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On the Structure of the Full Lift for the
Howe Correspondence of (Sp(n),O(V ))

for Rank-One Reducibilities

Goran Muić

Abstract. In this paper we determine the structure of the full lift for the Howe correspondence of

(Sp(n),O(V )) for rank-one reducibilities.

Introduction

In this paper we study the Howe correspondence for the dual pair (Sp(n),O(Vr)),

where n ≥ 0, Vr is a quadratic space in a fixed, but arbitrary even dimensional Witt

tower (cf. §1) with a nonarchimedean local field F of characteristic different from 2.

To explain our results, let us write ωn,r = ωψn,r for the oscillator representation associ-

ated to that pair and a fixed additive character ψ of F. Let χ be a quadratic character

associated to Vr. Let σ ∈ Irr(Sp(n)). Then the σ-isotypic component ωn,r we denote

by Θ(σ, r) (see §2). This is a smooth representation of O(Vr). We call it the full lift

of σ. The basic problems in the theory are: to determine when Θ(σ, r) 6= 0, to prove

the Howe duality conjecture (see [W] when residue characteristic is different than

two), and to describe the structure of the unique irreducible quotient of Θ(σ, r) 6= 0.

In our paper [M], we succeeded solving all three problems for discrete series repre-

sentations. Although the methods in [M] are rather powerful for discrete series, they

are not sufficient for tempered (but not in discrete series) representations and non-

tempered representations. In this paper we present a different approach based on

a deep result of Bernstein [Be] about the existence of a right-adjoint functor to the

functor of induction in the category of smooth representations [Be]. This method

also gives the information about the structure of the full lift Θ(σ, r).

To describe our main results, let σ ∈ Irr(Sp(n)) be a supercuspidal representation.

Then it is known that at the first occurrence r, the lift Θ(σ, r) = τ is a supercuspidal

irreducible representation[MVW]. Assume that ρ ∈ Irr(GL( j, F)) is supercuspidal.

Let P j , (resp., Q j) be a maximal parabolic subgroup of O(Vr+ j), (resp., Sp(n + j))

with a Levi factor isomorphic to GL( j, F) × O(Vr) (resp. GL( j, F) × Sp(n)). The

main results of this paper, Theorems 2.1 and 2.3, describe the structure of the full

Howe lift to Sp(n + j), (resp., O(Vr+ j)) of all irreducible subquotients of

Ind
O(Vr+ j )

P j
(χρ⊗ τ ), (resp., Ind

Sp(n+ j)
Q j

(ρ⊗ σ)).
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As a result, the reduction and composition series of these induced representations

are described in terms of the Howe correspondence. The results of the present paper

(and the results about the lift of supercuspidal representations [MVW]) also suggest

the following conjecture:

Conjecture Assume that σ is in the discrete series; then Θ(σ, r) is irreducible or zero.

Theorems 2.1 and 2.3 are proved in Section 2. The basic method is to consider

Jacquet modules of ωn+ j,r+ j (cf. [Ku]), but computing certain isotypic components

in Jacquet modules of ωn+ j,r+ j (Proposition 2.4) using [Be]. Section 3 is devoted to

these computations.

In Section 4 we apply our results to get some explicit and new reducibility results

for the inner form of the split SO(2n) (Theorem 4.1), although more can be done

using chains of supercuspidal representations as discussed in [Ku1].

This paper is an outgrowth of unpublished previous work [M1]. In a sequel to

this paper [M2] we will pursue the approach to Howe correspondence adopted here.

The present paper is the first in that direction, and it is fundamental since it treats the

generalized rank-one case.

1 Preliminaries

Let F be a nonarchimedean field of characteristic different from 2. Let Z+, R, and C

be the set of non-negative rational integers, the field of real numbers, and the field of

complex numbers, respectively.

Let G be an l-group (cf. [BZ]). Then we will write A(G) for the category of all

smooth representations of G. Let P = MN be a closed subgroup of G, given as the

semi-direct product of closed subgroups M and N , M normalizes N . Assume that

N is a union of its open compact subgroups. Then we have normalized induction

and localization functors IndG
P : A(M) → A(G) and RP : A(G) → A(M). They are

related by Frobenius reciprocity HomG(π, IndG
P (π ′)) ∼= HomM(RP(π), π ′); and IndG

P

and RP are exact functors.

Assume that G and G ′ are l-groups. Let V ∈ A(G × G ′). If ρ ∈ Irr(G) is an

admissible representation, then we write Θ(ρ,V ) ∈ A(G ′) for the ρ-isotypic part

of V (cf. [MVW, Ch. II, Lemme III.4]). More precisely, set V ′
=

⋂
f ker ( f ), f ∈

HomG(V, ρ); then

V/V ′ ∼= ρ⊗ Θ(ρ,V ).

For convenience, let us state the next simple lemma.

Lemma 1.1 The dual G ′-module Θ(ρ,V )∗ is isomorphic to the obvious (not neces-

sarily smooth) G ′-module HomG(V, ρ). Hence, we have an isomorphism of the corre-

sponding smooth modules Θ̃(ρ,V ) = Θ(ρ,V )∗∞
∼= HomG(V, ρ)∞.

