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MAXIMIZATION OF THE LONG-TERM GROWTH
RATE FOR A PORTFOLIO WITH FIXED AND
PROPORTIONAL TRANSACTION COSTS

TAKASHI TAMURA,∗ Osaka University

Abstract

We study the problem of maximizing the long-run average growth of total wealth for
a logarithmic utility function under the existence of fixed and proportional transaction
costs. The market model consists of one riskless asset and d risky assets. Impulsive
control theory is applied to this problem. We derive a quasivariational inequality (QVI)
of ‘ergodic’ type and obtain a weak solution for the inequality. Using this solution, we
obtain an optimal investment strategy to achieve the optimal growth.
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1. Introduction

Merton [9], [10] introduced optimal portfolio management and consumption problems for
the Black–Scholes model and obtained the optimal rule. However, he assumed that there were
no transaction costs, where the continuous in time rebalancing of the assets was permitted. The
optimal strategy in his study required an infinite number of transactions to keep the proportions
of the portfolio at a fixed ratio, the so-called Merton ratio. Since then, as one of the more realistic
market models, portfolio optimization problems with transaction costs have been widely studied
by various researchers.

Taksar et al. [15] studied the problem of maximizing the long-run average growth of total
wealth under the existence of proportional transaction costs. Their study was extended by
Akian et al. [1] to a multidimensional market model case. Davis and Norman [6] studied
the problem of maximizing the expected utility of consumption in the presence of the same
transaction costs as [15]. They applied the theory of stochastic singular control to the problem,
and performed rigorous analysis and numerical computations. However, in their models [1],
[6], [15] a continuous in time rebalancing of the assets is permitted. The optimal strategy
involves carrying out infinitesimally small transactions. This does not occur in practice.

Morton and Pliska [11] introduced fixed transaction costs, originally introduced by Duffie
and Sun [7], which abandoned carrying out such infinitesimally small transactions. They studied
the same maximization problem as [15] in a multidimensional market model and formulated it
as an impulsive control problem. Nagai [12] performed a mathematically rigorous analysis of
the problem. Although it was to their advantage that the obtained optimal strategy fit practical
behaviors better than previous ones, their model did not include the proportional component of
transaction costs described above.
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674 T. TAMURA

In a recent paper [16], not only fixed transaction costs based on [11] but also proportional
transaction costs based on [15] for a market model with one riskless asset and one risky asset
were introduced. The same problem of maximizing the growth rate as [15] was studied and an
optimal investment strategy was obtained.

At the same time and independently, Irle and Sass [8] also studied the exact same problem as
[16]. Although the existence of a quasivariational inequality (QVI) and an optimal investment
strategy had been proved in [16], they successfully obtained the explicit expression. However,
it might not be possible to apply their method to multidimensional cases, because their method
relies heavily on the fact that the equation is one-dimensional. In contrast, some methods used
in [16] can still be applied to multidimensional cases.

In this paper we extend the result in [16] to a multidimensional market model case with one
riskless asset and d risky assets, whose prices are driven by geometric Brownian motions with a
constant drift vector and a constant volatility matrix. An investor changes the proportions of the
risky assets at each stopping time τn. The transactions are random variables ξn = (ξ1

n , . . . , ξ
d
n )

that are measurable with respect to Fτn . Fixed and proportional transaction costs must be paid
at each trade. The logarithmic utility function is assumed. Borrowing and short selling are not
permitted.

Bielecki and Pliska [5, Section 5] studied the same optimization problem as that in this paper
under the setting of general proportional transaction costs. They derived an optimal investment
strategy by supposing the existence and some properties of the solution to the QVI.

We emphasize two achievements of this study. One is obtaining a weak solution of the
QVI and an optimal investment strategy. In contrast, Bielecki and Pliska [5] did not prove
the existence of the solution, and Akian et al. [1] required the regularity assumption of a
viscosity solution to obtain their optimal strategy. The other achievement of the present paper
is the elimination of an assumption that transaction costs must be sufficiently small, which is a
required condition in previous studies [12], [16].

This paper is organized in the following manner. In Section 2 we introduce a cost function and
rewrite it in a multiplicative form. By translation we can formulate the optimization problem
as an ordinary impulsive control problem in the d-dimensional simplex �. We introduce a
diffusion that corresponds to the proportions of the risky assets. This diffusion degenerates
at the boundary of �. To avoid this degeneracy, we must reformulate the problem as one on
the whole Euclidean space R

d by coordinate transformation, as in [12]. Thus, the diffusion is
nondegenerate type and the stochastic differential equation (SDE) of the diffusion turns out to
be linear.

In Section 3 we consider an optimal stopping problem, which is required to solve the main
problem in this paper. Variational inequality (VI) techniques developed by Bensoussan and
Lions [3] do not apply directly because the discount factor α of the VI corresponding to the
problem is equal to 0. We prove the existence of the weak solution ū of the VI by considering
the limit of uα as α → 0 (uα is the solution of the VI with α > 0). In the proof, it is essential
to obtain the upper bound estimate of uα independent of α. We obtain the estimate using a
property of the coordinate transformation for � and some assumptions. The key assumption
is Assumption 3.1, in which any two components of the drift of the log-price process are not
equal and none of the components are equal to the risk-free rate.

In Section 4 we obtain a weak solution of the QVI of ‘ergodic’ type. The pair (v, l) of
a function v and a constant l is defined as the solution of the equation. We use perturbation
methods studied by Robin [13], [14] to obtain the solution for this type of QVI, in which
we consider the limit of (vα − inf vα, α inf vα) as α → 0 (vα is the solution of the QVI with
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α > 0). Robin’s results cannot be directly applied to the present problem, because the diffusion
process corresponding to the QVI does not have any invariant measure (so we use the notation
‘ergodic’). With both perturbation methods and the results in Section 3, we obtain the weak
solution of the QVI.

Finally, in Section 5 we attain an optimal investment strategy for the optimization problem
by using the results obtained in Sections 3 and 4.

2. Formulation of portfolio optimization

Let us consider the following market model, which consists of one riskless asset and d risky
assets. The bond price Bt is the solution of an ordinary differential equation:

dBt = rBt dt, B0 = B̄,

where r is a constant interest rate. We denote the price of the ith risky asset by Sit , 1 ≤ i ≤ d.
It is the solution of a stochastic differential equation:

dSit = Sit

{
bi dt +

d∑
k=1

σ ik dWk
t

}
, Si0 = si,

where Wt := (W 1
t , . . . ,W

d
t )

� is a d-dimensional Brownian motion defined on (�,F ,P,Ft ),
b := (b1, . . . , bd)� is a constant vector, and σ := (σ ik)

d
i,k=1 is a constant volatility matrix.

Assumption 2.1. We assume that σσ� is positive definite.

We respectively denote byXt and Y it the amount of money that the investor has in the riskless
asset and in the ith risky asset. The total value of the portfolio is Vt = Xt + ∑d

i=1 Y
i
t at time

t . Our aim is maximizing the asymptotic growth rate under the existence of transaction costs;

lim inf
T→∞

1

T
E[logVT ], (2.1)

where we take the supremum over all the admissible strategies.

2.1. Definition of transaction costs

We introduce the following assumption for investment strategies.

Assumption 2.2. We do not allow continuous in time trading. Assets can be traded only at
discrete times.

Let τn denote the time when the investor trades assets for the nth time, and let ηin denote
the amount of money invested in the ith risky asset at time τn. Set ηn = (η1

n, . . . , η
d
n)

�. Each
investment strategy can be represented as the set of pairs {(τn, ηn)}∞n=1. Other conditions for
the admissibility of strategies are given later. Now we define transaction costs.

