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Abstract

Let R be a commutative ring. It is shown that if an R-module M is a sum of δ-local submodules and
a semisimple projective submodule, then every finitely generated submodule of M is δ-supplemented.
From this result, we conclude that finitely generated δ-supplemented modules over commutative rings are
amply δ-supplemented.
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1. Introduction

Throughout this paper R will denote an associative commutative ring with identity and
all modules are unital R-modules. Recall that a submodule N of a module M is said to
be δ-small in M, written N �δ M, provided M , N + X for any proper submodule X
of M with M/X singular. Let L be a submodule of a module M. A submodule K of M
is called a δ-supplement of L in M provided M = L + K and M , L + X for any proper
submodule X of K with K/X singular—equivalently, M = L + K and L ∩ K �δ K. The
module M is called δ-supplemented if every submodule of M has a δ-supplement in M.
On the other hand, the submodule N is said to have ample δ-supplements in M if every
submodule L of M with M = N + L contains a δ-supplement of N in M. The module
M is called amply δ-supplemented if every submodule of M has ample δ-supplements
in M. Let P be the class of all singular simple modules. Let M be any module. As
in [7], let δ(M) = Re jM(P) =

⋂
{N ≤ M | M/N ∈ P}. It is shown in [7, Lemma 1.5(1)]

that δ(M) =
∑
{N ≤ M | N �δ M}.

As in [3], a module M is said to be δ-local if δ(M)�δ M and δ(M) is a maximal
submodule of M. For an R-module M, let ann(M) = {r ∈ R | rM = 0} and for any x ∈ M,
let ann(x) = {r ∈ R | rx = 0}. Let L be a cyclic δ-local module. Then L � R/a with
a = ann(L). Since L is δ-local, there exists a maximal ideal m of R such that a ⊆ m and
δ(R/a) = m/a. In this case, we call the module L m-δ-local.
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2. Main results

We begin with a lemma taken from [7, Lemmas 1.2, 1.3 and 1.5].

L 2.1. Let M be a module.

(1) A submodule N ≤ M is δ-small if and only if, for all submodules X ≤ M, if
M = X + N, then M = X ⊕ Y for a semisimple projective submodule Y with
Y ⊆ N.

(2) For submodules N and L of M, N + L�δ M if and only if N �δ M and L�δ M.
(3) If K �δ M and f : M→ N is a homomorphism, then f (K)�δ N. In particular,

if K �δ M ⊆ N, then K �δ N.
(4) If M =

⊕
i∈I Mi, then δ(M) =

⊕
i∈I δ(Mi).

(5) If M is finitely generated, then δ(M)�δ M.

It is well known that if a is an ideal of R, then a is essential in R if and only if R/a
is a singular R-module (see, for example, [4, p. 32]).

Let S be a simple R-module. Then S is either singular or projective, but not both
(see [4, Proposition 1.24]). Therefore S is either δ-local or projective.

A submodule L of a module M is called small in M if L + X , M for every proper
submodule X of M. Let N be a submodule of a module M. A submodule K of M
is called a supplement of N in M provided M = N + K and N ∩ K is small in K. The
module M is called supplemented if every submodule of M has a supplement in M. On
the other hand, a submodule N of a module M has ample supplements in M if every
submodule L such that M = N + L contains a supplement of N in M. The module M
is called amply supplemented if every submodule has ample supplements in M.

The following example shows that a δ-supplemented module need not be amply
δ-supplemented.

E 2.2. Let R be an incomplete discrete valuation ring with field of fractions Q.
Then the R-module Q ⊕ Q is supplemented but not amply supplemented by [8,
Theorem 2.2]. Let m be the maximal ideal of R. Clearly m is essential in R. Thus the
simple R-module R/m is singular. Hence every simple R-module is singular. So R has
no simple projective R-modules. Now let N be a δ-small submodule of an R-module
M and let X be a submodule of M with N + X = M. By Lemma 2.1(1), M = Y ⊕ X
for a projective semisimple submodule Y with Y ⊆ N. This clearly forces Y = 0 and
X = M. So N is small in M. Consequently, the R-module Q ⊕ Q is δ-supplemented but
not amply δ-supplemented.

L 2.3.