Now, we will describe the groups which we will consider. We follow [MVW, Ch. I].

Fix an anisotropic even dimensional inner product F-space (V0, ( , )0). Then its di-

mension can only be 0, 2, or 4. (For more details see [MVW, Ch. I].) Let χ = χV0
be

the quadratic character of F× associated to the quadratic space V0. (See [Ku, p. 240,
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(2.5)], or [Ku1, Proposition 4.3].) If V0 is trivial or four dimensional space, then χ is

the trivial character.

For each r ∈ Z+, let Vr be the orthogonal direct sum of V0 with r hyperbolic

planes. We will fix a Witt decomposition

(1.1) Vr = V (1)
r ⊕V0 ⊕V (2)

r ,

where V (i) = Fv(i)
1 ⊕· · ·⊕Fv(i)

r , i = 1, 2, satisfying (v(i)
k , v

(i)
l ) = 0 and (v(1)

k , v(2)

l ) = δkl.

Let O(Vr), (resp., SO(Vr)) be the corresponding orthogonal, (resp., special orthogo-

nal) group. If V0 = 0, then we let O(V0) = SO(V0) be the trivial group. Let ν = νr

be the determinant character of O(Vr).

The decomposition (1.1) gives us a set of standard parabolic subgroups in O(Vr)

and SO(Vr). We will describe only maximal parabolic subgroups. For j, 1 ≤ j ≤ r,

let V
(i,r)
j = Fv(i)

r− j+1 ⊕ · · · ⊕ Fv(i)
r , i = 1, 2. Then we have a Witt decomposition

(1.2) Vr = V
(1,r)
j ⊕Vr− j ⊕V

(2,r)
j .

Let P j be the parabolic subgroup of O(Vr) which stabilizes V (1,r)
j . There is a Levi

decomposition P j = M jN j , where M j
∼= GL(V (1,r)) × O(Vr− j). (Beware of the dif-

ference between this choice of a Levi factor and that of [Ku, p. 233]. There, GL(V
(2,r)
j )

is considered instead of GL(V
(1,r)
j ). ) Fix the isomorphism GL(n, F) ∼= GL(V

(1,r)
j )

using the above fixed basis of V
(1,r)
j .

Let ǫ be the element of O(Vr) defined as follows. First, ǫ(v(i)
j ) = v(i)

j , for 1 ≤ j ≤

r−1. Then, if V0 6= 0, we let ǫ(v(i)
r ) = v(i)

r , and let ǫ be any elementα of O(V0) on V0,

α2
= 1, ν(α) = −1. If V0 = 0, then we let ǫ(v(1)

r ) = v(2)
r and ǫ(v(2)

r ) = v(1)
r . Clearly,

ν(ǫ) = −1.

A set of standard maximal parabolic subgroups of SO(Vr) may be described as

follows. For each j, 1 ≤ j ≤ r, set P0
j = P j ∩ SO(Vr) and M0

j = M j ∩ SO(Vr). P0
j

is a standard parabolic subgroup of SO(Vr) with a Levi decomposition P0
j = M0

j N j .

If V0 6= 0, then P0
j , 1 ≤ j ≤ r, exhaust the set of all standard maximal parabolic

subgroups. If V0 = 0, then we need to add one more parabolic subgroup P0−
r , with

a Levi decomposition P0−
r = M0−

r N0−
r , where M0−

r = ǫM0
r ǫ

−1 and N0−
r = ǫN0

r ǫ
−1.

This will be used to identify M0−
r

∼= GL(r, F).

Now, we will discuss the representation theory of O(Vr). Since the algebraic group

O(Vr) is not connected (in the algebraic sense), we need to discuss some general re-

sults of [Ca]. First, we will recall the relationship between irreducible representations

of O(Vr), and those of SO(Vr) using the next simple lemma (cf. [MVW, Ch. III]).

Lemma 1.2

(i) If π ∈ Irr(O(Vr)), then π ′ = π|SO(Vr) is irreducible if and only if π is not equiv-

alent to νπ. If π ′ is irreducible, then IndO(Vr )

SO(Vr)
(π ′) ∼= π ⊕ νπ, and π ′ ∼= π

′ǫ.

(Here π
′ǫ(g) = π ′(ǫgǫ−1), for all g ∈ SO(Vr).)

(ii) If π ′ ∈ Irr(SO(Vr)), then π = IndO(Vr)

SO(Vr )
(π ′) is irreducible if and only if π ′ 6∼=

π
′ǫ. Furthermore, νπ ∼= π.
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Lemma 1.2 enables us to define supercuspidal, square integrable and tempered

representations of O(Vr) by considering their restrictions to SO(Vr). The usual

characterizations in terms of Jacquet modules (cf. [Ca, Si]) hold. (See also [MVW,

pp. 61–62].) For our purpose the next theorem is sufficient.

Theorem 1.3 Let ρ⊗τ ∈ Irr(GL( j, F)×O(Vr− j )) be a supercuspidal representation.

Then we have

(i) RP j
(IndO(Vr)

P j
(ρ⊗ τ )) = ρ⊗ τ + ρ̃⊗ τ , in the corresponding Grothendieck group.