Definition 2.1. Take 0 ≤ λi, µi < 1 and 0 < c0 < 1. After the nth transaction (τn, ηn), the
assets Xτn and Yτn become

Xτn = (1 − c0)

(
Xτn− −

d∑
i=1

((1 + λi)η
i
n,+ − (1 − µi)η

i
n,−)

)
,

Y iτn = (1 − c0)(Y
i
τn− + ηin), (2.2)
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where ηin,+ and ηin,− are respectively the positive part and the negative part of ηin. Here
ηin = ηin,+ − ηin,− holds.

The fixed components of transaction costs were called ‘portfolio management fees’by Duffie
and Sun [7, p. 37]. They stated, ‘The portfolio management fee is meant to include the cost
of adjusting the portfolio and the cost of processing information.’ It is the model of aggregate
costs, not necessarily money, which prevents investors from trading assets continuously in time.

Assumption 2.3. We do not allow borrowing and short selling.

Hence, Xτn ≥ 0 and Y iτn ≥ 0 must hold after each trade. Each ηn must satisfy

−Y iτn− ≤ ηin, −Xτn− ≤ −
d∑
i=1

((1 + λi)η
i
n,+ − (1 − µi)η

i
n,−). (2.3)

We define admissible investment strategies as follows.

Definition 2.2. The set of pairs {(τn, ηn)}∞n=1 is said to be an admissible monetary strategy if
the following conditions are satisfied.

• τn is a stopping time with respect to Ft . Here {τn} is an increasing sequence, i.e. τ1 <

τ2 < · · · .

• ηn is an Fτn -measurable random variable and R
d -valued.

• ηn satisfies (2.3).

By the definition of transaction costs we have

Vτn = (1 − c0)

(
Vτn− −

d∑
i=1

(λiη
i
n,+ + µiη

i
n,−)

)

= (1 − c0)(Vτn− − C̃(ηn)), (2.4)

where C̃(η) := ∑d
i=1(λiη

i+ + µiη
i−). We have 0 < Vτn− − C̃(ηn) for all the admissible

monetary strategies. This means that we do not go bankrupt because of transaction costs
without borrowing and short selling.

2.2. Equivalence of two types of admissible strategies

When Vt �= 0, we define

ht = (h1
t , . . . , h

d
t )

�, hit = Y it

Vt
.

Note that Xt = Vt (1 − ∑d
i=1 h

i
t ), h

i
t ≥ 0, and

∑d
i=1 h

i
t ≤ 1 for all t ≥ 0. Let � = {h ∈

R
d | hi ≥ 0,

∑d
i=1 h

i
t ≤ 1}. When Vt and ht are given, Xt and Yt are uniquely determined.

We can rewrite (2.3) as

−Vτnhiτn ≤ ηin, (2.5)

−Vτn
(

1 −
d∑
i=1

hiτn−
)

≤ −
d∑
i=1

((1 + λi)η
i
n,+ − (1 − µi)η

i
n,−). (2.6)
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The main idea to solve the underlying optimization problem is to consider (ht , Vt ) as a
controllable process instead of (Xt , Yt ). For this purpose, we need to rewrite the transaction
costs defined in (2.2). Before doing this, we define another type of admissible strategy. Let
ξ in = hiτn − hiτn−, and let ξn = (ξ1

n , . . . , ξ
d
n )

�.

Definition 2.3. The set of pairs {(τn, ξn)}∞n=1 is said to be an admissible proportional strategy
for ht if the following conditions are satisfied:

• τn satisfies the same conditions as before;

• ξn is an Fτn -measurable random variable and R
d -valued, and satisfies hτn− + ξn ∈ �.

Monetary strategies determine how much money you invest in each asset. On the other hand,
proportional strategies determine each proportion of the assets.

By the definition we have

ξ in = Y iτn

Vτn
− hiτn− = Y iτn− + ηin

Vτn− − C̃(ηn)
− Y iτn−
Vτn−

.

From the above we can see that each admissible monetary strategy determines a unique
proportional strategy. We define an R

d -valued function GV,h(η
1, . . . , ηd) forη,V − C̃(η) �= 0,

as follows:

GiV,h(η) := V hi + ηi

V − C̃(η)
− hi.

By using GV,h(·) we can derive a unique proportional strategy from each monetary strategy,
such as ξ in = Gi

Vτn−,hτn−(ηn).
Here is a question. Is the converse of the above true, i.e. can we uniquely determine a

monetary strategy from each proportional strategy? The answer is yes. This result is trivial
without transaction costs because trading the ith risky asset does not change the proportions
of the other assets hj , j �= i. But it does change hj under the existence of transaction costs
through decreasing the total wealth. The following theorem is not trivial.

Theorem 2.1. Let 0 ≤ λi, µi < 1 and 0 < c0 < 1. Fix V > 0. Each admissible proportional
strategy {(τn, ξn)}∞n=1 determines a unique monetary strategy {(τn, ηn)}∞n=1. Moreover, there
exists a Lipschitz continuous function c(h, ξ) such that

Vτn = (1 − c0)(1 − c(hτn−, ξn))Vτn−.

We can rewrite transaction costs (2.4) as above.

Proof. Let us define

Ah := {ξ ∈ R
d | h + ξ ∈ �},

AV,h := {η ∈ R
d | η satisfies (2.5) and (2.6) for V,h}.

We prove that GV,h(η) is a bijection fromAV,h toAh and that there exists a Lipschitz continuous
function c(h, ξ) such that

C̃(G−1
V,h(ξ)) = c(h, ξ)V .

From these results and (2.4), we can obtain the conclusion of the theorem.
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Let ξ = GV,h0(η) and h = h0 + ξ . We define a function π : R
d → {−1, 0, 1}d ,

πi(η) =

⎧⎪⎨
⎪⎩

1 if ηi > 0,

0 if ηi = 0,

−1 if ηi < 0.

Define the d × d matrix Kπ
h := (kπij ) by

kij =

⎧⎪⎨
⎪⎩
λjh

i if πi = 1,

0 if πi = 0,

−µjhi if πi = −1.

By the definition of GV,h0 we have

ξ = GV,h0(η) = 1

V
(I + K

π(η)
h )η,

where I is an identity matrix. Since 0 ≤ µi, λi < 1 and 0 ≤ ∑d
i=1 h

i ≤ 1, I + Kπ
h is regular

for any h and π . Moreover, if (I + K
π1
h )η = (I + K

π2
h )ζ then πi1 = πi2 or ηi = ζ i = 0 holds

for each i, 1 ≤ i ≤ d . From these results, it is easy to see that GV,h0(·) is an injection.
It follows that

η = V (I + K
π(η)
h )−1ξ .

By induction in d we can prove that there uniquely exists πξ ∈ {−1, 0, 1}d for any ξ satisfying
h0 + ξ ∈ � such that

GV,h0(V (I + K
πξ

h0+ξ
)−1ξ) ≡ ξ , V (I + K

πξ

h0+ξ
)−1ξ ∈ AV,h0 .

Since the proof is lengthy, we omit it. Hence, GV,h0(·) is a surjection and

G−1
V,h0

(ξ) ≡ V (I + K
πξ

h0+ξ
)−1ξ

holds. Moreover, from the definition of C̃(·) we have

C̃(G−1
V,h0

(ξ)) = C̃(V (I + K
πξ

h0+ξ
)−1ξ)

= V C̃((I + K
πξ

h0+ξ
)−1ξ)

= c(h0, ξ)V ,

where

c(h0, ξ) := C̃((I + K
πξ

h0+ξ
)−1ξ).

