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Abstract. We present the recent results of our continuing program of investigation of the behavior of 
matter in strong to super-strong magnetic fields (B~ 10 6-10 1 2 G). This work was motivated by the 
discovery of strong magnetic fields (B ~ 107 G) in some white dwarfs and the likely existence of super-
strong fields (B ~ 10 1 2 G) in pulsars. Magnetic white dwarfs were discovered from observations of the 
continuous spectrum and one of the most intriguing challenges for the theorist is to provide an ex­
planation for the observed wavelength dependence of the fractional circularly and linearly polarized 
radiation. Our initial response to this question was the determination of an exact solution of Kemp's 
harmonic oscillator model. These results are used as input to the ATLAS model atmosphere program 
and then comparison is made with observations. The disparities still existing between theory and 
observation convince us of the necessity for developing a new model of the continuum radiation, two 
likely possibilities being photoionization and free-free absorption. This leads us to present a general 
formulation of radiation absprption and emission processes in a magnetic field. Next we calculate the 
cross section for the photoionization, correct to first order in B. For the purpose of obtaining exact 
results for this cross section, the effect of a magnetic field on the energy spectrum and wave functions 
of hydrogen, helium, etc. must be obtained. The results for hydrogen are presented here. They will be 
useful also in determining accurate values for the displacements due to the quadratic Zeeman effect 
in the line spectra of DA stars, particularly for the higher excited states. 

1. Introduction 

The discovery of magnetic fields, of the order of 10 7 G, in some, but not all, white 
dwarfs must surely rank high among the many exciting astronomical discoveries of 
today. Such fields are orders of magnitude larger than laboratory produced fields. The 
magnitude is consistent with the idea that magnetic flux is conserved during the evolu­
tion preceding the formation of white dwarfs and hence lends support to the generally 
accepted conclusion that even higher fields, of the order of the critical magnetic field 
Bc=(m2c3/eh)=4.4 x 1 0 1 3 G, exist in pulsars (Gold, 1969). 

Initial attempts to positively detect magnetic fields were based on observations of 
line spectra. Preston (1970) and Trimble (1971) failed to find evidence for displacement 
due to the quadratic Zeeman effect in the lines of the D A stars whose radial velocities 
had been measured by Greenstein and Trimble (1967). In addition, Angel and Land-
street (1970a) searched unsuccessfully for evidence of the Zeeman effect by looking for 
circular polarization in the wings of Balmer lines. 

A dramatic breakthrough was achieved when Kemp (1970) predicted that the 
continuous spectrum of light from white dwarfs should exhibit a fractional circular 
polarization q, given by 

q EE [ P + (co) - P_ ( c o ) ] / [ P + (co) + P_ (co)] ~ - (Q/co). (1) 

Here P±(co) are the intensities of right and left circularly polarized light (RCP and 
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LCP, respectively) of angular frequency co, and Q=(eB/2fic) is the Larmor frequency, 
where B is the magnetic field. The basic feature of this idea was confirmed in the 
laboratory by Kemp et al (1970a) who placed incandescent sources between the pole 
pieces of a 25 k G magnet, and observed q values of 1 0 ~ 5 - 1 0 ~ 4 , at a mean wavelength 
in the near infrared. 

Soon afterwards, the first discovery of circularly polarized light from a white dwarf 
was reported (Kemp et al, 1970b), amounting to 1-3% in visible light from the semi-
D C white dwarf Grw + 70°8247, from which one calculates a B field of about 10 7 G. 
Further work on this star (Angel and Landstreet, 1970b) led to no evidence for varia­
tion by more than 0 .1% over a period of 4 days but it also gave results in conflict 
with Kemp's (1970) theory. 

The second discovery, by Angel and Landstreet (1971a) and Kemp et al (1971), of 
circular polarization was made in the D C white dwarf G195-19 + GR250, with a q 
value of about 0.42%, implying a B value of the order of 3 x 10 6 G. It was later shown 
(Angel and Landstreet, 1971b, 1972) that the polarization is periodically variable with 
a period of 1.33 days, the variation in the red being different from that in the blue-
green. N o detectable linear polarization was found. 