Hence, the length of IndO(Vr)
P j

(ρ⊗ τ ) is at most two.

(ii) If IndO(Vr)
P j

(ρ ⊗ τ ) (ρ unitary) reduces, then it is the direct sum of two irreducible

non-equivalent tempered representations. If it is reducible for nonunitary ρ, then

it has a unique irreducible subrepresentation (with RP j
-localization ρ ⊗ τ ) and

a unique irreducible quotient (with RP j
-localization ρ̃ ⊗ τ ). Moreover, we can

decompose ρ = | det |e(ρ)ρu, where e(ρ) ∈ R, and ρu is unitary. If e(ρ) > 0, the

unique irreducible subrepresentation is square integrable, and the other constituent

is not tempered.

(iii) Let τ0 be any irreducible subrepresentation of τ |SO(Vr− j ). Then IndSO(Vr)

P0

j

(ρ⊗ τ0)

reduces if and only if IndO(Vr )
P j

(ρ⊗ τ ) reduces, unless one of the following holds:

(1) V0 = 0, r > 1, r = j is odd, and ρ ∼= ρ̃;

(2) j < r, j is odd, ρ ∼= ρ̃, and τ ǫ0 6∼= τ0.

In both cases, IndSO(Vr)

P0
r

(ρ ⊗ τ0) is irreducible and IndO(Vr)
Pr

(ρ ⊗ τ ) is the direct sum of

two irreducible non-equivalent tempered representations.

We will also need the results from Remark 1.4.

Remark 1.4

(i) Note that NSO(Vr)(M0
j ) has two elements, unless V0 = 0, r > 1 is odd, and

r = j (cf. [Go]). If w0 is the nontrivial element of that group, then

w0(ρ⊗ τ0) =

{
ρ̃⊗ τ ǫ0 if j is odd,

ρ̃⊗ τ0 if j is even.

If V0 = 0, r > 1 is odd, and j = r, then Goldberg [Go] has shown P0
r and P0−

r are

associated in SO(Vr).

(ii) For each π ∈ Irr(O(Vr)), π ∼= π̃. (cf. [MVW, Ch. III, Théorème II.1]).

(iii) The only group among O(Vr), r ≥ 0 which does not have supercuspidal

representations is O(V1), but only when V0 = 0.

Proof of Theorem 1.3 The theorem, except the part of (iii) related to the case V0 =

0, r > 1, r = j is odd, is an easy consequence of Lemma 1.2 and the representation

theory of SO(Vr), and is left to reader. Let us prove that part of (iii). First, π1 =

IndSO(Vr)

P0
r

(ρ⊗ 1) is irreducible because a necessary condition for reducibility, namely

https://doi.org/10.4153/CMB-2006-054-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-054-3


582 G. Muić

that NSO(Vr)(M0
r ) 6= {1}, [Ca, Theorem 7.1.4], does not hold. Also, π1 is equivalent

to π2 = IndSO(Vr)

P0−

r
(ρ̃⊗ 1). We have πǫ1 = IndSO(Vr)

P0−

r
(ρ⊗ 1), and

IndO(Vr)
Pr

(ρ⊗ 1)|SO(Vr)
∼= π1 ⊕ πǫ1.

Again, by [Ca, Theorem 7.1.4], πǫ1
∼= π2 (∼= π1) if and only if ρ ∼= ρ̃. Now, Lemma

1.2 implies the last part of (iii).

We will finish this section by briefly discussing symplectic groups Sp(n) =

Sp(n, F). (For more details see [Ku, p. 235] [MVW, T].) By the analogous geomet-

ric description, the groups Sp(n) (n is the semisimple rank) have proper maximal

parabolic subgroups parametrized by numbers i, 1 ≤ i ≤ n. Write Qi = M ′
i N ′

i for

the corresponding parabolic subgroup, where M ′
i = GL(i, F) × Sp(n − i). Theorem

1.3(i) and (ii) have the similar form for Sp(n) (cf. [T]). Finally, set Sp(0) = {1}.

2 Correspondence

In this section we prove our main results. To explain the results, we need to introduce

more notation. Put

mr = dimF (Vr)/2.

The pair (Sp(n),O(Vr)) is a dual pair in Sp(n · (2mr), F) (cf. [MVW, Ku1]). We write

ωn,r = ωψn,r,

for the oscillator representation associated to that pair and a fixed additive character

ψ of F. (Here ω0,r is the trivial representation of O(Vr), and if V0 = 0, then ωn,0 is

the trivial representation of Sp(n).)

For each σ ∈ Irr(Sp(n)) and r ≥ 0, write Θ(σ, r), for a smooth representation of

O(Vr), defined as the σ-isotypic part of ωn,r (cf. [MVW, Ch. II, Lemme III.4]). If τ ∈
Irr(O(Vr)), we will write Θ(τ , n), for the analogously defined smooth representation

of Sp(n), n ≥ 0.

It is known (cf. [MVW]) that if j is large enough, then Θ(σ, j) 6= 0. We write r

for the smallest j, such that Θ(σ, j) 6= 0. (It depends on σ and the tower Vr, r ≥ 0.)

