
J. Fluid Mech. (2025), vol. 1002, A25, doi:10.1017/jfm.2024.808

Structure of mushy layers grown from perfectly
and imperfectly conducting boundaries. Part 1.
Diffusive solidification
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We model transient mushy-layer growth for a binary alloy solidifying from a cooled
boundary, characterising the impact of liquid composition and thermal growth conditions
on the mush porosity and growth rate. We consider cooling from a perfectly conducting
isothermal boundary, and from an imperfectly conducting boundary governed by a
linearised thermal boundary condition. For an isothermal boundary we characterise
different growth regimes depending on a concentration ratio, which can also be viewed
as characterising the ratio of composition-dependent freezing point depression versus the
temperature difference across the mushy layer. Large concentration ratio leads to high
porosity throughout the mushy layer and an asymptotically simplified model for growth
with an effective thermal diffusivity accounting for latent heat release from internal
solidification. Low concentration ratio leads to low porosity throughout most of the
mushy layer, except for a high-porosity boundary layer localised near the mush–liquid
interface. We identify scalings for the boundary-layer thickness and mush growth rate.
An imperfectly conducting boundary leads to an initial lag in the onset of solidification,
followed by an adjustment period, before asymptoting to the perfectly conducting state
at large time. We develop asymptotic solutions for large concentration ratio and large
effective heat capacity, and characterise the mush structure, growth rate and transition
times between the regimes. For low concentration ratio the high porosity zone spans
the full mush depth at early times, before localising near the mush–liquid interface at
later times. Such variation of porosity has important implications for the properties and
biological habitability of mushy sea ice.
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1. Introduction

When a binary alloy is solidified, morphological instability (Mullins & Sekerka 1964)
often results in the formation of a reactive porous mushy layer of solid crystals bathed in
residual melt (cf. Worster 2000). Mushy-layer growth is relevant in industrial, geological
and geophysical settings (see reviews by Worster 1997; Anderson & Guba 2020). Examples
include the casting of metal alloys (Copley et al. 1970), solidification in magma chambers
and planetary inner cores (Bergman & Fearn 1994; Worster 2000; Huguet et al. 2016)
and the growth of sea ice in the polar oceans (Feltham et al. 2006; Hunke et al. 2011;
Worster & Rees Jones 2015; Wells, Hitchen & Parkinson 2019). In growing mushy
layers, solidification occurs at the advancing mush–liquid free boundary, and also via
internal porosity changes. The evolving porosity impacts the mechanical, thermal and
electromagnetic properties, both during growth and in the composite solid formed by
quenching in industrial and geological settings. Evolving porosity also impacts transport
through the mushy layer via diffusion, and by moderating the permeability to flow.
For example, the porosity and permeability of sea ice moderates convective brine
drainage, which provides buoyancy forcing for the polar oceans and drives significant
biogeochemical fluxes through the ice interior (Hunke et al. 2011; Worster & Rees Jones
2015; Wells et al. 2019). Sea-ice porosity also provides a substrate for life within the
liquid pore space (Hunke et al. 2011). Hence, there is interest in understanding how the
mushy-layer structure and transport through mushy layers evolve during transient growth.
In a pair of papers, we first assess the impact of the fluid temperature, concentration and
cooling conditions on porosity evolution during transient diffusive growth of a mushy layer
from a fixed cooled boundary (Part 1, this manuscript). The corresponding impact on the
onset and localisation of convective flow instability within a mushy layer is considered in
Part 2 (Hitchen & Wells 2025).

Diffusively controlled mushy-layer growth (in the absence of convection and externally
forced flow) has been considered in a variety of situations (see reviews by Worster 1997;
Anderson & Guba 2020). It is relevant to settings where density gradients are stabilising,
or prior to the onset of convection where diffusive growth provides a background state
about which to assess stability. Two main growth conditions have received most attention
(Worster 1997). Fixed-chill growth features transient solidification where a deep layer
is cooled instantaneously by an isothermal boundary, and results in self-similar ice
growth. Meanwhile, directional solidification features steady growth of a sample pulled
between fixed isothermal heat exchangers. For fixed-chill experiments, early theoretical
and experimental studies (Huppert & Worster 1985; Worster 1986) showed that the
mushy-layer thickness ĥ follows the characteristic growth for a Stefan problem with
ĥ ∝