The third discovery (Angel and Landstreet, 1971c) of circular polarization was 
made in the D G p white dwarf G99-37, with a q value of about 0.63%, with the pos­
sible existence of ~ 0.2-0.3% variations. N o linear polarization was found. 

A search for circular polarization in about 40 other white dwarfs has produced 
negative results. 

Motivated by the fact that Kemp's prediction that q~l is at variance with 
the observations, Shipman (1971) extended Kemp's theory to take into account 
radiative transfer in the atmosphere of Grw + 70°8247 and found a X dependence of q 
more in conformity with the observations. However, two important discrepancies 
remained (a) in the infrared, the observed (Kemp and Swedlund, 1970) large q values of 
8.5 and 15%, at mean wavelengths of 1.15 and 1.25 respectively, are far greater than 
the theoretical predictions and (b) in the ultra-violet the observed drop in q is some­
what greater than the theoretical predictions. An updating of Shipman's work to take 
into account the most recent observations has led to the conclusion (Roussel and 
O'Connell, 1973) that the agreement in the optical region becomes worse. A similar 
analysis carried out for the linear polarization showed even less agreement between 
predictions and observations. 

The work of our group at LSU has been motivated primarily by the need to develop 
a detailed theoretical model which would hopefully explain the many unusual features 
of the polarized continuum radiation, particularly the wavelength dependency of q. 
Our efforts have been essentially two-pronged - (a) calculation of an exact solution 
of Kemp's harmonic oscillator model and (b) development of a more physical 
model based on the behavior of atoms, ions, and electrons in a strong magnetic 
field. 

In Section 2 we present a general development of radiation absorption and emission 
processes in the presence of both a magnetic field and an arbitrary central potential 
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V(r). The results derived here form the basis for the development of the various radia­
tion models discussed in subsequent sections. 

Section 3 is devoted to Phase (a) of our program which is now essentially completed. 
The method used (Chanmugan et al, 1972a, b) to obtain an exact solution of Kemp's 
model, valid for all values of the magnetic field and the temperature, is outlined and 
the results discussed. Predictions relating to the fractional linear polarization, q* say, 
are also obtained. The latter results have been used as input to the ATLAS model 
atmosphere program (Kurucz, 1969) to take account of radiative transfer, by use of 
Shipman's method. Finally, we discuss the results of a comparison between the output 
results and observations. 

Kemp (1970) has remarked that " . . . what is now very much needed is an exact cal­
culation of the strong 2?-field levels of hydrogen." In Section 4 we present the results 
of such a calculation (Smith et al., 1972). We also expand on our previous remark to 
the effect that these results are also necessary for obtaining accurate results for the 
quadratic Zeeman terms in strong fields, particularly for the higher excited states. 

In Section 5 we discuss transition probabilities in a strong magnetic field. Bound-
bound transitions (Smith et al., 1973) are useful for quadratic Zeeman calculations. 
Bound-free and free-free transition probabilities we believe to be the basic ingredients 
of a realistic physical model, which will explain the polarized radiation from magnetic 
white dwarfs. 

2. Radiation Absorption and Emission in a Magnetic Field 

The Hamiltonian for a particle of mass \i and charge — e in a central potential V(r) 
and a magnetic field B(|B| = i? z ) , and interacting with radiation, is 

2n\ 

e e x 2 

P + " A + - A r ) +V(r), (2) 
c c ) 

where A and A r are the vector potentials of the external electromagnetic field and the 
radiation field, respectively. We choose 

A = l ( B x r ) , (3) 

so that V - A = 0 . Then, dropping A2, terms (two-photon processes), we may write 

H = H0 + Hlt (4) 
where 

2fi 

P2 

Ho = W-+V(r) + QLZ + inQ2 (x2 + y2), (5) 

and 

tf^-Vrp + ̂ C f ix r ) ] . (6) 
fiC 

Here Q=(eB/2fic) is the Larmor frequency and Lz is the z-component of the angular 
momentum. 
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Since H0 is invariant under rotations about the z-axis and under inversion, the 
eigenstates can be labelled by the eigenvalues of Lz and the parity. Thus, a general 
form of the eigenfunctions may be written 

