To obtain (1.9), we use equation (1.4) to express mu ,v and
mw0v ,w0u in the le�-hand side and then use (1.8).

3 Descent Properties of mu,v

Although we will not prove the conjectured formula (1.1) we now have tools to prove
it in many cases.

Proposition 3.1 Let u, v ∈W and assume that s is a simple re�ection such that su < u
and sv < v. _en the following are equivalent:
(i) u ⩽ v,
(ii) su ⩽ v,
(iii) su ⩽ sv.

Proof _is is Property Z in Deodhar [11]. It is sometimes called the li�ing property
of the Bruhat order. See [2, Proposition 2.2.7] for a proof.

_e next result allows computation of mu ,v from mu ,sv if a simple re�ection s can
be found such that sv < v and su > u. If this is true, the map x ↦ sx is a special
matching in the sense of Brenti [3] and the reduction is reminiscent of the proof in
certain cases that that theKazhdan–Lusztig polynomials are combinatorial invariants
of the Bruhat interval poset; see [4].
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Proposition 3.2 Let u < v and let s = sα be a simple re�ection such that sv < v and
u < su. _en

S(u, v) = S(u, sv) ∪ {−v−1α} (disjoint),
and

(3.1) mu ,v = ( 1 − qz−v
−1α

1 − z−v−1α )mu ,sv .

Proof Note that by Proposition 3.1, we have u ⩽ sv. If β = −v−1α, then vrβ = sv,
so u ⩽ vrβ < v is true but u ⩽ svrβ < sv is not, showing that −v−1α ∈ S(u, v) but
not S(u, sv). If β is a positive root not equal to −v−1α, we must show β ∈ S(u, v)
if and only if β ∈ S(u, sv). First suppose that svrβ < vrβ . _en this statement is
easily deduced from Proposition 3.1. _erefore, let us assume that vrβ < svrβ . If
β ∈ S(u, sv), then u ⩽ svrβ < sv. Proposition 3.1 implies that u ⩽ vrβ , and vrβ < svrβ
while again by Proposition 3.1, svrβ ⩽ v. _erefore, β ∈ S(u, v). We are le� to check
that if β ∈ S(u, v) but β ∉ S(u, sv) then β = −v−1α. To do this, we use the Strong
Exchange Property for Coxeter groups, which is [14,_eorem 5.8]. Write v = s1 ⋅ ⋅ ⋅ sN
where the s i are simple re�ections, and the expression is reduced. Since s is a le�
descent we can assume that s1 = s. _e Strong Exchange Property states that vrβ =
s1 ⋅ ⋅ ⋅ ŝ i ⋅ ⋅ ⋅ sN for some i. Suppose that i /= 1. _en svrβ = s2 ⋅ ⋅ ⋅ ŝ i ⋅ ⋅ ⋅ sN < s2 ⋅ ⋅ ⋅ sN = sv,
while by Proposition 3.1, we have u ⩽ svrβ . _is contradicts our assumption that
β ∉ S(u, sv). _erefore, i = 1, which implies that β = sN sN−1 ⋅ ⋅ ⋅ s2(α) = v−1(−α).

We turn to (3.1). Using Proposition 3.1, the fact that sv < v and su < u implies that
u ⩽ x ⩽ v if and only if u ⩽ sx ⩽ v. _erefore

mu ,v = ∑
u⩽x⩽v

rx ,v = ∑
u⩽x⩽v
sx<x

(rx ,v + rsx ,v).

We can now use both cases of_eorem 1.2 to rewrite this. _e ûrst case of the recur-
sion applies to rx ,v , and the second applies to rsx ,v . We have

rx ,v + rsx ,v =
1 − q

1 − z−v−1α rx ,sv(z) + rsx ,sv(z) + (1 − q) z−v
−1α

1 − z−v−1α rsx ,sv(z) + qrx ,sv(z).

Simplifying, we get

rx ,v + rsx ,v = ( 1 − qz−v
−1α

1 − z−v−1α )(rx ,sv + rsx ,sv).