We call r the first occurrence of σ in the tower V j , j ≥ 0. We have Θ(σ, j) 6= 0 for

j ≥ r [MVW, Ch. III]. If σ is supercuspidal, then Θ(σ, j) is irreducible for j ≥ r,

and supercuspidal only for j = r. The analogous discussion is also valid for τ and

the symplectic tower.

In what follows we shall assume that σ and τ are supercuspidal irreducible repre-

sentations of Sp(n) and O(Vr), respectively, such that Θ(σ, r) = τ . (Hence

Θ(τ , n) = σ.)

Theorem 2.1 Let ρ ∈ Irr(GL( j, F)) be a supercuspidal representation; if j = 1,

then ρ /∈ {χ| · |±(mr−n), χ| · |±(mr−n−1)}. Then Ind
Sp(n+ j)
Q j

(ρ⊗ σ) reduces if and only if

Ind
O(Vr+ j )

P j
(χρ⊗ τ ) reduces. More precisely, we have
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(i) Assume that ρ is not unitary and Ind
Sp(n+ j)
Q j

(ρ ⊗ σ) reduces. Write π1 and π2

for its irreducible subrepresentation and irreducible quotient, respectively. Then

Θ(πi , r + j) is not zero, i = 1, 2. Furthermore, Θ(π1, r + j) and Θ(π2, r + j)

are the unique irreducible subrepresentation and quotient of Ind
O(Vr+ j )

P j
(χρ ⊗ τ ),

respectively.

(ii) Assume that ρ is unitary and Ind
Sp(n+ j)
Q j

(ρ ⊗ σ) reduces. Write π1 and π2 for

its non-equivalent irreducible subrepresentations. Then Θ(πi , r + j) is not zero,

i = 1, 2, and

Ind
O(Vr+ j )

P j
(χρ⊗ τ ) ∼= Θ(π1, r + j) ⊕ Θ(π2, r + j).

(iii) If Ind
Sp(n+ j)
Q j

(ρ⊗ σ) is irreducible, then the lift is given by

Θ(Ind
Sp(n+ j)
Q j

(ρ⊗ σ), r + j) = Ind
O(Vr+ j )

P j
(χρ̃⊗ τ ),

and is also irreducible.

Let us state the following interesting corollary of Theorem 2.1.

Corollary 2.2 Assume that V0 = 0, and put O(2 j) = O(V j). Let ρ ∈ Irr(GL( j, F)),

j > 1, be a supercuspidal representation. Then Ind
Sp( j)
Q j

(ρ) reduces if and only if

Ind
O(2 j)
P j

(ρ) reduces.

Corollary 2.2 is just the reformulation of a part of the results obtained by Shahidi

[Sh], using his theory of L-functions. (Actually, [Sh] considers SO(2 j) instead of

O(2 j), cf. Theorem 1.3.)

Now we will explain the assumption on ρ in Theorem 2.1. By [MVW, Théorème

principal, p. 69],

(2.1) Θ(σ, r +1) ⊂ IndO(Vr+1)
P1

(| · |n−mr ⊗τ ) and RP1
(Θ(σ, r +1)) = | · |n−mr ⊗τ .

Since the reducibility point s0 = n − mr of IndO(Vr+1)
P1

(| · |s ⊗ τ ), s ∈ R, is unique up

to a sign [Si1, Lemma 1.2], IndO(Vr+1)
P1

(| · |n−mr+1 ⊗ τ ) ∼= IndO(Vr+1)
P1

(| · |−(n−mr+1) ⊗ τ )

is irreducible. Also,

(2.2)
Θ(τ , n + 1) ⊂ Ind

Sp(n+1)
Q1

(χ| · |mr−n−1 ⊗ σ),

RQ1
(Θ(τ , n + 1)) = χ| · |mr−n−1 ⊗ σ.

Again, IndSp(n+1)
Q1

(χ| · |mr−n ⊗ σ) ∼= IndSp(n+1)
Q1

(χ| · |−(mr−n) ⊗ σ) is irreducible.
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The next theorem is a complement to Theorem 2.1.

Theorem 2.3

(i) The lift Θ(IndSp(n+1)
Q1

(χ| · |mr−n ⊗ σ), r + 1) has the unique proper maximal sub-

module. The corresponding quotient is isomorphic to Θ(σ, r + 1). Furthermore,

(2.3) Θ(Θ(σ, r + 1), n + 1) = Ind
Sp(n+1)
Q1

(χ| · |mr−n ⊗ σ).

Finally, if π is the other irreducible constituent of IndO(Vr+1)
P1

(| · |n−mr ⊗ τ ), then

Θ(π, n + 1) = 0.
(ii) The lift Θ(IndO(Vr+1)

P1
(| · |n−mr+1 ⊗ τ ), n + 1) has the unique proper maximal sub-

module. The corresponding quotient is isomorphic to Θ(τ , n + 1). Furthermore,

(2.4) Θ(Θ(τ , n + 1), r + 1) = IndO(Vr+1)
P1

(| · |n−mr+1 ⊗ τ ).

Finally, if π is the other irreducible constituent of Ind
Sp(n+1)
Q1

(| · |mr−n−1 ⊗σ), then

Θ(π, r + 1) = 0.

Now, we are going to prove Theorems 2.1 and 2.3. Their proofs depend on the

next proposition.

