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Abstract

Let R be a commutative ring. It is shown that if an R-module M is a sum of d-local submodules and
a semisimple projective submodule, then every finitely generated submodule of M is §-supplemented.
From this result, we conclude that finitely generated d-supplemented modules over commutative rings are
amply §-supplemented.
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1. Introduction

Throughout this paper R will denote an associative commutative ring with identity and
all modules are unital R-modules. Recall that a submodule N of a module M is said to
be -small in M, written N <5 M, provided M # N + X for any proper submodule X
of M with M/X singular. Let L be a submodule of a module M. A submodule K of M
is called a ¢-supplement of L in M provided M = L + K and M # L + X for any proper
submodule X of K with K/X singular—equivalently, M = L + K and L N K <5 K. The
module M is called 6-supplemented if every submodule of M has a 6-supplement in M.
On the other hand, the submodule N is said to have ample J-supplements in M if every
submodule L of M with M = N + L contains a d-supplement of N in M. The module
M is called amply d-supplemented if every submodule of M has ample d-supplements
in M. Let P be the class of all singular simple modules. Let M be any module. As
in [7], let 5(M) = Rej,(P) = ({N < M| M/N € P}. It is shown in [7, Lemma 1.5(1)]
that S(M) = Y{N < M| N <s M}.

As in [3], a module M is said to be d-local if 6(M) <s M and §(M) is a maximal
submodule of M. For an R-module M, letann(M) = {r € R| rM = 0} and for any x € M,
let ann(x) ={re R|rx=0}. Let L be a cyclic d-local module. Then L = R/a with
a = ann(L). Since L is d-local, there exists a maximal ideal m of R such that a C m and
O0(R/a) = m/a. In this case, we call the module L m-§-local.
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2. Main results
We begin with a lemma taken from [7, Lemmas 1.2, 1.3 and 1.5].

Lemma 2.1. Let M be a module.

(1) A submodule N <M is 6-small if and only if, for all submodules X < M, if
M=X+N, then M=X®&Y for a semisimple projective submodule Y with
YCN.

(2) For submodules N and L of M, N + L <5 M if and only if N <s M and L <5 M.

(3) IfK<sMand f: M — N is a homomorphism, then f(K) <s N. In particular,
if K<s M C N, then K <5 N.

@4 IfM-= EBM M;, then 6(M) = @561 o(M,).

(5) If M is finitely generated, then 6(M) <5 M.

It is well known that if a is an ideal of R, then a is essential in R if and only if R/a
is a singular R-module (see, for example, [4, p. 32]).

Let S be a simple R-module. Then § is either singular or projective, but not both
(see [4, Proposition 1.24]). Therefore S is either §-local or projective.

A submodule L of a module M is called small in M if L + X # M for every proper
submodule X of M. Let N be a submodule of a module M. A submodule K of M
is called a supplement of N in M providled M =N + K and N N K is small in K. The
module M is called supplemented if every submodule of M has a supplement in M. On
the other hand, a submodule N of a module M has ample supplements in M if every
submodule L such that M = N + L contains a supplement of N in M. The module M
is called amply supplemented if every submodule has ample supplements in M.

The following example shows that a 6-supplemented module need not be amply
o-supplemented.

ExampLE 2.2. Let R be an incomplete discrete valuation ring with field of fractions Q.
Then the R-module Q@ Q is supplemented but not amply supplemented by [8,
Theorem 2.2]. Let m be the maximal ideal of R. Clearly m is essential in R. Thus the
simple R-module R/m is singular. Hence every simple R-module is singular. So R has
no simple projective R-modules. Now let N be a 6-small submodule of an R-module
M and let X be a submodule of M with N+ X =M. By Lemma 2.1(1), M=Y & X
for a projective semisimple submodule Y with ¥ € N. This clearly forces ¥ =0 and
X =M. So N is small in M. Consequently, the R-module Q & Q is §-supplemented but
not amply d-supplemented.

LemMma 2.3.

(1) If a is a proper ideal of R, then the module R/a is semisimple projective if
and only if a = ﬂf;l m; is a finite intersection of nonessential maximal ideals
(2) For any module M, M <s M if and only if M is semisimple projective.

Proor. (1) This follows from the Chinese remainder theorem.
(2) This follows from Lemma 2.1(1). O
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ProrosiTioN 2.4. Let a be an ideal of R. The following conditions are equivalent:

(i)  R/ais an m-6-local module;
(i) mis essential in R and is the only essential maximal ideal of R which contains a.