( 0 = (r) = I a\J'u (r) Ytm (6, 4). (7) 
u 

The sum on / in (7) over all even integers leads to the state with even parity ( + ) and 
the sum over odd /, to the odd parity ( —) state. Here m is the eigenvalue of Lz. The 

f\r) are suitably chosen functions of r and the d are parameters. In special cases (as 
for example when V(r) refers to the potential of an oscillator - see Section 3) it may 
be possible to solve for \j/t in closed form. However, in general (as for example when 
V(r) is Coulombic - see Sections 4 and 5), \j/t must be obtained numerically. For bound 
states \jft is obtained by variational techniques, whereas for continuum states \j/t is 
obtained by a numerical solution of the Schrodinger equation. Thus, the probability 
per unit time of a spontaneous transition from a state t of energy Et to a state / ' of 
energy Er (where / and t\ of course, refer to eigenstates of H0)9 with the emission of 
one photon into a solid angle dO, in the presence of an external magnetic field B is 

e2h(Dt,t . ~ 
At,tdQ = -^3\M?t\2dQ9 (8) 

lUfX c 
where 

M*, = \eik" \-eq + ^ fl(H x r)-* f l | f> . (9) 

The propagation vector, polarization vector, and angular frequency of the photon are 
denoted by k, eq and cort9 respectively, where 

hoot,t = Et- Et.9 (10) 

and where the unit directions eq are defined by 

e± = + (ex ± iey) ; e0 = ez. (11) 

F rom (9) it is clear we may write 

|M, 

where 
" ' | 2 = = | [ A ' ' + / T F ' ' ' ] | 2 ' ( 1 2 ) 

D$, = <:t'\eikrV-eq\ty (13) 

is the usual momentum matrix element, and where 

^ ( = < ' V k r ( f i x r K | * > . * (14) 
Now if kr<^\9 which is generally true for transitions in the discrete spectrum, then we 
may rewrite (12) in terms of the familiar dipole length matrix element 

R W ' m = < " i ' | r | m > . (15) 
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In the dipole approximation Am= ± 1 or 0 and the parity of the wave function must 
change in the transition and so with this understanding we now choose to label our 
initial and final states simply by m and m\ respectively. Now using (5), we obtain the 
commutation relation 

h2 

[r, H0-]m,m = <m'| V|m> - h{m' - m) 0 < m ' | r | m > . (16) 
< 

But for a transition between two eigenstates of / / 0 , with eigenvalues Em and Em>, we 
have 

l>, "oL ' rn = (Em - Em,) <m'| r |m>. (17) 

Hence 

(jn'\ V|m> = ^ c o m , J l + / ) R w , w , (18) 

where 

/ s (m' - m) (Q/(Dm,m) = («' - m) d. (19) 

In addition, we note that 

<ni'| (ft x r ) -e 2 |m> = i ( m ' - m)Rm.m-Sx. (20) 

Hence, we finally obtain for the transition probability 

^ m ' m d Q = 2 ; ^ ? m ' m l R m ' m ' ^ 1 d Q ' ( 2 1 ) 

The corresponding expression for the intensity of emission Pm>m is 

JV*dG = a ) i . m | R m ' m - ^ | 2 dQ. (22) 

Turning now to photon absorption processes in a magnetic field, we shall take as a 
prototype photoionization. The magnetic field affects the matrix elements in the same 
way as for photon emission, with the result that the cross section (Bethe and Salpeter, 
1957) for photoionization a from a bound state / ' to a continuum state t is 

An2e2h2 

adQ = | M ^ | 2 d O . (23) 

fi C(Dt>t 

In the dipole approximation 

4n2e2 

adQ = co m , m |R m , m • eq\2 dQ. (24) 
c 

The results of this section constitute the basic tools we need for a consideration of 
various models of polarized radiation. 
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3. Kemp's Harmonic Oscillator Model 

As a tractable model of the radiating system, Kemp (1970) chose a collection of elec­
tronic harmonic oscillators. A feature of Kemp's model is that one has to have a 
distribution of oscillators with essentially a continuum of natural frequencies to 
account for the continuous emission. Putting V(r) = jnco2