_e term rx ,sv can be zero, since it is possible that x is not ⩽ sv, but we always have
sx ⩽ sv by Proposition 3.1. Discarding rx ,sv when x is not sv, we get

mu ,v = ( 1 − qz−v
−1α

1 − z−v−1α ) ∑
u⩽x⩽v
sx<x

(rx ,sv + rsx ,sv) = ( 1 − qz−v
−1α

1 − z−v−1α ) ∑
u⩽x⩽sv

rx ,sv ,

which equals the right-hand side of (3.1).

Here is another type of descent result.

Proposition 3.3 Assume that sv < v and su < u. Assume further that u is not ⩽ sv.
(i) _en S(u, v) = S(su, sv).
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(ii) _e map x ↦ sx is a bijection of the Bruhat interval [u, v] = {x∣u ⩽ x ⩽ v} to
[su, sv]. If u ⩽ x ⩽ v, then sx < x and x is not ⩽ sv, and S(x , v) = S(sx , sv).

(iii) We have mu ,v = msu ,sv , ru ,v = rsu ,sv .
(iv) If, in addition, Qu ,v = 1, then Qsu ,sv = 1.

Proof To prove (i), we ûrst show that S(u, v) ⊆ S(su, sv). Let β ∈ S(u, v) and let
r = rβ , so that u ⩽ vrβ . Let v = s1 ⋅ ⋅ ⋅ sN be a reduced expression with s1 = s. _us,
vr = s1 ⋅ ⋅ ⋅ ŝ i ⋅ ⋅ ⋅ sN for some i. We claim that i /= 1. Indeed, if i = 1 then vr = sv so
u ⩽ vr, which contradicts our assumption. _erefore, i /= 1 and svr = s2 ⋅ ⋅ ⋅ ŝ i ⋅ ⋅ ⋅ sN .
Since sv = s2 ⋅ ⋅ ⋅ sN is a reduced expression, we see that svr < sv. On the other hand,
since su < u, Proposition 3.1 implies that su < svr and therefore β ∈ S(su, sv).

On the other hand, let us show that S(su, sv) ⊆ S(u, v). _us, assume that r = rβ
where β ∈ S(su, sv) and su ⩽ svr < sv. We claim that svr < vr. Indeed, if not, then
su ⩽ svr implies u ⩽ svr by Proposition 3.1 and so u ⩽ svr < sv, contradicting our
hypothesis. Now since vr > svr, u > su, and su ⩽ svr, Proposition 3.1 implies that
u ⩽ vr. On the other hand, since v > sv and svr < sv, Proposition 3.1 implies that
vr < v. (We cannot have vr = v, since r is a re�ection.) _us, u ⩽ vr < v and so
β ∈ S(u, v). Now (i) is proved.

We prove (ii). First, if x ∈ [u, v], then we claim that x > sx. Indeed, if sx > x,
then x < sv by Proposition 3.1. _en u ⩽ x < sv, contradicting our hypothesis.
Now two applications of Proposition 3.1 show that su ⩽ sx and sx ⩽ sv. _us, x ↦
sx maps [u, v] into [su, sv]. _e fact that this map is surjective also follows from
Proposition 3.1. Finally, sincewe have shown that x < sx for x ∈ [u, v], part (i) applies
to the pair x , v, implying that S(x , v) = S(sx , sv). Now (ii) is proved.
As for (iii), the fact that ru ,v = rsu ,sv follows from _eorem 1.2, since ru ,sv = 0

under our assumption that u is not ⩽ sv. By (ii), we have similarly rx ,v = rsx ,sv for
x ∈ [u, v]. Summing over x and applying the involution gives mu ,v = msu ,sv .

We prove (iv). A criterion for Px ,y = 1 due to Kazhdan and Lusztig [16, Lemma 2.6]
is that∑x⩽z⩽y Rx ,z = qyq−1

x . (Actually in this lemma this is the condition that Pz ,y = 1
for all x ⩽ z ⩽ y, but by (2.6), this is equivalent to Px ,y = 1.) By [16, Lemma 2.1(iv)]
it follows that the criterion for Qx ,y = 1 is that ∑x⩽z⩽y Rz ,y = qyq−1

x . _us, Qu ,v = 1
we have ∑u⩽x⩽v Rx ,v = qvq−1

u . Moreover, using (ii) and the recurrence [16, (2.0.b)]
for R we have Rx ,v = Rsx ,sv , and it follows that ∑su⩽sx⩽sv Rsx ,sv = qvq−1

u = qsvq−1
su .