We show that c(h0, ξ) is Lipschitz continuous. Let us use the notation πh0,ξ instead of πξ

to clarify the dependence. It is easy to see that (I + K
πh0,ξ

h0+ξ
)−1ξ is continuous in h0 and ξ . It

holds that

min
π∈{−1,0,1}d

h∈�
det(I + Kπ

h ) �= 0.
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From Cramer’s formula, (I + K
π0
h0+ξ

)−1ξ is Lipschitz continuous in h0 and ξ for a fixed π0.

Moreover, if πi1 = πi2, πi1 = 0, or πi2 = 0 holds for each i, 1 ≤ i ≤ d, then we have

|(I + K
π1
h0+ξ

)−1ξ − (I + K
π2
f0+ν)

−1ν| ≤ L(|ξ − ν| + |h0 − f0|)
for a certain constant L. This implies that (I + K

πh0,ξ

h0+ξ
)−1ξ is Lipschitz continuous in each ξ i

and hi0, 1 ≤ i ≤ d . With the fact that C̃(·) is Lipschitz continuous, we obtain the desired result.

Remark 2.1. An elementary calculation shows the triangle inequality for the cost function
c(·, ·). Under the assumptions of Theorem 2.1, it holds that

(1 − c(h,g − h))(1 − c(g,f − g)) ≤ (1 − c(h,f − h)) (2.7)

for any f ,g,h ∈ �.

From Theorem 2.1, the underlying optimization problem turns out to be maximizing the
growth rate (2.1) over all the admissible proportional strategies. In the following we consider
(ht , Vt ) as a controllable process.

2.3. Maximizing the growth of portfolio

Under the condition of self-financing, we have

dhit = hit (e
�
i − h�

t )(b − r1 − σσ�ht ) dt + hit (e
�
i − h�

t )σ dWt (2.8)

and

dVt
Vt

=
d∑
i=0

hit
dSit
Sit

= (r + h�
t (b − r1)) dt + h�

t σ dWt (2.9)

for τn ≤ t < τn+1, where ei is the ith unit vector and 1 is a column vector of 1s.
Here we see how each admissible proportional strategy {(τn, ξn)}∞n=1 induces a risky fraction

process ht . Let h
(0)
t denote the solution of (2.8) with the initial value h

(0)
t = h0. We define

h
(1)
t as the solution of the following SDE with a random initial condition:

dhi(1)t = h
i(1)
t (e�

i − h
(1)
t

�
)(b − r1 − σσ�h

(1)
t ) dt + h

i(1)
t (e�

i − h
(1)
t

�
)σ dWt , t ≥ τ1,

h(1)τ1
= h(0)τ1

+ ξ1.

It is known that this SDE has a unique solution (see, e.g. [2, Chapter 1]). By iterating the
above definition we can define h

(n)
t as the solution of the following SDE with a random initial

condition:

dhi(n)t = h
i(n)
t (e�

i − h
(n)
t

�
)(b − r1 − σσ�h

(n)
t ) dt + h

i(n)
t (e�

i − h
(n)
t

�
)σ dWt , t ≥ τn,

h(n)τn = h(n−1)
τn

+ ξn.

Then we obtain ht defined for each admissible proportional strategy adm = {(τn, ξn)}∞n=1:

ht = h
(n)
t for τn ≤ t < τn+1.

The wealth process satisfies

Vt (1 − ht ) = Vτn(1 − hτn) exp{r(t − τn)},
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during τn ≤ t < τn+1. In this paper we consider the problem of maximizing the growth rate of
the expected log utility,

J (adm) := lim inf
T→∞

1

T
E[logVT ]

over all the admissible proportional strategies A. We define

f (h) := − 1
2h�σσ�h + (b − r1)�h, h ∈ R

d .

Note that f (h) attains the maximum at (σσ�)−1(b−r1). LetC(h, ξ) = log(1−c0)+ log(1−
c(h, ξ)). From (2.7), it holds that

0 > C(h,f − h) ≥ C(h,g − h)+ C(g,f − g)+ | log(1 − c0)|. (2.10)

By applying Itô’s formula to logVt we obtain, from Theorem 2.1,

logVt = logVτn + log(1 − hτn)− log(1 − ht )+ r(t − τn)

=
∫ t

τn

(f (hs)+ r) ds + logVτn +
∫ t

τn

hsσ dWs

=
∫ t

0
(f (hs)+ r) ds + logV0 +

n∑
k=1

C(hτk−, ξk)+
∫ t

0
hsσ dWs

for τn−1 ≤ t < τn. So we obtain

J (adm) = r + lim inf
T→∞

1

T
E

[∫ T

0
f (hs) ds +

∞∑
k=1

C(hτk−, ξk)1{τk<T }
]
, (2.11)

where 1{·} denotes the indicator function. We shall obtain the optimal growth rate

ρ := sup
adm∈A

J (adm) (2.12)

and the optimal strategy âdm = {(τ̂n, ξ̂n)} that attains the optimal growth rate. Let us define

l∗ := ρ − r. (2.13)

Although ht has a clear meaning and f (h) is simple, it is difficult to treat ht directly. This
is because ht is degenerate at the boundary of �. So we apply a coordinate transformation to
ht and obtain another representation of (2.11). We define a coordinate transformation ψ as

yi = ψi(h1, h2, . . . , hd) = loghi − log

(
1 −

d∑
j=1

hj
)
. (2.14)

Then the inverse mapping φ := ψ−1 can be defined by

hi = φ(y1, y2, . . . , yd) = exp{yi}
1 + ∑d

j=1 exp{yj } .
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Let yt = ψ(ht ). It holds that

yit = loghit − log

(
1 −

d∑
j=1

h
j
t

)
= log

Y it

Vt
− log

Xt

Vt
= log

Y it

Xt
.

Therefore, yt is governed by the stochastic differential equation

dyit = (
bi − r − 1

2 (σσ�)ii
)

dt + (σ dWt )
i for τn−1 ≤ t < τn, (2.15)

where yit is the logarithm of the discounted ith asset price process. Note that

f (ei ) = f (0, . . . , 1, . . . , 0) = bi − r − 1
2 (σσ�)ii .

This is not a coincidence. If we buy only the ith risky asset and continue to hold it without
trading, then we attain the growth rate lim inf E[logVT ]/T = f (ei ) + r . This is why f (ei )
coincides with the drift of yit . Let us define

f̄ (y) := f (φ(y)), C̄(y, ζ ) := C(φ(y), φ(y + ζ )− φ(y)).

We can rewrite (2.11) and (2.12) as

J̃ (ãdm) := r + lim inf
T→∞

1

T
E

[∫ T

0
f̄ (ys) ds +

∞∑
k=1

C̄(yτk−, ζk)1{τk<T }
]
,

ρ̃ := sup
ãdm∈Ã

J̃ (ãdm), (2.16)

where

Ã := {{(τn, ζn)}∞n=1 | τn satisfies the same conditions as before,

yτn + ζn ∈ R
d and ζn is Fτn -measurable}.