Proor. (i) = (ii) Suppose that m is not essential in R. Then there exists a simple
ideal b of R such that m & b = R. Clearly, (m/a) ® (b + a)/a =R/a. Thus (b +a)/a &
O0(R/a) since 6(R/a) =m/a. Hence the simple module b = (b + a)/a is singular by
Lemmas 2.3(2) and 2.1(3). That is, R/m is a singular R-module. Therefore m
is essential in R, a contradiction. Now suppose that R has an essential maximal
ideal m’ #m with a Cm’. Then (R/a)/(m’/a) = R/m’ is a singular R-module. So
O0(R/a) =m/a C m’/a, a contradiction.

(i1) = (i) Note first that R/m = (R/a)/(m/a) is singular. Moreover, for any maximal
ideal m’ of R with m’ #m and a Cm’ , R/m’ = (R/a)/(m’ /a) is projective. Therefore
O0(R/a) =m/a. By Lemma 2.1(5), 6(R/a) <s R/a. So R/a is m-6-local. m]

Let m be a maximal ideal of R and let M be an R-module. Consider the subset
Ks, (M) € M of elements x € M such that:

i) x=0;o0r

(i) m is essential in R and is the only essential maximal ideal of R which contains
ann(x); or

(iii) ann(x) = ﬂf;l m; such that each m; (1 <i<k) is a nonessential maximal ideal
of R.

ProrosiTion 2.5. Let x be an element of a module M and let m be a maximal ideal of R.
The following are equivalent:

()  xeKs, (M),

(i) R/ann(x) is m-8-local or semisimple projective.

Proor. This is a consequence of Lemma 2.3 and Proposition 2.4. m|

ProrosiTioN 2.6. A factor module of an m-6-local module is either m-d-local or
semisimple projective.

Proor. Let a be an ideal of R such that the R-module R/a is m-o-local. Let b be
an ideal of R with a Cb. Note that §(R/b) <s R/b by Lemma 2.1(5). Consider
the canonical epimorphism 7 : R/a — R/b. We have n(m/a) = (m + b)/b <s R/b by
Lemma 2.1(3). If b € m, then m/b <5 R/b. Therefore m/b C §(R/b). This implies that
O(R/b)=R/b<sR/bor5(R/b)=m/b<sR/b. If b £ m, then R/b <5 R/b. Therefore
R/b is semisimple projective or m-5-local (see Lemma 2.3(2)). m]

Prorosition 2.7. Let M be an R-module and let m be a maximal ideal of R. Then
Ks, (M) is a submodule of M.

Proor. (1) Let us show that K (M) is closed under multiplication by elements of R.
Let x € K5, (M) and let r € R. Let a = ann(x) and let b = ann(rx). Note that a C b.
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By Proposition 2.5, R/a is m-d-local or semisimple projective. Note that R/b =
(R/a)/(b/a). From Proposition 2.6 it follows that R/b is m-d-local or semisimple
projective. So rx € K5, (M) by Proposition 2.5.

(2) Let us show that K5 (M) is an additive subgroup of M. Let x;, x; € K5, (M),
a; = ann(x;), a, = ann(x,) and a = ann(x; — x»). Thena; Na, C a.

If x; =0 or x, =0, then of course x; — x; € K5, (M).

Suppose that R/a; is m-6-local and R/a, is m-d-local or semisimple projective.
Since m/a, is essential in R/a;, m/(a; N a,) is essential in R/(a; N ay) by [4, Propo-
sition 1.1]. Moreover, if a; Na, € m’ for some maximal ideal m’ # m, then a; Cm’
or a; Cm’. Therefore m’ is not essential in R (see Lemma 2.3 and Proposition 2.4).
Thus R/(a; N ay) is m-6-local by Proposition 2.4. Since

_ R/(aiNnay)

Rja= al(a; Nay)’

R/a is m-6-local or semisimple projective by Proposition 2.6. So x; — x; € K;5, (M) by
Proposition 2.5.

Assume that both of R/a; and R/a, are semisimple projective. Note that Rx; +
Rx, is semisimple projective. Since R(x; — x2) < Rx; + Rxy, R/a=R(x; — xp) is
semisimple projective. Thus x| — x; € K5, (M). O

Recall that a submodule N of a module M is called cofinite if M/N is finitely
generated.

ProrosiTioN 2.8. Let M be a left module over any ring (not necessarily commutative).
Suppose that every finitely generated submodule of M is 6-supplemented. Then every
cofinite submodule of M has ample 5-supplements.