√
κ t̂ for time t̂ and thermal diffusivity κ . The porosity varies with liquid concentration,

and increases with distance from the cooling boundary (Worster 1986; Shirtcliffe, Huppert
& Worster 1991). The model and experimental comparisons have since been extended
to account for convection in the neighbouring fluid, kinetic undercooling and interfacial
disequilibrium (Kerr et al. 1990a,b; Worster & Kerr 1994), expansion or contraction flows
due to density changes (Chiareli, Huppert & Worster 1994) and slow solute diffusion
(Gewecke & Schulze 2011a). There have also been a rich set of analyses of convective
flows in mushy layers for fixed chill and directional solidification (reviewed by Worster
1997; Worster & Rees Jones 2015; Anderson & Guba 2020). Other cooling conditions
studied include a ramped boundary temperature to achieve steady growth (Neufeld
& Wettlaufer 2008a,b; Zhong et al. 2012) and periodic modulation of the boundary
temperature about a fixed chill (Ding, Wells & Zhong 2019a,b). However, in some settings
mushy layer growth is forced by imposed heat fluxes, that may vary with the boundary
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Diffusive growth of mushy layers

temperature. For example, young sea-ice growth is controlled by a surface energy balance
where outgoing longwave and sensible heat fluxes depend on surface temperature (Maykut
& Untersteiner 1971).

The composition of a binary alloy can also significantly impact the mushy-layer growth
and structure. A near-eutectic limit (Fowler 1985) has received considerable attention (see
Worster (1997, 2000), Anderson & Guba (2020) and references therein) and was applied to
transient growth by Emms & Fowler (1994). The near-eutectic limit results in high porosity
of order one throughout the depth of the mushy layer, and allows significant simplification
of the mathematical analysis. The contrasting limit, far from the eutectic, has received
less attention. Using selected case studies, Worster (1986) and Worster (1991) showed
that variation of the liquid composition can cause significant changes to the shape of the
porosity profiles, and then considered the resulting impact on linear convective instability
during directional solidification (Worster 1992).

Building on this earlier insight and the results of Hitchen (2017), the goal of this paper
is to systematically investigate the response of the porosity of a mushy layer to varying
cooling conditions and different initial composition and temperature of the liquid, for
transient diffusively controlled growth. Specifically, we consider a deep layer of fluid
cooled with a Robin boundary condition

k
∂T
∂ ẑ

= 𝔥 (T − Tc) at ẑ = 0, (1.1)

where T is the local temperature, ẑ distance from the boundary, k thermal conductivity of
the mushy layer, 𝔥 a constant heat transfer coefficient for the boundary medium and Tc a
restoring temperature for the boundary. This type of condition is often recovered from a
linearisation of a surface energy balance, such as that controlling sea-ice growth where the
heat flux conducted out from the ice depends on outgoing longwave radiative and turbulent
sensible heat fluxes, which both depend on the surface temperature (see Appendix A
of Hitchen & Wells 2016). As an example, in Part 2 we estimate that for parameterised
turbulent sensible atmospheric heat fluxes over sea ice with wind speeds between 1 and
10 m s−1, the length scale k/𝔥 is in the range 0.67 to 0.067 m, decreasing with increasing
wind speed. Hence, the corresponding thermal boundary-layer scale in the ice induced
by (1.1) can be comparable to the ice thickness as it varies between a few centimetres to
over a metre during the initial seasonal ice growth. The condition (1.1) is also relevant
for a boundary consisting of a thin cooling plate of thickness δ and finite conductivity
𝔥δ in contact with a large isothermal heat bath (e.g. Hurle, Jakeman & Pike 1967). A
fixed-chill setting with isothermal boundary temperature is recovered when 𝔥/k → ∞,
corresponding to a boundary with perfect efficiency of heat transfer. Imperfect boundary
heat transfer is obtained for finite 𝔥/k, and a perfectly insulating boundary occurs when
𝔥/k → 0.