In what follows we consider the problem of maximizing J̃ (ãdm) in (2.3) over all the
admissible strategies Ã and find an optimal strategy {(τ̂n, ζ̂n)}∞n=1 that attains ρ̃. We define yt
induced by an admissible strategy ãdm ∈ Ã in the same way as ht . We must emphasize that if
hiτn− + ξ in = 0 then

ζ in = ψi(hτn− + ξn)− ψi(hτn−)

= log 0 − log

(
1 −

d∑
j=1

(h
j
τn− + ξ

j
n )

)
− ψi(hτn−);

ζn cannot be admissible. So ρ̃ ≤ ρ. But, in fact, ρ̃ = ρ holds. Let us consider a certain portfolio
(ht , Vt ) induced by a certain admissible strategy a0 ∈ A with the initial value (h0, V0). We
can assume that h0 ∈ �\ ∂�without loss of generality. At the same time, we consider another
portfolio (hδt , V

δ
t )with the initial value (h0, V0 +δ), δ > 0, which consists of two parts: one is

induced by the strategy a0 with the initial wealth (h0, V0), the other is induced by the strategy
of holding the initial wealth (h0, δ) without trading. Then a strategy inducing this portfolio is
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included in Ã because hδt never reaches the boundary ∂�. Stock prices never become negative.
We obtain

sup
a∈Ã

lim inf
1

T
E[logVT ] ≤ sup

a∈A
lim inf

1

T
E[logVT ] ≤ sup

a∈Ã

lim inf
1

T
E[logV δT ].

Since both sides of the above equation do not depend on the initial wealth, the desired result
follows.

Proposition 2.1. Under the above settings, it holds that

ρ = ρ̃.

3. Optimal stopping problem with no discount factor

Let yt be the solution of the SDE (2.15) with the initial value y0 = y. In this section we
study a certain type of optimal stopping problem, which is needed to solve the main problem
in this paper:

wl(y) := sup
τ

Ey

[
lim inf
T→∞

∫ τ∧T

0
(f̄ (ys)− l) ds +�(yτ∧T )

]
, (3.1)

where τ is a stopping time with respect to Ft and �(y) is a Lipschitz continuous bounded
function on R

d . Note that there does not exist any discount factor for this problem. By setting
τ ≡ 0 we can see that (3.1) has a trivial lower bound wl(y) ≥ �(y). Later in this section we
remove the lim inf in (3.1), but for now it is needed because

∫ τ
0 (f̄ (ys)− l) ds +�(yτ ) is not

well defined on {τ = ∞}. Let us define

βi := bi − r − 1
2 (σσ�)ii , β̄ := max βi ∨ 0.

Assumption 3.1. In the rest of this paper we assume that, for any i, j ,

βi �= 0, βi �= βj . (3.2)

From the definition of f̄ (·), it is easy to obtain the following lemma.

Lemma 3.1. Fix any l > β̄. It holds that

supp[(f̄ (y)− l)+] ⊂
d⋃
i=1

Di ∪
d⋃

i,j=1

Dij ,

where Di = {y ∈ R
d | |yi | < C}, Dij = {y ∈ R

d | |yi − yj | < C}, C is a certain constant
that depends on l, and f+ is the positive part of f .

Now we obtain the boundedness of wl . It is essential for this paper.

Lemma 3.2. Under assumption (3.2), it holds that

wl(y) ≤ sup
y∈Rd

Ey

[∫ ∞

0
(f̄ (yt )− l)+ dt

]
+ ‖�‖∞ < ∞ for any l > β̄.
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Proof. From assumption (3.2), yit and yit −yjt are transient for each i, j . Hence, Lemma 3.1
implies that

sup
y∈Rd

Ey

[∫ ∞

0
1O(yt ) dt

]
< ∞

for each O = Di,Dij . Since f̄ is bounded on R
d ,

E

[∫ ∞

0
(f̄ (yt )− l)+ dt

]
≤ ‖f̄ − l‖∞

∑
O=Di,Dij

sup
y∈Rd

Ey

[∫ ∞

0
1O(yt ) dt

]
< ∞.

This completes the proof.

Lemma 3.3. Assume that (3.2) holds. Fix any l > β̄. If E[τ ] = ∞ then

Ey

[
lim inf
T→∞

∫ τ∧T

0
(f̄ (ys)− l) ds +�(yτ∧T )

]
= −∞.

Proof. Take δ such that l − δ > β̄. Then

∫ τ∧T

0
(f̄ (ys)− l) ds +�(yτ∧T ) ≤

∫ ∞

0
(f̄ (ys)− (l − δ))+ ds + ‖�‖∞ − (τ ∧ T )δ. (3.3)

By taking the lim inf and the expectation of both sides, we obtain the result from Lemma 3.2.

So it is enough to consider only the case in which τ < ∞ almost surely (a.s.) for the optimal
stopping problem (3.1). Moreover, we have obtained

wl(y) = sup
E[τ ]<∞

Ey

[∫ τ

0
(f̄ (ys)− l) ds +�(yτ )

]
for l > β̄.

The lemma below also follows.

Lemma 3.4. Assume that (3.2) holds. Fix any l > β̄. Let τ and τ ′ be two stopping times with
τ ≤ τ ′. Assume that E[τ ] < ∞. If there exists a constant Ky independently of T such that

−Ky < Ey

[∫ τ ′∧T

τ∧T
(f̄ (ys)− l) ds +�(yτ ′∧T )

]
,

then Ey[τ ′] < ∞. If Ky is independent of y then supy∈Rd Ey[τ ′] < ∞.

Proof. In a similar way to (3.3) we obtain

Ey[τ ′ ∧ T ] ≤ 1

δ

(
Ey

[∫ ∞

0
(f̄ (ys)− (l − δ))+ ds

]
+ ‖�‖∞ +Ky

)
+ E[τ ∧ T ].

The first result follows from the monotone convergence theorem. Since it holds that

sup
y∈Rd

Ey

[∫ ∞

0
(f̄ (ys)− (l − δ))+ ds

]
< ∞,

we obtain the second result.

https://doi.org/10.1239/aap/1222868181 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1222868181


684 T. TAMURA

3.1. Study of the VI and deriving an optimal stopping time

Let L be the generator of yt :

L := 1

2

d∑
i,j=1

(σσ�)ij ∂2

∂xi∂xj
+

d∑
i=1

(bi − r − (σσ�)ii) ∂
∂xi

.

We consider the following VI:

max{Lu+ f̄ − l, � − u} = 0 (3.4)

to solve the optimal stopping problem (3.1), as in [12]. Note that this VI does not have any
discount factor. So, we cannot directly apply theorems obtained by Bensoussan and Lions [3].
We define

mγ (y) := exp{−γ (1 + y�(σσ�)−1y)1/2}, Lp,γ :=
{
z

∣∣∣∣
∫

|z|pm2
γ dy < ∞

}
,

W 1,p,γ := {z ∈ Lp,γ | Diz ∈ Lp,γ }, W 2,p,γ := {z ∈ W 1,p,γ | Dij z ∈ Lp,γ }.

Let Eα(u, v) be a bilinear form defined on W 1,2,γ by

Eα(u, v) := 1

2

∫
(∇u)�σσ�

(
∇v − 2γ (σσ�)−1y√

1 + y�(σσ�)−1y

)
m2
γ dy

+
∫

b�∇uvm2
γ dy + α

∫
uvm2

γ dy.

It is easy to see that there exists a constant λ0 > 0 such that

Eα(u, u)+ λ0‖u‖2
L2,γ ≥ k0‖u‖2

W 1,2,γ for α ≥ 0. (3.5)

Let us consider (3.4) in a weak sense:

E0(u, v − u) ≥ (f̄ − l, v − u), u ≥ � (3.6)

for all v ≥ � and v ∈ W 1,2,γ (Rd). There is a result obtained in [3] for variational inequalities
with a discount factor; see Theorem 1.13 of [3].

