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Abstract. We establish (some directions of) a Ledrappier correspondence between
Hölder cocycles, Patterson–Sullivan measures, etc for word-hyperbolic groups with
metric-Anosov Mineyev flow. We then study Patterson–Sullivan measures for ϑ-Anosov
representations over a local field and show that these are parameterized by the ϑ-critical
hypersurface of the representation. We use these Patterson–Sullivan measures to establish
a dichotomy concerning directions in the interior of the ϑ-limit cone of the representation
in question: if u is such a half-line, then the subset of u-conical limit points has either total
mass if |ϑ | ≤ 2 or zero mass if |ϑ | ≥ 4. The case |ϑ | = 3 remains unsettled.
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1. Introduction
Let G be the real points of a semi-simple real-algebraic group of the non-compact type.
The (Riemannian) globally symmetric space X associated to G is non-positively curved,
its visual boundary ∂∞X is a union of compact G-orbits, parameterized by directions in
a (fixed beforehand) closed Weyl chamber a+ of g. The G-orbit associated to a direction
u ∈ P(a+) is G-equivariantly identified with the flag space Fϑu of G, where ϑu is the subset
of simple roots that do not vanish on u.

Let now Γ be a finitely generated group and ρ : Γ → G a representation with discrete
image. A fundamental object of study is the limit set Lρ of ρ(Γ) on the visual boundary
∂∞X, defined as the set of accumulation points of an (any) orbit ρ(Γ) · o on the natural
compactification X ∪ ∂∞X.
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238 A. Sambarino

When ρ(Γ) is Zariski-dense, this object has the following topological description by
Benoist [7]: the action of ρ(Γ) on each flag space Fϑ has a smallest closed invariant set,
called the limit set on Fϑ and denoted by Lϑ

ρ ; additionally, one has the limit cone Lρ ⊂ a+
of ρ(Γ), defined as the subset of a+ of accumulation points of sequences of the form

tna(ρ(γn)),

where tn ∈ R+ converges to 0, γn ∈ Γ goes to infinity, and a : G → a+ is the Cartan
projection. It is a convex cone with non-empty interior and the limit set Lρ(Γ ) on ∂∞X
is the ‘fibration’ over P(Lρ), whose fiber over a given direction u ∈ P(Lρ) is the limit set
Lϑu
ρ of ρ(Γ) on Fϑu .

Inspired by Sullivan’s [68] work on the rank-1 case, one may seek to distinguish the
subset of conical points of Lρ , that is, points on the limit set that are approached in
a uniform manner by elements of the orbit ρ(Γ) · o. However, the definition of uniform
depends on:
• the type of G-orbit the point lies in—a point x ∈ Lϑ

ρ is conical if there exists a (to be
called conical) sequence {γn} ⊂ Γ converging to x such that for every y ∈ Li ϑ

ρ (here we
let i : a → a be the opposition involution and i ϑ := ϑ ◦ i) in general position with x,
the sequence γ−1

n (y, x) has compact closure on the space of pairs of flags in general
position F (2)

ϑ ;
• the specific direction u ∈ P(Lρ), associated to the given point—fix a norm ‖ ‖ on a

and define the tube of size r > 0 as the r-tubular neighborhood

Tr (u) = {v ∈ a : B(v, r) ∩ u �= ∅},
then x ∈ Lϑu

ρ is u-conical if there exists r > 0 and a conical sequence γn → x such
that for all n, one has

a(ρ(γn)) ∈ Tr (u).

A measurable description has been recently established by Burger et al [20] for
u-conical points of Zariski-dense subgroups: under some extra assumptions, the
Patterson–Sullivan measure associated to the direction u charges totally the subset of
u-conical points if and only if G has rank ≤ 3; if rank G ≥ 4, then the subset of u-conical
points has zero mass.

In this paper, we will also study a measurable description of u-conical limit points, but
for general Anosov representations, a class introduced by Labourie [43] for fundamental
groups of closed negatively curved manifolds and generalized by Guichard and Wienhard
[35] for arbitrary (finitely generated) word-hyperbolic groups. Thanks to the recent work
by Kapovich, Leeb, and Porti [40] (see also those of Bochi, Potrie, and Sambarino [10]
and Guéritaud et al [34]), we can define them as follows, see §5.2.

Definition 1.0.1. Let ϑ ⊂ � be a non-empty subset of simple roots and denote by | | the
word length on Γ for some (fixed) symmetric generating set. A representation ρ : Γ → G
is ϑ-Anosov if there exist positive constants c, μ such that for all γ ∈ Γ and σ ∈ ϑ , one
has

σ(a(ρ(γ ))) ≥ μ|γ | − c.
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A key feature of a ϑ-Anosov representation ρ is that Γ is necessarily word-hyperbolic
and there exist continuous ρ-equivariant limit maps (Proposition 5.2.3) defined on its
Gromov boundary,

ξϑ : ∂Γ → Fϑ ,

ξ i ϑ : ∂Γ → Fi ϑ ,

such that the flags ξ i ϑ(x) and ξϑ(y) are in general position whenever x �= y.
We begin by studying the Patterson–Sullivan theory for these groups. Fix then ϑ ⊂ �,

let

aϑ =
⋂

σ∈�−ϑ

ker σ

be the center of the associated Levi group and let pϑ : a → aϑ be the projection invariant
under the subgroup of the Weyl group point-wise fixing aϑ (see §4.2). The dual space
(aϑ)

∗ sits naturally as the subspace of a∗ of pϑ -invariant linear forms. It is spanned by the
fundamental weights of the elements in ϑ :

(aϑ)
∗ = 〈{	σ |aϑ : σ ∈ ϑ}〉.

Let us write aϑ for the composition aϑ = pϑ ◦ a : G → aϑ .
Let β : G × F� → a be the Buseman–Iwasawa cocycle of G introduced by Quint [62]

(see §4.6). The map βϑ = pϑ ◦ β factors as a cocycle βϑ : G × Fϑ → aϑ .

Definition 1.0.2. A Patterson–Sullivan measure for ρ on Fϑ is a probability measure ν on
Fϑ such that there exists ϕ ∈ a∗

ϑ with, for every γ ∈ Γ ,

dρ(γ )∗ν
dν

(·) = q−ϕ( βϑ (ρ(γ )−1,·)).

For ϕ ∈ (aϑ)
∗, denote

δϕ = lim
t→∞

1
t

log #{γ ∈ Γ : ϕ(a(ρ(γ ))) ≤ t} ∈ [0, ∞]

and, inspired by Quint’s growth indicator [61], consider the ϑ-critical hypersurface

Qϑ ,ρ = {ϕ ∈ (aϑ)
∗ : δϕ = 1}.

Let us define the ϑ-limit cone of ρ, denoted by Lϑ ,ρ , as the asymptotic cone of the
projections

{aϑ(ρ(γ )) : γ ∈ Γ},
that is, all limits of sequences of the form tnaϑ(ρ(γn)), where γn → ∞ in Γ and tn → 0
in R+.

In the real case, if ρ(Γ) is Zariski-dense, then Benoist’s aforementioned result implies
that Lϑ ,ρ has non-empty interior. However, for arbitrary local fields, this is no longer the
case (even assuming Zariski-density and Anosov). We aim to work on this more general
context, so let us assume now that G is (the K-points of) a semi-simple algebraic group
over a local field K. We refer the reader to §4 for the analogous definitions, where aϑ is
replaced by the real vector space Eϑ , etc.
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240 A. Sambarino

Let Ann(Lϑ ,ρ) be the annihilator of the ϑ-limit cone and denote by πϑ
ρ : (Eϑ)

∗ →
(Eϑ)

∗/Ann(Lϑ ,ρ) the quotient projection.

THEOREM A. Let ρ : Γ → G be ϑ-Anosov. Then, Qϑ ,ρ is a closed co-dimension-one
analytic sub-manifold of (Eϑ)

∗ that bounds a convex set; moreover, the projection
πϑ
ρ (Qϑ ,ρ) is also a closed co-dimension-one analytic sub-manifold boundary of a strictly

convex set. For each ϕ ∈ Qϑ ,ρ , there exists a unique Patterson–Sullivan measure νϕ

with support on ξϑ(∂Γ). The map ϕ �→ νϕ is an analytic homeomorphism between the
projection πϑ

ρ (Qϑ ,ρ) and the space of Patterson–Sullivan measures onFϑ whose support is
contained in ξϑ(∂Γ). Such Patterson–Sullivan measures are ergodic and pairwise mutually
singular.

We refer the reader to Corollary 5.5.3 and Proposition 5.9.2 for the proofs of the above
statements.

The fact that both Qϑ ,ρ and πϑ
ρ (Qϑ ,ρ) are closed analytic hypersurfaces is stated

by Potrie and Sambarino [57, Proposition 4.11] for K = R with essentially the same
arguments. The parameterization of Patterson–Sullivan measures by πϑ

ρ (Qϑ ,ρ) was pre-
viously established by Lee and Oh [46, Theorem 1.3] for K = R, ϑ = �, and assuming
Zariski-density of ρ(Γ). Existence and ergodicity was previously established, for K = R,
by Dey and Kapovich [29, Main Theorem] for i-invariant functionals ϕ ∈ (a+)∗ ∩ (aϑ)

∗
and i-invariant subsets ϑ ; and by Sambarino [66, Corollary 4.22] for arbitrary functionals
but Zariski-dense representations of fundamental groups of negatively curved manifolds.
Existence of Patterson–Sullivan measures has also been established by Canary, Zhang, and
Zimmer [21] in the real case for relative Anosov representations.

We keep the discussion for K = R since this is essential in the following result. Consider
ϕ ∈ Qϑ ,ρ with associated Patterson–Sullivan measure μϕ . Via the duality

Grdim aϑ−1((aϑ)
∗) → P(aϑ),

the tangent space TϕQϑ ,ρ gives a direction uϕ of P(aϑ) contained in the relative interior
of the limit cone Lϑ ,ρ (Corollary 5.9.1). We then further investigate the μϕ-mass of
uϕ-conical points on ξϑ(∂Γ).

Since we are dealing with the limit cone on aϑ (and not on a as before), uϕ-conical
points are yet to be defined. It is standard that every point ξϑ(x) ∈ ξϑ(∂Γ) is conical.
(This follows from the fact that every point x ∈ ∂Γ is conical and the existence of the
equivariant limit maps for ρ). Let us say it is further uϕ-conical if there exists a conical
sequence (for x) as above and r > 0 such that aϑ(ρ(γn)) ∈ Tr (uϕ). Denote by ∂ϕΓ ⊂ ∂Γ

the subset

∂ϕΓ = {x ∈ ∂Γ : ξϑ(x) is uϕ-conical}.
THEOREM B. (Theorem 5.13.3) Let K = R and assume ρ is ϑ-Anosov and Zariski-dense.
If |ϑ | ≤ 2, then μϕ(ξϑ(∂ϕΓ)) = 1; if |ϑ | ≥ 4, then μϕ(ξϑ(∂ϕΓ)) = 0.

The case |ϑ | = 3 is sadly presently untreated. The missing fact that would make
our technique directly apply is an ergodicity result for translation skew-products over

https://doi.org/10.1017/etds.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.13


A report on an ergodic dichotomy 241

metric-Anosov flows where the abelian group is isomorphic to R
2 = R

|ϑ |−1, more
precisely, we need equivalence between ergodicity and dim V ≤ 2 in Corollary 2.5.5.

When ϑ = �, a stronger version of Theorem B dealing also with the case |�| = 3 was
previously established by Burger et al [20, Theorem 1.6]. It is likely that the combination
of their techniques and ours settles the missing |ϑ | = 3 case.

1.1. General strategy for Theorem B. Let us briefly explain the proof of Theorem B,
which we believe is the main contribution of this work. The main ingredient is a precise
description of the ϑ-parallel sets dynamics of G. If (x, y) ∈ Fi ϑ × Fϑ are in general
position, the associated parallel set is a subset of X consisting of the union of totally
geodesic maximal flats p of X whose associated complete flags in the Furstenberg
boundary p(−a+) and p(a+) contain respectively x and y as a partial flag. This parallel set
is a reductive symmetric space and the associated dynamical system consists of moving
along its center.

More concisely, if one considers the space F(2)
ϑ ⊂ Fi ϑ × Fϑ of transverse flags, then

the space F(2)
ϑ × aϑ carries a G-action (on the left) given by

g(x, y, v) = (gx, gy, v − βϑ(g, y)),

and an aϑ -action (on the right) by translation on the last coordinate.
Observe however that the left-action of ρ(Γ) on F(2)

ϑ × aϑ need not be proper. For
ϑ-Anosov groups though, one finds an aϑ -invariant subset which is also ρ(Γ)-invariant
and on which this latter action is proper (§§3.5.2 and 5.3.2). Its quotient by ρ(Γ) will be
denoted, throughout this introduction, by Oϑ ,ρ .

For each ϕ ∈ Qϑ ,ρ , the space Oϑ ,ρ will carry a ϕ-Bowen–Margulis measure �ϕ

invariant under the directional flow ωϕ : Oϑ ,ρ → Oϑ ,ρ along uϕ ∈ uϕ , defined by (the
induction on the quotient by ρ(Γ) of)

(x, y, v) �→ (x, y, v − tuϕ).

The idea generalizing that of Sambarino [66] is that ωϕ is conjugated to a skew-product
over a metric-Anosov flow φϕ = (φ

ϕ
t : χϕ → χϕ)t∈R on a compact metric space χϕ . This

is established in §5.12 and was previously established by Carvajales [23, Appendix] for
ϑ = �.

Remark 1.1.1. The flow φϕ plays a central role in this work. We propose to name it
the ϕ-refraction flow of ρ, because one may think that the projection on the base χϕ

refracts the orbits of ωϕ (almost all of them wondering when |ϑ | ≥ 4) to bind them
in a compact space χϕ and obtain non-trivial dynamical behavior. (In spite of being
topologically mixing, these flows are wondering in a measurable sense, that is, almost
every point belongs to a subset of positive measure with bounded return times.) Also,
the term geodesic flow has too many meanings on this setting (the geodesic flow of
Γ , the geodesic flow of the locally symmetric space ρ(Γ)\X, the geodesic flow of a
projective-Anosov representation associated to ρ by Plucker embeddings, and so forth).
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An ergodicity result for skew-products over metric-Anosov flows (see §2.5) gives an
ergodic versus totally dissipative dichotomy for ωϕ according to |ϑ | ≤ 2 or |ϑ | ≥ 4. Here,
the base field K = R and Zariski-density of ρ are essential, since Benoist’s [8] density of
Jordan projections does not hold for non-Archimedean K. This dichotomy is reminiscent of
Sullivan’s [68] conservative versus totally dissipative dichotomy in rank 1. Observe again
the untreated case |ϑ | = 3.

These dynamical properties of ωϕ imply the following. The set K(ωϕ) of points in
Oϑ ,ρ , whose future orbit returns unboundedly to some open bounded set, has either zero
�ϕ-mass if |ϑ | ≥ 4 or its complement has zero �ϕ-mass if |ϑ | ≤ 2.

The key feature now is to relate uϕ-conical points with the set K(ωϕ). This is attained
in Lemma 5.13.3 where it is shown that a triple (x, y, v) ∈ F(2)

ϑ × aϑ projects to K(ωϕ) if
and only if y is uϕ-conical. The previous dynamical dichotomy gives then the dichotomy
on the μϕ-measure on conical points:

|ϑ | ≤ 2 ⇒ μϕ(∂ϕΓ) = 1, |ϑ | ≥ 4 ⇒ μϕ(∂ϕΓ) = 0. (1)

The global strategy of our proof is different from the analog result of Burger et al [20].
While, inspired by them, we also use a mixing result. The use of a Dirichlet–Poincaré
series along tubes does not play any role in the proof of Theorem B, nor on the ergodicity
dichotomy for directional flows.

Let us end §1 by observing that both Burger et al [20] and Chow and Sarkar [25] prove
dynamical statements on ρ(Γ)\G (as opposed to ρ(Γ)\G/M).

1.2. Plan of the paper. In §2, we recall some basic facts about the ergodic theory of
metric-Anosov flows, and then study translation cocycles over them. Section 3 deals with a
Ledrappier correspondence for word-hyperbolic groups whose Gromov–Mineyev geodesic
flow is metric-Anosov. We will mainly apply these results to the Buseman–Iwasawa
cocycle of G. For applications to other cocycles, the reader may check the work of
Carvajales [22, 23].

We then recall in §4 necessary definitions on semi-simple algebraic groups over a local
field and deal with Anosov representations in §5. We explain in this section how the
Ledrappier correspondence applies in this setting to give, mainly:
• uniqueness results on the Patterson–Sullivan measures;
• precise dynamical information on the directional flows ωϕ .
The proof of Theorem B can be found in §5.13.

2. Skew-products over metric-Anosov flows
Throughout this section, we let X be a compact metric space and V a finite dimension real
vector space.

2.1. Thermodynamic formalism and reparameterizations. Let φ = (φt : X → X)t∈R be
a continuous flow without fixed points. The space of φ-invariant probability measures on
X is denoted byMφ . It is a convex, weakly compact subset of C∗(X), the dual space to the
space of continuous functions equipped with the uniform topology. The metric entropy of
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m ∈Mφ will be denoted by h(φ, m). Its definition can be found in Aaronson’s book [1].
Via the variational principle, we will define the topological pressure (or just pressure) of
a function f : X → R as the quantity

P(φ, f ) = sup
m∈Mφ

(
h(φ, m) +

∫
X

f dm

)
. (2)

A probability measure m realizing the least upper bound is called an equilibrium state of f .
An equilibrium state for f ≡ 0 is called a measure of maximal entropy, and its entropy is
called the topological entropy of φ, denoted by h(φ).