For perfectly conducting boundaries (𝔥/k → ∞) we below identify differing regimes
depending on the concentration ratio C = (Ŝ∞ − Ŝs)/(Ŝc − Ŝ∞), where Ŝ∞ is the
initial fluid composition, Ŝs the composition of pure solid and Ŝc is the composition
corresponding to liquidus temperature Tc. A high-porosity mushy layer is recovered
for C � 1, as an extension of the traditional near-eutectic limit. For C � 1 we find
that large porosity gradients are confined to a high porosity boundary layer near the
mush–liquid interface, with a low-porosity interior. For boundary cooling with imperfect
heat transfer (i.e. finite 𝔥) a corresponding behaviour is obtained after sufficiently long
times. However, the impact of boundary cooling varies over time, as characterised by a
dimensionless Biot number B̃i = 𝔥

√
κt/k based on the efficiency of boundary cooling vs
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Heat sink

Mushy layer

Fluid

ẑ

√

T = Tc

TL = TL∞ T = T∞

T (ẑ, t̂ )

ẑ → ∞

ẑ = ĥ(t̂ )

ẑ = 0

Ŝ = Ŝ∞

k ∂T
∂ẑ =    (T − Tc)

κt̂

Figure 1. Diagram of the model. The temperature T approaches T∞ at depth, and is relaxed towards Tc at the
surface with cooling provided via a linearised heat exchange. In the liquid phase, the salinity Ŝ∞ is uniform and
the liquidus temperature is TL = TL∞, with both constant due to the neglect of salt diffusion or fluid motion.
In the mushy phase, the temperature and salinity are related via the liquidus relationship. The dominant length
scale

√
κ t̂ is the time-evolving thermal diffusion length.

thermal conduction across a diffusive boundary-layer scale in the mush. We quantify the
initial delay time scale for cooling below freezing, and identify a subsequent transition
regime where the porosity varies significantly throughout the depth and over time. At
late times the porosity structure approaches the self-similar limit obtained for fixed-chill
cooling.

The article is organised as follows. Section 2 describes the model of diffusively
controlled growth of a mushy layer. Section 3 considers growth with a perfectly conducting
boundary (𝔥 → ∞), whilst § 4 considers the impact of imperfect boundary heat transfer
with finite 𝔥. The implications for sea-ice properties are discussed in § 5, with conclusions
in § 6.

2. Model

We consider a semi-infinite liquid region, with a uniform initial temperature T∞ and
salinity Ŝ∞. The salinity of the solid phase Ŝs is constant. At t̂ = 0, the liquid is exposed
to a heat sink of temperature Tc, with boundary condition (1.1) applied at ẑ = 0. When
the temperature at the surface of the liquid reaches the initial liquidus temperature TL∞
for the fluid of salinity Ŝ∞, a porous mushy layer begins to form with thickness ĥ, as
illustrated in figure 1. We will assume that the fluid remains at rest – relevant to statically
stable density gradients or examining the growth and structure of the mushy layer before
convective onset.

We apply ideal mushy-layer theory (Worster 1986) to describe the reactive porous
material formed during the solidification of a binary alloy. This assumes that any
pore-scale variations are equilibrated much faster than any macroscopic time of interest,
such that local thermodynamic equilibrium holds. Hence, the temperature T and liquid
salinity Ŝ are locally constrained via a liquidus relationship, T = TL(Ŝ), and unbalanced
fluxes drive change in the volumetric liquid fraction (or porosity) χ . The corresponding
solid fraction is φ = 1 − χ . For simplicity, the thermal properties and densities are
assumed to be independent of the phase.
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Diffusive growth of mushy layers

Conservation of energy and salt are given by

∂T
∂ t̂

+ L
cp

∂χ

∂ t̂
= κ∇̂2T,

∂
¯̂S

∂ t̂
= ∂[χ Ŝ + (1 − χ)Ŝs]

∂ t̂
= 0, (2.1a,b)

where ¯̂S = χ Ŝ + (1 − χ)Ŝs is the phase-weighted bulk salinity. We have here neglected
salt diffusion because the solute diffusivity, D, is much smaller than the thermal
diffusivity, D � κ (see Gewecke & Schulze (2011b), Hitchen (2017) and Wells et al.
(2019), for discussion of the effects of salt diffusion). The latent heat is L, and the specific
heat capacity is cp. Note that (2.1) holds both within the mushy layer, χ < 1, and for the
liquid phase, χ = 1.