Proposition 2.4

(i) If ρ 6= χ| · |mr−n−1, then Θ(χρ⊗ τ ,RP j
(ωn+ j,r+ j)) ∼= Ind

Sp(n+ j)
Q j

(ρ̃⊗ σ).

(ii) If ρ 6= χ| · |mr−n, then Θ(ρ⊗ σ,RQ j
(ωn+ j,r+ j)) ∼= Ind

O(Vr+ j )

P j
(χρ̃⊗ τ ).

We will postpone the proof of Proposition 2.4, and prove Theorems 2.1 and 2.3

first.

Proof of Theorem 2.1 We will prove the theorem in several steps. First, to simplify

formulae, we write

Π = Ind
Sp(n+ j)
Q j

(ρ⊗ σ), Π
′
= Ind

Sp(n+ j)
Q j

(ρ̃⊗ σ), and Υ = Ind
O(Vr+ j )

P j
(χρ⊗ τ ).

Since τ̃ ∼= τ and χ2 = 1, we have Υ̃ ∼= Ind
O(Vr+ j )

P j
(χρ̃⊗ τ ).

Step 1: Assume that π is an irreducible quotient of Π. Then, by Frobenius reci-

procity,

HomSp(n+ j)×O(Vr+ j )(ωn+ j,r+ j , π ⊗ Υ̃)

∼= HomSp(n+ j)×GL( j,F)×O(Vr )(RP j
(ωn+ j,r+ j), π ⊗ χρ̃⊗ τ ).

Hence, by Proposition 2.4(i),

HomSp(n+ j)×O(Vr+ j )(ωn+ j,r+ j , π ⊗ Υ̃) ∼= HomSp(n+ j)(Π, π).
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The last intertwining space is one dimensional. Hence Θ(π, r + j) 6= 0. Finally, each

irreducible subquotient of Π is a quotient of Π or Π ′. So, its lift is non-zero.

Step 2: Assume that Π is reducible and ρ is not unitary. Write π1 and π2 for its

unique irreducible subrepresentation and unique irreducible quotient, respectively.

We have RQ j
(π1) = ρ ⊗ σ and RQ j

(π2) = ρ̃ ⊗ σ. By Step 1, Θ(πi , r + j) 6= 0,

i = 1, 2. Since π1 ⊗ Θ(π1, r + j) is a quotient of ωn+ j,r+ j , ρ ⊗ σ ⊗ Θ(π1, r + j) is a

quotient of RQ j
(ωn+ j,r+ j). Hence Θ(π1, r + j) is a quotient of Υ̃. Let us prove that

it is not equal to Υ̃. Otherwise, RP j
(ωn+ j,r+ j) has a quotient π1 ⊗ χρ̃ ⊗ τ . So, by

Proposition 2.4, π1 is a quotient of Π, which is a contradiction. Hence, Θ(π1, r + j) is

the unique irreducible quotient of Υ̃. Similarly, we conclude that Θ(π2, r + j) is the

unique irreducible quotient of Υ. Now, by Remark 1.4(ii), Theorem 2.1(i) follows.

Step3: Assume that Π is irreducible and ρ 6∼= ρ̃. Now, by Frobenius reciprocity,

HomSp(n+ j)(ωn+ j,r+ j ,Π) ∼= HomGL( j,F)×Sp(n)(RQ j
(ωn+ j,r+ j), ρ⊗ σ).

The usual map that gives the isomorphism above is, in fact, the isomorphism of the

corresponding (not necessarily smooth) O(Vr+ j)-modules. Now, by the last part of

Lemma 1.1 and Proposition 2.4, we get

Θ(Π, r + j) ∼= Θ
(
ρ⊗ σ, RQ j

(ωn+ j,r+ j)
)
∼= Ind

O(Vr+ j )

P j
(χρ̃⊗ τ ) = Υ̃.

Similarly, we can prove Θ(Π, r + j) = Υ. Now, Υ ∼= Υ̃. Hence, if ρ is not unitary,

applying Theorem 1.3(ii), it is not difficult to see that Υ is irreducible. If ρ is unitary,

then Υ is also irreducible. More precisely, Ind
SO(Vr+ j )

P0

j

(ρ ⊗ τ0) is irreducible because

a necessary condition for reducibility w0(ρ ⊗ τ0) = ρ ⊗ τ0 does not hold (cf. [Ca]

and Remark 1.4(i)). Since ρ̃ 6∼= ρ, we can apply Theorem 1.3(iii) to see that Υ is

irreducible.

Step 4: Assume Π is irreducible and ρ ∼= ρ̃. We shall show that Υ is also irreducible.

Take s ∈ R, and set

Πs = Ind
Sp(n+ j)
Q j

(| det |sρ⊗ σ).

