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A WILD BOOTSTRAP FOR
DEPENDENT DATA

ULRICH HOUNYO

University at Albany, SUNY and CREATES

This paper introduces a novel wild bootstrap for dependent data (WBDD) as a means
of calculating standard errors of estimators and constructing confidence regions
for parameters based on dependent heterogeneous data. The consistency of the
bootstrap variance estimator for smooth function of the sample mean is shown to
be robust against heteroskedasticity and dependence of unknown form. The first-
order asymptotic validity of the WBDD in distribution approximation is established
when data are assumed to satisfy a near epoch dependent condition and under the
framework of the smooth function model. The WBDD offers a viable alternative
to the existing non parametric bootstrap methods for dependent data. It preserves
the second-order correctness property of blockwise bootstrap (provided we choose
the external random variables appropriately), for stationary time series and smooth
functions of the mean. This desirable property of any bootstrap method is not known
for extant wild-based bootstrap methods for dependent data. Simulation studies
illustrate the finite-sample performance of the WBDD.

1. INTRODUCTION

The bootstrap of Efron (1979) is a very popular and powerful nonparametric
method to approximate the sampling distribution and the variance of complicated
statistics based on independent and identically distributed (i.i.d.) observations.
When dealing with independent but heterogeneously distributed observations, the
so-called wild bootstrap, introduced by Wu (1986) and further studied by Liu
(1988) and Mammen (1993), is commonly used and is known to perform well
for approximatively linear statistics. As extensions of Efron’s i.i.d. bootstrap and
Wu’s wild bootstrap to dependent observations, blocking-based and wild-based
bootstrap methods for dependent data can be used, respectively, to approximate the
sampling distributions and variances of statistics in time series. To form a bootstrap
sample, blockwise bootstrap methods involve resampling blocks of observations,
whereas wild-based bootstrap methods for dependent data require the use of
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auxiliary variables (which weights the data), in a manner appropriate to capture
temporal dependence nonparametrically.

Künsch (1989) and Liu and Singh (1992) proposed the moving block bootstrap
(MBB) method, which samples the overlapping blocks with replacement and then
pastes the resampled blocks together to form a bootstrap sample. Based on the
idea of resampling blocks, a few variants of the MBB have been developed, such
as the nonoverlapping block bootstrap (NBB) (Carlstein, 1986), the stationary
bootstrap (SB) (Politis and Romano, 1994), and the tapered block bootstrap
(TBB) (Paparoditis and Politis, 2001, Paparoditis and Politis, 2002), among others.
The idea of modifying and extending Wu’s method (Wu, 1986) to dependent
data appears in Yeh (1998), Inoue (2001), and Shao (Shao, 2010; Shao, 2011),
among others. More recently, in the context of noisy diffusion models, Hounyo,
Gonçalves, and Meddahi (2017), Hounyo et al. (2017), and Christensen, Hounyo,
and Podolskij (2018) have proposed and studied a wild-based bootstrap method for
dependent data, called the wild blocks of blocks bootstrap (WBBB). The WBBB
method allows some time series heterogeneity, which are present in financial high-
frequency data.

It is well known that block-based bootstrap methods (e.g., MBB and SB) can
accommodate a large class of heterogeneous weakly dependent time series, see for
example, Gonçalves and White ((Gonçalves and White, 2002), (Gonçalves and
White, 2004)), see also Gonçalves et al. (2019). Moreover, these methods (e.g.,
MBB, NBB, and SB) are known to provide approximations to the distribution of
a statistic that are (theoretically) superior to those obtained from using a Gaussian
asymptotic approximation that is, asymptotic refinement. This is one of the key
properties of any bootstrap method, in order to get better inferences. To the best of
our knowledge, there is no result on a potential higher-order correctness for extant
wild-based bootstrap methods for dependent data.

In this paper, we introduce a new wild-based bootstrap method for dependent
data, that is generally applicable for dependent heterogeneous arrays. We name
this novel approach the WBDD. As in Gonçalves and White (2002), the data
are assumed to satisfy a near epoch dependent (NED) condition, which includes
the more restrictive mixing assumption as a special case. NED processes also
allow for considerable heterogeneity. For the smooth function model, we found
that the WBDD is robust against heteroskedasticity and dependence of unknown
form. The validity of wild-based bootstrap methods for dependent data has not
yet been studied in heterogeneous context, and with the degree of dependence
considered here. Our results broaden considerably the scope for application of the
new WBDD in economics and finance, where the homogeneity of data and the
mixing assumption are often a concern. Although it is convenient to implement
the WBDD on dependent heterogeneous data, we also should note that (like the
extant wild-based bootstrap methods,) the WBDD is not as widely applicable as
blocking-based bootstrap methods.

We show that the external random variable ut used to generate the WBDD
observations, can be chosen such that the WBDD variance estimator of the
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asymptotic variance of the statistic of interest is exactly equal to the TBB variance
estimator. Therefore, the WBDD preserves the favorable bias and mean squared
error properties of the TBB, which is the state-of-the-art block-based method in
terms of asymptotic accuracy of variance estimation and distribution approxima-
tion. Finally, our results show that similarly to block-based bootstrap methods,
the WBDD can provide an asymptotic refinement over the first-order asymptotic
distribution. We study the second-order correctness properties of the WBDD
procedure under the restrictive stationarity (not heterogeneous) assumption, as
for the equivalent settings in Götze and Künsch (1996). Specifically, we build upon
the work of Götze and Künsch (1996), and show the second-order accuracy of
the WBDD in the smooth function model, for stationary time series data. In this
framework, conditional on the observed data, we show that the WBDD statistic
of interest can be written as an average of independent random vectors. Hence,
the WBDD approach naturally lends itself to the asymptotic expansions, which
may be derived by simply using the Edgeworth expansion theory for independent
random vectors. As for the plain wild bootstrap, we find that the main reason for
the second-order correctness of the WBDD procedure is the asymptotically correct
skewness of the bootstrap distribution. More specifically, if the external random
variable ut in addition to having mean 0, second moment satisfying �E(ut)

2 → 1,
where � denotes the block size, and/or a bandwidth parameter, and where its third
central moment satisfying �E(ut)

3 → 1, then the WBDD shares with the standard
wild bootstrap and block-based bootstrap methods the property of second-order
accuracy after studentization. This desirable feature of asymptotic refinement of
the WBDD is not known for extant dependent wild-based bootstrap methods.
Therefore, the WBDD method constitutes a viable alternative to the existing
methods.

The WBDD applies the standard wild bootstrap to overlapping tapered or
nontapered blocks. However, the WBDD is not a block-based bootstrap in the
sense that it does not involve any block resampling or some random block selection
as all other existing block bootstraps (e.g., MBB, NBB, TBB, and SB). Instead,
an implied data block structure is used in the WBDD approach only to obtain a
scheme for a “multiplier-type” bootstrap. Our WBDD can be related to Paparoditis
and Politis’s (Paparoditis and Politis, 2001) TBB in the same way that Wu’s (Wu,
1986) wild bootstrap is related to Efron’s (Efron, 1979) bootstrap.

There are at least two different valid interpretations of the WBDD method.
One is that the WBDD can be viewed as a simple variant of the traditional wild
bootstrap. The main difference from the traditional wild bootstrap is that the data
are first transform (with or without tapering) before applying the traditional wild
bootstrap on the transformed data. As Wu’s (Wu, 1986) wild bootstrap, the WBDD
can also handle elegantly heteroskedasticity in the data. The other interpretation is
that the WBDD method is akin to the DWB of Shao (2010). As the DWB, the
WBDD extends the traditional wild bootstrap of Wu (1986) to the time series
setting by allowing a transformation of the auxiliary variables involved in the
wild bootstrap to be dependent, hence, the WBDD is capable of mimicking the
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dependence in the original series nonparametrically. Our new approach can also
be viewed as a kind of generalized DWB. In particular, in contrast to the DWB,
the WBDD method does not require the choice of the external random variable to
be from a stationary process.