_erefore, Qsu ,sv = 1.

Wemake the following conjecture.

Conjecture 3.4 Assume thatΦ is simply-laced and that u < v inW such that Qu ,v = 1.
_en there exists a simple re�ection s ∈W such that either:
(i) sv < v and su > u, or
(ii) sv < v and su < u, and u is not ⩽ sv.

We have checked this (using Sage) forCartan typesA5 andD4. ForA5 we ûnd 1346
pairs u < v such that no descent s of v exists satisfying either (i) or (ii), and for each
of these, we have Qu ,v /= 1. For example, we can take (u, v) = (s2 , s2s1s3s2) and the
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only descent s = s2 of v does not satisfy either (i) or (ii), but this does not contradict
the conjecture, since Qu ,v = 1 + q.

_eorem 3.5 Assume that Φ is simply-laced and Qu ,v = 1. _en Conjecture 3.4
implies (1.1), which is conjectured in [6] under these assumptions.

Proof We assume that u < v and Qu ,v = 1. Choose a le� descent s of v. If su > u,
then Proposition 3.2 applies. Note

mu ,sv = mu ,sv(z) = ∏
β∈S(u ,sv)

1 − q−1zβ

1 − zβ
.

Now Proposition 3.2 implies (1.1) for u, v.
On the other hand, if su < u, then on Conjecture 3.4 we have u not ⩽ sv, and so

Proposition 3.3 applies, and again the result follows.

We end with another puzzle. We give the root lattice the usual partial order in
which x ≽ y if x − y lies in the cone generated by the positive roots. _en the set T of
re�ections has a partial order in which if α, β ∈ Φ+, then rα ≽ rβ if and only if α ≽ b.
Let AD(u, v) = {r ∈ T ∣ru > u, rv < v}. We will write u ⊲ v to denote the covering
relation in the Bruhat order. _us, u ⊲ v if u < v and l(u) = l(v) − 1.

_eorem 3.6 (Tsukerman and Williams [24], Caselli and Sentinelli [8]) Suppose
that Φ is a simply-laced root system. Suppose u < v. _en AD(u, v) is nonempty and if
t is aminimal element, then u ⊲ tu ⩽ v and u ⩽ tv ⊲ v. In this case,

Ru ,v = qRtu ,tv + (q − 1)Ru ,tv .

Suppose in the setting of this theorem that t = rα (α ∈ Φ+). Let β = −v−1α. _en β
is a positive root. To generalize_eorem 1.2, it is natural to ask whether

(3.2) ru ,v = qrtu ,tv + (q − 1) zβ

zβ − 1
ru ,tv , β = −v−1α.

_is is o�en, but not always, true. For A3, it fails in the following cases:

u v t Pu ,v Qu ,v
s1 s1s2s3s2s1 s1s2s1 1 + q 1
s3 s1s2s3s2s1 s2s3s2 1 + q 1
s1s3 s1s2s3s2s1 s1s2s1 1 + q 1 + q
s1s3 s1s2s3s2s1 s2s3s2 1 + q 1 + q
s2 s2s1s3s2 s1s2s1 1 + q 1 + q
s2 s2s1s3s2 s2s3s2 1 + q 1 + q
s2 s3s2s1s3s2 s1s2s1 1 1 + q
s2 s1s2s1s3s2 s2s3s2 1 1 + q

Except in these cases, we have not only (3.2), but also

(3.3) mu ,v = ( 1 − qzβ

1 − zβ
)mu ,tv .
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We can conjecture that (3.2) and (3.3) are true if both Pu ,v = Qu ,v = 1. (_is has been
checked for A4 as well as A3.) _is does not imply the conjecture (1.1), because of the
condition Pu ,v = 1.
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