(1) If a is a proper ideal of R, then the module R/a is semisimple projective if
and only if a =

⋂k
i=1 mi is a finite intersection of nonessential maximal ideals

mi (1 ≤ i ≤ k).
(2) For any module M, M�δ M if and only if M is semisimple projective.

P. (1) This follows from the Chinese remainder theorem.
(2) This follows from Lemma 2.1(1). �
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P 2.4. Let a be an ideal of R. The following conditions are equivalent:

(i) R/a is an m-δ-local module;
(ii) m is essential in R and is the only essential maximal ideal of R which contains a.

P. (i) ⇒ (ii) Suppose that m is not essential in R. Then there exists a simple
ideal b of R such that m ⊕ b = R. Clearly, (m/a) ⊕ (b + a)/a = R/a. Thus (b + a)/a *
δ(R/a) since δ(R/a) = m/a. Hence the simple module b � (b + a)/a is singular by
Lemmas 2.3(2) and 2.1(3). That is, R/m is a singular R-module. Therefore m
is essential in R, a contradiction. Now suppose that R has an essential maximal
ideal m′ , m with a ⊆ m′. Then (R/a)/(m′/a) � R/m′ is a singular R-module. So
δ(R/a) = m/a ⊆ m′/a, a contradiction.

(ii)⇒ (i) Note first that R/m � (R/a)/(m/a) is singular. Moreover, for any maximal
ideal m′ of R with m′ , m and a ⊆ m′ , R/m′ � (R/a)/(m′/a) is projective. Therefore
δ(R/a) = m/a. By Lemma 2.1(5), δ(R/a)�δ R/a. So R/a is m-δ-local. �

Let m be a maximal ideal of R and let M be an R-module. Consider the subset
Kδm (M) ⊆ M of elements x ∈ M such that:

(i) x = 0; or
(ii) m is essential in R and is the only essential maximal ideal of R which contains

ann(x); or
(iii) ann(x) =

⋂k
i=1 mi such that each mi (1 ≤ i ≤ k) is a nonessential maximal ideal

of R.

P 2.5. Let x be an element of a module M and let m be a maximal ideal of R.
The following are equivalent:

(i) x ∈ Kδm (M);
(ii) R/ann(x) is m-δ-local or semisimple projective.

P. This is a consequence of Lemma 2.3 and Proposition 2.4. �

P 2.6. A factor module of an m-δ-local module is either m-δ-local or
semisimple projective.

P. Let a be an ideal of R such that the R-module R/a is m-δ-local. Let b be
an ideal of R with a ⊆ b. Note that δ(R/b)�δ R/b by Lemma 2.1(5). Consider
the canonical epimorphism π : R/a→ R/b. We have π(m/a) = (m + b)/b�δ R/b by
Lemma 2.1(3). If b ⊆ m, then m/b�δ R/b. Therefore m/b ⊆ δ(R/b). This implies that
δ(R/b) = R/b�δ R/b or δ(R/b) = m/b�δ R/b. If b * m, then R/b�δ R/b. Therefore
R/b is semisimple projective or m-δ-local (see Lemma 2.3(2)). �

P 2.7. Let M be an R-module and let m be a maximal ideal of R. Then
Kδm (M) is a submodule of M.

P. (1) Let us show that Kδm (M) is closed under multiplication by elements of R.
Let x ∈ Kδm (M) and let r ∈ R. Let a = ann(x) and let b = ann(rx). Note that a ⊆ b.
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By Proposition 2.5, R/a is m-δ-local or semisimple projective. Note that R/b �
(R/a)/(b/a). From Proposition 2.6 it follows that R/b is m-δ-local or semisimple
projective. So rx ∈ Kδm (M) by Proposition 2.5.

(2) Let us show that Kδm (M) is an additive subgroup of M. Let x1, x2 ∈ Kδm (M),
a1 = ann(x1), a2 = ann(x2) and a = ann(x1 − x2). Then a1 ∩ a2 ⊆ a.

If x1 = 0 or x2 = 0 , then of course x1 − x2 ∈ Kδm (M).
Suppose that R/a1 is m-δ-local and R/a2 is m-δ-local or semisimple projective.