Theorem 3.1. ([3].) Let α > 0. Suppose that �(y) is uniformly continuous and bounded.
Then there exists a unique continuous solution uα ∈ W 1,2,γ (Rd) of the VI

Eα(uα, v − uα) ≥ (f̄ − l, v − uα), uα ≥ �, (3.7)

for all v ≥ � and v ∈ W 1,2,γ (Rd). Furthermore, τ ∗ := inf{t > 0 | �(yt ) ≥ uα(yt )} is an
optimal stopping time for

uα(y) = sup
τ

E

[∫ τ

0
e−αs(f̄ (ys)− l) ds + e−ατ�(yτ )

]

= Ey

[∫ τ∗

0
e−αs(f̄ (ys)− l) ds + e−ατ∗

�(yτ∗)

]
. (3.8)
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Let us consider the following penalized equation:

(α − L̄)uεα − 1

ε
(uεα −�)− = f̄ − l,

which has a continuous solution uεα ∈ W 2,p,γ . Note that uεα has the probabilistic representation

uεα(y) = sup
γ·

Ey

[∫ ∞

0
exp

{
−αt −

∫ t

0
γs ds

}
(f̄ (yt )− l + γt�(yt )) dt

]
,

where γt ranges over the set of all the progressively measurable processes such that 0 ≤ γt ≤
1/ε. Moreover, we have the following theorem. See Theorem 3.7 of [3].

Theorem 3.2. ([3].) Under the assumptions of Theorem 3.1, it follows that

uεα ≤ uα, uεα → uα in C0(Rd) as ε → 0.

Let τ ∗
α be the optimal stopping time defined in Theorem 3.1 with respect to the discount

factor α. We can obtain a certain estimate of τ ∗
α as follows.

Lemma 3.5. Assume that l > β̄. Then there exist α0 > 0 and K such that, for all α < α0,

E[1 − exp{−ατ ∗
α }] < αK.

Here K does not depend on α.

Proof. From (3.8) and Lemma 3.2, we obtain

−‖�‖∞ ≤ uα(y) ≤ sup
y∈Rd

Ey

[∫ ∞

0
(f (ys)− l)+ ds

]
+ ‖�‖∞ < ∞. (3.9)

In particular, ‖uα‖∞ < ∞. Take δ > 0 such that l − δ > β̄. From Lemma 3.2 we have

Ey

[∫ τ∗
α

0
e−αs(f (ys)− l) ds

]
≤ Ey

[∫ ∞

0
(f (ys)− l + δ)+ ds

]
− δ Ey

[∫ τ∗
α

0
e−αs ds

]

< K0 − δ

α
Ey[1 − exp{−ατ ∗

α }].

From (3.8) and the above, we obtain

δ

α
Ey[1 − exp{−ατ ∗

α }] ≤ K0 + 2‖uα‖∞.

This completes the proof.

We can obtain the existence of the solution of the VI (3.6) as follows. We have not been able
to prove the uniqueness of the solution as yet.

Theorem 3.3. Assume that (3.2) holds and that l > β̄. Assume that �(y) is Lipschitz con-
tinuous and bounded. Then there exists a bounded continuous solution ū ∈ W 1,p,γ (Rd) of
(3.6).
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Proof. Let yt and y′
t be solutions of the SDE (2.15) with initial values y and y′, respectively.

Since f̄ and � are Lipschitz continuous, we have

uα(y)− uα(y
′) ≤ Ey

[∫ τ∗
α

0
e−αt (f̄ (yt )− f̄ (y′

t )) dt

]
+K1|y − y′|

≤ K0|y − y′| 1

α
E[1 − exp{−ατ ∗

α }] +K1|y − y′|
≤ K0K|y − y′| +K1|y − y′|,

from Lemma 3.5. By interchanging y and y′, we obtain

|uα(y′)− uα(y)| ≤ K2|y − y′|. (3.10)

From (3.9) and (3.10), it follows that ‖uα‖W 1,∞,γ < C, where C does not depend on α. Hence,
there exists a subsequence uαk that weakly converges to a certain bounded function ū ∈ W 1,p,γ

as αk → 0. Furthermore, uαk strongly converges to ū in Lp,γ on any bounded domain. Take a
domain D such that

∫
Dc
m2
γ dy < ε. By sending αk → 0 we obtain

∫
Rd

|uαk − ū|pm2
γ dy ≤

∫
D

|uαk − ū|pm2
γ dy + ε‖uαk − ū‖p∞

≤ ε + εCp.

We can take ε arbitrarily. Hence, uαk strongly converges to ū in Lp,γ (Rd).
From (3.7) we have, for all v ∈ W 1,2,γ and v ≥ �,

Eαk (uαk , v)− (f̄ − l, v − uαk ) ≥ Eαk (uαk , uαk ).

From the coercivity, (3.5), of Eα , it follows that

Eαk (uαk − ū, uαk − ū)+ λ0‖uαk − ū‖2
L2,γ ≥ 0.

By taking the lim inf of the left-hand side we obtain

lim inf
αk→0

Eαk (uαk , uαk )− E0(ū, ū) ≥ 0

and
E0(ū, v)− (f̄ − l, v − ū) ≥ lim inf Eαk (uαk , uαk ) ≥ E0(ū, ū).

This completes the proof.

We can obtain the regularity of the solution ū if � has enough regularity.

Lemma 3.6. Suppose that the assumptions of Theorem 3.3 hold and that L� ∈ Lp,γ (Rd).
Then we have a solution ū ∈ W 2,p,γ (Rd) of (3.6).

Proof. In the same way as in the proof of Lemma 5.1 of [12], we can show that

− 1

1 + εα
K0 − ‖�‖∞ ≤ uεα ≤ E

[∫ ∞

0
(f̄ (yt )− l)+ dt

]
+ ‖�‖∞. (3.11)
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From Lemma 3.2, the right-hand side of (3.11) is bounded. In a similar way to the proof of
Theorem 1.16 of [3], there exists a constant λ1 such that

1

ε
‖(uεα −�)−‖Lp,γ ≤ ‖f − l − (α − L̄)�‖Lp,γ + λ1‖uεα −�‖Lp,γ .

The right-hand side is bounded independently of ε and α from the assumptions and (3.11).
With the fact that uεα satisfies

(1 − L̄)uεα = (1 − α)uεα + 1

ε
(uεα −�)− + f̄ − l, (3.12)

we obtain a solution ū ∈ W 2,p,γ of (3.6) as α, ε → 0. This completes the proof.

We prove the existence of an optimal stopping time for a conditional expectation rather than
(3.1), which is needed to solve the main problem in this paper. Since the uniqueness of the
solution has not been proved, we show the following lemma for the specific solution ū obtained
in the proof of Theorem 3.3, not for all the solutions of (3.6).

Lemma 3.7. Suppose that the assumptions of Theorem 3.3 hold. Let ū be the solution of (3.6)
obtained in Theorem 3.3. Let θ and θ ′ be two stopping times with θ ≤ θ ′ and E[θ ] ≤ E[θ ′] < ∞.
Then

ū(yθ ) ≥ E

[∫ θ ′

θ

(f̄ (ys)− l) ds + ū(yθ ′)

∣∣∣∣ Fθ

]
. (3.13)

Set θ̂ := inf{t > θ | �(yt ) ≥ ū(yt )}. Then E[θ̂ ] < ∞ and

ū(yθ ) = E

[∫ θ̂

θ

(f̄ (ys)− l) ds + ū(y
θ̂
)

∣∣∣∣ Fθ

]
.