The remainder of the paper proceeds as follows. In Section 2, after outlining
some preliminaries, we introduce the WBDD, describe the assumptions, and estab-
lish the consistency of our bootstrap for both variance estimation and distribution
approximation of the smooth function of sample mean when data are assumed
to satisfy an NED condition. In Section 2, we also provide examples of weights
for the WBDD, which can be used in practice. Section 3 studies the second-
order correctness property of the WBDD. The results from simulation studies are
reported in Section 4. Section 5 concludes. Additional assumptions for the second-
order validity of the WBDD and its proof are collected in Appendices A and B,
respectively. An online supplementary appendix provides technical lemmas and
the proofs of the WBDD variance and distribution consistency results.

2. THE WILD BOOTSTRAP FOR DEPENDENT DATA

This section introduces the framework, notations, the WBDD method, provides the
assumptions and establishes the asymptotic validity of the bootstrap. Moreover, we
illustrate the choice of auxiliary variables in our context.

2.1. Some Preliminaries

The set-up follows that of Gonçalves and White (2002) in which general
dependence conditions and also heterogeneity in data are allowed. Suppose
{XNt,N,t = 1,2. . .} is a double array of not necessarily stationary (can be
heterogeneous) random vectors defined on a given probability space (�,F,P)

and NED on a mixing process {Vt}. We define {XNt} to be NED on a mixing
process {Vt} if ‖XNt‖2 < ∞ and υk ≡ supN,t

∥∥XNt −E
t+k
t−k (XNt)

∥∥
2 → 0 as k → ∞.

Here and in what follows, ‖XNt‖p ≡ (E |XNt|p)1/p is the Lp norm and E
t+k
t−k (·) ≡

E
(·|F t+k

t−k

)
, where F t+k

t−k ≡ σ (Vt−k, . . . ,Vt+k) is the σ -field generated by
Vt−k, . . . ,Vt+k. If υk = O

(
k−a−δ

)
for some δ > 0, we say {XNt} is NED of

size −a. We assume {Vt} is strong mixing. The strong mixing coefficients are
αk ≡ supm sup{A∈Fm−∞,B∈F∞

m+k} |P(A∩B)−P(A)P(B)|, and we require αk → 0 as
k → ∞ at an appropriate rate.

Let μNt ≡ E(XNt) for t = 1,2, . . . ,N,μ̄N ≡ N−1∑N
t=1 μNt, and θ ≡ H (μ̄N), for

some (smooth) function H : Rd → R. Given a realization of {XNt} denoted by
XN, the goal is to make inferences about θ based on θ̂N = H

(
X̄N
)
, where X̄N =

N−1∑N
t=1 XNt is the sample mean. In particular, we are interested in constructing a

confidence region for θ or constructing an estimate of the variance Var(
√

Nθ̂N), or
its asymptotic limit σ 2∞ = lim

N→∞Var(
√

Nθ̂N). Typically, an estimate of the sampling

distribution of θ̂N is required, and the WBDD method proposed here is developed
for this purpose.
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Notice that this framework (in addition to allowing general dependence condi-
tions and heterogeneity) is sufficiently general to include many statistics of prac-
tical interest, such as autocovariance, autocorrelation, the Yule-Walker estimators
of autoregressive parameters in an auto-regression model, and other interesting
statistics in time series (see e.g., (Bhattacharya and Ghosh, 1978; Hall, 1992;
Lahiri, 2003)).

Let h(x) = {∂H (x)/∂x1,∂H (x)/∂x2, . . . ,∂H (x)/∂xd}′
be the vector of first-

order partial derivatives of H at x. Consider now the new series

YNt ≡ h
(
X̄N
)′ (

XNt − X̄N
)

for t = 1,2, . . . ,N. (1)

The WBDD involves perturbing appropriately a weighted and centered version of
YNt. In practice, the WBDD method can be implemented with or without tapering.
Following Paparoditis and Politis (Paparoditis and Politis, 2001; Paparoditis
and Politis, 2002) for block tapering, we introduce a sequence of data-tapering
windows wn (·) for n = 1,2, . . . ; the weights wn (t) are values in [0,1], with
wn (t) = 0 for t /∈ {1,2, . . . ,n} . From the above, it is immediate that ‖wn‖1 ≤ n and
‖wn‖2 ≤ n1/2, where ‖wn‖1 = ∑n

t=1 |wn (t)| and ‖wn‖2 = (∑n
t=1 w2

n (t)
)1/2

. The
idea behind the (multiplicative) application of a tapering window to data is to give
reduced weight to data near the end-points of the window. The notion of tapering
for time series especially in connection to spectral estimation is well-studied; see,
for example, Priestley (1981) and Künsch (1989).

As usual in the bootstrap literature, P∗ (E∗ and Var∗) denotes the probability
measure (expected value and variance) induced by the bootstrap resampling,
conditional on a realization of the original time series. In addition, let “→d” and
“→P” denote convergence in distribution and in probability, respectively, and let
Op (1) and op (1) denote being bounded in probability and convergence to zero
in probability, respectively. Finally, for α =(α1, . . . ,αd)

′ ∈ N
d, let Dα denote the

differential operator Dα = ∂α1+...+αd

∂x
α1
1 ,...,∂x

αd
d

on R
d.

2.2. The Bootstrap Method

To present the WBDD method, we let � = �N ∈ N denote the block size, and/or a
bandwidth parameter such that 1 ≤ � < N, and

Ȳ�,w = 1

Q

Q∑
j=1

�∑
i=1

w� (i)

‖w�‖1
YN,i+j−1 =

N∑
t=1

Q∑
j=1

w� (t − j+1)

Q‖w�‖1︸ ︷︷ ︸
≡aN (t)

YN,t =
N∑

t=1

aN (t)YNt,

be the tapered moving (overlapping) block sample mean, where Q ≡ N − � + 1.
Similarly, we let X̄�,w = ∑N

t=1 aN (t)XNt. Note that
∑N

t=1 aN (t) = 1. For t =
1,2, . . . ,N, we define the WBDD pseudo-observations as
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Y∗
Nt − ȲN =

Q∑
j=1

(
�∑

i=1

(
w� (i)

‖w�‖2

(
YN,i+j−1 − Ȳ�,w

))
1{t} (i+ j−1)

)√
�uj, (2)

where ȲN = N−1∑N
t=1 YNt, 1{·} is the indicator function, uj,j = 1, . . . ,Q, is a

sequence of i.i.d. external random variables subject to mild regularity conditions,
including mean 0 and second moment satisfies �E(u)2 → 1, which are formalized
in Assumption WBDD (cf. Section 2.3). Y∗

Nt can be equivalently rewritten as

Y∗
Nt − ȲN = (

YNt − Ȳ�,w
)
ηt, (3)

where ηt ≡∑Q
j=1

w�(t−j+1)

‖w�‖2

√
�uj.

We now offer some remarks on the WBDD. The decomposition in (2) highlights

that for t = 1, . . . ,N, the tapered multiplicative weights
{

w�(i)
‖w�‖2

}�

i=1
used at time

point t depend on the position that YNt occupies within a block of � consecutive
observations. An implied data block structure is used in the WBDD approach only
to obtain a scheme for a “multiplier-type” bootstrap.

Remark 1. In the case of the sample mean, without tapering, our WBDD can
be viewed as the overlapping version of the nonoverlapping wild-based bootstrap
method for dependent data studied by Shao (2011), in the context of approximation
of the sampling distribution of the Cramér-von Mises test statistic; see also the
related work of Yeh (1998) and Inoue (2001). It is also related to the overlapping
WBBB method of Christensen et al. (2018) and the nonoverlapping WBBB
method of Hounyo et al. (Hounyo et al., 2017) and Hounyo (2017). The latter
is a modified version of Shao’s (Shao, 2011) approach, where one replaces the
global sample mean by sample means computed locally over blocks of consecutive
� observations.