Since m/a1 is essential in R/a1, m/(a1 ∩ a2) is essential in R/(a1 ∩ a2) by [4, Propo-
sition 1.1]. Moreover, if a1 ∩ a2 ⊆ m′ for some maximal ideal m′ , m, then a1 ⊆ m′

or a2 ⊆ m′. Therefore m′ is not essential in R (see Lemma 2.3 and Proposition 2.4).
Thus R/(a1 ∩ a2) is m-δ-local by Proposition 2.4. Since

R/a �
R/(a1 ∩ a2)
a/(a1 ∩ a2)

,

R/a is m-δ-local or semisimple projective by Proposition 2.6. So x1 − x2 ∈ Kδm (M) by
Proposition 2.5.

Assume that both of R/a1 and R/a2 are semisimple projective. Note that Rx1 +

Rx2 is semisimple projective. Since R(x1 − x2) ≤ Rx1 + Rx2, R/a � R(x1 − x2) is
semisimple projective. Thus x1 − x2 ∈ Kδm (M). �

Recall that a submodule N of a module M is called cofinite if M/N is finitely
generated.

P 2.8. Let M be a left module over any ring (not necessarily commutative).
Suppose that every finitely generated submodule of M is δ-supplemented. Then every
cofinite submodule of M has ample δ-supplements.

P. Let N be a cofinite submodule of M and let L be a submodule of M such
that M = N + L. Then there exists a finitely generated submodule F ≤ L such that
M = N + F. Consider the submodule N ∩ F ≤ F. By assumption, there exists a
submodule K ≤ F ≤ L such that (N ∩ F) + K = F and N ∩ K �δ K. Since N + K = M,
K is a δ-supplement of N in M. This completes the proof. �

T 2.9. Let m be a maximal ideal of R and M be a module such that Kδm (M)=M.
Then every finitely generated submodule of M is δ-supplemented.

P. Let x ∈ M. Then Rx � R/ann(x) is m-δ-local or semisimple projective by
Proposition 2.5. Therefore every finitely generated submodule of M is a finite sum
of δ-local submodules and simple projective submodules. The result follows from [3,
Proposition 3.5]. �

C 2.10. Let m be a maximal ideal of R. Let M be a module such that
Kδm (M) = M. Then every cofinite submodule of M has ample δ-supplements.

P. This follows by Proposition 2.8 and Theorem 2.9. �
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For any commutative ring R, let SocP(R) denote the sum of all simple projective
ideals of R.

L 2.11. Let a module M =
⊕

i∈I Mi be a direct sum of submodules Mi (i ∈ I).
Assume that for all i , j in I, ann(Mi) + ann(M j) is a direct summand of R and
R/(ann(Mi) + ann(M j)) is semisimple. Then, for every submodule N of M,

N ⊆
⊕

i∈I

((N ∩ Mi) + SocP(R)Mi).

P. Let N be a submodule of M. Let x ∈ N. Then there exist a positive integer
n, distinct elements i j ∈ I (1 ≤ j ≤ n) and elements x j ∈ Mi j (1 ≤ j ≤ n) such that
x = x1 + · · · + xn. If n = 1, then x = x1 ∈ N ∩ Mi1 + SocP(R)Mi1 . Suppose that n ≥ 2.
By hypothesis, there exists a semisimple ideal A1n of R such that

R = (ann(Mi1 ) + ann(Min )) ⊕ A1n.

So there exist elements r, s and t in R such that rx1 = 0, sxn = 0, t ∈ A1n and 1R =

r + s + t. So

sx = sx1 + sx2 + · · · + sxn

= sx1 + sx2 + · · · + sxn−1

= (1R − r − t)x1 + sx2 + · · · + sxn−1

= (1R − t)x1 + sx2 + · · · + sxn−1.

Note that sx ∈ N, (1R − t)x1 ∈ Mi1 and sx j ∈ Mi j (2 ≤ j ≤ n − 1). By induction on
n, (1R − t)x1 ∈ N ∩ Mi1 + SocP(R)Mi1 . Thus x1 ∈ N ∩ Mi1 + SocP(R)Mi1 + A1nMi1 .
Clearly A1n ⊆ SocP(R). Hence x1 ∈ N ∩ Mi1 + SocP(R)Mi1 . In the same manner we
can prove that x j ∈ N ∩ Mi j + SocP(R)Mi j (2 ≤ j ≤ n). �

L 2.12. Let M be any module. Then SocP(R)M is a semisimple projective
module. In particular, SocP(R)M ⊆ Soc(M).