Let f : X → R>0 be continuous. For every x ∈ X, the function kf : X × R → R,
defined by kf (x, t) = ∫ t

0 f (φsx) ds, is an increasing homeomorphism of R. There is thus
a continuous function αf : X × R → R such that for all (x, t) ∈ X × R,

αf (x, kf (x, t)) = kf (x, αf (x, t)) = t .

The reparameterization of φ by f : X → R>0 is the flow φf = (φ
f
t : X → X)t∈R defined,

for all (x, t) ∈ X × R, by

φ
f
t (x) = φαf (x,t)(x).

The Abramov transform of m ∈Mφ is the probability measure m# ∈Mφf

defined by

m# = f · m∫
f dm

. (3)

One has the following lemma.

LEMMA 2.1.1. (Sambarino [65, Lemma 2.4]) Let f : X → R>0 be a continuous function.
Assume the equation

P(φ, −sf ) = 0 s ∈ R

has a finite positive solution h, then h is the topological entropy of φf. Conversely, if h(φf)

is finite, then it is a solution to the last equation. In this situation, the Abramov transform
induces a bijection between the set of equilibrium states of −hf and the set of probability
measures maximizing entropy for φf.

Two continuous maps f , g : X → V are Livšic-cohomologous if there exists a U :
X → V of class C1 in the direction of the flow (that is, such that if for every x ∈ X,
the map t �→ U(φtx) is of class C1 and the map x �→ ∂/∂t |t=0U(φtx) is continuous),
such that for all x ∈ X, one has

f (x) − g(x) = ∂

∂t

∣∣∣∣
t=0

U(φtx).

Remark 2.1.2. If f and g are real-valued and Livšic-cohomologous, then P(φ, f ) =
P(φ, g).

2.2. Metric-Anosov flows I: Livšic-cohomology. Metric-Anosov flows are a metric ver-
sion of what is commonly known as hyperbolic flows. The former are called Smale flows
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by Pollicott [56], who transferred to this more general setting the classical theory carried
out for the latter. We recall here their definition and some well-known facts on their ergodic
theory needed in what follows. Throughout this subsection, we will further assume that φ
is Hölder-continuous with an exponent independent of t , that it is transitive, that it has a
dense orbit, and that it is metric-Anosov.

For ε > 0, the local stable/unstable set of x are (respectively)

W s
ε (x) = {y ∈ X : d(φtx, φty) ≤ ε for all t > 0 and d(φtx, φty) → 0 as t → ∞},

W u
ε (x) = {y ∈ X : d(φ−t x, φ−t y) ≤ ε for all t > 0 and d(φ−t x, φ−t y) → 0 as t → ∞}.

Definition 2.2.1. (Metric-Anosov) The flow φ is metric-Anosov if the following hold.
• (Exponential decay) There exist positive constants C, λ and ε such that for every

x ∈ X, every y ∈ W s
ε (x), and every t > 0, one has

d(φtx, φty) ≤ Ce−λt ,

and such that for every y ∈ W u
ε (x), one has d(φ−t x, φ−t y) ≤ Ce−λt .

• (Local product structure) There exist δ, ε > 0 and a Hölder-continuous map

ν : {(x, y) ∈ X × X : d(x, y) < δ} → R

such that ν(x, y) is the unique value ν such that W u
ε (φνx) ∩ W s

ε (y) is non-empty, and
consists of exactly one point, called 〈x, y〉; and for every x ∈ X, the map

W s
ε (x) × W u

ε (x) × (−δ, δ) → X,

given by (y, z, t) �→ φt (〈y, z〉), is a Hölder-homeomorphism onto an open neighbor-
hood of x.

A translation cocycle over φ is a map k : X × R → V such that for every x ∈ X and
t , s ∈ R, one has

k(x, t + s) = k(φsx, t) + k(x, s),

and such that the map k(·, t) is Hölder-continuous with exponent independent of t and
with bounded multiplicative constant when t remains on a bounded set. Two translation
cocycles k1 and k2 are Livšic-cohomologous if there exists a continuous map U : X → V ,
such that for all x ∈ X and t ∈ R, one has

k1(x, t) − k2(x, t) = U(φtx) − U(x). (4)

If k is a translation cocycle, then the period for k of a periodic orbit τ is

�τ (k) = k(x, p(τ))

for any x ∈ τ . The marked spectrum τ �→ �k(τ ) is a cohomological invariant that uniquely
determines its class.

THEOREM 2.2.2. (Livšic [47]) Let k : X × R → V be a translation cocycle. If �k(τ ) = 0
for every periodic orbit τ , then k is Livšic-cohomologous to 0.
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Observe that if f : X → V is Hölder-continuous, then the map

kf (x, t) =
∫ t

0
f (φsx) ds

is a translation cocycle. Two such functions are Livšic-cohomologous if and only if the
associated cocycles are, and the period of f on τ is, for any x ∈ τ ,

�τ (f ) =
∫
τ

f = kf (x, p(τ)).

It turns out that every cocycle is Livšic-cohomologous to a cocycle of the form kf .

COROLLARY 2.2.3. (Sambarino [66, Lemma 2.6]) If k : X × R → V is a translation
cocycle, then there exists a Hölder-continuous f : X → V such that k and kf are
Livšic-cohomologous.

Proof. For any κ > 0, the function j (x, t) = 1/2κ
∫ κ

−κ
k(x, t + s) ds is differentiable on

the second variable. Let f (x) = (∂/∂s)|s=0j (x, s). Then,

kf (x, t) =
∫ t

0
f (φux) du =

∫ t

0

∂

∂s

∣∣∣∣
s=0

j (φux, s) du

=
∫ t

0

∂

∂s

∣∣∣∣
s=0

j (x, s + u) du = j (x, t) − j (x, 0),

so the period kf (x, p(τ)) = j (x, p(τ)) − j (x, 0) = k(x, p(τ)). By Theorem 2.2.2, the
cocycles k and kf are thus Livšic-cohomologous.

We record also the following immediate consequence of Livšic’s theorem.

Remark 2.2.4. The space of functions Livšic-cohomologous to a strictly positive function
is an (open cone on an) infinite dimensional space.

In this context, much more information can be stated about the pressure function. Recall
that the space Holderα(X) of real valued α-Hölder functions is naturally a Banach space
when equipped with the norm

‖f ‖α = ‖f ‖∞ + sup
x �=y

|f (x) − f (y)|
d(x, y)α

.

PROPOSITION 2.2.5. (Bowen and Ruelle [16] and Parry and Pollicott [53, Proposition
4.10]) The function P(φ, ·) is analytic on Holderα(X). If f , g ∈ Holderα(X), then

∂

∂t

∣∣∣∣
t=0

P(φ, f + tg) =
∫

gdmf ,

where mf is the equilibrium state of f , and the function t �→ P(φ, f + tg) is strictly
convex unless g is Livšic-cohomologous to a constant. Finally, one also has

P(φ, f ) = lim sup
t→∞

1
t

log
∑

τ :p(τ)≤t

e�τ (f ). (5)
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Let f ∈ Holderα(X) have non-negative (and not all vanishing) periods and define its
entropy by

hf = lim sup
s→∞

1
s

log #
{
τ periodic :

∫
τ

f ≤ s

}
∈ (0, ∞].

Remark 2.2.6. Observe that hf is necessarily > 0 since f must have a positive maximum
and h(φ) > 0.

One has the following lemma.

LEMMA 2.2.7. (Ledrappier [44, Lemma 1] and Sambarino [65, Lemma 3.8]) Consider
a Hölder-continuous function f : X → R with non-negative periods. Then the following
statements are equivalent:
• the function f is Livšic-cohomologous to a positive Hölder-continuous function;
• there exists κ > 0 such that

∫
τ
f > κp(τ) for every periodic orbit τ ;

• the entropy hf is finite;
• the function t �→ P(φ, −tf ) has a positive zero, in which case is hf .

Let us fix an exponent α and consider the cone Holderα+(X, R) of Hölder-continuous
functions that are Livšic-cohomologous to a strictly positive function. The implicit
function theorem for Banach spaces (see [2]) and the explicit formula for the derivative
of pressure (Proposition 2.2.5) give the following corollary.

LEMMA 2.2.8. The entropy map h : Holderα+(X, R) → R+ is analytic.

Proof. Indeed, Lemma 2.2.7 gives the equation P(φ, −hf f ) = 0 and equation (2.2.5)
gives the non-vanishing derivative

d−hf f P (φ, f ) =
∫

f dm−hf f > 0,

so the implicit function theorem completes the result.

2.3. Metric-Anosov flows II: ergodic theory. A fundamental tool for studying the
ergodic theory of metric-Anosov systems is the existence of a Markov coding.

Let � be an irreducible sub-shift of finite type equipped with its shift transforma-
tion σ : � → �, and r : � → R>0 be Hölder-continuous. Let r̂ : � × R → � × R be
defined as

r̂(x, s) = (σx, s − r(x)),

and consider the quotient space Σr = � × R/〈r̂〉. It is equipped with the flow
σr = (σr

t : Σr → Σr )t∈R induced on the quotient by the translation flow.

Definition 2.3.1. (Markov coding) A triplet (�, π , r) is a Markov coding for φ if �

and r are as above, π : � → X is Hölder-continuous, and the function πr : � × R → X

defined as

πr(x, t) = φtπ(x)
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verifies the following conditions:
(i) πr is Hölder-continuous, surjective, and r̂-invariant, it passes then to the quo-

tient Σr ;
(ii) πr : Σr → X is bounded-to-one and injective on a residual set which is of full

measure for every ergodic σr -invariant measure of total support;
(iii) for every t ∈ R, one has πrσ

r
t = φtπr .

The following result has a long history, see for example the works of Bowen [14, 15],
Ratner [63], Pollicott [56], and more recently Constantine, Lafont, and Thompson [27].

THEOREM 2.3.2. (Existence of coding) A transitive metric-Anosov flow admits a Markov
coding.

The above is a fundamental tool to obtain the following, see for example the works of
Bowen and Ruelle [16], Parry and Pollicott [53], and more recently Giulietti et al [31].
Recall from §2.1 the definition of equilibrium state.

THEOREM 2.3.3. (Uniqueness of equilibrium states) Let f : X → R be Hölder-continuous.
Then there exists a unique equilibrium state for f , denoted by mf ; it is an ergodic measure.
If g : X → R is also Hölder, then mg � mf if and only if f − g is Livšic-cohomologous
to a constant function, in which case, mg = mf . The function f �→ mf , defined on the
space of Hölder-continuous functions with fixed exponent, is analytic. (We emphasize that
the space of measures is endowed with the differentiable structure induced by being the
dual space of continuous functions.)

A final fact we will require in this setting (introduced by Margulis [48]) is the
decomposition of the measure of maximal entropy along the stable/central-unstable sets
of φ.

The stable/unstable leaf of x is

W s(x) =
⋃
t∈R+

φ−t (W
s
ε (φtx)),

W u(x) =
⋃
t∈R+

φt (W
u
ε (φ−t x)),

and the central stable/unstable leaf is (respectively) the φ-orbit of W s(x) (respectively
W u(x)). These sets are independent of (any small enough) ε (that is smaller than the ε

given by Definition 2.2.1).
One has the following, see for example the works of Margulis [49], Pollicott [55] for a

construction via Markov codings or Katok and Hasselblatt’s book [41, §5 of Ch. 20] for
the discrete-time case.

THEOREM 2.3.4. (Margulis description) For each x ∈ X, there exists a measure μs
x on

the stable leaf W s(x) and a measure μcu
x on the central unstable leaf such that:

• for all t > 0 and all measurable U ⊂ W s(x), one has

μs
φt x

(φtU) = e−h(φ)tμs
x(U); (6)
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• the local product structure in Definition 2.2 induces a local isomorphism between the
measure μs

x ⊗ μcu
x and the measure of maximal entropy of φ.

The family of measures is unique in the following sense. If νs
x and νcu

x are also a family of
measures along the stable and central-unstable leafs of x such that the product νs

x ⊗ νcu
x

is locally isomorphic to a φ-invariant measure and νs
x verifies equation (6) with some

arbitrary fixed δ > 0 (instead of h(φ)), then δ = h(φ), νs
x = μs

x , and μcu
x = νcu

x .

2.4. Skew-products over sub-shifts. Consider now the two-sided subshift � and let K :
� → V be Hölder-continuous.

Definition 2.4.1. We say that K is non-arithmetic if the group spanned by the periods of K
is dense in V .

The skew-product system is defined by f = fK : � × V → � × V

f (p, v) = (σ (p), v − K(p)). (7)

If ν is a σ -invariant probability measure on �, then the measure Ω = Ων = ν ⊗ Leb is
f -invariant.

The following proposition seems to be well known but we have not been able to find a
specific reference in the literature, for completeness, we added a short proof in Appendix A.

PROPOSITION 2.4.2. Let � be a two-sided sub-shift, ν be an equilibrium state of some
Hölder potential, and K : � → R a non-arithmetic Hölder-continuous function with∫

Kdν = 0. Then the skew-product fK : � × R → � × R is ergodic with respect to Ων .

We record also the following classical lemma. Let us say that a subset of � × V is
bounded if it has compact closure, and that it has total mass (with respect to Ω) if its
complement has measure zero. As the space � × V is non-compact, it is natural to study
the subset of points of � × V whose future orbit returns infinitely many times to a fixed
open bounded set:

K(f ) = {p ∈ � × V : there exists B open bounded set and nk → ∞ with f nk (p) ∈ B}.
One can be more specific. If B1, B2 ⊂ � × W , we want to understand the measure of

K(B1, B2) = {p ∈ B1 : there exists nk → ∞ with f nk (p) ∈ B2}.
To this end, one considers the sum

∑∞
0 Ω(1B1 · 1B2 ◦ f n).

LEMMA 2.4.3. If
∑∞

n=0 Ω(1B1 · 1B2 ◦ f n) < ∞, then Ω(K(B1, B2)) = 0. However, if ν
has no atoms and f is ergodic with respect to Ω, then K(f ) has total mass and for every
pair B1, B2, one has K(B1, B2) has total mass on B1.

Proof. This is a standard argument valid for any measure-preserving transformation. The
first assertion follows by looking at the tail of the series in question:

∞∑
n=k

Ω(1B1 · 1B2 ◦ f n) ≥ Ω(Ek),
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where, for each k ∈ N, Ek = {p ∈ B1 : there exists N ≥ k with f N(p) ∈ B2}. The
second assertion can be found in, for example, Aaronson’s book [1, p. 22].

2.5. An ergodic dichotomy. As in §2.3, let σr be the suspension of the shift on � by the
function r . If ν is a σ -invariant probability measure, then ν ⊗ dt/

∫
rdν is invariant under

the translation flow � × R and induces thus a σr -invariant probability measure on Σr ,
denoted by ν̂.

Remark 2.5.1. It is a classical fact, stated for example by Bowen and Ruelle [16], that if ν
is the equilibrium state of −h(σr )r , then ν̂ realizes the topological entropy of σr .

Let K : � × R → V be a 〈r̂〉-invariant Hölder-continuous function and consider the
flow

ψ = (ψt : Σr × V → Σr × V )t∈R

ψt(p, v) = (σr
t (p), v −

∫ t

0
K(σr

sp) ds).

Consider the measure on Σr × V defined by Ω̄ν = ν̂ ⊗ Leb.

THEOREM 2.5.2. (Sambarino [66, Theorem 3.8]) Assume the group generated by the
periods of (r , K) is dense in R × V and that

∫
Kdν̂ = 0 for the equilibrium state ν of

−h(σr )r . Then there exists κ > 0 such that given two compactly supported continuous
functions g1, g2 : Σr × V → R, one has

tdim V/2Ω̄ν(g1 · g2 ◦ ψt) → κΩ̄ν(g1)Ω̄ν(g2),

as t → ∞.

We include the main outline of its proof in Appendix B. As it is classical, the above
result holds for characteristic functions of open bounded sets whose boundary has measure
zero.

COROLLARY 2.5.3. Under the same assumptions of Theorem 2.5.2, if dim V = 1, then ψ

is ergodic with respect to Ω̄ν . If dim V ≥ 3, then Ω̄ν(K(ψ)) = 0.

Proof. The skew-product system fK : � × V → � × V of equation (7), where
K : � → V is defined by

K(x) =
∫ r(x)

0
K(x, s) ds, (8)

is the first-return map of ψ to its global section (� × {0})/∼ × V . Consequently,
following the flow-lines until reaching the section, one finds a natural (measurable)
bijection between ψ-invariant subsets and f -invariant subsets. If μ is a σ -invariant
probability measure on �, then this bijection preserves the class of invariant-zero-sets
between the measures μ̂ ⊗ Leb on Σr × V and μ ⊗ Leb on � × V . Thus, we can translate
ergodicity results from f to the flow ψ and vice versa.

The case dim V = 1 is hence settled by Proposition 2.4.2.
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For dim V ≥ 3, one considers an open A ⊂ � with ν(∂A) = 0, an open interval I ⊂ R

with length < min r , and B ⊂ V an open ball. Applying Theorem 2.5.2 to

B̄ = B̄1 = B̄2 = A × I × B

gives a positive C such that for large t, one has tdim V/2Ω̄(1B̄ · 1B̄ ◦ ψt) ≤ C. Thus, for a
fixed t0 > 0, one has that∫ ∞

t0

Ω̄(1B̄ · 1B̄ ◦ ψt) dt ≤ C

∫ ∞

t0

1
tdim V/2 .

If dim V ≥ 3, then
∫ ∞
t0

Ω̄(1B̄ · 1B̄ ◦ ψt) dt < ∞ and Lemma 2.4.3 gives
Ω̄(K(ψ)) = 0, in particular, the system is not ergodic.