The reformulation (3) emphasises the way the WBDD method is related to
the DWB method, which is proposed by Shao (2010) for stationary time series.
As the DWB, the auxiliary variables {ηt}N

t=1 involved in the wild bootstrap are
dependent. However, notice that unlike the DWB, the random variables {ηt}N

t=1
are not stationary even in the case of no tapering, and observations are centered
around Ȳ�,w, but not around ȲN, (see the RHS of (3)). The centering and the non-
stationarity of {ηt}N

t=1 are all important for higher-order refinement. The DWB
pseudo-time series are generated such that one can mainly capture the second-
order moment structure of the observed time series. The first-order asymptotic
validity of the DWB follows essentially from the convergence of the DWB variance
estimator of σ 2∞ towards σ 2∞; see Shao (2010). As explained in Shao (2010)
(cf. page 223), for the DWB, “it is a hard task to design the joint distribution
for [the DWB auxiliary variables] to match the higher-order cumulants of the
unknown data-generating process.” In contrast, for the WBDD, it is very easy to
choose auxiliary variables to match higher-order cumulants. Specifically, given (2),
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the WBDD pseudo-observations are obtained by generating simple i.i.d {ut}Q
t=1

random variables, as for the plain wild bootstrap. Motivated by the practical
flexibility of choosing the weights {ut}Q

t=1, we study in Section 3 the second-order
correctness of the WBDD method.

2.3. Assumptions

It is customary to obtain the sequence of data-tapering windows wn (·) by means
of dilations of a single function w : R → [0,1], so that

wn (t) = w

(
t −0.5

n

)
. (4)

We follow Paparoditis and Politis (Paparoditis and Politis, 2001, Paparoditis and
Politis, 2002) and assume that the function w(·) satisfies the following assump-
tions.

Assumption 1. We have w(t) ∈ [0,1] for all t ∈ R, w(t) = 0 if t /∈ [0,1], and
w(t) > 0 for t in a neighbourhood of 1

2 .

Assumption 2. The function w(t) is symmetric about t = 1
2 and nondecreasing

for t ∈ [0, 1
2

]
.

Assumption 3. The self-convolution is twice continuously differentiable at the
point t = 0, where w∗w(t) = ∫ 1

−1 w(x)w(x+|t|)dx.

To state our results, we need a smoothness assumption on the function H. We
make the following assumption.

Assumption 4. The function H is differentiable in a neighborhood of μ̄N that is,
NH = {

x ∈ R
d : ‖x− μ̄N‖2 ≤ ε

}
for some ε > 0,

∑
|α|=1 |DαH (μ̄N)| �= 0, and the

first partial derivatives of H satisfy a Lipschitz condition of order s > 0 on NH .

We also follow Gonçalves and White (2002) and make the following assumption
on {XNt}.

Assumption 5.

(a) For some r > 0, ‖XNt‖ 3r ≤ � < ∞ for all N,t = 1,2, . . .
(b) {XNt} is near epoch dependent (NED) on {Vt} with NED coefficients αk of size

− 2(r−1)

(r−2)
; {Vt} is an α-mixing sequence with αk of size − 2r

r−2 .

Finally, we impose the following general condition on the external random
variable uj.

Assumption WBDD. The sequence of random variables uj,j = 1, . . . ,Q =
N − � + 1, is independent of the original observed sample XN . Moreover, it
is independent and identically distributed and satisfies the following regularity
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conditions: E(u) = 0, Var(
√

�u) = �E(u)2 → 1 and for some δ > 0,�E
(|u|2+δ

)→
Cδ < ∞, as N → ∞,� → ∞ such that �/N = o(1), where Cδ is a nonrandom
constant.

It is worth noting that the process uj should be written as uNj, where the
dependence on N is suppressed for notational convenience. When � = 1 the
requirements on the weights {uj}Q

j=1 in Assumption WBDD become E(u) = 0,

Var (u) = 1 and for some δ > 0,E
(|u|2+δ

)
< ∞, which are standard in the wild

bootstrap literature, see for example, Kline and Santos (2012).

2.4. Bootstrap Validity

We here establish the validity of the WBDD. Let us denote SN ≡ N1/2
(
X̄N − μ̄N

)
.

Recall that under some suitable conditions (cf. Assumption 4), WN is asymptoti-
cally equivalent to h(μ̄N)′ SN . Additionally, we have

WN ≡ √
N
(
H
(
X̄N
)−H (μ̄N)

)→d N
(
0,σ 2

∞
)

. (5)

The asymptotic variance of WN can be written as

σ 2
∞ = lim

N→∞σ 2
N, with σ 2

N ≡ h(μ̄N)′ Var (SN)h(μ̄N) . (6)

We define the WBDD variance estimator of σ 2
N as σ ∗2

N ≡ Var∗ (W∗
N

)
, where W∗

N ≡
N1/2

(
Ȳ∗

N − ȲN
)

.

Remark 2. Note that a straightforward analytical calculation (see part (b) of
Lemma C1.1. in the supplementary appendix for further details) shows that

σ ∗2
N = Q

N︸︷︷︸
→1

(�Var (u))︸ ︷︷ ︸
→1

σ
∗2(TBB)
N , (7)

where σ
∗2(TBB)
N = 1

Q
1

‖wl‖2
2

∑Q
j=1

(
�∑

i=1
w� (i)Xi+j−1 −‖w�‖1 X̄�,w

)2

denote the TBB

estimator of the asymptotic variance σ 2∞ based on block size �. This implies that
the WBDD method preserves the favorable bias and MSE properties of the TBB.

Furthermore, it is useful to note that if in (2), we used
(Q

N (�Var (u))
)−1/2

uj,j =
1, . . . ,Q, as external random variable, (instead of uj) to obtain the WBDD pseudo-

observations, then σ ∗2
N = σ

∗2(TBB)
N , implying that MSE

(
σ ∗2

N

)=MSE
(
σ

∗2(TBB)
N

)
.

As Gonçalves and White (2002) pointed out (for the MBB and the SB), we
also found for the WBDD, (see Theorem 2.1) that under arbitrary heterogeneity
in {XNt} the WBDD variance estimator σ ∗2

N is not consistent for σ 2
N , but for

h(μ̄N)′ (Var (SN)+UN)h(μ̄N). The bias term h(μ̄N)′ UNh(μ̄N) is related to the
heterogeneity in the means {μNt} and can be interpreted as the WBDD variance

estimate of the scaled sample mean h(μ̄N)′
√

Nμ̄∗
N = h(μ̄N)′

(
N−1/2∑N

t=1 μ∗
Nt

)
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that would result if we could resample the time series {μNt}. We follow Gonçalves
and White (2002) and call

{
μ∗

Nt

}
the “resampled version” of {μNt}. σ 2

N can be easily
obtained using the WBDD variance σ ∗2

N under some homogeneity condition. The
following theorem and its corollary provide the theoretical justification.

THEOREM 2.1. Suppose that equation (4), Assumptions 1–5 and Assumption
WBDD hold. If �N → ∞ as N → ∞ such that �N = o

(
N1/2

)
, then,

(a) σ ∗2
N −h(μ̄N)′(Var(SN)+UN)h(μ̄N)

P→ 0, where UN ≡ Var∗
(

N−1/2∑N
t=1 μ∗

Nt

)
.

(b) UN = Q
N �Var (u)

�−1∑
τ=−�+1

v�(τ )

v�(0)

N−|τ |∑
t=1

βN,t,τ
(
μNt − μ̄�,w

)(
μN,t+|τ | − μ̄�,w

)′
,

where v� (τ ) =∑�−|τ |
i=1 w� (i)w� (i+|τ |),μ̄�,w =∑N

t=1 aN (t)μNt, and
βN,t,τ = 1

v�(τ )
1
Q

∑Q
j=1 w� (t − j+1)w� (t − j+1+|τ |) with τ < j.