)r2/2 in (5), where col is the 
natural frequency of the oscillator, we obtain 

H ° = i \ [ P * + P> + ^ ( * 2 + y 2 ) ] + Yu[Pz2 + tl2(°2°z^ + Q L z • ( 2 5 ) 

An exact quantum-mechanical solution to this problem has been obtained. It was 
shown (Chanmugan et al, 1972a) that this Hamiltonian is equivalent to that of a 
three-dimensional anisotropic oscillator with fundamental frequencies co 0, coC-Q 
and coc + Q so that the energy eigenvalues are given by (with CDI = CDI + Q2) 

E = h(coc + Q) (n+ + 1/2) + h(coc - Q) (n_ + 1/2) + hco0(nz + 1/2), 
(26) 

where ( n + n _ , n z ) refer to the number of quanta of different frequencies. Introducing 
now the radiation terms Hx, and considering transitions of frequency co leads to the 

! (001) 

(000) 

(010) co2

c = COQ -f- Ql 
co = coc — QL 

co0 = (co2 4- 2coQL)1/2 

(000) I H I I ^ C C O + Q L ) " 1 

(100) 

(000) 

co = coc + QL> 2QL 

co0 = (co2 - 2coQL)l/2 

\Hx\2~(co-Qj-* 

_ ^ - L _ fl if 2QL^ 
q-R^L~\-(njco) if 

4- 7.Q. 
if 2Qh ^ co 

q. = (at + ( 7 2 ) 4- 7T 

CO 

if 2 & L < c o 

co 4- 2QL 

co 4- 3 0 L 

2co2 - Ql 
if 2 & L < c o 

Fig. 1. Emission of linear, right-circularly, and left-circularly polarized light of frequency co, from a 
system of harmonic oscillators of charge — e and mass n, with a continuous range of natural frequen­

cies coo, in a magnetic field B, with associated Larmor frequency Q = (eB/2/ic). 
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results 
|<100| i f I | 0 0 0 > | 2 - ( c w - D ) " 1 

|<010| / / , | 0 0 0 > | 2 - ( ( w + O ) - 1 

| < 0 0 1 | / / 1 | 0 0 0 > | 2 - c o " 1 

(27) 

(28) 

(29) 

for the emission of LCP, RCP, and linearly polarized radiation, respectively. We note 
(see Figure 1) that LCP will not occur for 2Q>co. Similar conclusions hold when 
transitions between all possible levels are considered (Chanmugan et al, 1972b). Tak­
ing into account the effect of the field on the distribution of oscillators, and setting 

s ^ r 1 = (co/2Q)9 (30) 

it follows that 

q = ( s 2 - l ) 1 / 2 - s for s>l (31) 
and 

q = 1 for 0 < s < 1, (32) 

in agreement with Kemp's classical results. In addition, we have also results for the 

X ( A ) x I O 3 

Fig. 2. The wavelength dependence of the predicted circular polarization is shown for the various 
models. Curve 1 corresponds to the optically thin model of Kemp (1970). Curve 2 corresponds to 
Model C with the parameters [T= 12000 K, logg = 8, H = 0.9, He = 0.1, B = 1.2 x 107 G]. Curve 3 
corresponds to Model C with the parameters [T= 14000 K, log# = 8, # = 0 . 0 , He = 1.0, B = 
= 2 x 107 G]. The observed circular polarizations are indicated by the following: crosses indicate 
those of Kemp and Swedlund (1970), triangles those of Angel and Landstreet (1970b) and open circles 

those of Angel and Landstreet (1972). 
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X(A)x|0 3 