Proof. From (3.11), by passing α → 0 in (3.12), we obtain a solution ūε ∈ W 2,p,γ of the
following penalized equation:

(1 − L̄)ūε − 1

ε
(ūε −�)− = ūε + f̄ − l,

which is equivalent to

−L̄ūε − 1

ε
(ūε −�)− = f̄ − l.

From Theorem 3.2 we have

ūε ≤ ū, ūε → ū in C0(Rd) as ε → 0.

Therefore, we can prove this lemma in a similar way to the proof of Lemma 3.6 of [4], as below.
Set OR := {y ∈ R

d | |y| < R} and τR := inf{t > 0 | |yt | /∈ OR}. From the generalized
Itô lemma (see [3, Theorem 8.5]) we obtain

ūε(yθ∧T∧τR ) = Ey

[∫ θ ′∧T∧τR

θ∧T∧τR
(f̄ (ys)− l) ds

+ 1

ε

∫ θ ′∧T∧τR

θ∧T∧τR
(ūε(ys)−�(ys))− ds + ūε(yθ ′∧T∧τR )

∣∣∣∣ Fθ∧T∧τR
]
.
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From the assumptions we can use Lebesgue’s convergence theorem. By passing T ,R → ∞
we obtain

ūε(yθ ) = Ey

[∫ θ ′

θ

(f̄ (ys)− l) ds + 1

ε

∫ θ ′

θ

(ūε(ys)−�(ys))− ds + ūε(yθ ′)

∣∣∣∣ Fθ

]

≥ Ey

[∫ θ ′

θ

(f̄ (ys)− l) ds + ūε(yθ ′)

∣∣∣∣ Fθ

]
. (3.14)

By sending ε → 0 we obtain (3.13) from Lebesgue’s convergence theorem.
Let θ̂ ε := inf{t ≥ θ | �(yt ) ≥ ūε(yt )}. Note that θ̂ ε ≤ θ̂ . By setting θ = θ ∧ T and

θ ′ = θ̂ ε ∧ T in (3.14), we obtain

ūε(yθ∧T ) = Ey

[∫ θ̂ ε∧T

θ∧T
(f̄ (ys)− l) ds + ūε(y

θ̂ ε∧T )
∣∣∣∣ Fθ

]

≤ Ey

[∫ θ̂ ε∧T

θ∧T
(f̄ (ys)− l) ds + ū(y

θ̂ ε∧T )
∣∣∣∣ Fθ

]

from ūε ≤ ū. In a similar way to the proof of Lemma 3.6 of [4], we can show that

θ̂ ε → θ̂ a.s.

Again, by Lebesgue’s convergence theorem we obtain

ū(yθ∧T ) ≤ Ey

[∫ θ̂∧T

θ∧T
(f̄ (ys)− l) ds + ū(y ˆθ∧T )

∣∣∣∣ Fθ

]
.

From Lemma 3.4, it follows that E[θ̂ ] < ∞. By sending T → ∞ we obtain the conclusion.

From the above lemma we obtain an optimal stopping time for (3.1) by setting θ ≡ 0. Let
τ ∗ := inf{t > 0 | �(yt ) ≥ ū(yt )}.
Theorem 3.4. Suppose that the assumptions of Theorem 3.3 hold. Then we have

ū(y) = sup
τ

Ey

[∫ τ

0
(f̄ (ys)− l) ds +�(yτ )

]

= Ey

[∫ τ∗

0
(f̄ (ys)− l) ds +�(yτ∗)

]
.

4. QVI of ‘ergodic’ type

In this section we shall show the existence of a solution for the following QVI of ‘ergodic’
type:

E0(v,w − v) ≥ (f̄ − l, w − v), v(y) ≥ Mv(y) (4.1)

for all w ≥ Mv and v,w ∈ W 1,2,γ (Rd), where we define Mv(y) as

Mv(y) = sup
ζ∈Rd

v(y + ζ )+ C̄(y, ζ ).
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If v is bounded from above, Mv makes sense. We can see that if u ≤ v then Mu ≤ Mv. We
can see from (2.10) that

0 > C̄(y, z − y) ≥ C̄(y, x − y)+ C̄(x, z − x)+ | log(1 − c0)| (4.2)

for any x, y, z ∈ R
d . By virtue of C(h, ξ), Mv is Lipschitz continuous. For this type of

equation, the pair of a function v and a constant l is considered as a solution.

Definition 4.1. Let v ∈ W 1,2,γ (Rd), and let l ∈ R. We say that a pair (v, l) is a solution of the
QVI (4.1) if the pair (v, l) satisfies (4.1).

We cannot directly solve the QVI (4.1). We use perturbation methods. Let uα be the solution
of a QVI with a discount factor α in the following theorem. In perturbation methods we take
the limit of (uα − infy∈Rd uα(y), α infy∈Rd uα(y)) as α → 0 and prove that the pair converges
to a certain (v, l), which is the solution of the QVI of ‘ergodic’ type, (4.1).

Theorem 4.1. ([4, p. 415].) Suppose that α > 0. Then there exists a unique solution uα ∈
W 1,2,γ (Rd) of the following QVI:

Eα(uα, v − uα) ≥ (f̄ , v − uα), uα(y) ≥ Muα(y)

for all v ≥ Muα and v,w ∈ W 1,2,γ (Rd). This solution is continuous and bounded. We also
have

uα(y) = sup
τ

Ey

[∫ τ

0
e−αs f̄ (ys) ds + e−ατMu(yτ )

]
, (4.3)

where yt is the solution of (2.15).

Proof. We obtain the existence and the continuity of the solution from Theorem 4.1 of [4].
Since f̄ is bounded and continuous, we can use Hanouzet–Joly’s L∞ technique, described in
Lemma 1.4 of [4], to prove the uniqueness of the solution, even though the domain is unbounded.
So, we obtain the existence and the uniqueness of the solution and its continuity. Here Muα is
Lipschitz continuous by virtue of M. Hence, we obtain (4.3) from Theorem 3.1.

Let vα(y) := uα(y)− infx∈Rd uα(x). Let lα denote α infx∈Rd uα(x). Then vα satisfies the
following QVI:

Eα(vα,w − vα) ≥ (f̄ − lα, w − vα), vα(y) ≥ Mvα(y) (4.4)

for all w ≥ Mvα and v,w ∈ W 1,2,γ (Rd). Therefore, by Theorem 4.1, we have the following
probabilistic representation of vα:

vα(y) = sup
τ

Ey

[∫ τ

0
e−αs(f̄ (ys)− lα) ds + e−ατMvα(yτ )

]
. (4.5)

In this section, taking a subsequence if needed, we shall show that (vα, lα) converges to a certain
pair (v, l̄) as α → 0.

We obtain the upper and lower bounds of lim inf lα , which implies the convergence of a
subsequence of lα . Let l∗ be the constant defined in (2.13).

Lemma 4.1. We have

sup
y∈Rd

f̄ (y) ≥ lim sup
α→0

lα ≥ lim inf
α→0

lα ≥ l∗ ≥ β̄.
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Proof. Suppose that lα > sup f̄ (y) for a certain α. Fix 0 < ε < − log(1 − c0). There
exists y0 ∈ R

d such that vα(y0)+ ε > sup vα(y), because vα is bounded and continuous. By
the definition of M we obtain

vα(y0)+ ε + log(1 − c0) > sup
y∈Rd

Mvα(y).