(c) σ ∗2
N −h(μ̄N)′ Var (SN)h(μ̄N)

P→ 0, as limN→∞ UN = 0.

Thus, the condition limN→∞ UN = 0 is the homogeneity condition on the mean,
analogous conditions are given by Liu (1988) for the plain wild bootstrap, by
Gonçalves and White (2002) for the MBB, and recently by Hounyo et al. (2017)
and Hounyo ((Hounyo, 2017), cf. equation (13)) for the wild blocks of blocks
bootstrap method. In our setting, for the WBDD approach, to ensure this condition,
one can for example suppose that

Assumption 6. N−1∑N
t=1 (μNt − μ̄N)(μNt − μ̄N)′ = o

(
�−1

N

)
where �N =

o
(
N1/2

)
.

Assumption 6 amounts to Assumption 2.2 in Gonçalves and White (2002).
As they explain, this assumption is rather general allowing for breaks in mean.
See Gonçalves and White (2002) for particular examples of processes that satisfy
Assumption 6. The following consistency result is an immediate consequence of
the previous Theorem 2.1.

COROLLARY 2.1. Suppose that equation (4), Assumptions 1–6 and Assump-
tion WBDD hold. If �N → ∞ as N → ∞ such that �N = o

(
N1/2

)
, then σ ∗2

N −
h(μ̄N)′ (Var (SN))h(μ̄N)

P→ 0.

In the following theorem, we provide a theoretical justification for using the
WBDD distribution of W∗

N to estimate the distribution of WN under general
dependence conditions. As in Gonçalves and White (2002), we require a slightly
stronger dependence condition than Assumption 5.(b). Specifically, we impose:

Assumption 5.(b’). For some small δ > 0, {XNt} is L2+δ-NED on {Vt} with
NED coefficients υk of size − 2(r−1)

r−2 ; {Vt} is an α-mixing sequence with αk of size

− (2+δ)r
r−2 .
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THEOREM 2.2. Suppose that equation (4), Assumptions 1–6 and Assumption
WBDD hold, strengthened by Assumption 5.(b’). If �N → ∞ as N → ∞ such that
�N = o

(
N1/2

)
, then supx∈R

∣∣P∗ (W∗
N ≤ x

)−P(WN ≤ x)
∣∣= op (1) .

Theorem 2.2 justifies using the WBDD to build asymptotically valid confidence
intervals for (or test hypotheses about) μ̄N, even though there may be considerable
heterogeneity.

2.5. Examples of Weights for the Wild Bootstrap for Dependent Data

This section contains some examples of external random variables which satisfy
Assumption WBDD. Our intention in including these examples is to show the
scope of random variables that are covered by Assumption WBDD (and can be
used in practice). In each case, we can make connection with well known weights
used in practice with the standard wild bootstrap based on independent data.

Example 2.3 (WBDD1). uj = 1
�

∑j�
i=(j−1)l+1 ṽi,j = 1, . . . ,Q, where ṽi = vi −

E(vi) such that vi ∼ i.i.d. N (0,1), implying that E(uj) = 0, �E(u2
j ) = 1 and

�E(u3
j ) = 0.

Example 2.4 (WBDD2). uj = 1
�

∑j�
i=(j−1)l+1 ṽi,j = 1, . . . ,Q, where ṽi = vi −

E(vi) with vi ∼ i.i.d. two-point distribution such that:

vi =
{

1, with prob p = 1
2,−1, with prob 1−p,

for which we have E(uj) = 0, �E(u2
j ) = 1 and �E(u3

j ) = 0.

Example 2.5 (WBDD3). uj = 1
�

∑j�
i=(j−1)l+1 ṽi,j = 1, . . . ,Q, where ṽi = vi −

E(vi) with vi ∼ i.i.d. two-point distribution such that:

vi =
⎧⎨
⎩

�+
√

�2+4
2 , with prob p =

√
�2+4−�

2
√

�2+4
,

�−
√

�2+4
2 , with prob 1−p,

for which E(uj) = 0, �E(u2
j ) = 1 and �E(u3

j ) = 1.

Example 2.6 (WBDD4). uj = 1
�

∑j�
i=(j−1)l+1 ṽi,j = 1, . . . ,Q, where ṽi = vi −

E(vi) such that vi ∼ i.i.d.�(α,β), that is, vi ∼ i.i.d. with gamma distribution having
density

f (x) = βα

� (α)
xα−1 exp(−βx)1{x>0},

where �(α) = ∫∞
0 xα−1 exp (−x)dx. Implying that E(uj) = 0, �E(u2

j ) = 1 and
�E(u3

j ) = 1.
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Example 2.7 (WBDD5). uj = (
vj −E(vj)

)
,j = 1, . . . ,Q, where vj ∼ i.i.d. such

that

(
v1, . . . ,vQ

)′ ∼ Multinomial

(
N

�
,
(
Q−1, . . . ,Q−1

))
,

with N
�

(assume here for simplicity to be) an integer. It follows that E(uj) = 0,
�E(u2

j ) → 1,and �E(u3
j ) → 1, as N → ∞,� → ∞ such that �/N = o(1) and Q =

N −�+1.

For further details on E(uj),�E(u2
j ) and �E(u3

j ), see Appendix C2, in the
Supplementary Appendix. It is worth mentioning that in Examples 2.3–2.6, the
external random variables

√
�uj, j = 1, . . . ,Q are independent block-variables

defined on nonoverlapping blocks of length �. Specifically,
√

�uj are scaled sum of
� (nonoverlapping) mean-zero i.i.d. random variables. The effect due to block aver-
aging is important in these cases to ensure the moment conditions on

√
�uj. When

� = 1, WBDD2 boils down to the so-called Rademacher distribution originally
proposed by Liu (1988). WBDD3 generalizes the two-point distribution suggested
by Mammen (1993) for independent data in our context of dependent data.
Similarly, WBDD4 generalizes the example of external random variable which
ensures the second-order correctness of the wild bootstrap originally proposed by
Liu (1988) (cf. Example 4) in our setting of dependent data. WBDD5 is related to
the weight used in Gonçalves et al. (2019) to rewrite the MBB sample mean as a
weighted average sum, in the context of estimating standard errors of parameters
estimated via multi-stage QMLE estimators.

A natural question is whether the WBDD distribution can provide second-
order accuracy that improves on the normal approximation. We will show in
Section 3 that the further condition �E(u3

j ) → 1 (satisfied by WBDD3, WBDD4,
and WBDD5) is a necessary condition for asymptotic refinement of the WBDD
method.

3. SECOND-ORDER CORRECTNESS OF THE WBDD

In this section, we access the second-order accuracy of the WBDD method for the
studentized statistic. To do so, we follow Götze and Künsch (1996) and impose
stationarity in our framework. Under stationarity, σ 2

N can be written as

σ 2
N = h(μ)′

⎡
⎣ N∑

j=−N

(1−|j|/N)� (j)

⎤
⎦h(μ), (8)

where μ = μNt for all N and t, �(j) = Cov
(
X0,Xj

) = E(X0 −μ)
(
Xj −μ

)′
. Note

that Xj should be written as XNj, where the dependence on N is suppressed for
notational convenience (under stationarity). A class of consistent estimators of the
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asymptotic variance σ 2∞ is given by

σ̂ 2
N = h

(
X̄N
)′⎡⎣�−1∑

j=0

k̃jN�̂ (j)

⎤
⎦h
(
X̄N
)
,

where �̂ (j) = N−1∑N−�
i=1

(
Xi − X̄N

)(
Xi+j − X̄N

)′
. The lag weights k̃jN = 2k̃ (j/�),

1 ≤ j ≤ �− 1 for some continuous function k̃ : [0,1) → [0,1] with k̃ (0) = 1. We
consider the following studentized statistic:

TN,stud = WN σ̂−1
N , (9)

which has a standard normal distribution, asymptotically. Our aim is to use the
WBDD and propose a better than normal approximation of the distribution of
TN,stud.