Proor. Let N be a cofinite submodule of M and let L be a submodule of M such
that M = N + L. Then there exists a finitely generated submodule F < L such that
M =N+ F. Consider the submodule NN F < F. By assumption, there exists a
submodule K < F < Lsuchthat(NNF)+ K=Fand NN K <5 K. Since N+ K =M,
K is a 6-supplement of N in M. This completes the proof. O

THEOREM 2.9. Let m be a maximal ideal of R and M be a module such that Ks, (M)=M.
Then every finitely generated submodule of M is 6-supplemented.

Proor. Let xe€ M. Then Rx = R/ann(x) is m-d-local or semisimple projective by
Proposition 2.5. Therefore every finitely generated submodule of M is a finite sum
of 6-local submodules and simple projective submodules. The result follows from [3,
Proposition 3.5]. O

CoroLLARY 2.10. Let m be a maximal ideal of R. Let M be a module such that
Ks, (M) = M. Then every cofinite submodule of M has ample 6-supplements.

Proor. This follows by Proposition 2.8 and Theorem 2.9. O
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For any commutative ring R, let Socp(R) denote the sum of all simple projective
ideals of R.

LevMA 2.11. Let a module M = @iel M; be a direct sum of submodules M; (i € I).
Assume that for all i# j in I, ann(M;) + ann(M;) is a direct summand of R and
R/(ann(M;) + ann(M)) is semisimple. Then, for every submodule N of M,

NC @((N N M) + Socp(R)M).

i€l

Proor. Let N be a submodule of M. Let x € N. Then there exist a positive integer
n, distinct elements i; €1 (1< j<n) and elements x; € M; (1< j<n) such that
x=x1+---+x, Ifn=1, then x=x; € NN M; + Socp(R)M;,. Suppose that n > 2.
By hypothesis, there exists a semisimple ideal A, of R such that

R = (ann(M;,) + ann(M,;,)) ® Aj,.

n

So there exist elements r, s and ¢ in R such that rx; =0, sx, =0, r€ Ay, and 1z =
r+s+t So

SX = SX| + SXp + -+ SX,
=8$X1+8x2 + -+ 85X,
=(g—r—0Dx;+sx2+ -+ 5x,_1

=g —0)x1+ 85X+ + SX,_1.

Note that sxe N, (Ig —)x; € M;, and sx; € M;, (2<j<n-1). By induction on
n, (Ilg—Hx;eNN Mil + SOCP(R)MI'I. Thus x; e NN Mi| + SOCP(R)M,'] +A1nMi|-
Clearly A, C Socp(R). Hence x; € N N M;, + Socp(R)M;,. In the same manner we
can prove that x; € N N M;, + Socp(R)M;; (2 < j < n). m]

LemmA 2.12. Let M be any module. Then Socp(R)M is a semisimple projective
module. In particular, Socp(R)YM C Soc(M).

Proor. Let § be a simple projective ideal of R. Then there exists a maximal ideal
m of R such that § 2R/m. Let xe M and let € §. It is clear that m(ax) =0. So
m C ann(ax). Thus R(ax) = 0 or R(ax) = R/m is simple projective. It follows that SM
is semisimple projective. Therefore Socp(R)M is semisimple projective. ]

ProrosiTioN 2.13. Let a module M =M, &---®M, be a finite direct sum of
submodules M; (1 <i<n), for some positive integer n>?2. Assume that for all
1 <i< j<n, ann(M;) + ann(M)) is a direct summand of R and R/(ann(M;) + ann(M;))
is semisimple. If finitely generated submodules of M; are 6-supplemented for all
1 <i < n, then finitely generated submodules of M are 5-supplemented.
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Proor. Let N be a finitely generated submodule of M. By Lemma 2.11,

NC @((N N M) + Socp(R)M,).
i=1

That is,

n

NC (@(N n M,-)) + Socp(R)M.

i=1
Therefore

N + Socp(R)M = (é(N n Mi)) + Socp(R)M.
i=1

Since N is finitely generated, there exist finitely generated submodules K; < N N M;
(1 <i < n)such that

n

N + Socp(R)M = (@ K,-) + Socp(R)M.

i=1

By hypothesis, the K; (1 <i<n) are o-supplemented. Since Socp(R)M is 0-
supplemented, N + Socp(R)M is d-supplemented by [6, Proposition 3.5]. As
Socp(R)M is semisimple, N is a direct summand of N + Socp(R)M. So N is §-
supplemented by [6, Proposition 3.6]. O

Lemwma 2.14. Let a, b, ¢ and d be ideals of the ring R such that aCc and b Cd. If
cla<sR/aand d|/b <sR/b, then (c Nd)/(aNb) <s R/(aNb).