The familiy Πs, s ∈ R, can be considered as a continuous familiy of Hermitian rep-

resentations. By the usual complementary series argument, since Π0 is irreducible,

there exists s0 6= 0, such that Πs0
is reducible. By Step 2, Ind

O(Vr+ j )

P j
(χ| det |s0ρ ⊗ τ )

is also reducible. Considering the restriction to SO(Vr+ j) (cf. Theorem 1.3(iii)), we

see that Ind
SO(Vr+ j )

P j
(χ| det |s0ρ ⊗ τ0) is reducible. As before, by [Si1, Lemma 1.2],

Ind
SO(Vr+ j )

P j
(χρ⊗ τ0) is irreducible. Clearly, we are not in the exceptional case of The-

orem 1.3(iii). So, Υ = Ind
O(Vr+ j )

P j
(χρ⊗ τ ) is irreducible. Now, we can continue as in

Step 3 to see Θ(Π, r + j) = Υ̃. Steps 3 and 4 prove Theorem 2.1(iii).

Step 5: Assume Π is reducible and ρ is unitary. (Then ρ ∼= ρ̃.) Let us write Π ∼=
π1⊕π2, where π1, π2 are tempered mutually inequivalent irreducible representations.

It follows that RQ j
(πi) = ρ⊗ σ, i = 1, 2, and

(2.5) RQ j
(Π) ∼= RQ j

(π1) ⊕ RQ j
(π2).
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Let us prove that Υ̃ is also reducible. If not, then as in Step 3, we see Θ(Υ, n+ j) = Π.

Now, (2.5) implies that

ρ⊗ σ ⊗ Υ̃ ⊕ ρ⊗ σ ⊗ Υ̃

is a quotient of RQ j
(ωn+ j,r+ j). This is a contradiction (cf. Proposition 2.4(ii)). Hence,

by Theorem 1.3, Υ̃ is a direct sum of two mutually non-equivalent tempered repre-

sentations.

Next, taking π = πi , i = 1, 2, in Step 1, we see

(2.6) dimC HomSp(n+ j)×GL( j,F)×O(Vr )(RP j
(ωn+ j,r+ j ), π ⊗ χρ̃⊗ τ ) = 1.

Since, by Step 1, Θ(πi , r+ j) is a quotient of Υ̃ and RP j
(Υ̃) is semisimple, (2.6) implies

that Θ(πi, r + j) is irreducible. Similarly, each irreducible subrepresentation π of Υ̃,

satisfies Θ(π, n + j) ∈ {π1, π2}. So, we must have

Υ̃ ∼= Θ(π1, r + j) ⊕ Θ(π2, r + j).

Now Theorem 2.1(ii) follows from Remark 1.4(ii). This completes the proof of The-

orem 2.1.

Proof of Theorem 2.3 We will prove (i). The proof of (ii) is analogous. The sec-

ond part of (i) (see (2.3)) follows from (2.1) and Proposition 2.4(i). Now, to prove

Theorem 2.3(i) it is enough to prove the first part. To simplify formulae, put Π =

IndSp(n+1)
Q1

(χ| · |mr−n ⊗ σ).

First, if mr−n 6= 0, then, as in Step 4, we see Θ(Π, r+1) ∼= IndO(Vr+1)
P1

(| · |mr−n⊗τ ).

This completes the proof in that case.

Again, the tempered case mr − n = 0 is more difficult. First,

HomSp(n)×O(Vr+1)(ωn+1,r+1, Π ⊗ IndO(Vr+1)
P1

(1 ⊗ τ ))(2.7)

∼= HomO(Vr+1)(Θ(Π, r + 1), IndO(Vr+1)
P1

(1 ⊗ τ )).(2.8)

Then Proposition 2.4(i) implies that the space in (2.8) is one dimensional. Take a

non-trivial map from the space in (2.7). Then the first part of the proof shows that

its image is isomorphic to Θ(σ, r + 1) ⊗ Π. Further, let ϕ be the corresponding map

in (2.8). We claim that V = ker (ϕ) is the unique proper maximal submodule of

Θ(Π, r + 1). If not, then there is a submodule V ′, such that Θ(Π, r + 1) = V + V ′.

Hence, V/V ∩V ′ is a quotient of Θ(Π, r + 1). The filtration of RQ1
(ωn+1,r+1) (cf. §3)

and Lemma 3.3 imply that RP1
(V/V ∩V ′) has a quotient 1 ⊗ τ . This gives a map in

(2.8), which is not, up to a scalar, equal toϕ. This is a contradiction, which completes

the proof of Theorem 2.3.

3 Proof of Proposition 2.4

First we will recall filtrations of certain Jacquet modules of oscillator representations

(cf. [Ku, Ku1] or [MVW, Ch. III, IV.5]).
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(i) RP j
(ωn+ j,r+ j) has filtration by I jk, 0 ≤ k ≤ j, where

I j0 = | det |−mr+n+
j+1

2 ⊗ ωn+ j,r (quotient),

I j j = Ind
Sp(n+ j)×GL( j,F)×O(Vr )

Q j × GL( j,F) × O(Vr ) (Σ j ⊗ ωn,r) (subrepresentation),

I jk = Ind
Sp(n+ j)×GL( j,F)×O(Vr )

Qk× P ′

jk
×O(Vr )

(α jk ⊗ Σk ⊗ ωn+ j−k,r), 0 < k < j.