We model the liquidus as a linear relationship with gradient Γ , and use this to express
the liquid fraction in terms of the temperature within the mushy region

T = TL(Ŝ) = TL∞ − Γ (Ŝ − Ŝ∞), χ = Γ (Ŝ∞ − Ŝs)

Γ (Ŝ∞ − Ŝs) + TL∞ − TL(Ŝ)
for 0 � ẑ � ĥ,

(2.2a,b)

where we have made use of the constant bulk salinity ¯̂S = Ŝ∞ predicted by (2.1b). Using
(2.2) the system is determined by the evolution of the temperature as given by (2.1a).

To complete the model, we need to specify the boundary conditions at the external and
internal interfaces. We consider a deep-pool limit, whereby the physical domain depth, b̂,
is much larger than the thermal diffusion length scale, b̂ �

√
κ t̂, for any time of interest.

The temperature at depth tends towards the initial value

T → T∞ as ẑ → ∞. (2.3)

We also assume linearised heat transfer between the surface heat sink and the surface of
the mushy layer, as described by (1.1). Under this model the rate of heat loss is directly
proportional to the temperature difference between the heat sink and the surface of the
mushy layer. Since the surface temperature evolves dynamically over time, the rate of heat
loss does too.

The temperature and salinity in the liquid phase are continuous across the mush–liquid
interface (Schulze & Worster 2005) and lie at the liquidus temperature just inside the mush,
which leads to

T|+ = T|− = TL∞ at ẑ = ĥ(t̂), (2.4a)

where we have exploited the constant salinity in the liquid phase. The above imply unit
liquid fraction on the mushy side of the interface (Schulze & Worster 2005), and an energy
balance that reduces to continuity of thermal fluxes

χ |− = 1,
∂T
∂ ẑ

∣∣∣∣+ = ∂T
∂ ẑ

∣∣∣∣− at ẑ = ĥ(t̂). (2.4b,c)

2.1. Non-dimensionalisation
The thermal diffusion length scale

√
κ t̂ provides a natural scale for non-dimensionalisation,

but using a time-evolving scale introduces complexity into the problem from the
coordinate transformations. It is therefore convenient for initial non-dimensionalisation
and analysis to use a fixed, time-independent length scale d̂. This scale can be considered
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as a physical length scale (such as mixed-layer depth of the ocean or the depth of some
experimental apparatus), or the thermal diffusion length after some chosen interrogation
time, at which we observe the system. We will scale this distance d̂ out of the problem
in favour of the thermal diffusion length scale during later stages of the analysis. We
non-dimensionalise time via the associated thermal diffusion time scale d̂2/κ .

We define the dimensionless temperature and salinities

θ = T − Tc

TL∞ − Tc
, S̄ =

¯̂S − Ŝs

Ŝ∞ − Ŝs
, S = Ŝ − Ŝs

Ŝ∞ − Ŝs
. (2.5a–c)

The temperature scale 	T = TL∞ − Tc is the temperature difference from the
mush–liquid interface to the surface heat sink. Using these scales, the liquidus relationship
(2.2a) and the lever rule (2.2b) become

θL(S) = 1 − C (S − 1) , χ = C
C + 1 − θ

, (2.6a,b)

where we have used the dimensionless concentration ratio

C ≡ Γ (Ŝ∞ − Ŝs)

TL∞ − Tc
= Ŝ∞ − Ŝs

Ŝc − Ŝ∞
. (2.7)

The concentration ratio C in (2.7) is a ratio of salinity differences, but can also be viewed
as comparing the size of the freezing point depression Γ (Ŝ∞ − Ŝs) with the temperature
scale and is therefore a measure of the significance of salinity effects for the solidification
dynamics. The limit C → 0 represents a pure fluid with no salt content. Note that this
definition of C is consistent with that used by some previous studies (Worster 1991;
Feltham & Worster 1999; Hwang 2013) but others have used contrasting definitions (e.g.
Worster 1997).