Proor. Let u be an ideal of R containing a N b such that (c N d)/(aNb) +u/(anNb) =
R/(a n'b) and R/u is singular. Then

(cndy+a)la+ (u+a)la=R/a and ((cNd)+b)/b+ (u+b)/b=R/b.
Hence (¢/a) + (u + a)/Ja = R/a and (d/b) + (u + b)/b = R/b. Moreover,

R/a - R/u d R/b - R/u
w+a)a w+a)u an w+b)/b~ Ww+b)u

Thus (R/a)/((u +a)/a) and (R/b)/((u+ b)/b) are singular modules by [4,
Proposition 1.22(b)]. By hypothesis, R=u+a=u+b. SOR=RR=(u+a)(u+b)=
u+ab. Butab CanbCu. Then u =R. This completes the proof. O

Prorosition 2.15. Let my and my be maximal ideals of R with my # m,. Let a module
M =M, ® M, such that M is a finite direct sum of cyclic m|-6-local submodules
and M, is a finite direct sum of cyclic my-6-local submodules. Then a = ann(M;) +
ann(M,) is a direct summand of R and R/a is semisimple.
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Proor. Assume that M, = @f;l(R/al,-) and M, = EB:ZI(R/aZi), where the a;; (1<
i<ky) and ay; (1 <i<ky) are ideals of R such that R/ay; (1 <i<k;) are m;-6-local
modules and R/ay; (1 <i<k,) are mp-6-local modules. Then ann(M;) = ﬂf;l aiy;
and ann(M,) = (2 ay;. Note that my/ay; <5 R/ay (1 <i<ki) and my/ay <5 R/ax;
(1 €i<ky). Therefore

ky

ky ki ky
ml/(ﬂ Cl],') <5 R/(ﬂ 611,') and mz/(ﬂ Clzl‘) <5 R/(ﬂ azl‘)
i=1 i=1 i=1 i=1
by Lemma 2.14. That is, m;/ann(M;) <5 R/ann(M) and m, /ann(M;) <s R/ann(M5).
By Lemma 2.1(3), (m; + a)/a <s R/a and (m; + a)/a <s R/a. Thus

(my+my +a)/a<sR/a

by Lemma 2.1(2). So R/a <sR/a. By Lemma 2.3, R/a is semisimple projective.
Therefore a is a direct summand of R by [2, Proposition 17.2]. |

ProposiTiON 2.16. Let my be a maximal ideal of R and let a module M = M| & M, be
such that My is a finite direct sum of cyclic mi-0-local submodules and M, is a finite
direct sum of simple projective submodules. Then b = ann(M;) + ann(M,) is a direct
summand of R and R/b is semisimple.

Proor. Assume that M, = @f;](R/bli) and M, = @fi](R/mZi), where the by; (1<
i <kp) are ideals of R and my; (1 <i<ky) are maximal ideals of R such that R/by;
(1 <i<ky) are cyclic my-6-local and R/my; (1 <i<k,) are simple projective. Then
ann(M) = (L, by;, ann(M>) = N2, my; and b= (N, b1)) + (N2, my). Note that
my/by; <5 R/by; for all 1 <i < k;. It follows from Lemma 2.14 that ml/(ﬂ;‘;l b)) <5
R/(ﬂfil bi;). By Lemma 2.1(3), (m; + b)/b <s R/b. Suppose that b Cm;. Then
ﬂf.‘il my; ©my. Hence my; Cmy for some 1< j<k,. We thus get my; =m;.
Therefore R/m; is projective. This contradicts the fact that m; is essential in R (see
Proposition 2.4 and [4, Proposition 1.24]). It follows that b € m; and hence m; + b = R.
Then R/b <s R/b. By Lemma 2.3, R/b is semisimple projective. Therefore b is a
direct summand of R by [2, Proposition 17.2]. O

ProposiTioN 2.17. Let a module M =M, ®---® M, be a finite direct sum of
submodules M; (1 <i<n), for some positive integer n such that each M; is either
cyclic 6-local or simple projective. Then every finitely generated submodule of M is
o-supplemented.

Proor. By rearranging the submodules M; (1 <i<n), we can suppose that M =
Ly ®---® L such that for every 1 <i<k -1, L; is a finite direct sum of cyclic m;-
o-local submodules and Ly is a finite direct sum of simple projective submodules,
where my, . . ., my_; are distinct maximal ideals of R. Clearly, for every 1 <i<k -1,
K(;mi(Li) = L; (see Propositions 2.5 and 2.7). By Theorem 2.9, finitely generated
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submodules of L; (1 <i < k) are 6-supplemented. By Propositions 2.13, 2.15 and 2.16,
finitely generated submodules of M are §-supplemented. O

Lemma 2.18. Let M be a left module over any ring (not necessarily commutative).
Assume that every finitely generated submodule of M is 6-supplemented. If N
is a homomorphic image of M, then every finitely generated submodule of N is
o-supplemented.