Here P ′

j,k is the standard parabolic subgroup of GL( j, F) which corresponds to the

partition ( j − k, k),

α jk = | det |−mr+n+
j−k+1

2

is a character of GL( j − k, F), and Σk is the twist of the standard representation of

GL(k, F) × GL(k, F) on smooth complex valued functions C∞
c (GL(k, F)):

Σk(g1, g2) f (h) = | det g1|
−mr−

k+1

2 χ(det g2)| det g2|
mr + k+1

2 f (g−1
1 hg2).

(Here the first (resp., second) GL(k, F) is a part of the Levi factor of P ′

jk, (resp.,

of Qk).)

(ii) RQ j
(ωn+ j,r+ j ) has filtration by J jk, 0 ≤ k ≤ j, where

J j0 = χ| det |mr−n+
j−1

2 ⊗ ωn,r+ j (quotient),

J j j = Ind
Sp(n)×GL( j,F)×O(Vr+ j )

Sp(n)×GL( j,F)×P j
(Σ ′

j ⊗ ωn,r) (subrepresentation),

J jk = Ind
Sp(n)×GL( j,F)×O(Vr+ j )

Sp(n)×Q ′

jk
×Pk

(β jk ⊗ Σ
′

k ⊗ ωn,r+ j−k), 0 < k < j.

Here Q ′

j,k is the standard parabolic subgroup of GL( j, F) which corresponds to the

partition ( j − k, k), β jk = χ| det |mr−n+
j−k−1

2 is a character of GL( j − k, F), and Σk is

the twist of the standard representation of GL(k, F) × GL(k, F) on smooth complex

valued functions C∞
c (GL(k, F)):

Σ
′

k(g1, g2) f (h) = | det g1|
mr+ j− k+1

2 χ(det g1)| det g2|
−mr− j+ k+1

2 f (g−1
1 hg2).

(Here the first (resp., the second) GL(k, F), is a part of the Levi factor of Q ′

jk, (resp.,

of Pk).)

Remark 3.1 If π ∈ Irr(GL(k, F)), then Θ(π,Σk) ∼= χπ̃. The same applies for Σ ′

k.

Here we may consider π as a representation of GL(k, F) × 1 or 1 × GL(k, F).

We will prove only Proposition 2.4(ii). The proof of (i) is analogous. To simplify

notation, we will write

M ′

j = GL( j, F) × Sp(n) and ρ ′ = ρ⊗ σ.

For s ∈ C, we put ρ ′s = | det |sρ⊗ σ. Now, the filtration of RQ j
(ωn+ j,r+ j) given in (ii)

immediately implies
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Lemma 3.2 Assume that j > 1, and s ∈ C. Then

HomM ′

j
(RQ j

(ωn+ j,r+ j)/ J j j , ρ
′

s ) = 0.

Now, let us finish the proof of Proposition 2.4(ii), assuming the following lemma.

Lemma 3.3 For each supercuspidal representation ρ ′ = ρ⊗ σ ∈ Irr(M ′
j ),

Θ(ρ ′, J j j) ∼= Ind
O(Vr+ j )

P j
(χρ̃⊗ τ ).

First, recall that if V ∈ A(M ′
j ), then we can decompose it into the direct sum of

smooth modules [Be1, Ch. II, Proposition 26]

V ∼= V (ρ ′) ⊕Vρ ′ ,

such that each irreducible subquotient of V (ρ ′) is of the form ρ ′s , for some s ∈ C, and

Vρ ′ does not have an irreducible subquotient of the form ρ ′s . If V (ρ ′) is not zero, it

has an irreducible quotient.

If j > 1, then Lemma 3.2 implies (RQ j
(ωn+ j,r+ j )/ J j j)(ρ ′) = 0. Now it is not

difficult to see

RQ j
(ωn+ j,r+ j)(ρ ′) = J j j(ρ

′),

considering J j j ⊂ RQ j
(ωn+ j,r+ j). Hence, the natural map

(3.1) HomM ′

j
(RQ j

(ωn+ j,r+ j), ρ
′) → HomM ′

j
( J j j , ρ

′)

is an isomorphism of vector spaces. But, the map is also O(Vr+ j)-equivariant. Hence,

we have (cf. Lemma 1.1)

Θ(RQ j
(ωn+ j,r+ j), ρ

′)∼ ∼= HomM ′

j
(RQ j

(ωn+ j,r+ j ), ρ
′)∞

∼= HomM ′

j
( J j j , ρ

′)∞ ∼= ˜Θ( J j j , ρ ′).

Now, Lemma 3.3 completes the proof of Proposition 2.4(ii) in that case.

If j = 1, then ρ is a character of F×, which is by the assumption of Proposition

2.4(ii) different from the character that appears in J10 (cf. (b)). Now, RQ1
(ωn+1,r+1)

has an obvious quotient

ρ ′ ⊗ Θ(ρ ′, J11) ⊕ J10.

Hence, one can see that the natural map (3.1) is an isomorphism. Finally, the proof

of Proposition 2.4(ii) can be completed as before.