Note that we can equivalently rewrite W∗
N as follows:

W∗
N = N−1/2

Q∑
j=1

Bj ·
(√

�uj

)
︸ ︷︷ ︸

=B∗
j

, (10)

where Bj = B̃j − 1
Q

∑Q
j=1 B̃j, with B̃j = h

(
X̄N
)′

1
‖w�‖2

∑�
i=1 w� (i)XN,i+j−1, see

Lemma C1.1 in the supplementary appendix for further details.

Remark 3. The representation of W∗
N given in (10) would drive the second-order

correctness property of the WBDD. The reason is that conditional on XN,W∗
N is

a simple scaled sum of a collection of Q independent random vectors. Hence, an
expansion for W∗

N may be derived by simply using the Edgeworth expansion theory
for independent random vectors.

In the following, and throughout this section, we let w(t) = 1[0,1] (i.e., no taper-
ing), implying that ‖w�‖2 = �1/2 and Bj = h(X̄N)

′
Aj, with Aj ≡ �−1/2∑�

i=1(Xi+j−1 −
X̃N), where X̃N = �−1Q−1∑Q

j=1

∑�
i=1 Xi+j−1. Under Assumption WBDD, uj ∼

i.i.d., and given (10), it follows that

σ ∗2
N = Q

N︸︷︷︸
→1

(�Var (u))︸ ︷︷ ︸
→1

·σ ∗2(MBB)
N , (11)

where σ
∗2(MBB)
N ≡ Q−1∑Q

j=1 B2
j is the MBB variance estimate of σ 2∞ (i.e., analog

of σ ∗2
N based on MBB resampling approach). As bootstrap variance estimator of

σ ∗2
N , we propose

σ̂ ∗2
N ≡ Q−1

Q∑
j=1

B̂∗2
j ,
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where B̂∗
j = B̂j

√
�uj, with B̂j ≡ h(X̄N)

′
�−1/2∑�

i=1(Xi+j−1 − X̄N) = Bj +
h(X̄N)

′
�1/2(X̃N − X̄N).

The studentized WBDD statistic is then

T∗
N,stud = W∗

N σ̂ ∗−1
N .

Note that when Y̌i ≡ h(μ)′ (Xi −μ) are correlated, σ̂ ∗2
N −σ 2

N is always at least of
order Op

(
N−1/3

)
. Therefore, in using B̂j instead of Bj, we can remove the error

due to the wrong variance estimation. In particular, we have E
∗ (σ̂ ∗2

N

) = σ ∗2
N +

h
(
X̄N
)′

�1/2
(

X̃N − X̄N

)
︸ ︷︷ ︸

=Op(�/N)

. We can prove the following theorem.

THEOREM 3.1. Let conditions (C.1)-(C.7) (in Appendix A) hold. Assume that
� satisfies

(log(N))C � � ≤ N1/3,

with C large enough and k̃ ≡ 1. Furthermore, suppose {R∗
j ≡ (Bj,A′

j)
′ · √�uj,j =

1, . . . ,Q}, where uj ∼ i.i.d. satisfy Assumption WBDD with

�E
(
uj
)3 → 1, (12)

E|√�uj|qs+δ ≤ UN,qs+δ → Cqs+δ < ∞, (13)

for some δ > 0, as N → ∞,� → ∞ such that �/N = o(1) and for some integers
q ≥ 3,s ≥ 8. Suppose, in addition that the

√
�uj satisfy Cramér’s condition, that is,

for all r > 0, there exists Mr ∈ (0,1) such that∣∣φQ,j(t)
∣∣≤ Mr for all ‖t‖ ≥ r and Q ≥ 1,1 ≤ j ≤ Q, (14)

where φQ,j is the characteristic function of R∗
j under P∗. Then

sup
x∈R

∣∣P∗ {T∗
N,stud ≤ x

}−P
{
TN,stud ≤ x

}∣∣= Op
(
�N−1+2/s +�−1N−1/2) .

Theorem 3.1 shows that the WBDD approximation to the distribution of the stu-
dentized statistic TN,stud is more accurate than the limiting normal approximation.
Thus, like the standard wild bootstrap of Wu (1986) and Liu (1988), the WBDD
also outperforms the asymptotic normal approximation under dependence. This
feature is not known for extant wild-based bootstrap methods for dependent data.
Notice that in Theorem 3.1, results are derived for the WBDD with no tapering.
We conjecture that the tapering case would follow using the proof strategies as in
Götze and Künsch (1996), under some additional regularity conditions, although
a rigorous proof is well beyond the scope of this paper.

Remark 4. A sufficient condition for (14) is that the probability distribution
of R∗

j has an absolutely continuous component with respect to the Lebesgue
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measure on R
d+1. Hence, the external random variable WBDD4 (see Example

2.6) with a distribution that has a density satisfies (14). Unfortunately, the external
random variables WBDD2 and WBDD3 (cf. Examples 2.4 and 2.4) do not satisfy
condition (14) and hence it is unlikely that the second-order Edgeworth expansions
of the WBDD studentized statistic T∗

N,stud exist for both choices. As the plain
wild bootstrap, the WBDD provides the usual skewness correction whenever the
requirement �E(u3

j ) → 1 holds. See for example, WBDD3, WBDD4, and WBDD5
in Examples 2.5–2.7. The finite sample properties of all these external random
variables are examined in the simulation study.

4. SIMULATION STUDIES

In this section, we study via simulations the finite-sample performance of the
WBDD. We focus on the inference of the population mean μ of a time series.
Performance is measured in terms of empirical coverage probability of two-
sided 95% level intervals, length of confidence intervals and empirical MSE.
In the simulation studies, we considered three different models generating the
observations, namely:

Model 1. Nonlinear autoregressive model, NAR,

Xt = ρ sin(Xt−1)+υt,

for t ∈ Z, where {υt} i.i.d. N (0,1), with ρ ∈ {0.2,0.6}.
Model 2. Heteroskedastic AR(1), with periodic innovation variance

Xt = ρXt−1 +υt, and υt = stυ̃t,

for t ∈ Z, where {υ̃t} i.i.d. N (0,1), with ρ ∈ {0.2,0.6}. Here, {st} denotes
a sequence of real numbers that might be regarded as seasonal effects.
Throughout, we choose {st} to be the infinite repetition of the sequence
{1,1,1,2,3,1,1,1,1,2,4,6} .

Model 3. Heteroskedastic AR(1), with permanent shifts in the innovation
variance

Xt = ρXt−1 +υt, and υt = stυ̃t,

for t ∈ Z, where {υ̃t} i.i.d. N (0,1), with ρ ∈ {0.2,0.6}. We follow Cavaliere
(2004), see also Phillips and Xu (2006), Xu and Phillips (2008), Cavaliere
and Taylor (Cavaliere and Taylor (2007), Cavaliere and Taylor (2009)), and
assume that st = g(t/n), where

g(r)2 = s2
0 + (s2

1 − s2
0

)
1{r≥τ },r ∈ [0,1] .

The steepness of the variance change is characterized by the post-break and
pre-break variance ratio δ2 = s2

1/s2
0. We set τ = 0.2,δ = 0.2 and s2

0 = 1.
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Note that, among the block-based bootstrap methods, the theoretical advantage
of the TBB over the MBB has been confirmed for model 1, (in particular, with
ρ = 0.6) through simulation studies by Paparoditis and Politis (2001). Moreover,
using model 1, Shao (2010) (cf. Section 6), assessed the finite sample properties
of the DWB and block-based bootstrap methods. He found that the TBB and the
DWB have comparable empirical performance at a range of block sizes. However,
for large value of �, the DWB outperforms the TBB. For these reasons, it seems
natural to study our new WBDD method in this case and compare its finite-sample
performance directly with the DWB.