The boundary conditions at depth (2.3) and the interface (2.4) become

θ → θ∞ as z → ∞, (2.8a)

θ |+ = θ |− = 1, [n · ∇θ ]+− = 0 at z = h, (2.8b,c)

for dimensionless depth z, time t, mush thickness h and normal n. The dimensionless
temperature of the far-field liquid is defined as θ∞ = (T∞ − Tc)/(TL∞ − Tc) and satisfies
1 < θ∞ < ∞, with θ∞ − 1 representing the degree to which the far-field liquid is above
the liquidus temperature. At the surface, the thermal condition (1.1) yields

∂θ

∂z
= Biθ at z = 0, (2.8d)

where we have introduced a reference Biot number

Bi = 𝔥d̂
k

. (2.9)

The Biot number represents the rate of heat transfer into the heat sink compared with
thermal diffusion within the fluid or mushy layer, noting that 𝔥 could depend on the
conductivity of a bounding plate, or arise from linearisation of a more complex boundary
condition such as radiative cooling (see discussion in § 1). An infinite Biot number
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Diffusive growth of mushy layers

represents a perfectly conducting boundary, while a Biot number of zero represents a
perfectly insulating one.

The dimensionless dynamical equations of the system are shown to be

∂θ

∂t
+ St

∂χ

∂t
= ∇2θ,

∂χS
∂t

= 0, (2.10a,b)

where the Stefan number, St = L/cp(TL∞ − Tc), represents the ratio of latent to specific
heat in the system. A larger Stefan number means that the latent heat release from
solidification will have a greater impact.

3. Mush with perfect boundary conduction

We first systematically investigate the changes to the growth rate and internal structure
of mushy layers in contact with a perfectly conducting boundary (Bi → ∞). We expand
on the results of Worster (1986) by considering the effect of simultaneous variation of
multiple parameters, and providing a more detailed discussion of the internal structure.

3.1. Method
With a perfectly conducting boundary, the problem can be expressed in terms of a
self-similar coordinate z̃ = z/

√
t, which grows with the thermal diffusion length scale.

Denoting t̃ = t, we seek solutions that only depend on time through z̃ and are independent
of t̃. Applying this coordinate transformation to the thermal diffusion equation (2.10a) and
differentiating the lever rule (2.6b) yields

0 = ∂2θ

∂ z̃2 + z̃
2

∂θ

∂ z̃
+ Stz̃

2
∂χ

∂ z̃
, (C + 1 − θ)

∂χ

∂ z̃
= χ

∂θ

∂ z̃
. (3.1a,b)

In these coordinates the interface position is defined as a constant λ = h/
√

t. However,
since the growth rate is also proportional to the self-similar interface position,
∂h/∂t = λ/2

√
t, we will interchangeably refer to this quantity as the scaled growth

rate. The boundary conditions applied at z̃ = 0, z̃ = λ, and as z̃ → ∞ are functionally
unchanged from those given in (2.8) with Bi → ∞ so that θ = 0 at z̃ = 0.

We solve this system using a shooting method (Acton 1990) after expressing (3.1) as
a set of first-order differential equations in θ , ∂θ/∂ z̃ and χ . A fourth-order Runge–Kutta
method was used to integrate from z̃ = 0 to an estimated interface position at z̃ = λ′. After
applying the boundary conditions at the mush–liquid interface, the integration continues
with χ held at 1 to some fixed depth that was varied to demonstrate it did not affect
the calculation result. The errors on the temperature and liquid fraction at the interface
and the far-field temperature were then used to update the boundary conditions at z̃ = 0
and interface position λ using the MATLAB function ‘fsolve’, completing the shooting
method.

3.2. Results
Figure 2(a) shows that the scaled interfacial growth rate λ increases as the concentration
ratio C increases, but λ decreases as the Stefan number St increases. When examining
the dependence of the growth rate on the liquidus gradient, we observe two regimes of
behaviour for small and large C. For C � 1 we see that λ increases significantly with
C. Physically, a larger concentration ratio implies a tendency for stronger depression of
the freezing point by salinity and thus requires a smaller change in the salinity of the
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Figure 2. (a) The scaled mushy-layer growth rates λ calculated as a function of the concentration ratio, C, and
Stefan number, St, for θ∞ = 2.0. Solid black contours show growth rate λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Increasing
the concentration ratio increases the mush growth rate, whilst increasing the Stefan number decreases the
growth rate. For C � 1 growth depends predominantly on the thermal Stefan number St, but for C � 1
contours of constant growth rate depend on the compositional Stefan number, Sc = St/C. While the position
of the growth rate contours varies with C their spacing does not vary. (b) The mushy-layer growth rates against
C and θ∞ for St = 15.8. The red line C = 0.3 roughly indicates the inflection points of the contours of constant
growth rate, and the inferred transition between the Stefan limit and the high-liquid-fraction limit discussed in
the main text.