Proor. By assumption, there exists an epimorphism f: M — N. Let K be a finitely
generated submodule of N. Then there exist a positive integer n and elements
b;e N (1 <i<n) such that K =Rb; + - - -+ Rb,. Then there exist elements a; € M
(1 <i<n) such that f(a;) =b; (1 <i<n). Therefore K = f(Ra; + - - - + Ra,). Since
Ray + - - - + Ra, is 6-supplemented, K is d-supplemented by [6, Proposition 3.6]. O

Lemma 2.19. If M is a 6-local module, then M = N @ L such that N is a cyclic 6-local
submodule and L is semisimple projective.

Proor. Let M be a d-local module. Let xe M —6(M). As 6(M) is a maximal
submodule of M, we have 6(M)+ Rx=M. Since 6§(M) <s M, there exists a
semisimple projective submodule L < §(M) such that L & Rx = M (see Lemma 2.1(1)).
By Lemma 2.1(4), 6(M) = 6(L) ® 6(Rx). From Lemma 2.3(2) it follows that 6(L) = L.
Thus 6(M) = L & 6(Rx). Therefore 6(Rx) is a maximal submodule of Rx. Moreover,
according to Lemma 2.1(5), 6(Rx) <s Rx. Consequently, N = Rx is a cyclic ¢-local
module. O

TueoreMm 2.20. Let M be a module such that M is a sum of 6-local submodules and
a semisimple projective submodule. Then every finitely generated submodule of M is
o-supplemented.

Proor. By Lemma 2.19, there is no loss of generality in assuming that M = }};c; M;
such that M, is either cyclic d-local or a simple projective submodule of M. Let K
be a finitely generated submodule of M. There exists a finite subset J C I such that
K < };c; M;. By Proposition 2.17, every finitely generated submodule of the module
@ie] M; is o-supplemented. Since };c; M; is a homomorphic image of @ie] M;, K
is 0-supplemented by Lemma 2.18. This completes the proof. O

CorOLLARY 2.21. Let M be a module such that M is a sum of 6-local submodules and
a semisimple projective submodule. Then every cofinite submodule of M has ample
o-supplements.

Proor. This follows by Proposition 2.8 and Theorem 2.20. O

Lemma 2.22. Let N be a maximal submodule of a module M. If K is a 6-supplement
of N in M, then K is either 6-local or semisimple projective.
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Proor. By assumption, N+ K=M and NN K <5 K. Thus NN K Cd(K). Since
M/N = K/(NN K), NN K is a maximal submodule of K. Hence §(K)=NNK or
0(K)=K. If 6(K) =N N K, then K is d-local. Now suppose 6(K) = K. Then for every
xeK—-(NNK),Rx+ (NN K)=K. Moreover, since Rx C5(K) and 6(K) = Y {L < K |
L <5 K}, Rx <s K by Lemma 2.1(2). Again by Lemma 2.1(2), Rx+ (NN K) =
K < K. Therefore K is semisimple projective by Lemma 2.3. m|

A module M is called coatomic if every proper submodule of M is contained in a
maximal submodule of M.

CoroLLARY 2.23. Let M be a coatomic module. Suppose that every cofinite submodule
of M has a 6-supplement in M. Then:

(1) every finitely generated submodule of M is 5-supplemented;
(2) every cofinite submodule of M has ample 6-supplements.

Proor. (1) By [1, Theorem 2.9] and Lemma 2.22, M is a sum of d-local submodules
and a semisimple projective submodule. The result follows from Theorem 2.20.
(2) Use (1) and Proposition 2.8. O

CoROLLARY 2.24. Any finitely generated O-supplemented module is amply
o-supplemented.

Proor. This follows by Corollary 2.23. |

We conclude this paper by noting that there are some types of rings, not necessarily
commutative, over which finitely generated J-supplemented modules are amply
o-supplemented.

ExampLE 2.25.

(1) Ttis easily seen that if a ring R is semisimple or right artinian, then all finitely
generated modules are amply d-supplemented.

(2) In [7], Zhou called a ring R §-semiperfect if every left ideal I of R can be
written as / = Re ® S, where ¢ =e € R and S C 6(xR). From [5, Theorem 3.3]
and Proposition 2.8 it follows that finitely generated modules over J-semiperfect
rings are amply J-supplemented.
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