P. Let S be a simple projective ideal of R. Then there exists a maximal ideal
m of R such that S � R/m. Let x ∈ M and let α ∈ S . It is clear that m(αx) = 0. So
m ⊆ ann(αx). Thus R(αx) = 0 or R(αx) � R/m is simple projective. It follows that SM
is semisimple projective. Therefore SocP(R)M is semisimple projective. �

P 2.13. Let a module M = M1 ⊕ · · · ⊕ Mn be a finite direct sum of
submodules Mi (1 ≤ i ≤ n), for some positive integer n ≥ 2. Assume that for all
1 ≤ i < j ≤ n, ann(Mi) + ann(M j) is a direct summand of R and R/(ann(Mi) + ann(M j))
is semisimple. If finitely generated submodules of Mi are δ-supplemented for all
1 ≤ i ≤ n, then finitely generated submodules of M are δ-supplemented.
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P. Let N be a finitely generated submodule of M. By Lemma 2.11,

N ⊆
n⊕

i=1

((N ∩ Mi) + SocP(R)Mi).

That is,

N ⊆
( n⊕

i=1

(N ∩ Mi)
)
+ SocP(R)M.

Therefore

N + SocP(R)M =
( n⊕

i=1

(N ∩ Mi)
)
+ SocP(R)M.

Since N is finitely generated, there exist finitely generated submodules Ki ≤ N ∩ Mi

(1 ≤ i ≤ n) such that

N + SocP(R)M =
( n⊕

i=1

Ki

)
+ SocP(R)M.

By hypothesis, the Ki (1 ≤ i ≤ n) are δ-supplemented. Since SocP(R)M is δ-
supplemented, N + SocP(R)M is δ-supplemented by [6, Proposition 3.5]. As
SocP(R)M is semisimple, N is a direct summand of N + SocP(R)M. So N is δ-
supplemented by [6, Proposition 3.6]. �

L 2.14. Let a, b, c and d be ideals of the ring R such that a ⊆ c and b ⊆ d. If
c/a�δ R/a and d/b�δ R/b, then (c ∩ d)/(a ∩ b)�δ R/(a ∩ b).

P. Let u be an ideal of R containing a ∩ b such that (c ∩ d)/(a ∩ b) + u/(a ∩ b) =
R/(a ∩ b) and R/u is singular. Then

((c ∩ d) + a)/a + (u + a)/a = R/a and ((c ∩ d) + b)/b + (u + b)/b = R/b.

Hence (c/a) + (u + a)/a = R/a and (d/b) + (u + b)/b = R/b. Moreover,

R/a
(u + a)/a

�
R/u

(u + a)/u
and

R/b
(u + b)/b

�
R/u

(u + b)/u
.

Thus (R/a)/((u + a)/a) and (R/b)/((u + b)/b) are singular modules by [4,
Proposition 1.22(b)]. By hypothesis, R = u + a = u + b. So R = RR = (u + a)(u + b) =
u + ab. But ab ⊆ a ∩ b ⊆ u. Then u = R. This completes the proof. �

P 2.15. Let m1 and m2 be maximal ideals of R with m1 , m2. Let a module
M = M1 ⊕ M2 such that M1 is a finite direct sum of cyclic m1-δ-local submodules
and M2 is a finite direct sum of cyclic m2-δ-local submodules. Then a = ann(M1) +
ann(M2) is a direct summand of R and R/a is semisimple.
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P. Assume that M1 =
⊕k1

i=1(R/a1i) and M2 =
⊕k2

i=1(R/a2i), where the a1i (1 ≤
i ≤ k1) and a2i (1 ≤ i ≤ k2) are ideals of R such that R/a1i (1 ≤ i ≤ k1) are m1-δ-local
modules and R/a2i (1 ≤ i ≤ k2) are m2-δ-local modules. Then ann(M1) =

⋂k1
i=1 a1i

and ann(M2) =
⋂k2

i=1 a2i. Note that m1/a1i�δ R/a1i (1 ≤ i ≤ k1) and m2/a2i�δ R/a2i

(1 ≤ i ≤ k2). Therefore

m1

/( k1⋂
i=1

a1i

)
�δ R

/( k1⋂
i=1

a1i

)
and m2

/( k2⋂
i=1

a2i

)
�δ R

/( k2⋂
i=1

a2i

)
by Lemma 2.14. That is, m1/ann(M1)�δ R/ann(M1) and m2/ann(M2)�δ R/ann(M2).
By Lemma 2.1(3), (m1 + a)/a�δ R/a and (m2 + a)/a�δ R/a. Thus