Remark 2.5.4. An ergodicity dichotomy for fK has been previously established by
Guivarc’h [36, Corollaire 3 on p. 443] under the stronger assumption that K is aperiodic.

By means of Markov partitions (Theorem 2.3.2), the above corollary immediately
translates to the following. As in the previous section, let X be a compact metric space
equipped with a topologically transitive, Hölder-continuous, metric-Anosov flow φ. Let
F : X → V be Hölder-continuous and consider the flow � = (�t : X × V → X × V )t∈R

�t(p, v) =
(
φtp, v −

∫ s

0
F(φsp) ds

)
.

It is convenient to call the flow � by the skew product ofφ by F.

COROLLARY 2.5.5. (Dichotomy) Assume the group spanned by the periods of (1, F) is
dense in R × V and that

∫
Fdm = 0 for the measure of maximal entropy m of φ. Then, �

is mixing as in Theorem 2.5.2, moreover

dim V ≤ 1 ⇒ � is ergodic with respect to m ⊗ Leb ⇒ dim V ≤ 2.

If dim V ≥ 3, then K(�) has zero measure.

Proof. The proof follows from the corresponding results for subshifts and Remark 2.5.1
describing the measure of maximal entropy of φ.

2.6. The critical hypersurface. We recall here two results of Babillot and Ledrappier [5].
Their paper concerns differentiable Anosov flows but, as one checks the proofs, only the
existence of a Markov coding is required for both their results below. We take the liberty
to state them in our broader generality and refer the reader to loc. cit. whose proofs work
verbatim.

As before, let F : X → V be Hölder-continuous.

Assumption A. We will assume throughout the remainder of §2 that the closed group
� spanned by the periods of F has rank dim V , (that is, � � R

k × Z
dim V−k for some

k ∈ [[0, dim V ]]) and that, moreover, the group spanned by

https://doi.org/10.1017/etds.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.13


A report on an ergodic dichotomy 251

{
(p(τ),

∫
τ

F ) : τ periodic
}

is isomorphic to R × �.

The compact convex subset of V,

Mφ(F ) =
{ ∫

X

Fdμ : μ ∈Mφ

}
,

has hence non-empty interior. Also, for each ϕ ∈ V ∗, one can consider the pressure of the
function ϕ(F ) : X → R:

P(ϕ) = P(φ, −ϕ ◦ F).

By Assumption A, the function P : V ∗ → R is analytic and strictly convex
(Proposition 2.2.5). Using the formula for the derivative of pressure (Proposition 2.2.5),
and the natural identification Grdim V−1(V

∗) → P(V ), one has, for ϕ ∈ V ∗, that

dϕP =
∫

Fdm−ϕ(F ), (9)

where m−ϕ(F ) is the equilibrium state of −ϕ(F ). One has the following proposition.

PROPOSITION 2.6.1. (Babillot and Ledrappier [5, Proposition 1.1]) The map ℘ : V ∗ → V

defined by ϕ �→ dϕP is a diffeomorphism between V ∗ and the interior ofMφ(F ).

Let us denote by LF = R+ ·Mϕ(F ) the closed cone generated by the periods of F .
If 0does not belong to Mφ(F ), then LF is a sharp cone (that is, does not contain a
hyperplane of V) and its interior is

int LF = R+ · int(Mφ(F )).

One has moreover the following proposition.

PROPOSITION 2.6.2. (Babillot and Ledrappier [5, Proposition 3.1]) Assume 0 /∈Mφ(F ).
Then the set ℘({ϕ ∈ V ∗ : P(ϕ) = 0}) generates the cone int LF .

Remark 2.6.3. Observe that if ϕ ∈ V ∗ is such that
∑

τ periodic e−�τ (ϕ◦F) < ∞, then neces-
sarily ϕ is strictly positive on the cone LF , that is, ϕ ∈ int(L∗

F ). Indeed, if
∑

τ e−�τ (ϕ◦F)

is convergent, then the formula for pressure on Proposition 2.2.5 gives that P(ϕ) ≤ 0.
Since P(0) > 0, there exists s ∈ (0, 1] such that P(sϕ) = 0. The variational principle
(equation (2)) implies that ∫

τ

ϕ(F ) ≥ 0

for every periodic orbit τ , and thus Lemma 2.2.7 applies to give that ϕ(F ) is
Livšic-cohomologous to a strictly positive function and hϕ(F ) ∈ (0, 1].

We are thus interested in the convergence domain of F

DF = {ϕ ∈ int(L∗
F ) : hϕ(F ) ∈ (0, 1)}

⊂
{
ϕ ∈ V ∗ :

∑
τ periodic

e−�τ (ϕ◦F) < ∞
}

,
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and the critical hypersurface (also usually called the entropy-one set or the Manhattan
curve)

QF = {ϕ ∈ int(L∗
F ) : hϕ(F ) = 1}

whose name is justified in the next corollary.

COROLLARY 2.6.4. Assume 0 /∈Mφ(F ). Then DF = P−1(−∞, 0) and QF = P−1(0).
Consequently, DF is a strictly convex set whose boundary coincides with QF . The latter
is a closed analytic co-dimension-one submanifold of V ∗. The map

ϕ ∈ QF �→ TϕQF

induces a diffeomorphism between QF and directions in the interior of the cone LF .

Proof. We have already shown the inclusions P−1(−∞, 0) ⊂ DF and P−1(0) ⊂ QF .
The other ones follow at once from Lemmas 2.2.7 and 2.1.1. Since 0 /∈Mϕ(F ),
Proposition 2.6.1 implies that P has no critical points, thus P−1(0) = QF is an analytic
sub-manifold of V ∗. Strict convexity follows from that of P, and the last assertion follows
by observing that the tangent space TϕQF equals ker dϕP.

We now focus on the variation of the critical hypersurface when F varies. To this end,
consider the Banach space Holderα(X, V ) of V-valued Hölder continuous functions with
exponent α. The pressure can be considered as an analytic map P : Holderα(X, V ) ×
V ∗ → R defined as P(G, ψ) := P(φ, −ψ(G)). Its differential at the point (F , ϕ) on the
vector (G, ψ) is

d(F ,ϕ)P(G, ψ) = −
∫

(ψ(F ) + ϕ(G)) dm−ϕ(F ),

and vanishes identically only if (F , ϕ) = (0, 0). The pre-image P−1(0) is thus a
Banach-manifold.

If F ∈ Holderα(X, V ) is such that 0 /∈Mφ(F ), then its critical hypersurface

QF = {ϕ ∈ V ∗ : (F , ϕ) ∈ P−1(0)}
is the intersection of {F } × V ∗ with the level set P−1(0). This intersection will vary
analytically on compact sets with F as long as the tangent space ker d(F ,ϕ)P (for fixed
(F , ϕ) with P(F , ϕ) = 0) is transverse to the vector space {0} × V ∗. Since ker d(F ,ϕ)P has
co-dimension 1, transversality is implied by ker d(F ,ϕ)P ∩ {0} × V ∗ being co-dimension
1 on V ∗. However, by Corollary 2.6.4, this latter intersection is, as long as F verifies
assumption A and 0 /∈Mφ(F ), the tangent space TϕQF , which has co-dimension 1. We
have thus established the following corollary.

COROLLARY 2.6.5. The critical hypersurface QF varies analytically on compact sets
when varying the function F among Hölder functions verifying the hypothesis of
Corollary 2.6.4.

2.7. Dynamical intersection and the critical hypersurface. We recall here the concept
of dynamical intersection of Bridgeman et al [17]. Similar concepts have been previously
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studied by Bonahon [11], Burger [19], Croke and Fathi [28], and Knieper [42], among
others.

Let f : X → R+ be a positive Hölder-continuous function and, for t > 0, consider the
finite set Rt (f ) = {τ periodic : �τ (f ) ≤ t}. Let g : X → R be Hölder-continuous (but not
necessarily positive). Then the dynamical intersection between f and g is defined by

I(f , g) = lim
t→∞

1
#Rt (f )

∑
τ∈Rt (f )

�τ (g)

�τ (f )
.

Then one has the following proposition.

PROPOSITION 2.7.1. [17, §3.4] One has

I(f , g) =
∫

gdm−hf f∫
f dm−hf f

,

in particular, I is well defined and varies analytically with f and g among Hölder-
continuous functions with fixed Hölder exponent. If g is moreover positive, then one has
I(f , g) ≥ hf /hg .

We now place ourselves in the context of the previous subsection, that is, we consider
a Hölder-continuous F : X → V and we assume moreover that 0 /∈Mφ(F ). For ϕ ∈ QF ,
we consider the map Iϕ : V ∗ → R defined by

Iϕ(ψ) := I(ϕ(F ), ψ(F)) =
∫

ψ(F) dm−ϕ(F )∫
ϕ(F ) dm−ϕ(F )

, (10)

where the last equality comes from Proposition 2.7.1 and the fact that hϕ(F ) = 1. Observe
that it is a linear map. We then have the following explicit interpretation of the tangent
space to the critical hypersurface purely in terms of periods.

COROLLARY 2.7.2. Let F : X → V be as in §2.6 and such that 0 /∈Mφ(F ). Then for
ϕ ∈ QF , one has TϕQF = ker Iϕ .

Proof. Since by Corollary 2.6.4 one has QF = P−1(0), the tangent space TϕQF =
ker dϕP = ker Iϕ , where the last equality comes from the combination of equations (9)
and (10).

3. A Ledrappier correspondence
In [44], Ledrappier establishes, for a closed negatively curved manifold M , bijections
between Livšic-cohomology classes of pressure zero functions on T1M , normalized
Hölder cocycles for the action of π1M on the visual boundary ∂∞M̃ of the universal cover
of M , quasi-invariant measures on ∂∞M̃ , among other objects. The purpose of this section
is to establish, in the context of word-hyperbolic groups with metric-Anosov geodesic
flow, some of these correspondences. We also extend results of Sambarino [64–66] to
this setting. Some ideas of Bridgeman et al [17, 18] and Carvajales [23, Appendix] are
used. The reader can also check the work of Paulin, Pollicott, and Schapira [54] for similar
results in situations allowing cusps.
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Let Γ be a finitely generated, non-elementary, word-hyperbolic group (see [30] for
a definition). Denote by g = (gt : UΓ → UΓ)t∈R the Gromov–Mineyev geodesic flow of
Γ (see [33] and [51]). The total space UΓ is the quotient of ∂2Γ × R by a properly
discontinuous co-compact Γ -action (defined in loc. cit.). This action restricted to ∂2Γ

coincides with the induced Γ -action on its Gromov boundary, and commutes with the
R-action by translations, giving on the quotient the desired flow g. We will save the
notation

ŨΓ

for the pair consisting on the space ∂2Γ × R equipped with the above Γ -action.

Assumption B. We will assume throughout §3 that g is metric-Anosov (recall that, in
general, g is transitive (see Remark 3.0.1)) and that the lamination induced on the quotient
by W̃cu = {(x, ·, ·) ∈ ŨΓ} is the central-unstable lamination of g.

Let us emphasize that, in what follows, the Gromov–Mineyev geodesic flow is merely
an auxiliary object. The whole discussion works verbatim replacing g by the following
flows known to satisfy Assumption B:
• the non-wandering set of the geodesic flow of a convex co-compact action of Γ on a

CAT(−1) space (if this is known to exist), see [27];
• the geodesic flow of a projective-Anosov representation of ρ (again if this is known to

exist) as introduced by Bridgeman et al [17], see also §5.1.
Recall that every hyperbolic element (that is, an infinite order element) γ ∈ Γ has

two fixed points on ∂Γ , the attracting γ+ and the repelling γ−. If x ∈ ∂Γ − {γ−}, then
γ nx → γ+ as n → ∞. The axis (γ−, γ+) × R projects then to a periodic orbit of g,
denoted by [γ ]. If l(γ ) denotes the translation length of γ along this axis, then l(γ ) is
an integer multiple of the period of the periodic orbit [γ ]. Observe that we allow [γ ] to
tour several times along the orbits it surjects to, so at least formally, we let [γ n] be the orbit
[γ ] toured n-times.

Remark 3.0.1. We briefly justify why g is transitive. It suffices to show that given two
open sets U , V , there exists t ∈ R such that gt (U) ∩ V �= ∅, so the question is reduced
to the same question for the action of Γ on ∂2Γ ; the open sets to be considered can be
reduced to be of the form U1 × U2 and V1 × V2, where Ui , Vi ⊂ ∂Γ are open and U1 ∩
U2 = V1 ∩ V2 = ∅; an element γ ∈ Γ with γ− ∈ U2 and γ+ ∈ V1 has a positive power
such that γ n(U1 × U2) ∩ V1 × V2 �= ∅.

3.1. The Ledrappier potential of a Hölder cocycle. Let V be a finite dimensional real
vector space. A Hölder cocycle is a function c : Γ × ∂2Γ → V such that:
• for all γ , h ∈ Γ , one has c(γ h, (x, y)) = c(h, (x, y)) + c(γ , h(x, y));
• there exists α ∈ (0, 1] such that for every γ ∈ Γ , the map c(γ , ·) is α-Hölder

continuous.
The period of a Hölder cocycle for a hyperbolic γ ∈ Γ is �c(γ ) := c(γ , (γ−, γ+)). Two

cocycles c, c′ are cohomologous if there exists a Hölder-continuous function U : ∂2Γ → V
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such that for all γ ∈ Γ and (x, y) ∈ ∂2Γ , one has

c(γ , (x, y)) − c′(γ , (x, y)) = U(γ (x, y)) − U(x, y).

Two cohomologous cocycles have the same marked spectrum γ �→ �c(γ ). The following
should be compared with [44, Théorème 3].

PROPOSITION 3.1.1. For every Hölder cocycle c, there exists a Hölder-continuous func-
tion Jc : UΓ → V such that for every hyperbolic γ ∈ Γ , one has∫

[γ ]
Jc = �c(γ ).

Cohomologous cocycles induce Livšic-cohomolgous functions.

Proof. The general case follows from the case V = R by the Riesz representation theorem.
Assume thus V = R and consider the trivial line bundle ŨΓ × R equipped with the bundle
automorphisms

γ · (p, s) := (γp, e−c(γ ,(x,y))s),

where p = (x, y, t). Denote by F → UΓ the quotient line bundle. It is equipped with a
flow (ĝt : F → F)t∈R by bundle automorphisms, induced on the quotient by

t · (p, s) = (gtp, s).

Let | | be a Euclidean metric on F and define, for v ∈ Fp,

T(p, t) = log
|ĝt v|
|v| . (11)

It is a translation cocycle over g, indeed since Fp is one dimensional, the choice of v does
not matter, and since ĝ is a flow, one has

log
|ĝt+s(v)|

|v| = log
|ĝt (ĝsv)|

|v|
|ĝs(v)|
|ĝs(v)| = log

|ĝt (ĝsv)|
|ĝs(v)| + log

|ĝs(v)|
|v| .

By Corollary 2.2.3, there exists a Hölder-continuous function Jc : UΓ → R such that
T and kJc

are Livšic-cohomologous. We end the proof by a period computation. For
every hyperbolic γ ∈ Γ , one has, for all s ∈ R, that γ (γ−, γ+, s) = (γ−, γ+, e−�c(γ )s),
or equivalently, for any x ∈ [γ ] ⊂ UΓ and v ∈ Fx ,

�c(γ ) = log
|ĝp(γ )v|

|v| = �[γ ](T) =
∫

[γ ]
Jc,

where p(γ ) is the period of [γ ] for g. Since cohomologous cocycles have the same marked
spectrum, the associated functions have the same periods and are thus Livšic-cohomolgous
by Theorem 2.2.2.

Definition 3.1.2. We say that Jc is a Ledrappier potential of c over g.
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3.2. Real cocycles and reparameterizations. Assume now V = R and consider a
cocycle c with non-negative (and not all vanishing) periods. Define its entropy by

hc = lim sup
t→∞

1
t

log #{[γ ] ∈ [Γ ] hyperbolic : �c(γ ) ≤ t}.

Remark 3.2.1. It follows from Proposition 3.1.1 and Remark 2.2.6 that hc > 0.

For such a cocycle, consider the action of Γ on ∂2Γ × R via c:

γ · (x, y, t) = (γ x, γy, t − c(γ , (x, y))). (12)

Let us denote by χc the quotient space χc = Γ\(∂2Γ × R). The following is reported
by Sambarino [65] for fundamental groups of closed negatively curved manifolds
and by Carvajales [23] for the refraction cocycle of a �-Anosov representation (see
Definition 5.3.1).

THEOREM 3.2.2. If c is a Hölder cocycle with non-negative periods and finite entropy,
then its Ledrappier potential is Livšic-cohomologous to a strictly positive function.
Moreover, the above action of Γ on ∂2Γ × R is properly discontinuous and co-compact,
and the flow φc = (φc

t : χc → χc)t∈R induced on the quotient by the R-translation flow is
Hölder-conjugated to the reparameterization of g by Jc.

The topological entropy of φc is thus hc. (When Γ has torsion elements, this fact
requires some work, see the work of Carvajales et al [24, §5] for details.)

Proof. The first assertion follows at once from Lemma 2.2.7. For the remaining state-
ments, we continue as in the proof of the proposition but for the cocycle −c. Observe first
that −Jc = J−c. Since T and kJ−c

are Livšic-cohomologous, there exists U : UΓ → R

such that for all t ∈ R, p ∈ UΓ , and v ∈ Fp, one has (recall equation (11))

log
|ĝt v|
|v| −

∫ t

0
J−c = U(gtp) − U(x).

Since J−c = −Jc is Livšic-cohomologous to a strictly negative function, the above
equation implies that the flow ĝ is contracting on F, that is, there exist positive C and
μ such that for all v ∈ F and t ∈ R, one has

|ĝt v| ≤ Ce−μt |v|.
A standard procedure (see for example [41] or [17, Lemma 4.3]) provides a Euclidean
metric ‖ ‖ on F such that the constant C equals 1. We denote also by ‖ ‖ the lift of this
metric to ŨΓ × R, it is a Γ -invariant family.