interstitial liquid to maintain local thermodynamic equilibrium for a given temperature
change. This leads to less solidification and segregation of salt into the liquid phase. The
decreased internal solidification decreases the amount of latent heat released, which then
increases the growth rate of mush thickness. This can also be seen by examining the lever
rule (2.6b), and noting that increasing C will decrease the significance of the 1 − θ term,
leading to less variation of χ and less latent heat release. However, in the other regime,
where C � 1, we observe that the growth rate becomes approximately independent of C.
For small concentration ratio, the salinity-dependent freezing point depression is relatively
small, so the layer has substantial internal solidification with the lever rule (2.6b) yielding
χ � 1 throughout most of the depth. Hence the total latent heat release and growth rate
hardly vary with C.

The decrease in growth rate as the Stefan number increases occurs because more latent
heat is being released by solidification which slows cooling and hence growth. We will
not present the details here, but Hitchen (2017) demonstrated that the dependence on the
Stefan number follows the same functional form as in the two-phase Stefan problem with
pure solid and liquid regions. The curves of λ vs St generated for this problem can be
collapsed onto the original solution with a high degree of accuracy through the use of a
multiplicative prefactor for St which contains all the dependency on C and θ∞. This idea
is explored further in § 3.3.3c of Hitchen (2017).

Figure 2(b) shows that increasing the dimensionless far-field liquid temperature θ∞
decreases the growth rate of the mushy layer for all values of C. A larger value of θ∞ − 1
increases the amount of sensible heat which needs to be removed to cool a parcel of fluid
to the point where it begins to solidify, which inhibits mushy layer growth. Similarly to
figure 2(a), figure 2(b) shows distinct behaviour for small and large C, with the growth
rate being almost independent of C for small C, and showing a transition between limiting
behaviours for C ≈ 0.3.
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Diffusive growth of mushy layers

The growth rate trends in figure 2(b) can also be compared with Huppert & Worster
(1985) and Worster (1986). Both studies observed (experimentally and analytically
respectively) that increasing the initial fluid concentration Ŝ∞ decreases the growth rates of
the mushy layer. This will increase the concentration ratio C = Γ (Ŝ∞ − Ŝs)/(TL∞ − Tc),
which provides a tendency to increase the growth rate as less solid forms and less
latent heat is released. However, θ∞ = (T∞ − Tc)/(TL∞ − Tc) also increases because
TL∞ decreases. This drives a tendency for the growth rate to decrease because more
sensible heat must be removed from fluid parcels before they can solidify. We conclude
that the increased removal of sensible heat has a greater impact on the growth rate than the
decreased removal of latent heat for the parameter values used in the studies of Huppert
& Worster (1985) and Worster (1986), where the concentration is varied for constant
temperatures.

The two dynamical regimes seen in figure 2 for small and large C correspond to separate
asymptotic regimes for the mush structure, as illustrated by examining variation of the
liquid fraction χ(z̃) with C in figure 3. We explore the relevant asymptotic limits in greater
depth in Appendix A, but key features can be understood by considering the surface liquid
fraction

χ(0) = 1
1 + 1/C , (3.2)

which is found from (2.6b) by setting θ = 0, and depends only on the concentration ratio
C. The liquid fraction will be lowest at the surface and χ → 1 at the mush–liquid interface,
so this allows us to place an upper bound on the internal solidification which occurs.

For large concentration ratio with C � 1, the liquid fraction at the surface
χ(0) ≈ 1 − 1/C. Hence, the liquid fraction χ is close to 1 and the solid fraction is small
throughout the mush, as seen for large C � 1 in figure 3(a). Using the red χ = 0.5
contour to roughly indicate the low-solid-fraction regions (bluer) and high-solid-fraction
regions (whiter), we can see that for C > 1 the whole mushy layer is less than 50 %
solidified. As discussed in Appendix A.1 this is almost the same as the well-studied
near-eutectic limit (see Fowler (1985); and studies discussed in Wells et al. 2019). However,
instead of considering small deviations from a boundary composition at the eutectic
point, we here have small deviations of composition from the liquidus salinity Ŝc that
corresponds to the boundary temperature Tc. With a large concentration ratio the imposed
temperature changes across the mush require only small deviations in liquid salinity within
the pore space to maintain local thermodynamic equilibrium. Hence only a small amount
of internal solidification and segregation is required to generate the necessary salinity
gradient.