In order to investigate the performance of the WBDD when there are dependent
“strongly” heterogeneous data, we also consider model 2. The latter is used by
Politis, Romano, and Wolf (1997) in another context for heteroskedastic times
series. Note that in model 2, the innovations are independent but heteroskedastic.
Then model 2 generates a weakly dependent, heteroskedastic time series. More-
over, we consider model 3, which allows for time varying unconditional variance
with permanent changes in volatility.

We generate repeated trials of length N ∈ {100,200} from these processes.
In order to generate the WBDD observations we need a data-tapering window
function w(·). We define the following family of trapezoidal functions as

wtrap
c (t) =

⎧⎪⎪⎨
⎪⎪⎩

t
c, if t ∈ [0,c],
1, if t ∈ [c,1− c],

1−t
c , if t ∈ [1− c,1],
0, if t /∈ [0,1],

(15)

where c is some fixed constant in (0,1/2]. To make the comparison fair, in our
simulation, we took c = 0.43, since it was found in Paparoditis and Politis (2001)
that w(t) = wtrap

0.43 (t) offers the optimal (theoretical) MSE provided we fix the
covariance structure of a time series. We also use γ (t) = wtrap

0.43 ∗ wtrap
0.43 (t)/wtrap

0.43 ∗
wtrap

0.43 (0), where γ (·) is the covariance function of the external random variable
used to generate the DWB observations. With this choice of the kernel function for
the DWB, the favorable bias and MSE properties of the TBB variance estimator
over other block-based counterparts in the mean case automatically carries over
to the DWB. In addition, in view of the discussion in Remark 2, (showing
the connection between the TBB and WBDD variance estimators) and from
Paparoditis and Politis (2002), we can deduce that (in our setting) for the all three
methods TBB, DWB, and WBDD, the (large-sample) MSE is minimized at the
same value of block size and/or bandwidth, which should be picked proportional
to N1/5. As a consequence, in practice, we advocate using the same practical block
size choice suggested by Paparoditis and Politis (2002), Politis and White (2004)
see also Patton, Politis and White (2009) to implement the DWB and the WBDD.

For the choice of external random variables of the DWB, we use multivariate
normal as in Shao (2010), whereas to generate the WBDD data we use five different
external random variables. See Examples 2.3–2.7. Note that all five choices of
uj are asymptotically valid when used to construct the unstudentized bootstrap
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intervals, since they satisfy Assumption WBDD. The further condition �E(u3
j ) → 1

(satisfied by WBDD3, WBDD4, and WBDD5) is a necessary condition for
refinements. WBDD2 also satisfies the necessary conditions for refinements in
the case of unskewed disturbances. Davidson and Flachaire (2007) advocated the
use of the Rademacher distribution (i.e., the WBDD2 with � = 1).

For each time series, we generated 499 DWB and WBDD pseudo-series to
obtain the bootstrap-based critical values. Then we repeated this procedure 1000
times and reported in Table 1, the empirical coverage of nominal 95% symmetric
bootstrap percentile1 confidence intervals for μ, the average lengths of confidence
intervals, and the empirical MSEs of the variance estimators of σ 2

N . In Figure 1,
we plotted the empirical coverage rate as a function of block size, for the WBDD,
DWB, TBB, and MBB methods. For the WBDD method, in Figure 1, we focus on
WBDD3, WBDD4, and WBDD5 (for a matter of readability).

In Table 1, we compare the DWB directly to the WBDD. As a first observation,
for all three models, it is striking how close all bootstrap methods analyzed here
are in terms of empirical MSE. In line with our theoretical results, all methods
are globally equivalent when we consider the empirical MSEs of the variance
estimators of σ 2

N . However, as results in Table 1 suggest (see also Figure 1), there
are notable differences among the different bootstrap methods when considering
their empirical coverage probabilities. For all bootstrap methods, finite sample
performance is far from perfect (especially for models 2 and 3) and gets worse
as the degree of dependence in the data increases. Models 2 and 3 exhibit overall
larger coverage distortions than model 1.

For the WBDD method, none of the five choices of the external random
variables used (i.e., WBDD1, WBDD2, WBDD3, WBDD4, and WBDD5) clearly
dominates the others. One exception is in the model 1, with ρ = 0.2, where the
performance of WBDD4 is comparable to that of WBDD5, and both tend to
outperform DWB, WBDD1, WBDD2, and WBDD3. Specifically, in this model,
when n = 100,ρ = 0.2, the WBDD4 and WBDD5-based intervals have a coverage
probability equal to 93.40% and 93.50%, respectively; whereas, the coverage
rates are equal to 88.70%, 88.10%, 88.10%, and 88.30%, for the DWB, WBDD1,
WBDD2, and WBDD3, respectively.

In models 2 and 3, the DWB seems to perform very poorly compared to the
WBDD schemes. Results based on models 2 and 3 in Table 1, clearly show that
the intervals based on the WBDD have better coverage rates than intervals based
on the DWB. For instance when ρ = 0.6, and n = 100, in model 3, the DWB-
based intervals have a coverage probability equal to 63.70% only, instead of the
desired nominal 95%. In contrast, this rate is equal to 83.50%, 83.90%, 84.50%,
84.30%, and 84.70% for the WBDD1, WBDD2, WBDD3, WBDD4, and WBDD5,
respectively. In Table 2, we report the bootstrap block size/ bandwidth choices
made. As expected, the average chosen block size/bandwidth is larger for larger

1We have performed a similar exercise using bootstrap percentile-t confidence intervals, applying the same set of
tuning parameters. The results are qualitatively identical to those reported in Table 1, the latter is excluded for brevity.
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Table 1. Comparison of nominal 95% confidence intervals for μ and variance estimators of σ 2
N

ρ = 0.2 ρ = 0.6

DWB WBDD1 WBDD2 WBDD3 WBDD4 WBDD5 DWB WBDD1 WBDD2 WBDD3 WBDD4 WBDD5

N = 100

Model 1

Coverage (%) 88.70 88.10 88.10 88.30 93.40 93.50 82.70 89.30 89.90 89.80 90.40 90.40

Length 0.39 0.39 0.39 0.39 0.41 0.41 0.42 0.52 0.52 0.52 0.53 0.53

MSE·10 0.11 0.11 0.11 0.11 0.11 0.11 0.18 0.18 0.18 0.18 0.18 0.19

Model 2

Coverage (%) 88.80 89.10 88.80 88.40 92.60 92.60 65.70 84.40 84.70 84.70 85.10 85.00

Length 0.97 1.06 1.06 1.07 1.11 1.11 1.18 1.92 1.91 1.94 1.94 1.96

MSE·10 0.79 0.78 0.79 0.79 0.81 0.82 2.50 2.53 2.52 2.52 2.52 2.52

Model 3

Coverage (%) 87.60 87.70 87.20 87.70 89.40 89.70 63.70 83.50 83.90 84.50 84.30 84.70

Length 0.23 0.25 0.25 0.25 0.26 0.26 0.28 0.44 0.44 0.44 0.44 0.45

MSE·10 0.04 0.04 0.04 0.04 0.04 0.04 0.12 0.13 0.13 0.13 0.13 0.14

N = 200

Model 1

Coverage (%) 90.90 91.00 91.00 90.70 93.40 93.50 83.00 91.20 91.10 91.20 91.90 92.80

Length 0.28 0.29 0.29 0.29 0.30 0.30 0.30 0.38 0.39 0.39 0.39 0.39

MSE·10 0.05 0.06 0.06 0.06 0.06 0.06 0.09 0.10 0.10 0.10 0.10 0.10
(Continued)
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Table 1. (Continued)

ρ = 0.2 ρ = 0.6

DWB WBDD1 WBDD2 WBDD3 WBDD4 WBDD5 DWB WBDD1 WBDD2 WBDD3 WBDD4 WBDD5

Model 2

Coverage (%) 86.90 91.90 91.60 91.60 92.30 91.90 67.90 89.80 89.50 89.80 90.10 90.20