Given then (x, y, t) ∈ ŨΓ , we let v(x,y,t) ∈ (R − {0})/± be such that ‖v(x,y,t)‖ = 1. As
in [17, Proposition 4.2], the map

ŨΓ → ∂2Γ × (R − {0}/±) → ∂2Γ × R,

ξ : (x, y, t) �→ (x, y, v(x,y,t)) �→ (x, y, log v(x,y,t)), (13)

is Γ -equivariant and an orbit equivalence between the R-actions.

Definition 3.2.3. The flow φc will be called the refraction flow of c.
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3.3. Patterson–Sullivan measures. Let us consider now Hölder cocycles with V = R

and only depending on one variable, that is, c : Γ × ∂Γ → R. Assume moreover that c has
non-negative periods and finite entropy. A cocycle c̄ : Γ × ∂Γ → R is dual to c if for every
hyperbolic γ ∈ Γ , one has

�c̄(γ ) = �c(γ
−1).

Definition 3.3.1
• A Patterson–Sullivan measure for c of exponent δ ∈ R+ is a probability measure μ on

∂Γ such that for every γ ∈ Γ , one has

dγ∗μ
dμ

(·) = e−δc(γ−1,·). (14)

• A Gromov product for the ordered pair (c̄, c) is a function [·, ·] : ∂2Γ → R such that
for all γ ∈ Γ and (x, y) ∈ ∂2Γ , one has

[γ x, γy] − [x, y] = −(c̄(γ , x) + c(γ , y)).

Consider a pair of dual cocycles (c̄, c) and assume a Patterson–Sullivan measure of
exponent δ exists for each c and c̄, denoted by μ and μ̄, respectively. Assume moreover
that a Gromov product for the pair (c̄, c) exists. The measure

m̃ = e−δ[·,·]μ̄ ⊗ μ ⊗ dt (15)

on ∂2Γ × R is hence Γ -invariant (the action being via c, as in equation (12) and R-invariant.
Passing to the quotient, one obtains a measure m on χc invariant under the flow φc.
Observe that we can write m̃ as

dm̃(x, y, t) =
∫
∂Γ×R

e−δt dμ(y) dt

( ∫
∂Γ

eδt e−δ[x,y]dμ̄(x)

)
.

The measure e−δt dμ dt is Γ -invariant on ∂Γ × R (indeed, if f : ∂Γ × R → R is continu-
ous, then∫

f (γ (y, t))e−δt dμ dt , =
∫

f (γy, t − c(γ , y))e−δt dμ dt

=
∫

f (γy, t)e−δ(t−c(γ ,y)) dμ dt (by translation invariance)

=
∫

f (y, t)e−δ(t−c(γ ,γ−1y))e−δc(γ−1,y) dμ dt (by definition of μ)

=
∫

f (y, t)e−δt dμ dt)

and the family

m(y,t) = eδt e−δ[·,y]dμ̄

is Γ -equivariant.
This decomposition induces then a local decomposition of m as a product of measures

on the laminations induced on the quotient by W̃cu = {(x, ·, ·) : x ∈ ∂Γ} and Ṽ =
{(·, y, t) : y ∈ ∂Γ , t ∈ R}. The local product structure induced by ∂Γ × ∂Γ × R permits
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to transport the measures m(y,t), parallel to the central stable leaf W cu[(x, y, t)], to the
stable leaf of [(x, y, t)] for φc to obtain a family of measures at each strong stable leaf νs

p

such that

d(φc−t )∗νs
p

dνs
φc
t p

= e−δt . (16)

Margulis’s description of the measure maximizing entropy (§2.3.4) then gives that
δ = hc and that m maximizes entropy for φc. Thus, subject to the existence of the
Patterson–Sullivan measures and the Gromov product, we summarize the above discussion
in the following proposition.

PROPOSITION 3.3.2. The measure m on χc maximizes entropy for the flow φc.
The exponent δ necessarily equals the topological entropy of φc, hc, if ν is another
Patterson–Sullivan measure for c then ν = μ.

Let us consider again the measure m̃ on ∂2Γ × R from equation (15) but let us
instead study the Γ -action on the R-coordinate by the Gromov–Mineyev cocycle, so that
Γ\(∂2Γ × R) = UΓ and the induced flow is g. The quotient measure, a, is g-invariant
and the orbit equivalence ξ from equation (13) preserves, by the way it is defined, zero
flow-invariant sets between a and m. Since ξ is a conjugation between gJc and φc, and m

maximizes entropy for φc, the measure ξ∗m is gJc -invariant, maximizes entropy for gJc ,
and has the same zero sets as a.

One concludes that the Abramov transform in equation (3) a# (with respect to Jc) is a
measure of maximal entropy of the flow gJc . Lemma 2.1.1 implies then that a/|a| is the
equilibrium state of −hcJc. Let us summarize in the following remark.

Remark 3.3.3. The probability measure a/|a| on UΓ = Γ\ŨΓ induced by m̃ is the
equilibrium state of −hcJc.

Since the zero sets of an equilibrium state are uniquely determined by the Livšic-
cohomology class of the associated potential up to an additive constant (Theorem 2.3.3),
one concludes the following corollary.

COROLLARY 3.3.4. Let κ̄ , κ be a pair of dual cocycles with non-negative periods
and finite entropy. Assume Patterson—Sullivan measures, ν and ν̄, exist for κ and κ̄ ,
respectively, together with a Gromov product for the pair. If ν has the same zero sets
as μ, then the (scaled) Ledrappier potentials hcJc and hκJκ are Livšic-cohomologous
and ν = μ.

Proof. A final argument is required, indeed from §2.3.3, there exists a constant K such
that hcJc and hκJκ + K are Livšic-cohomologous. However, since hc is the topological
entropy of gJc , Lemma 2.1.1 gives

0 = P(g, −hcJc) = P(g, −hκJκ + K) = K ,

where the second equality holds by Remark 2.1.2, and the third equality by the definition
of P (equation (2)).
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The above corollary was reported by Ledrappier [44] when Γ is the fundamental group
of a negatively curved closed manifold. The proof uses also a disintegration argument.
One may also check [39] and Babillot’s survey [4] specifically for the Buseman cocycle
(Γ as in Ledrappier’s aforementioned situation), and [23, Appendix] for the refraction
cocycle βϕ (see §5.3 for the definition) of a �-Anosov representation of an arbitrary
word-hyperbolic group.

3.4. Vector-valued cocycles I: the critical hypersurface. Let now c : Γ × ∂Γ → V be a
Hölder cocycle and consider the compact convex setMg(Jc) ⊂ V . Since this set depends
on the base flow g, it is natural to consider the limit cone of c:

Lc =
⋃
γ∈Γ

R+ · �c(γ ) = R+ ·Mg(Jc).

Remark 3.4.1. Up to Livšic-cohomology, we can assume that Jc has values in the vector
space V ′ = 〈Mg(Jc)〉. We can moreover choose a reparameterization gf of g so that if

Jgf

c : UΓ → V ′ is the Ledrappier potential for c over gf , then the flow gf together with the

potential Jgf

c verify Assumption A from §2.6.

Proof. By Remark 2.2.7, the space of Livšic-cohomology classes over g is infinite
dimensional, so the remark follows.

We will work from now on with flow gf given by the remark and the Ledrappier

potential Jgf

c . We will rename these by g and Jc though as to not overcharge the paper
with notation and keep in mind that when we restrict the image ofJc to V ′, Assumption A
is verified.

Let (Lc)
∗ = {ψ ∈ V ∗ : ψ |Lc ≥ 0} be the dual cone of c. For ψ ∈ V ∗, denote

cψ = ψ ◦ c : Γ × ∂Γ → R and hψ = hcψ .

Assumption C. There exists ψ ∈ (Lc)
∗ such that cψ has finite entropy.

LEMMA 3.4.2. In this case, 0 /∈Mg(Jc), (Lc)
∗ has non-empty interior, and int(Lc)

∗ =
{ϕ ∈ (Lc)

∗ : hϕ < ∞}.
Proof. The lemma follows essentially from §3.1 and Lemma 2.2.7, indeed since
hψ = hψ(Jc) < ∞, there exists κ > 0 such that for all hyperbolic γ ∈ Γ , it holds
ψ(�c(γ )/p(γ )) > κ; by density of periodic orbits on Mg, one has inf{ψ(Mg(Jc))} >

κ > 0. The remaining statements follow similarly.

Since 0 /∈Mφ
cψ

(Jc), we can apply Corollary 2.6. Denote by

Qc = {ϕ ∈ int(Lc)
∗ : hϕ = 1},

Dc = {ϕ ∈ int(Lc)
∗ : hϕ ∈ (0, 1)} ⊂

{
ϕ ∈ V ∗ :

∑
[γ ]∈[Γ ]

e−�cϕ (γ ) < ∞
}

respectively the critical hypersurface and the convergence domain of c.
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Since we have not required the cone Lc to have non-empty interior, consider its
annihilation space

Ann(Lc) = {ψ ∈ V ∗ : Lc ⊂ ker ψ}.
If ϕ ∈ int(Lc)

∗ and ψ ∈ Ann(Lc), then the potentials ϕ(Jc) and (ϕ + ψ)(Jc) are
Livšic-cohomologous. Let πc : V ∗ → V ∗/Ann(Lc) be the quotient projection.

We also import the concept of dynamical intersection of §2.7 to this setting using the
Ledrappier potential of c. For ϕ ∈ Qc, define the dynamical intersection map associated to
c by Iϕ = Icϕ : V ∗ → R be defined by

Iϕ(ψ) = I(ϕ(Jc), ψ(Jc)).

By definition, I(ϕ(Jc), ψ(Jc)) only depends on the Livšic-cohomology classes of ϕ(Jc)

and ψ(Jc), so we may freely consider I as defined on Qc × V ∗ or on πc(Qc) ×
V ∗/Ann(Lc). One has the following corollary.

COROLLARY 3.4.3. Under Assumption C, one has that πc(Dc) is a strictly convex set
whose boundary is πc(Qc). The latter is an analytic co-dimension-one sub-manifold. The
map u : πc(Qc) → P(span{Lc}) defined by

ϕ �→ uϕ := Tϕπ
c(Qc) = ker Iϕ

is an analytic diffeomorphism between πc(Qc) and directions in the relative interior of Lc.

Proof. By Remark 3.4.1, we can apply §2.6 to Jc, the equality TϕQc = ker Iϕ follows
from Corollary 2.7.2.

3.5. Vector-valued cocycles II: skew-product structure. We remain in the situation of
§3.4, that is, we keep Assumption C. It follows at once from Theorem 3.2 that the Γ -action
∂2Γ × V

γ (x, y, v) = (γ x, γy, v − c(γ , y))

is properly discontinuous. We aim to give a description of the V-action on the quotient
space Γ\(∂2Γ × V ).

By Lemma 3.4.2 and Theorem 3.2.2, we can, for every ϕ ∈ int(Lc)
∗, consider the

refraction flow φcϕ = (φ
cϕ
t : χcϕ → χcϕ )t∈R. Such a ϕ is fixed from now on.

Remark 3.5.1. Let us still denote by Jc the Ledrappier potential for c over the flow φcϕ ,
that is, for every hyperbolic γ ∈ Γ , one has∫

[γ ]
Jc = �c(γ ) ∈ V .

Let p be the probability measure of maximal entropy of φcϕ . The growth direction ofϕ
is the line of V

uϕ = TϕQc = R ·
∫

χcϕ

Jcdp (17)

https://doi.org/10.1017/etds.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.13


A report on an ergodic dichotomy 261

(the last equality follows from equation (9) and Corollary 2.6.4). Consider also the
projection πϕ : V → ker ϕ parallel to uϕ and denote by Jϕ

c : χcϕ → ker ϕ the compo-
sition Jϕ

c = πϕ ◦Jc. Observe that ∫
χcϕ

Jϕ
c dp= 0. (18)

Fix uϕ ∈ uϕ with ϕ(uϕ) = 1 and define the directional flow (ω
ϕ
t : Γ\(∂2Γ × V ) →

Γ\(∂2Γ × V ))t∈R by induction on the quotient of

t · (x, y, v) = (x, y, v − tuϕ).

PROPOSITION 3.5.2. (Sambarino [66]) There exists a (bi)-Hölder-continuous homeomor-
phism

E : Γ\(∂2Γ × V ) → χcϕ × ker ϕ,

commuting with the ker ϕ action, that conjugates the flow ωϕ with �ϕ = (�
ϕ
t : χcϕ ×

ker ϕ → χcϕ × ker ϕ)t∈R

�
ϕ
t (p, v) :=

(
φ
cϕ
t (p), v −

∫ t

0
Jϕ

c (φ
cϕ
s p) ds

)
.

Proof. This is the first item of Sambarino [66, Proposition 3.5] when Γ is the fundamental
group of a closed negatively curved manifold. The proof adapts mutatis mutandis once
§3.2 is established.

Let us moreover place ourselves in the existence assumptions of §3.3 for the cocycle cϕ ,
that is, assume there exists:
• a dual cocycle c̄ϕ together with a Gromov product [·, ·] for the pair (c̄ϕ , cϕ);
• a Patterson–Sullivan measure for each cϕ and c̄ϕ , denoted by μ and μ̄, respectively.

Recall from Proposition 3.3.2 that, necessarily, the exponent of both μ and μ̄ is hcϕ ,
the topological entropy of φcϕ .

By Proposition 3.3.2, the measure m maximizes entropy for φcϕ . One has then
p= m/|m|. Consider the ϕ-Bowen–Margulis measure �ϕ on Γ\(∂2Γ × V ) defined as
induction on the quotient by

e−hcϕ [·,·]μ̄ ⊗ μ ⊗ LebV ,

for a Lebesgue measure on V . One has the following result.

PROPOSITION 3.5.3. (Sambarino [66]) The (bi)-Hölder-continuous homeomorphism from
Proposition 3.5.2 is a measurable isomorphism between �ϕ and m⊗ Lebker ϕ .

Proof. This follows again as in [66, Proposition 3.5] once Proposition 3.3.2 is
established.

3.6. Vector-valued cocycles III: dynamical consequences. We remain in the situation of
§3.4. Let us say that c is non-arithmetic if the periods of c span a dense subgroup in V .

One concludes at once the following consequences.
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COROLLARY 3.6.1. (Ergodicity dichotomy) Assume c is non-arithmetic, then ωϕ is mixing
as in Theorem 2.5.2, consequently if dim V ≥ 4, then K(ωϕ) has zero �ϕ-measure.
If dim V ≤ 2, then the directional flow ωϕ is �ϕ-ergodic.

Proof. By Proposition 3.5.2, the flow ωϕ is Hölder-conjugated to the skew-product of φcϕ

with the Ledrappier potential Jϕ
c , the fiber being ker ϕ and thus dim V − 1-dimensional.

Proposition 3.5.3 describes the desired measures in terms of the skew-product structure;
non-arithmeticity of c and equation (18) allow us to apply Corollary 2.5.5.

4. Algebraic semi-simple groups over a local field
This section is a collection of necessary language and basic results needed for the following
section. Most of the material covered here can be found in, for example, Borel’s book [12]
and/or in the book by Benoist and Quint [9].

Let K be a local field. If K is non-Archimedean, let us denote by q the cardinality
of its residue field, u ∈ K a uniformizing element, and choose the norm | | on K so that
|u| = q−1. In this case, log denotes the logarithm on base q, so that log q = 1. If K = R

or C, then | | is the standard modulus, q := e, and log is the usual logarithm.
Let G be the K-points of a connected semi-simple K-group, A the K-points of a maximal

K-split torus, and X(A) the group of its K
∗-characters. Consider the real vector space

E∗ = X(A) ⊗Z R and E its dual. For every χ ∈ X(A), we denote by χω the corresponding
linear form on E.

Let � be the set of restricted roots of A in g, the set �ω is a root system of E∗. Let (�ω)+
be a system of positive roots, E+ the associated Weyl chamber, and �+ and � ⊂ � the
corresponding system of positive roots and simple roots, respectively.

Let ν : A → E be defined, for z ∈ A, as the unique vector in E such that for every
χ ∈ X(A), one has

χω(ν(z)) = log |χ(z)|.
Denote A+ = ν−1(E+).

LetW be the Weyl group of �. It is isomorphic to the quotient of the normalizer NG(A)

of A in G by its centralizer ZG(A). Let i : E → E be the opposition involution: if u : E → E
is the unique element in the Weyl group with u(E+) = −E+, then i = −u.

4.1. Restricted roots and parabolic groups. Consider ϑ ⊂ � and let Pϑ , respec-
tively P̌ϑ , be the normalizers in G of, respectively the Lie algebras⊕

α∈<�−ϑ>

g−α ⊕
⊕
α∈�+

gα ,

⊕
α∈<�−ϑ>

gα ⊕
⊕
α∈�+

g−α .

The ϑ-flag space is Fϑ = G/Pϑ . The orbit G · ([P̌ϑ ], [Pϑ ]) ⊂ Fi ϑ × Fϑ is the unique
open orbit on this product space, we will denote it by F(2)

ϑ and say that (x, y) ∈ Fi ϑ × Fϑ

are transverse if in fact (x, y) ∈ F(2)
ϑ .
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Denote by (·, ·) aW-invariant inner product on E, (·, ·) the induced inner product on E∗,
define 〈, 〉 on E∗ by

〈χ , ψ〉 = 2(χ , ψ)

(ψ , ψ)
,

and let {	α}α∈� be the fundamental weights of �, defined by the equations 〈	α , σ 〉 =
dαδασ , where dα = 1 if 2α /∈ � and dα = 2 otherwise.