From (4.5) and f̄ (y)− lα < 0, we obtain

vα(y0) ≤ sup
y∈Rd

Mvα(y) < vα(y0)+ ε + log(1 − c0)

and

0 < − log(1 − c0) < ε.

This is a contradiction. Therefore, we obtain sup f̄ (y) ≥ lim sup lα .
The second inequality is trivial.
Fix any δ > 0. By the definition of l∗, there exists a strategy {(τn, ζn)}∞n=1 such that

l∗ − 1

8
δ ≤ lim inf

T→∞
1

T
E

[∫ T

0
f̄ (ys) ds +

∞∑
n=1

C̄(yτn−, ζn)1{τn<T }
]
.

We can take large enough T such that ‖C̄(·, ·)‖∞ < δT/4 and

l∗ − 1

4
δ ≤ 1

T
E

[∫ T

0
f̄ (ys) ds +

∞∑
n=1

C̄(yτn−, ζn)1{τn<T }
]
.

It follows that(
l∗ − 1

2
δ

)
T ≤ Ey

[∫ T

0
f̄ (ys) ds +

∞∑
n=1

C̄(yτn−, ζn)1{τn<T } + C̄(yT , y − yT )

]
.

Hence, there exists α0 > 0 such that, for any positive α < α0,
∫ T

0
e−αs(l∗ − δ) ds ≤ Ey

[∫ T

0
e−αs f̄ (ys) ds +

∞∑
n=1

exp{−ατn}C̄(yτn−, ζn)1{τn<T }

+ e−αT C̄(yT , y − yT )

]
.

With the standard argument of impulsive control theory and the above inequality, we obtain

uα(y) ≥ Ey

[∫ T

0
e−αs f̄ (ys) ds +

∞∑
n=1

exp{−ατn}C̄(yτn−, ζn)1{τn<T } + e−αT uα(yT )
]

≥ Ey

[∫ T

0
e−αs f̄ (ys) ds +

∞∑
n=1

exp{−ατn}C̄(yτn−, ζn)1{τn<T }

+ e−αT (C̄(yT , y − yT )+ uα(y))

]

≥
∫ T

0
e−αs(l∗ − δ) ds + e−αT uα(y).
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Therefore, we obtain

αuα(y) ≥ l∗ − δ.

This implies the third inequality.
Now we prove the last inequality. Let vt denote the solution of the SDE (2.9). It follows

that

E[log vT ] ≥ E

[
log v0 + log

(
exp

{(
bi − (σσ�)ii

2

)
T + (σWT )

i

})]
= (βi + r)T + log v0

and

E[log vT ] ≥ E[log v0 + log erT ] = rT + log v0.

From the definition of l∗,

l∗ ≥ lim inf
T→∞

1

T
E[log vT ] − r ≥ β̄.

We obtain the result.

From the above lemma we can obtain an optimal strategy for a certain case.

Proposition 4.1. Assume that lim infα→0 lα = β̄. Then the optimal growth rate ρ satisfies

ρ = β̄ + r = r ∨ max
1≤i≤d

(
bi − 1

2 (σσ�)ii
)
,

and the optimal strategy is to buy and hold those assets that attain β̄+r . In other words, buying
and holding the ith risky asset is optimal if β̄ = (bi − r − (σσ�)ii/2).

In some special cases the assumption of the above proposition holds. If f (h) attains the
maximum at some ei then β̄ = βi and sup f̄ (·) = l̄ = β̄ hold.

4.1. Perturbation method and the existence of the solution

It holds from Lemma 4.1 that l̄ := lim sup lα < ∞. When l̄ = β̄, we can obtain an optimal
strategy, as in Proposition 4.1. So, we suppose that l̄ > β̄ in this subsection and in the next
section.

From the definition of vα we have ‖vα‖∞ ≤ ‖C(·, ·)‖∞. Since Mvα is Lipschitz continuous,
independently of α, we can obtain the boundedness of vα in W 1,∞,γ (Rd) in the same way as
in Theorem 3.3. Therefore, there exists a subsequence vαk that converges to a certain bounded
function v̄ weakly in W 1,p,γ (Rd) and strongly in Lp,γ (Rd) as αk → 0.

Suppose that vαk → v̄ in L∞(Rd). Then we have Mvαk → Mv̄ in L∞(Rd). Fix δ > 0.
There exists α0 such that, for all αk < α0,

w ≥ Mv̄ �⇒ w + δ ≥ Mvαk .

Let wδ := w + δ. By setting w = wδ in (4.4) and sending αk → 0, we obtain

E0(v̄, w
δ − v̄) ≥ (f̄ − l̄, wδ − v̄), v̄(y) ≥ Mv̄(y)

for all w ≥ Mv̄ and w ∈ W 1,2,γ (Rd), in the same way as in Theorem 3.3. By taking the limit
δ → 0 we obtain

E0(v̄, w − v̄) ≥ (f̄ − l̄, w − v̄), v̄(y) ≥ Mv̄(y),

for all w ≥ Mv̄ and w ∈ W 1,2,γ (Rd).
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In what follows we shall prove that vαk → v̄ in L∞(Rd) and obtain the solution above by
taking a subsequence if needed. Recall that φ(y) := ψ−1(y) defined in (2.14). An elementary
calculation shows the following lemma.

Lemma 4.2. Fix any ε > 0 and R > 0. Then there exists a constant δ such that

|φ(x)− φ(y)| < δ �⇒ |φ(x + v)− φ(y + v)| < ε

for any v, x, y ∈ R
d and |v| < R.

Theorem 4.2. Suppose that (3.2) holds and that l̄ > β̄. Then we have

vαk → v̄ in L∞(Rd),

by taking a subsequence if needed, and (v̄, l̄) is a solution of (4.1).

Proof. It is sufficient to prove that

vαk ◦ ψ → ṽ in L∞(�) (4.6)

for some ṽ. In fact, if (4.6) holds, we have

‖vαk − ṽ ◦ ψ−1‖∞ = ‖vαk ◦ ψ ◦ ψ−1 − ṽ ◦ ψ−1‖∞
= ‖vαk ◦ ψ − ṽ‖∞
→ 0,

and ṽ ◦ ψ−1 = v̄ must hold. We prove (4.6) by using Ascoli–Arzela’s theorem.
Let ṽα(h) = vα◦ψ(h) and σR(y) = {t > 0 | |yt−y0| ≥ R, y0 = y}. Fix any ε > 0. There

exists a constantR such that P(σR(y) < τ ∗
α (y)) < ε for any y ∈ R

d . Let yt and y′
t be solutions

of the SDE (2.15) with initial values y and y′, respectively. Note that |yt − y| = |y′
t − y′| ≤ R

for all t ≤ σR(y). From Lemma 4.2 and the uniform continuity of f , there exists a constant δ0
such that if |φ(y)− φ(y′)| < δ0 then

|f̄ (ys)− f̄ (y′
s)| = |f ◦ φ(ys)− f ◦ φ(y′

s)| < ε

on t ≤ σR(y). By virtue of M, there exists a constant δ1 such that if |φ(y)− φ(y′)| < δ1 then

|Mvα(yt )− Mvα(y
′
t )| ≤ sup

x∈Rd

|c(φ(yt ), φ(x)− φ(yt ))− c(φ(y′
t ), φ(x)− φ(y′

t ))| < ε

on t ≤ σR(y). Set δ = δ0 ∧ δ1. Note that ‖Mvα(y)− Mvα(y
′)‖∞ ≤ ‖C(·, ·)‖∞. Let h and

h′ denote φ(y) and φ(y′), respectively. We find that if |h − h′| < δ then

vα ◦ ψ(h)− vα ◦ ψ(h′) = vα(y)− vα(y
′)