Length 0.70 0.80 0.80 0.80 0.81 0.81 0.20 0.34 0.34 0.34 0.34 0.35

MSE·10 0.42 0.43 0.43 0.43 0.43 0.43 1.47 1.49 1.49 1.49 1.50 1.51

Model 3

Coverage (%) 89.50 91.80 91.90 91.70 92.60 93.10 68.30 88.90 89.00 89.10 89.50 89.40

Length 0.17 0.19 0.19 0.19 0.19 0.19 0.20 0.34 0.34 0.34 0.34 0.35

MSE·10 0.02 0.02 0.02 0.02 0.02 0.02 0.08 0.08 0.08 0.08 0.08 0.08

Notes: DWB denotes the DWB method. WBDD1, WBDD2, WBDD3, WBDD4, and WBDD5 refer to the proposed WBDD based on the external random variables
WBDD1, WBDD2, WBDD3, WBDD4, and WBDD5, respectively. Coverage is the estimated coverage probability of confidence intervals; Length gives the average
lengths of confidence intervals. The bootstrap percentile is used for all bootstrap-based methods. MSE refers to the empirical MSEs of the variance estimators of σ 2

N .
1,000 Monte Carlo trials with 499 bootstrap replications each.
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Figure 1. Empirical coverage, as a function of the block size �, of 95% symmetric confidence
intervals of the mean, obtained for the nonlinear AR model, Model 1, the heteroskedastic AR(1) model,
Model 2, and the heteroskedastic AR(1), with permanent shifts in the innovation variance, Model 3,
for a sample size N = 200 and ρ = 0.6. (a) Model 1. (b) Model 2. (c) Model 3.

sample sizes, and also increases with ρ that is, the degree of dependence in the
data.

Overall, the results suggest that in a context of “strongly” heteroskedastic times
series, the WBDD is a viable alternative to the DWB.
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Table 2. Block size/ bandwidth choices and SE (in parentheses)

N = 100 N = 200

ρ = 0.2 ρ = 0.6 ρ = 0.2 ρ = 0.6

Model 1 3.74 (0.11) 6.26 (0.14) 3.97 (0.08) 7.05 (0.10)

Model 2 3.99 (0.08) 10.21 (0.15) 4.72 (0.07) 12.71 (0.17)

Model 3 5.65 (0.18) 11.32 (0.21) 6.88 (0.21) 14.38 (0.28)

Notes: This table provides the average block size/ bandwidth selected and their standard errors.
Simulations where done with 1,000 Monte Carlo trials.

5. CONCLUDING REMARKS

This paper proposes a new bootstrap method for time series, the WBDD, that is
generally applicable to variance estimation and sampling distribution approxima-
tion for the smooth function model. We show the consistency of the WBDD for
both variance estimation and distribution approximation of the smooth function
of sample mean when data are assumed to satisfy an NED condition. Com-
putationally, it is very convenient to implement the new WBDD method. In
particular, the choice of the external random variable is very flexible, as for
the plain wild bootstrap. Furthermore, we show that the WBDD can provide
asymptotic refinements over the limiting normal approximation by choosing the
external random variables appropriately, a result that does not seem to be available
for extant wild-based bootstrap methods for dependent data. Finally, simulation
studies demonstrate that the WBDD performs well even for moderate sample sizes
and in most cases outperforms the DWB. On the downside, as the DWB (and other
wild-based bootstrap methods) the WBDD is not as widely applicable as the block-
based bootstrap (in its many variations).

APPENDIX

In this appendix, we first list some additional assumptions (which are useful for the result of
the higher-order correctness of the WBDD derived in Section 3) then prove Theorem 3.1.

A. Additional Regularity Conditions and Notations

We follow Götze and Künsch (1996) and assume that the sequence of random vectors Rj ≡
(Xj,Y̌j) ∈ R

d ×R satisfies the following conditions:

(C.1) E
(
Xj
)= 0,j = 1,2, . . .

(C.2) βs ≡ E
∥∥Xj
∥∥s+r

< ∞, for some integer s ≥ 8, and r > 0 arbitrary small.
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(C.3) There exists a sequence Dk,k ∈ Z of sub-σ fields of A and a constant δ ∈ (0,1) such
that for j,m = 1,2, . . . , with m > δ−1, the random variable Xj can be approximated
by a Dj−m,j+m ≡ σ

(
Dp : |p− j| ≤ m

)
-measurable random vector X̄j,m with

E
∥∥Xj − X̄j,m

∥∥≤ δ−1 exp(−δm) .

(C.4) There exists a δ ∈ (0,1) such that for all m,j = 1,2, . . . ,A ∈ D−∞,j,B ∈ Dj+m,∞,

|P{A∩B}−P{A}P{B}| ≤ δ−1 exp(−δm) .

(C.5) There exists a δ ∈ (0,1) such that for all m,j = 1,2, . . . ,δ−1 < m < j and ‖t‖ ≥ δ,

E

∣∣∣E{exp
(
ιt
[
Y̌j−m +. . . + Y̌j+m

])
|Dj : j �= m

}∣∣∣≤ exp(−δ),

and

liminf
N

N−1Var

(
N∑

i=1

Y̌i

)
> 0.

(C.6) There exists a δ ∈ (0,1) such that for all m,j,p = 1,2, . . . ,A ∈ Dj−p,j+p

E |P{A|Dl : l �= j}−P{A|Dl : 0 < |l− j| ≤ m+p}| ≤ δ−1 exp(−δm) .

(C.7) The function H : Rd → R is 3-times continuously differentiable, DH(μ) �= 0 and
there are constant c0,a0 > 0, such that

‖D3H(x)‖ ≤ c0(1+‖x‖a0)

for every x ∈ R
d for some integer a0 ≥ 1.

Following Götze and Künsch (1996) (cf. page 1918), by approximating TN,stud and
T∗

N,stud by quadratic statistics (and using a Taylor expansion), we have

TN,stud = MN +Op

(
�

N

)
,

where the leading term is

MN = h(μ)′ SNσ−1
N

+N−1/2
[

1

2
S′

ND2H (μ)SNσ−1
N − 1

2
h(μ)′ SNS′

Nζσ−3
N − 1

2
h(μ)′ SNVNσ−3

N

]

− 1

2
h(μ)′ SN

(
τ2

N −σ 2
N

)
σ−3

N ,

such that

VN ≡
�∑

j=0

k̃jNN−1/2
N−�∑
i=1

(
Y̌iY̌i+j −E

(
Y̌iY̌i+j

))
,

ζ ≡ 2D2H (μ)

⎡
⎣ ∞∑

j=−∞
�(j)

⎤
⎦DH (μ) and τ2

N ≡
�∑

j=0

k̃jNE
(

Y̌0Y̌j

)
.
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Similarly, for the WBDD, we have

T∗
N,stud = M∗

N +Op∗
(

�

N

)
,

where the leading term is

M∗
N = h

(
X̄N
)′ S∗

Nσ∗−1
N +N−1/2

×
[

1

2
S∗′

N D2H
(
X̄N
)

S∗
Nσ∗−1

N − 1

2
h
(
X̄N
)′ S∗

NS∗′
N ζ∗σ∗−3

N − 1

2
�1/2h

(
X̄N
)′ S∗

NV∗
Nσ∗−3

N

]
,

such that

S∗
N ≡ N1/2 (X̄∗

N − X̄N
)
,V∗

N

≡ N−1/2
Q∑

j=1

(
B∗2

j −E
∗ (B∗2

j

))
= N−1/2

Q∑
j=1

B2
j

(
�u2

j −�E∗ (u2
j

))
,

ζ∗ ≡ 2D2H
(
X̄N
)
E

∗
⎡
⎣Q−1

Q∑
j=1

A∗
j A∗′

j

⎤
⎦DH

(
X̄N
)
, with A∗

j = Aj
√

�uj.