4.2. The center of the Levi group. We now consider the vector subspace

Eϑ =
⋂

α∈�−ϑ

ker αω

together with the unique projection pϑ : E → Eϑ invariant under the subgroup of the Weyl
groupWϑ = {w ∈W : w|Eϑ = id}. The dual space (Eϑ)

∗ sits naturally as the subspace
of E∗ of pϑ -invariant linear forms

(Eϑ)
∗ = {ϕ ∈ E∗ : ϕ ◦ pϑ = ϕ}.

It is spanned by the fundamental weights {	σ |Eϑ : σ ∈ ϑ}.

4.3. Cartan decomposition. Let K ⊂ G be a compact group that contains a represen-
tative for every element of the Weyl group W, this is to say, such that the normalizer
NG(A) verifies NG(A) = (NG(A) ∩ K)A. One has G = KA+K and if z, w ∈ A+ are such
that z ∈ KwK, then ν(z) = ν(w). There exists thus a function

a : G → E+

such that for every g1, g2 ∈ G, one has g1 ∈ Kg2K if and only if a(g1) = a(g2). It is called
the Cartan projection of G.

4.4. Jordan decomposition. Recall that the Jordan decomposition states that every
g ∈ G has a power gk (k = 1 if K is Archimedean) that can be written as a commuting
product g = geghgn, where ge is elliptic, gh is semi-simple over K, and gn is unipotent.
The component gh is conjugate to an element zg ∈ A+ and we let

λ(g) = (1/k)ν(zg) ∈ E+.

The map λ : G → E+ is the Jordan projection of G. We will also denote by λϑ : G → Eϑ

the composition pϑ ◦ λ. For G = PGLd(K), we will denote by λ1(g) the logarithm of the
spectral radius of g.

4.5. Representations of G. Let V be a finite-dimensional K-vector space and φ : G →
PGL(V) be an algebraic irreducible representation. Then the weight space associated to
χ ∈ X(A) is the vector space

Vχ = {v ∈ V : φ(a)v = χ(a)v for all a ∈ A}
and if Vχ �= 0, then we say that χω ∈ E∗ is a restricted weight of φ. Theorem 7.2 of
Tits [69] states that the set of weights has a unique maximal element with respect to the
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order χ ≥ ψ if χ − ψ is a sum of simple roots with non-negative coefficients. This is
called the highest weight of φ and denoted by χφ.

We denote by ‖ ‖φ a norm on V invariant under φK and such that φA consists on
semi-homotheties (that is, diagonal on an orthonormal basis E of V , in the classical sense
if K Archimedean, and such that ‖ ∑

e∈E vee‖ = max{|ve|} if K is non-Archimedean).
If K is Archimedean, the existence of such a norm is classical (see for example [9,
Lemma 6.33]), if K is non-Archimedean, then this is the content of [60, Théorème 6.1]
due to Quint.

For every g ∈ G, one has then

log ‖φg‖φ = χω
φ (a(g)),

log λ1(φg) = χω
φ (λ(g)). (19)

Denote by Wχφ
the φA-invariant complement of Vχφ

. The stabilizer in G of Wχφ
is

P̌ϑ ,K, and thus one has a map of flag spaces

(�φ, �∗
φ) : F(2)

ϑφ
(G) → Gr(2)dim Vχφ

(V), (20)

where ϑφ = {σ ∈ � : χφ − σ is a weight of φ}. This is a proper embedding which is a
homeomorphism onto its image. Here, G(2)

dim Vχφ
(V) is the open PGL(V)-orbit in the prod-

uct of the Grassmannians of (dim Vχφ
)-dimensional and (dim V − dim Vχφ

)-dimensional
subspaces.

One has the following proposition from Tits [69] that guarantees existence of certain
representations of G. We say that φ is proximal if dim Vχφ

= 1.

PROPOSITION 4.5.1. (Tits [69]) For every σ ∈ �, there exists an irreducible proximal
representation of G whose highest restricted weight is lσ	σ for some lσ ∈ Z≥1.

Definition 4.5.2. We will fix and denote by φσ : G → GL(Vσ ) such a set of
representations.

4.6. Buseman–Iwasawa cocycle. The Iwasawa decomposition of G states that every
g ∈ G can be written as a product lzu with l ∈ K, z ∈ A, and u ∈ U�, where U� is the
unipotent radical of P�. When K is non-Archimedean, the Iwasawa decomposition is not
unique; however, if z1, z2 ∈ A are such that z1 ∈ Kz2U�, then ν(z1) = ν(z2).

The Buseman–Iwasawa cocycle of G, β : G × F→ E, is defined, for all g ∈ G and
k[P�] ∈ F, if gk = lzu is an Iwasawa decomposition of gk, by β(g, k[P�]) = ν(z). Quint
proved the following lemma.

LEMMA 4.6.1. (Quint [62, Lemmas 6.1 and 6.2]) The function βϑ = pϑ ◦ β factors as a
cocycle βϑ : G × Fϑ → Eϑ .

The Buseman–Iwasawa cocycle can also be read from the representations of G. Indeed,
Quint [62, Lemme 6.4] states that for every g ∈ G and x ∈ Fϑ , one has

lσ	σ ( β(g, x)) = log
‖φσ (g)v‖φ

‖v‖φ

, (21)

where v ∈ �φσ (x) ∈ P(Vσ ) is non-zero.
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4.7. Gromov product. As in [66], the Gromov product Gϑ : F(2)
ϑ → Eϑ is defined such

that, for every (x, y) ∈ F(2)
ϑ and σ ∈ ϑ , one has

lσ	σ (Gϑ(x, y)) = log
|ϕ(v)|

‖ϕ‖φσ ‖v‖φσ

,

where ϕ ∈ �∗
φσ

(x) and v ∈ �φσ (y) are the equivariant maps from equation (20).

Remark 4.7.1. Observe that the limiting situation lσ	σ (Gϑ(x, y)) = −∞ occurs when
v ∈ ker ϕ, that is, when x and y are no longer transverse flags, so a statement of the
form 	σGϑ(x, y) ≥ −κ for all σ ∈ ϑ is a quantitative version (that depends on K) of
the transversality between x and y.

A straightforward computation ([66, Lemma 4.12]) gives, for all g∈G and (x, y)∈F(2)ϑ ,

Gϑ(gx, gy) −Gϑ(x, y) = −(i βi ϑ(g, x) + βϑ(g, y)). (22)

4.8. Proximality. Recall that g ∈ PGLd(V) is proximal if it has a unique eigenvalue
with maximal modulus and that the multiplicity of this eigenvalue in the characteristic
polynomial of g is 1. The associated eigenline is denoted by g+ ∈ P(V) and g− is its
g-invariant complementary subspace.

We say then that g ∈ G is ϑ-proximal if for every σ ∈ ϑ , one has φσ (g) is proximal. In
this situation, there exists a pair (g−

ϑ , g+
ϑ ) ∈ F(2)

ϑ , defined by, for every σ ∈ ϑ , �φσ (g
+
ϑ ) =

φσ (g)
+, and every flag x ∈ Fϑ in general position with g−

ϑ verifies gnx → g+
ϑ .

It is also useful to consider a quantified version of proximality. Given r , ε positive, we
say that g is (r , ε)-proximal if it is proximal,

	σGϑ(g
−
ϑ , g+

ϑ ) ≥ −r

for all σ ∈ ϑ , and for every x ∈ Fϑ with minσ∈ϑ 	σGϑ(g
−
ϑ , x) ≥ −ε−1, one has

dFϑ (gx, g+
ϑ ) ≤ ε. More details on the following can be found in [65, Lemma 5.6].

PROPOSITION 4.8.1. (Benoist [6, Corollaire 6.3]) For every δ > 0, there exist r , ε > 0
such that if g ∈ G is (r , ε)-proximal, then

‖aϑ(g) − λϑ(g) −Gϑ(g
−
ϑ , g+

ϑ )‖ ≤ δ.

4.9. Cartan attractors. Consider g ∈ G and let g = kgzglg be a Cartan decomposition.
We say that g ∈ G has a gap at ϑ if for all σ ∈ ϑ , one has

σ(a(g)) > 0.

In that case, the Cartan attractor of g in Fϑ

Uϑ(g) = kg[Pϑ ]

is well defined: uniquely defined if K is Archimedian; defined up to a ball of radius
q− minσ∈ϑ σ(g) if K is non-Archimedean (see [59, Remark 2.4]).

Remark 4.9.1. For every σ ∈ ϑ , one has �φσ (Uϑ(g)) = U1(φσ (g)).
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LEMMA 4.9.2. (Bochi, Potrie, and Sambarino [10, Lemma A.5]) Consider g, h ∈ G such
that h and gh have gaps at every σ ∈ ϑ , then one has

d(Uϑ(gh), gUϑ(h)) ≤ q− minσ∈ϑ σ(h) · max
σ∈ϑ {‖φσ (g)‖‖φσ (g

−1)‖)}.

The Cartan basin of g is defined, for α > 0, by (recall Remark 4.7.1)

Bϑ ,α(g) = {x ∈ Fϑ : 	σ(Gϑ(Ui ϑ(g
−1)), x) > −α for all σ ∈ ϑ}.

It is clear from the definition that given α > 0, there exists a constant Kα such that if
y ∈ Fϑ belongs to Bϑ ,α(g), then one has

‖aϑ(g) − βϑ(g, y)‖ ≤ Kα . (23)

LEMMA 4.9.3. (Quint [62, Lemme 6.6]) For every g ∈ G, one has aϑ(gh) − aϑ(h) −
βϑ(g, Uϑ(h)) → 0 as minσ∈ϑ σ(a(h)) → ∞.

4.10. General facts on discrete subgroups. We record here some facts related to the title
that we will need in the following work.

LEMMA 4.10.1. Let � ⊂ G be a discrete subgroup. Then for every ϕ ∈ E∗ strictly positive
on E+, the exponential rate

δ
ϕ
� = lim sup

t→∞
1
t

log #{g ∈ � : ϕ(a(g)) ≤ t}

is finite.

Proof. The proof follows from a computation of the Haar measure of G, to be found in [37]
for the Archimedean case and in [50, §3.2.7] for the non-Archimedean case, see [61, §4]
for details.

We record also the following theorem from Benoist [8].

THEOREM 4.10.2. (Benoist [8]) Assume K = R and let � ⊂ G be a Zariski-dense
subgroup. Then, the group spanned by the Jordan projections {λ(g) : g ∈ �} is dense
in E.

5. Anosov representations
Anosov representations were introduced by Labourie [43] for fundamental groups of
negatively curved manifolds and extended to arbitrary finitely generated hyperbolic groups
by Guichard and Wienhard [35]. They originated as a tool to study higher rank Teichmüller
theory, and are nowadays considered as the higher-rank analog of what is known in pinched
negative curvature as convex co-compact groups.

Notation. If ρ : Γ → G is a representation, we will simplify notation and denote, for γ ∈ Γ ,
by γρ = ρ(γ ).
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5.1. Real projective-Anosov representations. We begin by recalling Labourie’s original
approach. Let Γ be a finitely generated word-hyperbolic group. If ρ : Γ → PGLd(R) is
a representation, then we can consider the natural flat bundle automorphism defined
as follows. Consider the flat bundle R

d → Eρ → UΓ defined by ŨΓ × R
d/∼, where

(p, v) ∼ (γp, γρv), and define ĝ = (ĝt : Eρ → Eρ)t∈R as the induction on the quotient
by t · (p, v) = (̃gtp, v).

Definition 5.1.1. The representation ρ is projective-Anosov if there exists a pair of
continuous ρ-equivariant maps

ξ1 : ∂Γ → P(Rd),

ξd−1 : ∂Γ → P((Rd)∗)

such that:
• for every (x, y) ∈ ∂2Γ , one has ker ξd−1(x) ⊕ ξ1(y) = R

d . This induces a ĝ-invariant
decomposition � ⊕ � = Eρ ;

• the decomposition Eρ = � ⊕ � is a dominated splitting for ĝ, that is, there exist c, α
positive such that for every v ∈ �p and w ∈ �p, one has

‖ĝt v‖
‖ĝtw‖ ≤ ce−αt ‖v‖

‖w‖ .

One has the following standard consequences, see for example [35, Lemma 3.1] or [17,
Lemma 2.5 and Proposition 2.6]. Recall from §4.8 that g ∈ PGLd(R) is proximal if the
Jordan block associated to the eigenvalues with maximal modulus is one-dimensional.

LEMMA 5.1.2. If ρ is projective-Anosov, then for every hyperbolic γ , one has γρ is
proximal with attracting line ξ1(γ+). In particular, the entropy

lim
t→∞

1
t

log #{[γ ] ∈ [Γ ] hyperbolic : λ1(γρ) ≤ t} ∈ [0, ∞).

The equivariant maps ξ1 and ξd−1 are Hölder-continuous.

Proof. Let us add a word on finiteness of entropy. Recall from Bowditch [13] that, since
Γ is hyperbolic, its action on the space of pairwise distinct triples ∂(3)Γ is properly
discontinuous and co-compact. If γ ∈ Γ is hyperbolic, one can choose then η ∈ [γ ] (the
conjugacy class of γ ) whose fixed points are far apart by a constant independent of γ .
Since the image γρ is proximal and the equivariant maps are continuous, one has that
ηρ is (r , ε)-proximal for constants r , ε independent of [γ ]. By Proposition 4.8.1, one has
then | log ‖ηρ‖ − λ1(ηρ)| < K for some K independent of η. If follows then that for every
t ∈ R+,

#{[γ ] ∈ [Γ ] hyperbolic : λ1(γρ) ≤ t} ≤ #{γ ∈ Γ : log ‖γρ‖ ≤ t + K}.

Finiteness of entropy then follows from Lemma 4.10.1.
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We use the equivariant maps to construct a bundle R → F̃ → ∂2Γ whose fiber at
(x, y) ∈ ∂2Γ is

F̃(x,y) = {(ϕ, v) ∈ ξd−1(x) × ξ1(y) : ϕ(v) = 1}/ ∼,

where (ϕ, v) ∼ (−ϕ, −v). This bundle is equipped with a Γ -action γ (ϕ, v) =
(ϕ ◦ γ−1

ρ , γρv) and an R-action (g̃ρ
t : F̃ → F̃)t∈R defined by g̃ρ

t · (ϕ, v) = (etϕ, e−t v).
Let F = Γ \̃F and denote by gρ = (gρ

t : F → F)t∈R the induced flow on the quotient. It is
usually called the geodesic flow ofρ.

THEOREM 5.1.3. (Bridgeman et al [17]) The above Γ -action is properly discontinuous
and co-compact. The flow gρ is Hölder-continuous and metric-Anosov with stable/unstable
laminations (induced on the quotient by)

W̃ s((x, y, (ϕ, v)) = {(x, ·, (ϕ, ·)) ∈ F̃},
W u((x, y, (ϕ, v)) = {(·, y, (·, v)) ∈ F̃}.

It is moreover Hölder-conjugated to the Gromov–Mineyev geodesic flow g of Γ , conse-
quently, this latter flow is also metric-Anosov.

Therefore, hyperbolic groups admitting a real projective-Anosov representation verify
Assumption B and are thus subject of a Ledrappier correspondence (§3). It is established
by Carvajales [22, Appendix] that gρ is topologically mixing (regardless of the Zariski
closure of ρ) and thus mixing for any equilibrium state.

5.2. Arbitrary G, coarse geometry viewpoint. Let G be as in §4. We use freely the
notation introduced there and fix from now on a subset ϑ ⊂ � of simple roots.

Let Γ be a finitely generated group and denote, for γ ∈ Γ , by |γ | the word length with
respect to a fixed finite symmetric generating set of Γ .

Definition 5.2.1. A representation ρ : Γ → G is ϑ-Anosov if there exist c, μ positive such
that for all γ ∈ Γ and σ ∈ ϑ , one has

σ(a(γρ)) ≥ μ|γ | − c. (24)

The constants c and μ will be referred to as the domination constants of ρ.

Theorem 5.2.2 follows from the main result by Kapovich, Leeb, and Porti [40] and
the standard facts from representation theory stated in §4.5, a proof was also reported by
Bochi, Potrie, and Sambarino [10].

THEOREM 5.2.2. If ρ : Γ → G is ϑ-Anosov, then Γ is word-hyperbolic. If moreover
K = R, then for every σ ∈ ϑ , the representation φσ ◦ ρ : Γ → PGL(Vσ ) is projective-
Anosov (as in §5.1).

The following lemma is essentially a consequence of [10, Lemma 4.9]. See [59,
Proposition 3.5] for details concerning the non-Archimedean case. The last assertion is
classical.
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PROPOSITION 5.2.3. (Bochi, Potrie, and Sambarino [10, Proposition 4.9]) If ρ : Γ → G is
ϑ-Anosov, then for any geodesic ray {αn}∞0 with endpoint x, the limits

ξϑ
ρ (x) := lim

n→∞ Uϑ(ρ(αn)), ξ i ϑ
ρ (x) := lim

n→∞ Ui ϑ(ρ(αn))

exist and do not depend on the ray; they define continuous ρ-equivariant transverse
maps ξϑ : ∂Γ → Fϑ , ξ i ϑ : ∂Γ → Fi ϑ . If γ ∈ Γ is hyperbolic, then γρ is ϑ-proximal with
attracting point ξϑ(γ+) = (γρ)

+
ϑ .

Proposition 5.2.3 readily implies the following lemma (recall Remark 4.7.1).