It remains to prove Lemma 3.3. To achieve that, we need the following simple

extension of a result from Bernstein [Be]:
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Lemma 3.4 Assume that an l-group G ′ is the semidirect product G ⋊ Z/2Z, where G

is a connected reductive F-group. Let P = MN be a parabolic subgroup of G, and let

P = MN be the opposite parabolic subgroup of P. Assume that Z/2Z normalizes M,

N and N. Put M ′ = M ⋊ Z/2Z, P = M ′N, and P
′

= M ′N. If π ∈ A(M ′) and

Π ∈ A(G ′), then we have an isomorphism φ 7→ φ0

HomG ′(IndG ′

P ′ (π),Π) ∼= HomM ′(π,RP
′(Π)),

where φ0 is given by the composition of the natural inclusion (through a part of filtration

that corresponds to an open orbit P ′P
′

in P ′ \ G ′)

π →֒ RP
′(IndG ′

P ′ (π)),

and the natural map φ : RP
′(IndG ′

P ′ (π)) → RP
′(Π).

Proof If G ′ is connected, then Bernstein has shown that the map φ 7→ φ0 is an

isomorphism. Now, Lemma 3.4 follows, considering the restriction of all representa-

tions in question to G.

Proof of Lemma 3.3 Set Π = Θ(ρ ′, J j j) and P j = M jN
0

j . Clearly, Ind
O(Vr+ j )

P j
(χρ̃⊗ τ )

is a quotient of Π. To prove the lemma, it is enough to see that Π is a quotient of that

induced representation.

Let ϕ be the natural ephimorphism of M ′
j × O(Vr+ j)-modules J j j → ρ ′ ⊗ Π.

Then, as in Lemma 3.4, we can define a morphism

ϕ0 : Σ
′

j ⊗ ωn,r −→ ρ ′ ⊗ RP j
(Π).

Remark 3.1 implies that the image of ϕ0 is isomorphic to

(3.2) ρ ′ ⊗ χρ̃⊗ τ .

So, we can factorϕ0 = ϕ ′′ ·ϕ ′, whereϕ ′ is the natural projection from Σ
′
j⊗ωn,r to

the module given by (3.2), and ϕ ′ ′ is an inclusion. Write Ind(ϕ ′) for the morphism

of the corresponding induced modules. Let ϕ1 be the morphism from Lemma 3.4,

such that (ϕ1)0 = ϕ ′ ′. It is not difficult to see (ϕ1 · Ind(ϕ ′))0 = ϕ0. Hence, by

Lemma 3.4, ϕ = ϕ1 · Ind(ϕ ′). This implies that the image of ϕ is isomorphic to a

quotient of ρ ′ ⊗ Ind
O(Vr+ j )

P j
(χρ̃⊗ τ ). This completes the proof of Lemma 3.3.

4 An Example

In this section we will assume that the characteristic of F is zero, because we will apply

the reducibility results obtained by Shahidi [Sh].

We continue by recalling some results from [Sh]. Assume that ρ is a unitary su-

percuspidal representation of GL( j, F), j > 1. Then, following [Sh], we call ρ a
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representation of symplectic type if Ind
Sp( j)
Q j

(| det |1/2ρ) is reducible, and a represen-

tation of orthogonal type if Ind
Sp( j)
Q j

(ρ) is reducible. In both cases ρ ∼= ρ̃. Also,

Shahidi [Sh, Lemma 3.6] implies that every selfcontragredient supercuspidal repre-

sentation is exactly of one of the above types. (For more details see [Sh], and for later

interpretation in terms of K-types we refer to [MR].) One would like to describe all

reducibilities of induced representations induced in terms of reducibility discussed

above for split classical groups or their inner forms. The theorem below gives new

examples of reducibilities.

Theorem 4.1 Assume that V0 is a four dimensional anisotropic space. (Then χ = 1.)

Let ρ ∈ Irr(GL( j, F)) be a supercuspidal unitary representation, and let s ∈ R. Put

I(s) = Ind
SO(V j )

P0

j

(| det |sρ⊗ 1SO(V0)). Then we have

(i) If ρ 6∼= ρ̃, then I(s) is irreducible, for all s ∈ R.

(ii) If ρ has orthogonal type (hence j > 1), then I(0) is reducible, and I(s) is irre-

ducible, for s 6= 0.

(iii) If ρ has symplectic type (hence j > 1), then I(s) is irreducible, for s 6= ±1/2, and

I(±1/2) is reducible.

(iv) If ρ is the trivial character of GL(1, F), then I(s) is irreducible for s 6= ±2 and

I(±2) is reducible. If ρ is a nontrivial quadratic character of GL(1, F), then I(0)

is reducible and I(s) is irreducible for s 6= 0.

Proof Note that Θ(1O(V0), 0) = 1Sp(0). Now, the theorem is a consequence of

Theorems 1.3, 2.1, and 2.3, well-known reducibilities of induced representations in

SL(2) = Sp(1), and the fact that we can have at most one point of reducibility point

for s ≥ 0 (cf. [Si1]).
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[M] G. Muić, Howe correspondence for discrete series representations; the case of (Sp(n),O(V )). J.

Reine Angew. Math. 567(2004), 99–150.
[M1] , The Howe correspondence and reducibility of induced representations for Sp(n) and

O(V ). Manuscript (1998).
[M2] , The Howe correspondence for non-tempered representations. In preparation.

https://doi.org/10.4153/CMB-2006-054-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-054-3


Howe Correspondence 591
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