Fig. 3. The wavelength dependence of the predicted linear polarization is shown for the various 
models. Curve 1 corresponds to the optically thin model of Chanmugam et al. (1972a, b). Curve 2 
corresponds to Model C with the parameters [T= 12000 K, log# = 8, # = 0.9, He = 0.1, B = 5 x 
x 107 G]. Curve 3 corresponds to Model C with the parameters [T= 14000 K, log# = 8, # = 0.0, 
He = 1.0, 5 = 5.5 x 10 7G]. Curve 4 corresponds to Model A with the parameters [T= 12000 K, 
logg = 8, # = 0.9, He = 0.1, B = 2.1 x 108 G]. Curve 5 corresponds to Model B with the parameters 
[T= 14000 K, log# = 8, # = 0.0, He = 1.0, 5 = 2.1 x 108 G]. Curve 6 corresponds to Model B with 
the parameters [T= 12000 K, log# = 8, # = 0.9, He = 0.1, 5 = 2.1 x 108 G]. The observed linear 
polarizations are indicated as follows; the triangles are those of Angel and Landstreet (1970b) and the 

open circles those of Angel and Landstreet (1972). 

linear polarization ratio 

4* = [(l + t ) l / 2 + (1 - r ) , / 2 + 
- 2 ( 1 - f 2 ) 1 / 2 ] / [ ( l + r ) 1 / 2 + 0 - 0 1 / 2 + 2 ( l - < 2 ) 1 / 2 ] for t^l 

and 

q* = [_sm - 2 ( 1 + * ) 1 / 2 ] / | y / 2 + 2 (1 + s ) 1 / 2 ] for 1 > s > 0 . (33) 

For 2Q<itco, these results reduce to 

q = -(Qlco) (34) 
and 

q* = i(Q/a>)2. - (35) 

If we had assumed a constant density of states even in the presence of a magnetic field, 
the q* in (35) would be smaller by a factor of £ but (34) for q would be unchanged. 
Kemp's model of course provided the motivation for the successful search for circular 
polarization by Kemp et al. (1970b). However, the wavelength dependence of the ob-
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served q did not agree with the predicted q~X behavior. Now Kemp's model applies 
literally only to an optically thin body. Shipman (1971) was thus motivated to consider 
radiative transfer in Kemp's model. Actually he used Kemp's bremsstrahlung model 
which gives the same predictions as the harmonic oscillator model except that the q 
value given by (34) comes out 8 times larger. As a result Shipman was able to explain 
the wavelength dependence of the circular polarization, for 3000 A<A<9000 A, 
with a derived B field ~ 10? G. However, discrepancies between the model predictions 
and the observations occurred in the ultra-violet and the infrared. In addition, it has 
been pointed out by Roussel and O'Connell (1973) that if the more recent observations 
of 1972 are included, the agreement in the optical region becomes worse, as shown in 
Figure 2. The observed values of q beyond 6000 A are much smaller than predicted. 

Making use of the predicted q* values, Shipman's model, and the Atlas white-dwarf 
model atmosphere program, a similar analysis has been carried out for the linear 
polarization in Roussel and O'Connell (1973). The results are displayed in Figure 3. 
The agreement here is even worse than in the circular case. As a result, we feel that it 
is desirable to develop a new model for the polarized radiation which will predict the 
behavior of atoms in magnetic fields. 

4. Energy Spectrum of the Hydrogen Atom in a Strong Magnetic Field 

The behavior of atoms in low fields can be adequately described using hydrogenic 
wave functions in perturbation theory. On the other hand for super-strong magnetic 
fields (2?;>3 x 1 0 1 0 G) the Coulomb interaction becomes negligible in comparison 
with the magnetic energy so that the wave functions are essentially oscillator-like 
(Cohen et al., 1970). It is clearly of importance to understand at what field strengths 
perturbation theory using hydrogenic wave functions breaks down and to devise a 
scheme for analyzing the system in fields of intermediate strength. Kemp (1970) has 
emphasized the importance of this difficult intermediate case for magnetic white 
dwarfs. Thus, a program was initiated to study the behavior of atoms in fields of any 
strength, with emphasis on B values from about 10 4 G to 1 0 1 2 G. 