LEMMA 5.2.4. Let ρ : Γ → G be ϑ-Anosov, {γn} ⊂ Γ a divergent sequence, and x ∈ ∂Γ .
Then, as n → ∞, one has

γn → x ⇔ Uϑ(ρ(γn)) → ξϑ(x)

⇔ there exists σ ∈ ϑ such that 	σGϑ(Ui ϑ(ρ(γn)), ξϑ(x)) → −∞.

We finally record the following useful lemma.

LEMMA 5.2.5. (Pozzetti, Sambarino, and Wienhard [59, Lemma 3.6]) Let ρ : Γ → G be
ϑ-Anosov, then for every ε > 0, there exists L such that⋃

γ :|γ |>L

Uϑ(γρ) ⊂ Nε(ξ
ϑ (∂Γ)),

where Nε denotes the ε-tubular-neighborhood.

Remark 5.2.6. (Non-Archimedean case) The existence of continuous ρ-equivariant maps
implies, when K is non-Archimedean, that the boundary of Γ is necessarily a Cantor set
and thus Γ is virtually free. The Gromov–Mineyev of Γ is thus a suspension of a sub-shift
of finite type and is, hence, metric-Anosov.

Setting. A ϑ-Anosov representation ρ : Γ → G is fixed from now on. By §5.1 for K = R

or C, and the preceding paragraph for non-Archimedean K, the Gromov–Mineyev flow g
of Γ satisfies Assumption B.

5.3. The refraction cocycle verifies Assumption C. By the equivariant boundary maps
of ρ, one can pullback the Buseman–Iwasawa cocycle of G to obtain a Hölder-cocycle on
the boundary of Γ .

Definition 5.3.1. The refraction cocycle of ρ is β : Γ × ∂Γ → Eϑ ,

β(γ , x) = βρ(γ , x) = βϑ(γρ , ξϑ
ρ (x)).

The limit cone of β will be denoted by Lϑ ,ρ and referred to as the ϑ-limit cone ofρ.
The period computation below implies it is the smallest closed cone of Eϑ that contains the
projections {λϑ(γρ) : γ ∈ Γ}. We prove moreover that β verifies Assumption C from §3.4.

LEMMA 5.3.2. The periods of β are β(γ , γ+) = λϑ(γρ), consequently Assumption C
holds for β, in particular, int(Lϑ ,ρ)

∗ = {ϕ ∈ (Lϑ ,ρ)
∗ : hϕ < ∞}.
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Proof. The first assertion follows from Proposition 5.2.3. To prove Assumption C holds,
one considers any σ ∈ ϑ and the representation φσ . By Theorem 5.2.2, the composition
φσ ρ : Γ → GL(Vσ ) is projective-Anosov and thus, by equation (19) and Lemma 5.1.2, the
form 	σ ∈ (Eϑ)

∗ has finite entropy. The last assertion follows from Lemma 3.4.2.

Lemma 3.4.2 and Theorem 3.2.2 give then the following corollary.

COROLLARY 5.3.3. There exists a Hölder-continuous functionJϑ ,ρ : UΓ → Eϑ such that
for every hyperbolic γ ∈ Γ , one has

∫
[γ ] Jϑ ,ρ = λϑ(γρ). For every ϕ ∈ int(Lϑ ,ρ)

∗, the
Γ -action on ∂2Γ × R defined by

γ · (x, y, t) = (γ x, γy, t − βϕ(γ , y)) (25)

is properly discontinuous and co-compact. The R-translation flow induces on the quotient
a flow φϕ = (φ

ϕ
t : χϕ → χϕ)t∈R (bi)-Hölder-conjugated to the reparameterization of g by

ϕ ◦Jϑ ,ρ .

Definition 5.3.4. The function Jϑ ,ρ will be referred to as the Ledrappier potential of ρ.
The flow φϕ will be called the ϕ-refraction flow ofρ.

5.4. The ϑ-limit cone. We mimic some celebrated results by Benoist [7] for
Zariski-dense subgroups and ϑ = �.

LEMMA 5.4.1. (Benoist [6, Proposition 5.1]) For every compact set L ⊂ G, there exists a
compact set H ⊂ E such that for every g ∈ G, one has a(LgL) ⊂ a(g) + H .

Let us also denote aϑ = pϑ ◦ a.

PROPOSITION 5.4.2. Let ρ : Γ → G be a ϑ-Anosov representation. Then there exists a
compact set D ⊂ Eϑ such that aϑ(ρ(Γ)) ⊂ λϑ(ρ(Γ)) + D.

Proof. As Γ is finitely generated and word-hyperbolic, there exist κ > 0 and two elements
u, v ⊂ Γ such that for every non-torsion γ ∈ Γ , there exists f ∈ {u, v} such that f γ

verifies

d∂Γ ((f γ )+, (f γ )−) > κ .

As ρ is ϑ-Anosov, the above equation implies the element ρ(f γ ) is (r , ε)-proximal on ϑ

for some r only depending on κ . By Proposition 4.8.1, one has

‖aϑ(ρ(f γ )) − λϑ(ρ(f γ ))‖ ≤ K ,

for some K only depending on κ and ρ. We consider the compact set H from the lemma
above applied to L = ρ({u−1, v−1}) and we let D := pϑ(H) + B(0, K).

We will mainly use the following direct consequence.

COROLLARY 5.4.3. If ϕ ∈ int(Lϑ ,ρ)
∗, then the exponential rate

δϕ := lim sup
t→∞

1
t

log #{γ ∈ Γ : ϕ(a(γρ)) ≤ t} < ∞.

https://doi.org/10.1017/etds.2023.13 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.13


A report on an ergodic dichotomy 271

Proof. If σ ∈ ϑ then, since both intersections ker 	σ ∩ Lϑ ,ρ and ker ϕ ∩ Lϑ ,ρ vanish
(the first one always does, the second one by the assumption on ϕ), the function ϕ/	σ is
bounded below away from zero on Lϑ ,ρ . By Proposition 5.4.2, there exist positive c and C
such that for all hyperbolic γ ∈ Γ , one has

ϕ(a(γρ)) ≥ c	σ (a(γρ)) − C.

Lemma 4.10.1 gives then the desired result.

5.5. Patterson–Sullivan theory along the Anosov roots: existence. In this section, we
will construct, for each ϕ ∈ int(Lϑ ,ρ)

∗, a βϕ-Patterson–Sullivan measure. (The ϑ-Anosov
property is not really used until the uniqueness corollary. The existence presented here
works for any discrete group whose limit cone on E does not intersect any wall associated
to ϑ and replacing ξϑ(∂Γ) by⋂

n∈N
{Uϑ(g) : g ∈ � with min

σ∈ϑ σ(a(g)) ≥ n}.)

The procedure is standard and follows the original idea by Patterson.
We begin by considering the Dirichlet series

Pϕ(s) =
∑
γ∈Γ

q−sϕ(a(γρ)).

It is convergent for every s > δϕ and divergent for every s < δϕ . As it is customary when
constructing Patterson–Sullivan measures, we can assume throughout this subsection that
Pϕ(δϕ) = ∞, otherwise, one would consider the series

s �→
∑
γ∈Γ

h(ϕ(a(γρ)))q
−sϕ(a(γρ))

for some real function h defined, for example, as by Quint [62, Lemma 8.5].
For s > δϕ , consider the probability measure on Fϑ defined by

νs = 1
Pϕ(s)

∑
γ∈Γ

q−sϕ(a(γρ))δUϑ(γρ).

LEMMA 5.5.1. For every η ∈ Γ , the signed measure

ε(η, s) = (ηρ)∗νs − 1
Pϕ(s)

∑
γ∈Γ

q−sϕ(a(γρ))δUϑ(ηργρ)

weakly converges to 0 as s ↘ δϕ .

This is a standard argument that can be found, for example, in [59, Lemma 5.11].

Proof. It is sufficient to check the convergence for continuous functions. If f : Fϑ → R

is continuous, then

|ε(η, s)(f )| ≤ 1
Pϕ(s)

∑
γ∈Γ

q−sϕ(a(γρ))|f (ηρUϑ(γρ)) − f (Uϑ(ηργρ))|.

By Lemma 4.9.2 and uniform continuity of f, the convergence follows.
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LEMMA 5.5.2. Let νϕ be any weak-star limit of νs when s ↘ δϕ . Then, the support of νϕ

is contained in ξϑ(∂Γ). Moreover, for every η ∈ Γ , one has

dρ(η)∗νϕ

dνϕ
(x) = q−ϕ( βϑ (η

−1
ρ ,x)).

Proof. The first statement follows at once from Lemma 5.2.5 since we assumed
Pϕ(δϕ) = ∞. For the second statement, consider a sequence sk ↘ δϕ such that νsk → νϕ .
One then has

ρ(η)∗νsk = ε(η, sk) + 1
Pϕ(sk)

∑
γ∈Γ

q−skϕ(a(γρ))δUϑ(ηργρ)

= ε(η, sk) + 1
Pϕ(sk)

∑
γ∈Γ

q−skϕ(a(η
−1
ρ γρ))δUϑ(γρ)

= ε(η, sk) + 1
Pϕ(sk)

∑
γ∈Γ

q−skϕ(a(η
−1
ρ γρ)−a(γρ))q−skϕ(a(γρ))δUϑ(γρ)

= ε(η, sk) + 1
Pϕ(sk)

∑
γ∈Γ

q−skϕ( βϑ (η
−1
ρ ,Uϑ(γρ))+ε′(η,γ ))q−skϕ(a(γρ))δUϑ(γρ),

where by Quint’s Lemma 4.9.3 and the fact that ϕ ◦ pϑ = ϕ, one has ε′(η, γ ) → 0
as minσ∈ϑ σ(a(γρ)) → ∞. Taking the limit as sk ↘ δϕ , one has, since we assumed
Pϕ(δϕ) = ∞, that only elements γ ∈ Γ with arbitrary big |γ | count in the sum. Since
ρ is ϑ-Anosov, this is equivalent to considering elements γ ∈ Γ such that

min
σ∈ϑ σ(a(γρ))

is arbitrarily big. The result then follows as ε(η, sk) → 0 by Lemma 5.5.2 and ε′(η, γ ) is
arbitrarily small.

Since Assumption C holds for β (Lemma 5.3.2), §3.3 is applied to give the following
corollary.

COROLLARY 5.5.3. For every ϕ ∈ int(Lϑ ,ρ)
∗, there exists a βϕ-Patterson–Sullivan

measure μϕ := (ξϑ)∗νϕ of exponent δϕ . Such a measure is ergodic and, moreover, one
has δϕ = hϕ . If ψ ∈ int(Lϑ ,ρ)

∗ is such that μψ � μϕ , then for every hyperbolic γ ∈ Γ ,
one has

hϕϕ(λϑ(γρ)) = hψψ(λϑ(γρ))

and, in particular, μψ = μϕ .

The above corollary was previously established by Dey and Kapovich [29, Main
Theorem] for real algebraic groups, i-invariant functionals ϕ ∈ int(a+)∗, and i-invariant
subsets ϑ . The equality δϕ = hϕ , together with more information, can also be found in
Glorieux, Monclair, and Tholozan’s work [32, Theorem 2.31(2)] for real groups.

Remark 5.5.4. We conclude by remarking that for ϕ ∈ int(Lϑ ,ρ)
∗, the existence assump-

tions of §3.3 are guaranteed for βϕ . Indeed, Proposition 5.5.3 states the existence of a
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Bc1(e)

γ−1 Γ

Cc0,c1∞ (γ )

FIGURE 1. The coarse cone type at infinity, the black broken lines are (c0, c1)-quasi-geodesics.

Patterson–Sullivan measure μϕ for βϕ . The cocycle

β̄(γ , x) = i βi ϑ(γρ , ξ i ϑ(x))

is dual to β and moreover, from equation (22), the function [·, ·]ϕ : ∂2Γ → R

[x, y]ϕ = ϕ(Gϑ(ξ
i ϑ(x), ξϑ(y))) (26)

is a Gromov product for the pair (β̄ϕ , βϕ). Finally, exchanging ϑ with i ϑ , Proposition 5.5.3
provides a Patterson–Sullivan measure for β̄ϕ . We can thus apply the results from §§3.4
and 3.5.

5.6. Cartan’s basins have controlled overlaps. The job of understanding the overlaps of
Cartan’s basins for Anosov representations has been carried out by Pozzetti, Sambarino,
and Wienhard [58]. The idea is to compare the Cartan’s basins of elements γρ , for
hyperbolic γ ∈ Γ , with the coarse cone type of γ .

Let c0, c1 be positive and I ⊂ Z an interval. Then, a (c0, c1)-quasigeodesic is a
sequence {αi}i∈I ∈ Γ such that for every pair j , l in the interval I, one has

1
c0

|j − l| − c1 ≤ dΓ (αj , αl) ≤ c0|j − l| + c1.

The coarse cone type at infinity of γ ∈ Γ consists of endpoints on ∂Γ of quasi geodesic
rays based at γ−1 passing through the identity (see Figure 1):

Cc0,c1∞ (γ )

= {[{αj }∞0 ] ∈ ∂Γ : {αi}∞0 is a (c0, c1)-quasi-geodesic with α0 = γ−1, e ∈ {αj }}.
Pozzetti, Sambarino, and Wienhard [58, Proposition 3.3] together with Bochi, Potrie,

and Sambarino [10, Lemma 2.5] (see also [59, Proposition 3.3]) give the following. The
last statement can be found in [58, Proposition 3.5].

PROPOSITION 5.6.1. (Pozzetti, Sambarino, and Wienhard [58, Proposition 3.3]) For a
given α > 0, there exist c0, c1, depending on α and the domination constants of ρ, such
that for every hyperbolic γ ∈ Γ , one has

(ξϑ)−1(Bθ ,α(γρ)) ⊂ Cc0,c1∞ (γ ).
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Reciprocally, there exists α′; only depending on c0, c1 and the domination constants of ρ,
such that

Cc0,c1∞ (γ ) ⊂ (ξϑ)−1(Bθ ,α′(γρ)).

There exists then N ∈ N, only depending on c0, c1 and the domination constants of ρ such
that, for all t ∈ N, the family

Ut = {γρBϑ ,α(γρ) : t ≤ |γ | ≤ t + 1}
is an open covering of ξϑ(∂Γ) and such that every element ξϑ(x) belongs to at most N
elements of the coveringUt .

5.7. Sullivan’s shadow lemma. We establish now a version of Sullivan’s shadow lemma.

LEMMA 5.7.1. Consider ϕ ∈ (Eϑ)
∗ and let μ be a βϕ-Patterson–Sullivan measure of

exponent δ. Let ν = ξϑ∗ μ. Then given α > 0, there exist constants C, C′, and L ∈ N such
that for every γ ∈ Γ with |γ | ≥ L, one has

q−δ·ϕ(a(γρ))C′ ≤ ν(γρBϑ ,α(γρ)) ≤ Cq−δ·ϕ(a(γρ)).

Proof. It suffices to establish that there exist α and κ > 0 such that for all large enough
γ ∈ Γ , one has ν(Bϑ ,α(γρ)) ≥ κ . Indeed, using this fact, the lemma follows from the
defining equations (27) and (23).

To establish the desired lower bound, we suppose by contradiction that there exists
αn → ∞, γn → ∞ such that ν(Bϑ ,αn((γn)ρ)) → 0 as n → ∞. We can then extract a
subsequence (γnk

) such that

Ui ϑ((γ
−1
nk

)ρ) → Y ∈ Fi ϑ , k → ∞.

Moreover, since ρ is ϑ-Anosov, Lemma 5.2.5 guarantees that Y = ξ i ϑ(y) for some
y ∈ ∂Γ . Also, since ν(Bϑ ,αnk

((γnk
)ρ)) → 0 and αnk

→ ∞, we get that the complement

(Bϑ ,αnk
((γnk

)ρ))
c

= {X ∈ Fϑ : there exists σ ∈ ϑ such that 	σGϑ(Ui ϑ((γ
−1
nk

)ρ), X) ≤ −αn}
converges to the subset of Fϑ

{X ∈ Fϑ : (X, ξ i ϑ(y)) /∈ F(2)
ϑ },

and that this subset has total ν-mass. Since the support of ν is contained in ξϑ(∂Γ) and the
equivariant maps are transverse (Proposition 5.2.3), one has that

{ξϑ(y)} = {ξϑ(x) : (ξϑ(x), ξ i ϑ(y)) /∈ F(2)
ϑ }

has total ν-mass. However, considering γ ∈ Γ with γy �= y, we get, since

d(γρ)∗ν
dν

(·) = q−δ·ϕ( βθ (γ
−1
ρ ,·)), (27)

that ν{ξ1(γy)} > 0, contradicting that {ξϑ(y)} has total ν-mass.
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COROLLARY 5.7.2. For every ϕ ∈ int(Lϑ ,ρ)
∗, one has

∑
γ∈Γ

q−δϕϕ(a(γρ)) = ∞.

Proof. We apply Sullivan’s shadow Lemma 5.7.1 to the measure νϕ of Lemma 5.5.2.
Indeed, considering the coverings of ξϑ(∂Γ) given by Proposition 5.6.1, one has

1 = νϕ(ξϑ(∂Γ)) ≤
∑

t≤|γ |≤t+1

νϕ(γρBϑ ,α(γρ)) ≤ C
∑

t≤|γ |≤t+1

q−δϕϕ(a(γρ))

for all large enough t , giving divergence of the desired series.

5.8. Patterson–Sullivan theory along the Anosov roots: surjectivity. We prove here
surjectivity of the map ϕ �→ μϕ defined in §5.5.