(m1 + m2 + a)/a�δ R/a

by Lemma 2.1(2). So R/a�δ R/a. By Lemma 2.3, R/a is semisimple projective.
Therefore a is a direct summand of R by [2, Proposition 17.2]. �

P 2.16. Let m1 be a maximal ideal of R and let a module M = M1 ⊕ M2 be
such that M1 is a finite direct sum of cyclic m1-δ-local submodules and M2 is a finite
direct sum of simple projective submodules. Then b = ann(M1) + ann(M2) is a direct
summand of R and R/b is semisimple.

P. Assume that M1 =
⊕k1

i=1(R/b1i) and M2 =
⊕k2

i=1(R/m2i), where the b1i (1 ≤
i ≤ k1) are ideals of R and m2i (1 ≤ i ≤ k2) are maximal ideals of R such that R/b1i

(1 ≤ i ≤ k1) are cyclic m1-δ-local and R/m2i (1 ≤ i ≤ k2) are simple projective. Then
ann(M1) =

⋂k1
i=1 b1i, ann(M2) =

⋂k2
i=1 m2i and b = (

⋂k1
i=1 b1i) + (

⋂k2
i=1 m2i). Note that

m1/b1i�δ R/b1i for all 1 ≤ i ≤ k1. It follows from Lemma 2.14 that m1/(
⋂k1

i=1 b1i)�δ

R/(
⋂k1

i=1 b1i). By Lemma 2.1(3), (m1 + b)/b�δ R/b. Suppose that b ⊆ m1. Then⋂k2
i=1 m2i ⊆ m1. Hence m2 j ⊆ m1 for some 1 ≤ j ≤ k2. We thus get m2 j = m1.

Therefore R/m1 is projective. This contradicts the fact that m1 is essential in R (see
Proposition 2.4 and [4, Proposition 1.24]). It follows that b * m1 and hence m1 + b = R.
Then R/b�δ R/b. By Lemma 2.3, R/b is semisimple projective. Therefore b is a
direct summand of R by [2, Proposition 17.2]. �

P 2.17. Let a module M = M1 ⊕ · · · ⊕ Mn be a finite direct sum of
submodules Mi (1 ≤ i ≤ n), for some positive integer n such that each Mi is either
cyclic δ-local or simple projective. Then every finitely generated submodule of M is
δ-supplemented.

P. By rearranging the submodules Mi (1 ≤ i ≤ n), we can suppose that M =
L1 ⊕ · · · ⊕ Lk such that for every 1 ≤ i ≤ k − 1, Li is a finite direct sum of cyclic mi-
δ-local submodules and Lk is a finite direct sum of simple projective submodules,
where m1, . . . , mk−1 are distinct maximal ideals of R. Clearly, for every 1 ≤ i ≤ k − 1,
Kδmi

(Li) = Li (see Propositions 2.5 and 2.7). By Theorem 2.9, finitely generated
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submodules of Li (1 ≤ i ≤ k) are δ-supplemented. By Propositions 2.13, 2.15 and 2.16,
finitely generated submodules of M are δ-supplemented. �

L 2.18. Let M be a left module over any ring (not necessarily commutative).
Assume that every finitely generated submodule of M is δ-supplemented. If N
is a homomorphic image of M, then every finitely generated submodule of N is
δ-supplemented.

P. By assumption, there exists an epimorphism f : M→ N. Let K be a finitely
generated submodule of N. Then there exist a positive integer n and elements
bi ∈ N (1 ≤ i ≤ n) such that K = Rb1 + · · · + Rbn. Then there exist elements ai ∈ M
(1 ≤ i ≤ n) such that f (ai) = bi (1 ≤ i ≤ n). Therefore K = f (Ra1 + · · · + Ran). Since
Ra1 + · · · + Ran is δ-supplemented, K is δ-supplemented by [6, Proposition 3.6]. �

L 2.19. If M is a δ-local module, then M = N ⊕ L such that N is a cyclic δ-local
submodule and L is semisimple projective.