Our natural starting point is the hydrogen atom, for which (neglecting spin) 

P2 e2 

H0 = + QLZ + \\xQ2r2 s in 2 6, (36) 
2\i r 

where 6 is the polar angle. 
To assess the relative magnitudes of the various terms, it is useful to choose units 

h = c = \i = 1, so that e2 — a = a$ 1 , where a is the fine-structure constant and a0 is the Bohr 
radius. Thus 

where 2 ^ 
ii ce 

B0 & ' - - j - = a2Bc = 2.350 x 10 9 G . (38) 

https://doi.org/10.1017/S0074180900100087 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900100087


296 R.F. O'CONNELL 

Let 
*nirn{r) = Rni(r)Plm{0)eim* (39) 

be the normalized solution of the Schrddinger equation when B = 0. Then, it is well 
known (Bethe and Salpeter, 1957, p. 206) that this wave function is also a solution 
with the B term (but not the B2 term) included in H0. The corresponding energy eigen­
value is 

a2 (B\ 

£ = E ° + T U r > ( 4 o ) 

where E0 is the energy without the magnetic field. 
This is the basic theory of the normal Zeeman effects and Paschen-Bach effects. The 

quadratic Zeeman effect (Schiff and Snyder, 1939) is obtained by treating the B2 term 
using first order perturbation theory, with the result that the total energy is 

E = E0 -f + E2 = 
..2 
a 

2r? 
where 

[ - l W ( f J + F n l m „ « ( 0 ] , (41) 

5 [ l + i - 2 ( l - 3 / ( i + l))][Z0 + l ) + m 2 - l ] 

F"lm=Z4 ( 2 / + 3) ( 2 7 - 1 ) ' ( 4 2 ) 

Thus, we expect perturbation theory to be valid only for B<^BH = (B0/n*). For large 
n and / = 1, we have F = (\ + m2)/49 so that (in Rydbergs) 

^ 2 = K ( l + m 2 ) ^ Ry, (43) 

which is the formula used by Preston (1970). However, since BH~n~*9 we see that, 
for a particular B value, the perturbation results are less reliable for the higher states. 
For example, when n= 10, we get 2? H =2.350x 10 5 G. It is thus clear that the deduc­
tion of B field values from an analysis of the Balmer absorption spectra from magnetic 
white dwarfs can be made considerably more quantitative by determining the exact 
energy eigenvalues of the hydrogen atom in a magnetic field. This analysis is now being 
carried out by Surmelian, using the results below. As already mentioned a further 
motivation for obtaining the spectrum is to obtain the effect of the B field on the 
opacities of the atmospheres of magnetic white dwarfs and, in particular, to explain 
the X dependence of the circularly and linearly polarized light. 

Our initial effort (Rajagopal et al.9 1972) concentrated on the ionization energies of 
hydrogen in magnetic white dwarfs and the essence of the calculation was the use of a 
trial wave function which was hydrogen-\ike9 in contrast to the oscillator-like trial wave 
function used by Cohen et al. (1970). Using merely a 4-parameter trial function, 

il/ = clil/1(plr) + c2il,2(p2r)9 (44) 
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the values of the ionization energy obtained were significantly better than those of 
Cohen al. (1970) for fields ^ 3 x 1 0 1 0 G (see Figure 4). A general procedure for carry­
ing out a multi-parameter calculation was also outlined. Using standard computing 
techniques, it was then possible to obtain (Smith et al, 1972) the energy spectrum for 
the 14 lowest states of the hydrogen atom. The essence of the method is to write a 
general trial solution of the form given in (7) with the radial function dnf\x chosen to 
be 

(4r ' + # / + 1 ) e - < " ' \ (45) 

where d and b are parameters. 
For superstrong B fields we used a partial wave expansion with values of / up to 

20 + \m\ included in summation (45). This was necessary in order to obtain convergence 
of the expansion of i// *. Up to nine Slater type orbitals were employed in the descrip-

I _ l I I I 
8 9 10 II 

l o g , 0 B 

Fig. 4. The ionization energy of the ground state of hydrogen as a function of the magnetic field B 
calculated using (a) perturbation theory, (b) 2 linear parameter (ci and C2) variational calculation, (c) 
1 non-linear (Pi) parameter variational calculation, (d) 2 linear (ci and C2) and 2 non-linear and fc) 
parameter variational calculation [see Equation (44)], (e) the work of Cohen et al. (1970), and (f) the 

work of Smith et al. (1972). 
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l o g | 0 B 