The following proposition should be compared with [58, Theorem 5.14], where a similar
result is obtained for measures on the flag space Fθ , for θ not necessarily equal to ϑ but
assuming that ϑ ∩ θ �= ∅.

PROPOSITION 5.8.1. Consider ϕ ∈ (Eϑ)
∗. If there exists a βϕ-Patterson–Sullivan measure

μ of exponent δ, then ϕ ∈ int(Lϑ ,ρ)
∗, δ = δϕ , and μ = μϕ .

Proof. We let ν = ξϑ∗ μ. Using Proposition 5.6.1, we get a family of coverings Ut with
bounded overlap. In combination with Lemma 5.7.1, one has for t large enough that

1 = ν(ξϑ(∂Γ)) ≥ K
∑

γ :t≤|γ |≤t+1

e−δϕ(a(γρ)),

for some constant K > 0. This is to say, there exists κ > 0 such that for all t ∈ R+ large,
one has

∑
γ :t≤|γ |≤t+1 e−δϕ(a(γρ)) ≤ κ , which gives in turn that∑

γ :|γ |≤t

e−δϕ(a(γρ)) ≤ κt .

A standard argument (using for example §4.8) permits to replace Cartan projections with
Jordan projections giving∑

[γ ]:p([γ ])≤t

e−δϕ(λ(γρ)) =
∑

[γ ]:p([γ ])≤t

e
−�

δJϕ
ϑ ,ρ

(γ ) ≤ κ ′t ,

for a suitable κ ′, where p([γ ]) is the g-period of the periodic orbit associated to [γ ], and
Jϕ

ϑ ,ρ is the Ledrappier potential of βϕ . Equation (5) for the pressure function gives then

P(−δJϕ
ϑ ,ρ) ≤ 0.

Consequently, Lemma 2.2.7 gives that Jϕ
ϑ ,ρ is Livšic-cohomologous to a positive

function, this is to say, ϕ ∈ int(Lϑ ,ρ)
∗. Finally, since Remark 5.5.4 guarantees the

existence assumptions of §3.3 for βϕ , the remaining two equalities in the statement follow
from Corollary 3.3.2.

5.9. The critical hypersurface parameterizes Patterson–Sullivan measures. By
Lemma 5.3, Assumption C holds for β and thus §3.4 applies. Define the ϑ-critical
hypersurface, respectively ϑ-convergence domain, of ρ by
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Qϑ ,ρ := Qβ = {ϕ ∈ int(Lϑ ,ρ)
∗ : hϕ = 1},

Dϑ ,ρ := Dβ = {ϕ ∈ int(Lϑ ,ρ)
∗ : hϕ ∈ (0, 1)}.

Moreover, by Corollary 5.5.3, one has δϕ = hϕ , so one has the equalities

Qϑ ,ρ = {ϕ ∈ int(Lϑ ,ρ)
∗ : δϕ = 1},

Dϑ ,ρ = {ϕ ∈ int(Lϑ ,ρ)
∗ : δϕ ∈ (0, 1)}

= {ϕ ∈ (Eϑ)
∗ :

∑
γ∈Γ

e−ϕ(a(γρ)) < ∞},

where the last equality comes from Corollary 5.7.2.
For ϕ ∈ Qϑ ,ρ , we consider the dynamical intersection map Iϕ = Iβ

ϕ : (Eϑ)
∗ → R,

associated to the cocycle β as in §3.4 and defined by

Iϕ(ψ) = Iβ
ϕ(ψ) = lim

t→∞
1

#Rt (ϕ)

∑
γ∈Rt (ϕ)

ψ(λ(γρ))

ϕ(λ(γρ))
,

where Rt (ϕ) = {γ ∈ Γ hyperbolic : ϕ(λ(γρ)) ≤ t}. Let Ann(Lϑ ,ρ) be the annihilator of
the ϑ-limit cone and denote by

πϑ
ρ : (Eϑ)

∗ → (Eϑ)
∗/Ann(Lϑ ,ρ)

the quotient projection. As before, the map Iβ is also well defined on πϑ
ρ (Qϑ ,ρ) ×

(Eϑ)
∗/Ann(Lϑ ,ρ).

Some statements in the following corollary were previously established by Sambarino
[64] for K = R and Zariski-dense ϑ-Anosov representations of closed negatively curved
manifolds.

COROLLARY 5.9.1. The sets Qϑ ,ρ and πϑ
ρ (Qϑ ,ρ) are closed co-dimension-one analytic

sub-manifolds. The latter bounds the strictly convex set πϑ
ρ (Dϑ ,ρ). The map

ϕ �→ Tϕπ
ϑ
ρ (Qϑ ,ρ) = ker Iϕ

is an analytic diffeomorphism between πϑ
ρ (Qϑ ,ρ) and directions in the relative interior

of Lϑ ,ρ .

We now prove the following proposition.

PROPOSITION 5.9.2. The map ϕ �→ μϕ is an analytic homeomorphism from the manifold
πϑ
ρ (Qϑ ,ρ) to the space of Patterson–Sullivan measures supported on ξϑ(∂Γ).

Proof. By uniqueness in Corollary 5.5.3, the map ϕ �→ μϕ is well defined and injec-
tive. Regularity follows from Remark 3.3.3 and analytic variation of equilibrium states
(Theorem 2.3.3). Surjectivity follows from Proposition 5.8.1.

Proposition 5.9.2 was previously established by Lee and Oh [46, Theorem 1.3] for
K = R and �-Anosov Zariski-dense representations. The convergence domain D�,ρ is
dual to Quint’s growth indicator function [61].
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Remark 5.10. Observe that, by definition, a βϕ-Patterson–Sullivan measure has its support
on ∂Γ , and thus on ξϑ(∂Γ) when pushed to Fϑ . One could more generally study measures
on Fϑ verifying

d(γρ)∗ν
dν

(·) = q−δ·ϕ( βθ (γ
−1
ρ ,·)), (28)

without imposing conditions on their support. Such measures exist, for example, the
K-invariant measure on Fϑ , but their exponent is too large. The question would be totally
settled if the following had an affirmative answer: Is the support of a measure verifying
equation (28) with δ = δϕ necessarily contained on ξϑ(∂Γ)?

5.11. Variation of the critical hypersurface. We record the following consequence of
Bridgeman et al [17, §6.3]

COROLLARY 5.11.1. (Bridgeman et al [17]) Let {ρu : Γ → G}u∈D be an analytic family
of ϑ-Anosov representations. Then, Livšic-cohomology class of the Ledrappier potential
Jβρu : ŨΓ → Eϑ associated varies analytically with u.

Consequently, we can apply Corollary 2.6.5 to obtain the following corollary.

COROLLARY 5.11.2. Let {ρu : Γ → G}u∈D be an analytic family of ϑ-Anosov representa-
tions. Then the critical hypersurface Qϑ ,ρu varies analytically (on compact sets of Eϑ ) with
the representation u.

5.12. Consequences of the skew-product structure. Consider ϕ ∈ int(Lϑ ,ρ)
∗. By

Remark 5.5.4, we can freely apply results from §§3.4 and 3.5 to the cocycle βϕ .
Let uϕ = ThϕϕQϑ ,ρ ∈ P(Lϑ ,ρ) be the growth direction of ϕ. By §3.4, the half-line

uϕ ∩ Lϑ ,ρ lies in the relative interior of Lϑ ,ρ (and every direction in this relative interior
is obtained in this fashion).

Consider the ϕ-Bowen–Margulis measure �ϕ on Γ\(∂2Γ × Eϑ), defined as induction
on the quotient by

e−δϕ [·,·]ϕ μ̄ϕ ⊗ μϕ ⊗ d Leb. (29)

Consider uϕ ∈ uϕ with ϕ(uϕ) = 1 and denote by ωϕ = (ω
ϕ
t : Γ\(∂2Γ × Eϑ) →

Γ\(∂2Γ × Eϑ))t∈R the directional flow induced on the quotient of

t · (x, y, v) = (x, y, v − tuϕ).

The ergodic dichotomy from §3.6 then gives the following theorem.

THEOREM 5.12.1. Assume K = R and ρ is Zariski-dense, and let ϕ ∈ int(Lϑ ,ρ)
∗.

If |ϑ | ≤ 2, then the directional flow ωϕ is ergodic with respect to �ϕ , in particular,
K(ωϕ) has total mass. If |ϑ | ≥ 4, then K(ωϕ) has measure 0.

Proof. The non-arithmeticity assumption for β holds by Benoist’s Theorem 4.10.2 and
thus Corollary 3.6.1 applies.
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5.13. Directional conical points. The present task is to study the set of points on ∂Γ that
are conical in the direction uϕ .

Consider y ∈ ∂Γ and a sequence {γn} ⊂ Γ with γn → y. Then we say that γn converges
conically to y if for every z ∈ ∂Γ − {y}, the sequence γ−1

n (z, y) remains on a compact
subset of ∂2Γ .

Remark 5.13.1. Equivalently, since any compact subset of ∂2Γ is contained in a compact
subset of the form {(a, b) : d∂Γ (a, b) ≥ κ} for a fixed κ , one has that γn → y conically if
and only if there exists a geodesic ray {αi}∞0 on Γ , converging to y, such that {γn} is at
bounded Hausdorff distance from {αi}∞0 . It follows then the existence of constants, c0, c1,
such that for all n, one has

γ−1
n y ∈ Cc0,c1∞ (γn). (30)

Let us fix an (auxiliary) Euclidean norm on Eϑ and denote by B(v, r) the associated
ball of radius r about v. The tube of size r about uϕ is the tubular neighborhood:

Tr (uϕ) = {v ∈ Eϑ : B(v, r) ∩ uϕ �= ∅}.
Definition 5.13.2. We say that y ∈ ∂Γ is (r , ϕ)-conical if there exists a conical sequence
{γn} ⊂ Γ converging to y such that for all n,

aϑ((γn)ρ) ∈ Tr (uϕ).

We say that y is ϕ-conical if it is (r , ϕ)-conical for some r .

Let us denote by ∂r ,ϕΓ ⊂ ∂Γ the set of (r , ϕ)-conical points and by ∂ϕΓ the set of
ϕ-conical points. We now establish the following dichotomy.

THEOREM 5.13.3. Assume K = R and that ρ is Zariski-dense. If |ϑ | ≤ 2, then
μϕ(∂ϕΓ) = 1; if |ϑ | ≥ 4, then μϕ(∂ϕΓ) = 0.

Theorem 5.13.3 follows directly from Theorem 5.12.1 and the following proposition. Let
us denote by p : ∂2Γ × Eϑ → Γ\(∂2Γ × Eϑ) the quotient projection.

PROPOSITION 5.13.4. A point y ∈ ∂Γ belongs to ∂ϕΓ if and only if for every pair (x, v) ∈
(∂Γ − {y}) × Eϑ , one has p(x, y, v) ∈ K(ωϕ).

Proof. If (x, y, v) ∈ ∂2Γ × Eϑ is such that y ∈ ∂ϕΓ , then consider r > 0 and γn → y

conically such that a((γn)ρ) ∈ Tr (uϕ). By equation (30), there exists ε given by
Proposition 5.6.1 (only depending on c0 and c1) such that for all n,

ξϑ(y) ∈ (γn)ρBϑ ,ε((γn)ρ).

Consequently, equation (23) gives

‖β(γ−1
n , y) + aϑ(ρ(γn))‖ = ‖ − β(γn, γ−1

n · y) + aϑ(ρ(γn))‖ < Kε. (31)

By assumption, aϑ(ρ(γn)) ∈ Tr (uϕ) and one finds thus a divergent sequence tn ∈ R+ such
that

‖β(γ−1
n , y) + tnuϕ‖ < K ′, (32)
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for some K ′ only depending on r and ε. The sequence

ω
ϕ
−tn

γ−1
n (x, y, v) = (γ−1

n x, γ−1
n y, v − β(γ−1

n , y) − tnuϕ)

is thus contained in {(z, w) ∈ ∂2Γ : d∂Γ (z, w) > κ} × B(v, K ′), for some κ only depend-
ing on d∂Γ (x, y), in particular, p(x, y, v) ∈ K(ωϕ) as desired.

Reciprocally, if p(x0, y0, v0) ∈ Γ\(∂2Γ × Eϑ) belongs to K(ωϕ), let B be a bounded
open set to which the ωϕ-orbit of p(x0, y0, v0) returns to unbounded. Considering an
accumulation point of the orbit points in B, we can assume that B = p(B̃) for some B̃
of the form

{(z, w) ∈ ∂2Γ : d∂Γ (z, w) ≥ κ ′} × B(v, c).

We obtain thus divergent sequences {γn} ⊂ Γ and {tn} ⊂ R
+ such that for all n,

d∂Γ (γ
−1
n x0, γ−1

n y0) > κ ′ and ‖β(γ−1
n , y0) + tnuϕ‖ ≤ K ′′. (33)

Considering subsequences, we can assume that γ−1
n x0 → x∞ and γ−1

n y0 → y∞.
Necessarily, x∞ �= y∞ since they are at least κ ′ apart. The sequence {γn} is thus conical,
but it is still to be determined whether it converges to x0 or to y0.

Using the last inequality in equation (33), we deduce, since tn → +∞, that for all
σ ∈ ϑ ,

	σ(β(γ
−1
n , y0)) → −∞.

By definition of β and the interpretation of the Buseman–Iwasawa cocycle via represen-
tations (equation (21)), one has log(‖φσ ρ(γ

−1
n )v‖/‖v‖) → −∞ for any non-vanishing

v ∈ �φσ (ξ
ϑ (γ−1

n y0)), or equivalently, as n → ∞,

‖φσ ρ(γ
−1
n )v‖

‖v‖ → 0.

We now use a standard linear algebra computation to conclude that

sin �(�φσ (ξ
ϑ (y0)), Ud−1(φσ (γn)ρ)) → 0.

LEMMA 5.13.5. (Bochi, Potrie, and Sambarino [10, Lemma A.3]) Let A ∈ GLd(R) have a
gap at α1, then for every v ∈ R

d one has

‖Av‖
‖v‖ ≥ ‖A‖ sin �(R · v, Ud−1(A

−1)).

By Lemma 5.2.4, one concludes that

U1(φσ (ρ(γn))) → �φσ (ξ
ϑ (y0)),

as n → ∞ for all σ ∈ ϑ . Again by Lemma 5.2.4, one has γn → y0 as n → ∞ (in Γ ∪ ∂Γ )
and thus, by conicality of {γn}, that for all z ∈ ∂Γ − {y0}, it holds γ−1

n z → x∞. It follows
then that

Ud−1(φσ ρ(γn)
−1) → �∗

φσ
(ξ i ϑ(x∞)),
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and, since γ−1
n y0 → y∞ �= x∞, that

�(�φσ (ξ
ϑ (γ−1

n y0)), Ud−1(φσ ρ(γn)
−1)) > κ ′.

Since the latter lower bound holds for all σ ∈ ϑ , one concludes that ξϑ(γ−1
n y0) belongs to

the Cartan basin Bϑ ,κ ′′(ρ(γn)). Thus, as in equation (31), one has

‖β(γ−1
n , y0) + aϑ(ρ(γn))‖ ≤ K ,

for some K only depending on κ ′′. The latter, together with the second inequality from
equation (33), implies that y0 is ϕ-conical, as desired.

Proof of Theorem 5.13.3. Consider a positive ε. Fix y ∈ ∂ϕΓ , x ∈ ∂Γ − {y} and two
neighborhoods A− and A+ of x and y, respectively, so that for all (z, w) ∈ A−, A+, one
has |[z, w]ϕ − [x, y]ϕ | < ε. Pick also an arbitrary T > 0 so that the quotient projection p
is injective on B̃ = A− × A+ × B(0, T ). We can thus compute the measure of B = p(B̃)

by equation (29).
If we let K̃(ωϕ) = p−1(K(ωϕ)), then the lemma above asserts that

A− × (A+ ∩ ∂ϕΓ) × B(0, T ) = K̃(ωϕ) ∩ B̃.

If |ϑ | ≤ 2, Theorem 5.12.1 states that �ϕ(B̃) = �ϕ(K̃(ωϕ) ∩ B̃), which implies, up to
e−δϕε, that

μϕ(A+) = μϕ(A+ ∩ ∂ϕΓ).

Since ε is arbitrary, one concludes μϕ(∂ϕΓ) = 1. However, if |ϑ | ≥ 4, then we have
�ϕ(K̃(ωϕ)) = 0, so μϕ(A+ ∩ ∂ϕΓ) = 0 and the theorem is proved.

A. Appendix. Ergodicity of skew-products with values on R

We freely use notation from Proposition 2.4.2 which we intend to prove. The proof
presented here is mainly a collection of results.

We say that K is recurrent if for every measurable set A ⊂ � with ν(A) > 0 and every
neighborhood N(0) of 0 in V, there exists n ∈ Z − {0} such that one has

ν

(
A ∩ σ−nA ∩ {x :

n∑
k=0

K(σ ix) ∈ N(0)}
)

> 0.

It is proven by Schmidt [67, Theorem 5.5] that K is recurrent if and only if the
skew-product fK : � × R → � × R is conservative (see Aaronson’s book [1, §1.1] for
the definition). It is moreover a general fact that mean-zero cocycles over the reals are
conservative, see [1, Corollary 8.1.5] from which we state here a particular case.

COROLLARY A.1. Since, by assumption,
∫

K dν = 0, the cocycle fK is conservative and
so K is recurrent.

The proof of Proposition 2.4.2 ends with the following theorem of Coelho (obtained by
the combination of Example 2.4 and Corollary 3.4 of Coelho [26]), specific to sub-shifts
and equilibrium states.
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THEOREM A.0.1. (Coelho [26]) Assume K is non-arithmetic and let ν be an equilibrium
state of σ for a Hölder potential. Then, f is ergodic with respect to Ων if and only if K is
recurrent.