The opposing limit has C � 1, and the surface liquid fraction becomes χ(0) ≈ C. The
liquid fraction varies between this small value and χ = 1 over the depth of the mush, so
here there is substantial variation of χ . Figure 3 shows that for C � 1 the upper part of the
mush has relatively high solid fraction (small χ ), with a thin boundary layer of low solid
fraction in the lower part of the mush.

To better illustrate the boundary-layer structure, figure 3(b) shows a compensated
version of figure 3(a), with depths scaled by the mushy-layer depth and the liquid fraction
scaled by the change in liquid fraction between the interface and the surface. The size
of the region of high liquid fraction decreases rapidly as C decreases. Introducing the
half-solidification depth fχ as the fraction of the mushy layer depth which has liquid
fraction χ � 0.5, we find the approximate scaling

fχ = 2.0 C, (3.3)
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Figure 3. Liquid-fraction profiles χ at a range of concentration ratios for St = 8.0 and θ∞ = 2.0. (a) The
vertical axis is the self-similar depth of the system with the black curve representing the mush–liquid interface.
Thick grey contours show χ ∈ {0.1, 0.3, 0.7, 0.9}, the red contour shows χ = 0.5 and the pure liquid region
is shaded in light grey. (b) To illustrate the boundary-layer scaling, the vertical axis has been scaled by the
mushy-layer depth, (λ− z̃)/λ, and is displayed on a logarithmic scale. The liquid-fraction data have also been
rescaled [χ(z̃) − χ(0)]/[1 − χ(0)] such that the scaled liquid fraction takes a value of zero at the surface and
one at the interface. The solid red curve represents the χ = 0.5 contour, the solid orange curve represents a
value of 0.5 on the compensated scale and the dashed orange curve is the limiting trend of (1 − z̃/λ) ∼ 2.0C.
(c) Selected liquid-fraction profiles as a function of depth, for various C.

for θ∞ = 2 and St = 8 (see orange line in figure 3b). In Appendix A.2 we consider the
particular asymptotic limit with C � 1 and StC � 1. This predicts that the leading-order
mush structure consists of an interior region of low liquid fraction with χ � 1, with
rapid variation of χ and release of latent heat in a high-porosity boundary layer of
relative thickness (λ− z̃)/λ = O(C). This structure is consistent with the scaling seen in
figure 3(b) and (3.3). The vast majority of solidification occurs within this boundary layer
near the mush–liquid interface. As C → 0 this boundary layer becomes vanishingly small,
and the liquid fraction jumps from 1 to 0 at the interface. This qualitatively resembles
the classic two-phase Stefan problem for pure solid growth into a pure fluid separated by
a sharp solidification interface. Indeed, Hitchen (2017) numerically found that the scaled
growth rate quantitatively approaches that of the classical Stefan problem as C → 0, with
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Figure 4. Scaled vertical liquid-fraction profiles for a range of C, St = 15.8, and (a) θ∞ = 5.0, (b) θ∞ = 2.0
and (c) θ∞ = 1.1. Solid curves are contours of constant liquid fraction with increment −0.1, starting at the
mush–liquid interface, with the red curve highlighting the χ = 0.5 contour. The pure liquid region is shaded in
light grey. All three graphs are plotted with the same horizontal and colour scales, with depth scaled by z̃St

1/2

appropriate for the leading-order mush thickness scaling for C � 1. The changes to the bottom edge of the
solid-fraction profiles also indicate the changes to the growth rate as the conditions are varied.

<10 % difference for C < 0.04. We will therefore refer to the regime C � 1 as the Stefan
limit.