Next, we let

μ3,N = N1/2
E

⎛
⎝N−1/2

N∑
i=1

Y̌i

⎞
⎠3

= N1/2
E

⎛
⎝N−1/2

N∑
i=1

h(μ)′ (Xi −μ)

⎞
⎠3

,

πN ≡ E
[(

h(μ)′ SN
)

VN
]= N−1

N∑
i=1

N−�∑
j=1

�∑
k=0

k̃jNE
(

Y̌iY̌jY̌j+k

)
.

Furthermore, let �N denote the covariance matrix of the (d +1) × 1-dimensional vector

W1N ≡
((

h(μ)′ SN
)
σ−1

N ,S′
N

)′
and let aγ ’s be constants defined by the identity

∗∑
|γ |=2

Wγ
1N = (2σN)−1

∑
|α|=2

DαH (μ)Sα
N −σ−3

N

⎛
⎝N−1/2

N∑
i=1

Y̌i

⎞
⎠S′

N

[
D2H (μ)�∞h(μ)

]
,

(16)

where �∞ ≡ � = lim
N→∞Var (SN). Note that in the left-hand side of the identity in (16), the

index γ ∈ Z
d+1+ while on the right-hand side, the index α ∈ Z

d+. Similarly, for the WBDD,
we let

μ∗
3,N ≡ N1/2

E
∗ (W∗

N
)3 = Q

N

(
�E
(

u3
))

·μ∗(MBB)
3,N , (17)

π∗
N ≡ E

∗ (W∗
NV∗

N
)= μ∗

3,N, (18)

where μ
∗(MBB)
3,N ≡ �1/2Q−1∑Q

j=1 B3
j is the MBB skewness term estimate of μ3,N (i.e.,

μ
∗(MBB)
3,N is the analog of μ∗

3,N based on the MBB resampling approach, see for example,
Götze and Künsch (1996) (cf. page 1920)). With these notations, we follow Götze and
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Künsch (1996) see also Lahiri (2003) cf. page 167 and define the formal first-order
Edgeworth expansion �N of TN,stud in terms of its Fourier transformation as follows:

�̃N (t) = 1+N−1/2σ−3
N

[(μ3,N

6
− πN

2

)
(ιt)3 − πN

2
ιt
]

exp
[
−t2/2

]
+N−1/2 (ιt)

∗∑
γ

aγ (−1)|γ | Dγ exp
[−� ′�N�/2

] |�=(t,0,...,0). (19)

Similarly, for the WBDD, we define the formal first-order Edgeworth expansion �∗
N of

T∗
N,stud in terms of its Fourier transformation

�̃∗
N (t) = 1+N−1/2σ∗−3

N μ∗
3,N

[
−1

3
(ιt)3 − 1

2
ιt

]
exp

[
−t2/2

]

+N−1/2 (ιt)
∗∑
γ

a∗
γ (−1)|γ | Dγ exp

[−� ′�∗
N�/2

] |�=(t,0,...,0), (20)

where �∗
N = Var∗

(
W∗

1N

)
, with W∗

1N ≡
((

h
(
X̄N
)′ S∗

N

)
σ∗−1

N ,S∗
N

)′
and a∗

γ ’s are defined in

analogy to the aγ ’s of (19), with μ replaced by X̄N .

B. Auxiliary results and Proof of Theorem 3.1

The following result is well known in the literature (see e.g., Theorem 4.1 of Götze
and Künsch (1996) and Theorem 6.8 of Lahiri (2003). This result is only given here for
completeness.

THEOREM 5.1. Assume that conditions (C.1)-(C.7) (in Appendix A) hold. Furthermore,
suppose that � satisfies

(log(N))C � � ≤ N1/3,

with C large enough and k̃ ≡ 1. It follows that as N → ∞ then the Edgeworth approximation
for TN,stud defined in (19) holds, that is for s ≥ 8,

sup
x∈R

∣∣P{TN,stud ≤ x
}−�N (x)

∣∣= O
(
�N−1+2/s

)
. (21)

Proof of Theorem 5.1. Result follows under our assumed conditions by using Theorem
4.1 of Götze and Künsch (1996).

Proof of Theorem 3.1. We first show that

sup
x∈R

∣∣�N (x)−�∗
N (x)

∣∣= Op

(
�N−1

)
+Op

(
�−1N−1/2

)
, (22)

and

sup
x∈R

∣∣∣P∗ {T∗
N,stud ≤ x

}
−�∗

N (x)
∣∣∣= Op

(
�N−1+ε

)
, (23)

for any ε > 0. Then, the desired result follows by the triangular inequality, given (21), (22),
and (23).
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Note that (giving results in Götze and Künsch (1996) (cf. page 1920)), we have

πN = μ3,N +O
(

N−1
)

= μ3,∞ +O
(

N−1
)

E

(
μ

∗(MBB)
3,N

)
= μ3,∞ +O

(
�−1

)
, and

μ
∗(MBB)
3,N −E

(
μ

∗(MBB)
3,N

)
= Op

(
�N−1/2

)
,

where μ3,∞ ≡ ∑∞
i=−∞

∑∞
j=−∞E

(
Y̌0Y̌iY̌j

)
. Hence, using (17), (18) and Assumption

WBDD, we have

E
(
π∗

N
)= E

(
μ∗

3,N

)
= Q

N︸︷︷︸
→1

(
�E
(

u3
))

︸ ︷︷ ︸
→1

E

(
μ

∗(MBB)
3,N

)
= μ3,∞ +O

(
�−1

)
, and

π∗
N −E

(
π∗

N
)= μ∗

3,N −E

(
μ∗

3,N

)
= Q

N︸︷︷︸
→1

(
�E
(

u3
))

︸ ︷︷ ︸
→1

·
(
μ

∗(MBB)
3,N −E

(
μ

∗(MBB)
3,N

))

= Op

(
�n−1/2

)
.

Therefore, the order of the difference between the two Edgeworth expansions as given by
(22) follows directly giving (19) and (20).

To show (23), we follow the same arguments as in the proof of Theorems 4.1 and 4.2
of Götze and Künsch (1996). That is it suffices to show that the conditions ((C.1)-(C.7))

on Rj ≡
(

Xj,Y̌j

)
required for the Edgeworth expansion of Theorem 5.1 are also satisfied

for R∗
j = R̃j ·

√
�uj, with R̃j ≡

(
Bj,A

′
j

)′
for j = 1, . . . ,Q conditionally on the sample XN =

{Xt}N
t=1, uniformly for all XN in a set whose probability tends to 1 as N → ∞.

Condition (C.1) holds directly given the definition of R̃j (which is a function of XN ) and
under Assumption WBDD E

(
uj
)= 0. In order to check Condition (C.2), note that

E
∗ ∥∥∥R∗

j

∥∥∥s =
∥∥∥R̃j

∥∥∥s ·E
(∣∣∣√�uj

∣∣∣s) .

Therefore, Condition (C.2) holds provided that for any x > 0,

P
{∣∣∣∥∥∥R̃j

∥∥∥s −E

(∥∥∥R̃j

∥∥∥s)
> x
∣∣∣}=op (1), (24)

and

E

(∣∣∣√�uj

∣∣∣s)≤ UN,s → Cs < ∞, (25)

as N → ∞. From the proof of Theorem 4.2 of Götze and Künsch (1996) (cf. page 1931),
(24) is satisfied. (25) holds directly given that in the statement of part (b) of Theorem 3.1
we assume this condition.

Next, recall that by construction, R∗
j are independent random vectors conditionally on

the sample XN . Therefore, the Conditions (C3), (C4), and (C6) are trivially satisfied (by
independence) with a probability tending to one using a sigma field Dj = σ

(
uj
)
, (the σ -

field generated by uj) for j = 1, . . . ,Q conditionally on the sample XN . By the same reason,
we can replace Condition C.5 by the Cramér’s condition (14). This concludes the proof of
part (b) of Theorem 3.1.
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SUPPLEMENTARY MATERIAL

To view the supplementary material for this article, please visit: http://dx.doi.org/
10.1017/S0266466621000487.
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