≤ E

[∫ σR∧τ∗
α (y)

0 (f̄ (ys)− f̄ (y′
s) ds)e−αs ds

+ exp{−α(σR ∧ τ ∗
α (y))}(Mvα(yσR∧τ∗

α (y)
)− Mvα(y

′
σR∧τ∗

α (y)
))

]

≤ ε

α
E[1 − exp{−α(σR ∧ τ ∗

α (y))}]
+ E[exp{−ασR}(Mvα(yσR )− Mvα(y

′
σR
)); σR < τ ∗

α (y)]
+ E[exp{−ατ ∗

α (y)}(Mvα(yτ∗
α (y)

)− Mvα(y
′
τ∗
α (y)

)); σR ≥ τ ∗
α (y)]

≤ εK + ε‖C(·, ·)‖∞ + ε.
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We can obtain the same inequality when h and h′ are interchanged. Hence, we can naturally
define vα ◦ ψ(·) on ∂�. It follows that vα ◦ ψ(·) is equicontinuous and bounded on �. By
Ascoli–Arzela’s theorem we obtain the desired conclusion.

We can see that v̄ is a solution of the VI (3.6) when � = Mv̄ is set. But recall that we
have not been able to prove the uniqueness of the solution of (3.6). We have only proved that a
solution of (3.6) exists and can be used to derive an optimal stopping time for (3.1). When we
apply Lemma 3.7 to v̄, we need to show that v̄ in Theorem 4.2 coincides with u obtained in the
proof of Theorem 3.3.

Let uα be the solution of the VI (3.7) with � = Mv̄ and l = l̄. Then uα has the following
stochastic representation:

uα(y) = sup
τ

E

[∫ τ

0
e−αs(f̄ (ys)− l̄) ds + e−ατMv̄(yτ )

]
.

We obtain

vα(y)− uα(y) ≤ E

[∫ τ∗(y)

0
e−αs(lα − l̄) ds + e−ατ∗(y)(Mvα(yτ∗)− Mv̄(yτ∗))

]

≤ |lα − l̄|K + ‖Mvα − Mv̄‖∞.

When vα and uα are interchanged, we can obtain the same inequality. Therefore,

‖vαk − uαk‖∞ → 0 as αk → 0.

Hence, we obtain the desired result.

5. Deriving an optimal strategy

In this section we derive an optimal strategy by using Lemma 3.7 and the solution of the
QVI obtained in Theorem 4.2.

Lemma 5.1. Fix any admissible proportional strategy {(τn, ξn)}∞n=1 ∈ A. Suppose that
P(limn→∞ τn < ∞) > 0. Then there exists a constant T0 such that, for all T > T0,

Eh

[∫ T

0
(f (hs)+ r) ds +

∞∑
n=1

C(hτn−, ξn)1{τn<T }
]

= −∞.

Proof. From the assumption, there exist δ and T0 such that, for all T > T0, P(limn→∞ τn <

T ) > δ. But it holds that, on {ω ∈ � | limn→∞ τn < T },
∫ T

0
(f (hs)+ r) ds +

∞∑
n=1

C(hτn−, ξn)1{τn<T } ≤ T ‖f + r‖∞ +
∞∑
n=1

log(1 − c0)

= −∞.

We obtain the result.

Hence, it is sufficient to consider only admissible strategies that satisfy limn→∞ τn = ∞
a.s.
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Theorem 5.1. Assume that the same assumptions as in Theorem 4.2 hold. Let v̄ be the solution
of the QVI (4.1) obtained in Theorem 4.2. We define a strategy âdm := {(τ̂n, ζ̂n)}∞n=1 as follows:

τ̂1 = inf{t > 0 | Mv̄(yt ) ≥ v̄(yt )}, τ̂n = inf{t > τ̂n−1 | Mv̄(yt ) ≥ v̄(yt )}.
Fix δ, 0 < δ < (| log(1 − c0)| ∧ 1)/2. Take ζ̂n that attains

v̄(yτ̂n− + ζ̂n)+ C̄(yτ̂n−, ζ̂n)+ δ

2n
≥ Mv̄(yτ̂n−) = v̄(yτ̂n−).

Then âdm is an optimal admissible strategy for the portfolio optimization problem, (2.3), which
attains the optimal growth rate ρ. It holds that

ρ = r + l̄.

Proof. Fix any admissible strategy ãdm = {(τn, ζn)}∞n=1 ∈ Ã. From Lemma 3.7 we obtain

v̄(yτn∧T ) ≥ E

[∫ τn+1∧T

τn∧T
(f̄ (ys)− l̄) ds + v̄(yT∧τn+1−)

∣∣∣∣ Fτn

]

≥ E

[∫ τn+1∧T

τn∧T
(f̄ (ys)− l̄) ds + v̄(yτn+1∧T )+ C̄(yT∧τn+1−, ζn+1)

∣∣∣∣ Fτn

]
.

By summing up both sides and sending n → ∞, we obtain

v̄(y)− Eh[v̄(yT )] ≥ E

[∫ T

0
(f̄ (ys)− l̄) ds +

∞∑
n=1

C̄(yT∧τn+1−, ζn+1)1{τn<T }
]
.

Hence, we obtain the following upper bound of the optimal growth rate ρ:

J (ãdm) = r + lim inf
T→∞

1

T
E

[∫ T

0
f̄ (ys) ds +

∞∑
n=1

C̄(yT∧τn+1−, ζn+1)1{τn<T }
]

≤ r + l̄ + lim inf
T→∞

2‖v̄‖∞
T

= r + l̄.

Here we show that the strategy âdm is admissible. It is sufficient to prove that τ̂n → ∞ a.s.
and τ̂n < τ̂n+1 a.s. The former can be obtained in the same way as in Lemma 5.1. We show
the latter. Since v̄ ≥ Mv̄, it follows that

v̄(yτ̂n−) ≥ v̄(yτ̂n− + ζ̂n + ζ )+ C̄(yτ̂n−, ζ̂n + ζ ).

With the triangle inequality, (4.2), and the above inequality, we obtain

v̄(yτ̂n ) = v̄(yτ̂n− + ζ̂n)

≥ v̄(yτ̂n− + ζ̂n + ζ )+ C̄(yτ̂n−, ζ̂n + ζ )− C̄(yτ̂n−, ζ̂n)− δ

2n

≥ v̄(yτ̂n− + ζ̂n + ζ )+ C̄(yτ̂n− + ζ̂n, ζ )+ | log(1 − c0)| − δ

2n

= v̄(yτ̂n + ζ )+ C̄(yτ̂n , ζ )+ | log(1 − c0)| − δ

2n
.

Then v̄(yτ̂n ) > Mv̄(yτ̂n ). This implies that τ̂n < τ̂n+1 a.s.
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From the definition of the strategy âdm and Lemma 3.7, we obtain

J (âdm) = r + l̄ + lim inf
T→∞

1

T
E

[∫ T

0
(f̄ (ys)− l̄) ds +

∞∑
n=1

C̄(yτ̂n+1−, ζ̂n+1)1{τn<T }
]

≥ r + l̄ + lim inf
T→∞

1

T
E

[
v̄(y)− v̄(yT )−

∞∑
n=1

δ

2n

]

= r + l̄.

This completes the proof.
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