B. Appendix. Mixing
In this appendix, we give a quick outline of the proof of Theorem 2.5.2. We use small
modifications of classical computations performed by Babillot [3] as well as by Babillot
and Ledrappier [5], Ledrappier and Sarig [45], and more recently by Oh and Pan [52] and
Chow and Sarkar [25], where an extra parameter (an holonomy with values on a compact
group) has been added to the Ruelle operator. We thank M. Chow and P. Sarkar for pointing
out an issue in the argument presented by Sambarino [66], Ledrappier for suggesting the
reference [45], and Oh for pinpointing the reference [52].

It is first convenient to straighten the flow action by means of twisting the r-action.

LEMMA B.1. Let U = R × W , and let k : � → U be k(x) = (r(x),
∫ r(x)

0 K(x, s) ds),
then:
• there exists ϕ ∈ U∗ such that ϕ(k) = r > 0,
• ∫

kdν = (
∫

rdν, 0) �= 0;
• there exists a bi-Hölder homeomorphism E : Σr × W → � × U/k̂, where

k̂(x, u) = (σ (x), u − k(x)),

which is a measurable isomorphism between Ω̄ and ν ⊗ LebU/k̂, that conjugates ψ

with the flow induced on the quotient by

(x, u) �→ (x, u − tτ ),

where τ ∈ ∫
kdν is such that ϕ(τ) = 1.

Proof. Define E : Σr × W → � × U/k̂ by E((x, t), w) = (x, (t , w + ∫ t

0 K(x, s) ds)).
It is well defined since the above formula is equivariant. Indeed, one has∫ t−r(x)

0
K(σ(x), s) ds =

∫ t

r(x)

K(σ(x), s − r(x)) ds

=
∫ t

r(x)

K(x, s) ds (K is r̂-invariant)

=
∫ t

0
K(x, s) ds −

∫ r(x)

0
K(x, s) ds,

which implies

E(r̂(x, t), w) =
(
σ(x), (t − r(x), w +

∫ t−r(x)

0
K(σ(x), s) ds)

)

=
(
σ(x), (t − r(x), w +

∫ t

0
K(x, s) ds −

∫ r(x)

0
K(x, s) ds)

)
= k̂(E((x, t), w)),

as desired. The remaining assertions follow similarly.
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We will work from now on with this latter flow, still denoted by ψ so as not to overcharge
with notation. Up to Livšic-cohomology, we may assume that k is defined on �+.

By measure-theoretic arguments, we consider F , G : �+ × U → R that we can assume
have separated variables, that is, can be written as F(x, u) = pF (x)vF (u), with pF and
pG Hölder-continuous, and vF and vG smooth with compact support. We have to show
that, as t → ∞,

tdim W/2Ω̄(F · G ◦ ψt) → Ω̄(F )Ω̄(G).

Tracing back the definitions, one is brought up to understanding the limit as t → ∞ of

tdim W/2
( ∫

�+×U

∑
n∈N

F(x, u)G(σnx, u − Snk(x) − tτ ) dν d LebU

)
, (B.1)

where Snk(x) = ∑n
i=0 k(σ i(x)) is the Birkhoff sum. We focus on the integral between

brackets, only to multiply at the very end of our computation by
√
t
d−1, where d = dim U .

The above integral becomes∫
�+×U

∑
n∈N

pF (x)pG(σnx)vF (u)vG(u − Snk(x) − tτ ) dν(x) d LebU(u).

Recall that, by assumption, there is ϕ ∈U∗ so that ϕ(k) = hr > 0 and that P(−hr) = 0,
so up to Livšic-cohomology, we can assume that −ϕ(k) = −hr is normalized, that is, so
that the Ruelle operator, defined by

Lϕ�(x) =
∑

y:σ(y)=x

e−ϕ(k(y))�(y),

verifies L∗
ϕν = ν, in particular, for every pair of Hölder-continuous functions j , l on �+,

one has
∫
�+ j (σx)l(x) dν = ∫

�+ j (x)(Lϕl)(x) dν.
Denote by LebU∗ the Lebesgue measure on U∗ defined by the Fourier inversion formula

vG(w) =
∫
U∗

eiψ(w)FvG(ψ) d LebU∗(ψ)

for the Fourier transform FvG if vG. As in [5, §2.3] we can, and will, assume that FvG is
of class CN for some N > (d − 1)/2 and has compact support.

We will suppress the notation ν, LebU , and LebU∗ from the integrals from now on. The
desired integral, equation (B.1), then becomes∫

�+×U

∑
n∈N

(Ln
ϕpF )(x)pG(x)vF (u)vG(u − Snk(x) − tτ ) dx du

=
∫
�+×U

∑
n∈N

(Ln
ϕpF )(x)pG(x)vF (u)

∫
U∗

eiψ(u−Snk(x)−tτ )FvG(ψ) dψ dx du,

=
∫
�+×U

∫
U∗

∑
n∈N

(Ln
ϕ+iψpF )(x)pG(x)vF (u)eiψ(u−tτ )FvG(ψ) dψ dx du

=
∫
�+×U

pG(x)vF (u)

∫
U∗

∑
n∈N

(Ln
ϕ+iψpF )(x)eiψ(u−tτ )FvG(ψ) dψ dx du. (B.2)
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We seek thus to understand the nature of ψ �→ ∑
n∈N Ln

ϕ+iψ , for which one is brought
to understand the spectral radius rψ of Lϕ+iψ . Applying [53, Ch. 4], we obtain that for
every ψ ∈ U∗, one has rψ ∈ (0, 1]. We then distinguish two situations.

The spectral radius rψ is smaller than 1. In which case

η �→
∑
n∈N
Ln

ϕ+iη = (1 −Lϕ+iη)
−1,

is analytic on a neighborhood of ψ .
The spectral radius rψ equals 1. One has then the following theorem.

THEOREM B.1. (Parry and Pollicott [53, Ch. 4]) One has rψ = 1 if and only if there exists
a Hölder-continuous wψ : �+ → S

1 such that for all x ∈ �+, one has

eiψ(k(x)) = λψ

wψ(σ(x))

wψ(x)
.

In this situation, the function wψ is unique up to scalars.

Applying moreover [53, Theorem 4.5] and the perturbation theorem [53,
Proposition 4.6], there exists a neighborhood Oψ of ψ such that for all η ∈ Oψ , one
has

Lϕ+iη = ληQη + Nη, (B.3)

where Qη is a rank-one projector, Nη is an operator with spectral radius strictly smaller
than rη = |λη|, and such that QηNη = NηQη = 0. The above objects are analytic on Oψ .
The operator Mψ = ∑

n∈N Nn
ψ is hence well defined and analytic on Oψ . Observe that, as

we have assumed −ϕ(k) to be normalized, one has

Q0(f )(x) =
( ∫

�+
f dν

)
· 1. (B.4)

Remark B.2. Since k has a dense group of periods on U , ψ(k) : �+ → R has a dense
group of periods as soon as ψ �= 0, and [53, Theorem 4.5] implies that {λn

ψ : n ∈ Z} is
dense in S

1 = ∂D. In particular, λψ �= 1, unless ψ = 0. Consequently, if ψ �= 0, then for
all η ∈ Oψ , the operator

Qη

1 − λη

− Mη

is well defined and analytic on Oψ .

LEMMA B.3. If rψ = 1, then for all η ∈ Oψ − {ψ}, it holds rη < 1. Consequently,

η �→
∑
n∈N
Ln

ϕ+iη = (1 −Lϕ+iη)
−1 = Qη

1 − λη

+ Mη

is analytic onOψ − {ψ} and, if ψ �= 0, it extends analytically toOψ , as the right-hand-side
of the equation is well defined on ψ .
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Proof. As η �→ λη is analytic on Oψ , together with the above density result, it follows that
there is a neighborhood (possibly smaller but) still denoted by Oψ such that if |λη| = 1,
then λη = λψ . One has then, applying Theorem B.1, that

ei(ψ−η)(k(x)) = λψ

wψ(σ(x))

wψ(x)
λ−1
η

wη(x)

wη(σ (x))
= (wψ/wη)(σ (x))

(wψ/wη)(x)
.

The remark and Theorem B.1 give ψ − η = 0 and so the lemma is established.

One obtains then that the operator
∑

n∈N Ln
ϕ+iψ is well defined and varies analytically

on ψ except at ψ = 0. One is thus taken to localize the integral in equation (B.2) about 0.
To that end, one considers an auxiliary C∞ function κ : U∗ → R, supported on the
neighborhood O0, where equation (B.3) holds, with κ(0) = 1, and we seek to understand
the modified integral over U∗ on equation (B.2) given, for (x, u) ∈ �+ × U , by∫

U∗
(1 − κ(ψ))

∑
n∈N

(Ln
ϕ+iψpF )(x)eiψ(u−tτ )FvG(ψ) dψ . (B.5)

Consider from §2.6 the critical hypersurface Qk ⊂ U∗. It follows from Babillot and
Ledrappier [5] that one has Qk = P−1(0) and the tangent space TϕQk = {ψ ∈ U∗ :
ψ(τ) = 0}. For ψ ∈ U∗, let

ψ = sψϕ + ψ0 (B.6)

be its decomposition along U∗ = Rϕ ⊕ TϕQk . Decomposing dψ as dsdψ0, the integral
in equation (B.5) becomes∫

R

e−its

∫
TϕQk

eiψ(u)(1 − κ(ψ))
∑
n∈N

(Ln
ϕ+iψpF )(x)FvG(ψ) dψ0 ds = O(t−N) (B.7)

as it is the Fourier transform of the integral over TϕQk , which is, by Lemma B.3, as regular
as FvG(ψ), and this function was chosen to be of class CN for some N > (d − 1)/2.

We can thus focus on the integral from equation (B.2) localized about 0, so it becomes,
using again Lemma B.3,∫

�+×U

∫
U∗

κ(ψ)

(
(QψpF )x

1 − λψ

+ (MψpF )(x)

)
pG(x)vF (u)eiψ(u−tτ )FvG(ψ) dψ dx du

+ O(t−N). (B.8)

We first treat the term containing Mψ , which is dealt with as we did with equation (B.5).
Indeed, for the same reasons, one has for all (x, u) ∈ �+ × U , the integral∫

U∗
κ(ψ)(MψpF )(x)eiψ(u−tτ )FvG(ψ) dψ

=
∫
R

e−its

∫
TϕQk

eiψ(u)κ(ψ)(MψpF )(x)FvG(ψ) dψ0 ds

= O(t−N). (B.9)
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We attempt then to understand the integral∫
U∗

κ(ψ)
(QψpF )x

1 − λψ

eiψ(u−tτ )FvG(ψ) dψ , (B.10)

the issue being the singularity at ψ = 0 of 1/(1 − λψ). To that end, consider the function
Q : TϕQk → R defined implicitly by the equation

Q(ψ0)ϕ + ψ0 ∈ Qk .

It is analytic, critical at 0 with Q(0) = 1, and has positive-definite Hessian at 0, Hess0 Q.
Using Taylor expansion, one writes

Q(ψ0) = 1 + (1/2) Hess0 Q(ψ0) + O(‖ψ0‖2).

One applies the Weierstrass preparation theorem [38, Theorem 7.5.1] to express 1 − λψ

about 0 as

1 − λψ = a(ψ)(isψ − (1/2) Hess0 Q(ψ0) − O(‖ψ0‖2)),

(recall the decomposition of ψ from equation (B.6)) where a is real-analytic and a(0) =
h

∫
rdν (see [5, p. 37] or [45, p. 17] for details). Whence, as in [5, Lemma 2.3], using the

formula 1/z = − ∫ ∞
0 eT zdT , one has

1
1 − λψ

= − 1
a(ψ)

∫ ∞

0
eT (isψ−(1/2) Hess0 Q(ψ0)−O(‖ψ0‖2)) dT ,

and equation (B.10) becomes, denoting C(ψ , x) = κ(ψ)(QψpF )(x)/a(ψ)FvG(ψ) to
lighten the notation,∫

U∗
eiψ(u−tτ )κ(ψ)

(QψpF )(x)

a(ψ)
FvG(ψ)

∫ ∞

0
eT (isψ−(1/2) Hess0 Q(ψ0)−O(‖ψ0‖2)) dT dψ0 ds

=
∫ ∞

0

∫
R

e−i(t−T )s

∫
TϕQk

C(ψ , x)eiψ(u)−T (Hess0 Q(ψ0)/2+O(‖ψ0‖2)) dψ0 ds dT .

(B.11)

Using Taylor series on the ψ-variable, we may, and will, assume that C(ψ , x) is of the
form cx(sψ)b(ψ0). Equation (B.11) now becomes∫ ∞

0

∫
R

e−i(t−T−ϕ(u))scx(s) ds

∫
TϕQk

b(ψ0)e
iψ0(u)−T (Hess0 Q(ψ0)/2+O(‖ψ0‖2)) dψ0 dT

=
∫ ∞

0
Fcx(t − T − ϕ(u))

∫
TϕQk

b(ψ0)e
iψ0(u)−T (Hess0 Q(ψ0)/2+O(‖ψ0‖2)) dψ0 dT

=
∫ ∞

ϕ(u)

Fcx(t − T )

∫
TϕQk

b(ψ0)e
iψ0(u)−(T−ϕ(u))(Hess0 Q(ψ0)/2+O(‖ψ0‖2)) dψ0 dT ,

=
∫ ∞

max(t/2,ϕ(u))
Fcx(t − T )

×
∫
TϕQk

b(ψ0)e
iψ0(u)−(T−ϕ(u))(Hess0 Q(ψ0)/2+O(‖ψ0‖2))dψ0 dT + O(t−N), (B.12)
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where the last equality is, as in [5, p. 27], essentially due to the fact that cx has compact
support and is of class CN . Applying the change of variables ψ0 �→ ψ0/

√
T , the last

integral becomes∫ ∞

max(t/2,ϕ(u))

Fcx(t − T )
√
T

d−1

×
∫
TϕQk

b

(
ψ0√
T

)
ei(ψ0/

√
T )(u)−(1−ϕ(u)/T )(Hess0 Q(ψ0)/2+O(‖ψ0‖2/T ))dψ0 dT + O(t−N)

= −
∫ min(t/2,t−ϕ(u))

−∞
Fcx(S)√
t − S

d−1

∫
TϕQk

b

(
ψ0√
t − S

)

× ei(ψ0/
√
t−S)(u)−(1−ϕ(u)/(t−S))(Hess0 Q(ψ0)/2+O(‖ψ0‖2/(t−S))) dψ0 dS + O(t−N).

(B.13)

We finally multiply by
√
t
d−1, take the limit as t → ∞, and trace back our definitions to

get, as we assumed N > (d − 1)/2, the convergence of equation (B.13) (and thus that of
equation (B.10)) to

lim
t→∞

√
t
d−1

∫
U∗

κ(ψ)
(QψpF )x

1 − λψ

eiψ(u−tτ )FvG(ψ) dψ

= b(0)
∫ ∞

−∞
Fcx(S)dS

∫
TϕQk

e−1/2 Hess0 Q(ψ0) dψ0

= cx(0)b(0)
∫
TϕQk

e−1/2 Hess0 Q(ψ0) dψ0

= Q0(pF )(x)FvG(0)
a(0)

∫
TϕQk

e−1/2 Hess0 Q(ψ0) dψ0

=
∫
�+ pFdν

∫
U

vG(u) du

h
∫
�+ rdν

∫
TϕQk

e−1/2 Hess0 Q(ψ0) dψ0, (B.14)

where we have used equation (B.4) and the formula FvG(0) = ∫
U

vG(u) du. Observe
that, as Hess0 Q is positive-definite, the integral

∫
TϕQk

e−1/2 Hess0 Q(ψ0) dψ0 is finite (and
non-zero).

Remark B.4. If one modifies the action (x, u) �→ (x, u − tτ ) to consider induction on
the quotient by (x, u) �→ (x, u − tτ − √

tw0) for a fixed w0 ∈ ker ϕ, then tracing the
computations, one readily sees that

lim
t→∞

√
t
d−1

∫
U∗

κ(ψ)
(QψpF )x

1 − λψ

eiψ(u−tτ−√
tw0)FvG(ψ) dψ

=
∫
�+ pFdν

∫
U

vG(u) du

h
∫
�+ rdν

∫
TϕQk

e−iψ0(w0)e−1/2 Hess0 Q(ψ0) dψ0

=
∫
�+ pFdν

∫
U

vG(u) du

h
∫
�+ rdν

FH(w0),
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where we have defined

H(ψ0) = e−(1/2) Hess0(ψ0).

Observe that, as H(ψ0) = H(−ψ0), the value of the Fourier transform FH(w0) ∈ R.

We finally group back the equations to get the desired result. Indeed, equation (B.1) is
√
t
d−1

∫
�+×U

∑
n∈N

F(x, u)G(σnx, u − Snk(x) − tτ ) dν d LebU

= √
t
d−1

∫
pG(x)vF (u)

∫
κ(ψ)

(QψpF )x

1 − λψ

eiψ(u−tτ )FvG(ψ) dψ du dx + O(1/t)

=
∫
�+ pFdν

∫
U

vG(u) du

h
∫
�+ rdν

∫
pG(x)vF (u) dx du

∫
TϕQk

e−1/2 Hess0 Q(ψ0) dψ0 + O(1/t)

= FH(0)
h

∫
�+ rdν

∫
Fdν d Leb

∫
Gdν d Leb +O(1/t),

where we have used, in the first equality, equations (B.7) and (B.9) and the fact that
N > (1/2)(d − 1) and, in the second equality, the convergence from equation (B.14). This
completes the sketch of the proof.
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