Fig. 5. The energy spectrum of hydrogen in a magnetic field for the 13 lowest states above 
the ground state. 

tion of the radial function for the ground state and twelve for the excited states. Figure 
4 gives the ionization energy Ex (in eV) of the ground state of hydrogen as a function 
of the magnetic field B, calculated using (a) perturbation theory (b) two linear para­
meter ( q and c2) variational calculation (c) one non-linear ( j ^ ) parameter variational 
calculation (d) two linear (ct and c2) and two non-linear (pt and j? 2) parameter varia­
tional calculation [see Equation (44)] (e) the work of Cohen et al. (1970) (f) the work 
of Smith et al. (1972). The latter results are clearly superior. 

In Figure 5, we present the energy spectrum for the 13 lowest states above the 
ground state for B values from 1 0 6 - l 0 8 G. The labelling of the curves corresponds to the 
usual labels for the hydrogenic energy levels in the absence of a magnetic field. Thus, for 
example, 3d2 is an even-parity state with m = 2, and, as B -> 0, it also has n = 3 and 1 = 2. 

5. Bound-Bound and Bound-Free (Photoionization) Transition Probabilities in a Strong 
Magnetic Field 

Bound-bound transition probabilities have been calculated (Smith et al., 1973) in the 
electric dipole approximation, using (21), between all states shown in Figure 5. Our 
results are presented in tabular form for some representative B values and are being 
used by Surmelian in his work on the quadratic Zeeman effect. 
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Henry and O'Connell are now calculating photoionization probabilities using (24), 
as we feel the results should provide us with an explanation of the spectral dependence 
of the polarized radiation. However, for magnetic fields for which E2<E1 [see Equa­
tion (41)], analytic results may be obtained (Henry and O'Connell, 1972). 

For 2?=0, the cross section for ionization of the hydrogen atom in a state with 
principal quantum number n may be written (Karzas and Latter, 1961) 

( 7 0 ( c o ) = 2 . 8 2 x 1029n~5 (co/lny 3 g(co, « ) , (46) 

where g(co, n), the Gaunt factor, is of order unity and is a slowly varying function of 
co and n9 For our present purposes we will neglect the co dependence in g (i.e. we essen­
tially use the Kramers expression, while at the same time emphasizing that, apart from 
its complexity, there is no difficulty in principle in carrying it along). 

Let com>m be the frequency of the light absorbed for B non-zero. Then (19) and (40) tell 
us that 

£ 0 - £ ' = £ - £ ' + a - ^ y m ' -m) = 

= o>m.m{\+f) = wm.m{\-dAm). (47) 

Thus, from (24) and (46), we obtain 

a±dQ = (1 + fyA a0dQ (48) 

which is similar to that found by Lamb and Sutherland (1972). Hence 

{o±llo0) = {\*d)-\ (49) 

We now define the circular polarization ratio for the photoionization model, 

qp = (a+ - < 7 _ ) / ( < r + + ( T _ ) . (50) 

For small d, we have 

( d ± 1 K ) = ( l ± 4 < / ) , (51) 
and 

qp = 4(Qlcom,m). (52) 

The latter result is the same as that obtained from Kemp's model [see (34)], except for 
the factor of 4. We anticipate that inclusion of the dependence of the Gaunt factor, as 
well as B2 terms in the energy eigenvalues may lead to more interesting predictions 
with respect to the X dependence of qp. 
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Note Added After the Conference 

The energy spectrum of H e n in a strong magnetic field, as well as bound-bound 
transition probabilities have now been obtained (Surmelian and O'Connell, 1973). The 
use of similar techniques in the study of multi-electron atoms is now being pursued. 
The photoionization calculation has been extended to include Gaunt factors (Roussel 
et al, 1973). With regard to the detection of strong magnetic fields by using quadratic 
Zeeman displacements (see Preston, 1970), it is important to know, for the various 
nlm states, at what fields perturbation theory breaks down. This analysis has now been 
carried out (O'Connell, 1971). Free-free transitions in a magnetic field has also been 
suggested as a model for the polarized radiation (O'Connell, 1974). 
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