P. Let M be a δ-local module. Let x ∈ M − δ(M). As δ(M) is a maximal
submodule of M, we have δ(M) + Rx = M. Since δ(M)�δ M, there exists a
semisimple projective submodule L ≤ δ(M) such that L ⊕ Rx = M (see Lemma 2.1(1)).
By Lemma 2.1(4), δ(M) = δ(L) ⊕ δ(Rx). From Lemma 2.3(2) it follows that δ(L) = L.
Thus δ(M) = L ⊕ δ(Rx). Therefore δ(Rx) is a maximal submodule of Rx. Moreover,
according to Lemma 2.1(5), δ(Rx)�δ Rx. Consequently, N = Rx is a cyclic δ-local
module. �

T 2.20. Let M be a module such that M is a sum of δ-local submodules and
a semisimple projective submodule. Then every finitely generated submodule of M is
δ-supplemented.

P. By Lemma 2.19, there is no loss of generality in assuming that M =
∑

i∈I Mi

such that Mi is either cyclic δ-local or a simple projective submodule of M. Let K
be a finitely generated submodule of M. There exists a finite subset J ⊆ I such that
K ≤

∑
i∈J Mi. By Proposition 2.17, every finitely generated submodule of the module⊕

i∈J Mi is δ-supplemented. Since
∑

i∈J Mi is a homomorphic image of
⊕

i∈J Mi, K
is δ-supplemented by Lemma 2.18. This completes the proof. �

C 2.21. Let M be a module such that M is a sum of δ-local submodules and
a semisimple projective submodule. Then every cofinite submodule of M has ample
δ-supplements.

P. This follows by Proposition 2.8 and Theorem 2.20. �

L 2.22. Let N be a maximal submodule of a module M. If K is a δ-supplement
of N in M, then K is either δ-local or semisimple projective.
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P. By assumption, N + K = M and N ∩ K �δ K. Thus N ∩ K ⊆ δ(K). Since
M/N � K/(N ∩ K), N ∩ K is a maximal submodule of K. Hence δ(K) = N ∩ K or
δ(K) = K. If δ(K) = N ∩ K, then K is δ-local. Now suppose δ(K) = K. Then for every
x ∈ K − (N ∩ K), Rx + (N ∩ K) = K. Moreover, since Rx ⊆ δ(K) and δ(K) =

∑
{L ≤ K |

L�δ K}, Rx�δ K by Lemma 2.1(2). Again by Lemma 2.1(2), Rx + (N ∩ K) =
K �δ K. Therefore K is semisimple projective by Lemma 2.3. �

A module M is called coatomic if every proper submodule of M is contained in a
maximal submodule of M.

C 2.23. Let M be a coatomic module. Suppose that every cofinite submodule
of M has a δ-supplement in M. Then:

(1) every finitely generated submodule of M is δ-supplemented;
(2) every cofinite submodule of M has ample δ-supplements.

P. (1) By [1, Theorem 2.9] and Lemma 2.22, M is a sum of δ-local submodules
and a semisimple projective submodule. The result follows from Theorem 2.20.

(2) Use (1) and Proposition 2.8. �

C 2.24. Any finitely generated δ-supplemented module is amply
δ-supplemented.

P. This follows by Corollary 2.23. �

We conclude this paper by noting that there are some types of rings, not necessarily
commutative, over which finitely generated δ-supplemented modules are amply
δ-supplemented.

E 2.25.

(1) It is easily seen that if a ring R is semisimple or right artinian, then all finitely
generated modules are amply δ-supplemented.

(2) In [7], Zhou called a ring R δ-semiperfect if every left ideal I of R can be
written as I = Re ⊕ S , where e2 = e ∈ R and S ⊆ δ(RR). From [5, Theorem 3.3]
and Proposition 2.8 it follows that finitely generated modules over δ-semiperfect
rings are amply δ-supplemented.

References

[1] K. Al-Takhman, ‘Cofinitely δ-supplmented and cofinitely δ-semiperfect modules’, Internat. J.
Algebra 1(12) (2007), 601–613.

[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules (Springer, New York, 1974).
[3] E. Büyükaşik and C. Lomp, ‘When δ-semiperfect rings are semiperfect’, Turkish J. Math. 34 (2010),

317–324.
[4] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules (Marcel Dekker, New York, 1976).
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