Figure 4 shows that there is a similar pattern of variation of the liquid-fraction profiles
with C for different far-field liquid temperatures θ∞. The depth axis has been scaled by
a factor of St

−1/2, which is proportional to the leading-order scaling (A10) for the mush
thickness in the Stefan limit (see analysis in Appendix A.2). The behaviour is similar
for C � 1 across all panels, suggesting a similar leading-order behaviour of mushy-layer
growth in the Stefan limit, across a range of θ∞. The red χ = 1/2 contour follows a
similar pattern in all plots and indicates a transition between regions of low and high
liquid fraction. The most pronounced difference is the change to the growth rate when C
approaches 1 and the Stefan limit breaks down, as indicated by the changing thickness of
the mushy layer. The growth rate increases more substantially for smaller θ∞, consistent
with behaviour discussed above for figure 2(b) for C � 1. There is also some modest
variation in the mush thickness with θ∞ for small C.

Figures 3 and 4, as well as the asymptotic scalings in Appendix A, support that
the transition in mush structure depends on the concentration ratio
C = Γ (Ŝ∞ − Ŝs)/(TL∞ − Tc). The link between C and the liquid fraction was identified
in Worster (1991) for steady directional solidification. This combination represents the
ratio of the freezing point depression, Γ (Ŝ∞ − Ŝs), to the temperature difference across
a perfectly cooled mushy layer, TL∞ − Tc, and the behaviour it governs is summarised in
table 1. When the freezing point depression is much larger than the temperature difference
across the mushy layer, C is large. The mushy layer is mostly liquid because only a small
amount of solidification needs to occur before the salinity has been restored to local
thermodynamic equilibrium. However, when the temperature difference across the mushy
layer is much larger than the freezing point depression, C is small. The mushy layer is
mostly solid with a small mushy interface region because much larger amounts of solid
must be formed (and larger amounts of salt rejected) to maintain local thermodynamic
equilibrium.

Parallels can be drawn with figure 12 of Aussillous et al. (2006) in their study
of solidifying a water–sucrose mixture that made use of magnetic resonance imaging
(MRI) imaging to measure the internal solidification. They show experimentally measured
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Regime Dimensionless Dimensional Scalings

Stefan limit C � 1 Γ Ŝ∞ � TL∞ − Tc λ ∼ αSt
−1/2, fχ ∼ C

Transitional mid-point C ≈ 0.3 Γ Ŝ∞ ≈ 0.3(TL∞ − Tc) —
High liquid fraction C � 1 Γ Ŝ∞ � TL∞ − Tc λ = λ(Ω, θ∞) from (A6)

Table 1. The regimes identified for mushy-layer growth from a perfectly conducting boundary. The transition
scaling C ≈ 0.3 is identified from figure 2(b). Appendix A.2 derives scalings for the scaled mushy-layer
thickness λ and fraction fχ of the mush depth in a high-porosity boundary layer in the Stefan limit, whilst
the regime with high liquid fraction recovers governing equations similar to the well-studied near-eutectic limit
(Fowler 1985) where the scaled mush thickness depends only on an effective heat capacity Ω = 1 + St/C and
scaled liquidus temperature of the far-field fluid. For brevity, we set Ŝs = 0 above.

liquid-fraction profiles against depth for four different initial salinities, with a decrease in
internal solidification as the initial salinity increases. Increasing the initial salinity Ŝ∞ for
fixed temperatures will increase C and figures 3 and 4 show this results in a decrease
in internal solidification, agreeing qualitatively with the experimental observations of
Aussillous et al. (2006).

The asymptotic regimes identified in Appendix A lead to predictions for the growth rate
which are evaluated in figure 5. In the well-studied low-solid-fraction limit (cf. Fowler
1985) with C � 1, the growth rate is predicted to approximately depend on an effective
heat capacity Ω = 1 + St/C and θ∞ at leading order, according to (A6). Solutions of
(A6) are plotted as solid curves as a function of Ω in figure 5(a). Symbols show
data points for calculations of the full model with a range of parameter combinations
sampled from figure 2 with C � 5, which show an excellent collapse onto the predicted
asymptotic scaling given by (A6). Note that the plotted star symbols correspond to varying
C and θ∞ with St held fixed, and hence the relevant data points cluster towards small
Ω = 1 + St/C for large C. The scaling λ(Ω, θ∞) is also consistent with behaviour for
large C in figure 2(a), where contours of constant growth rate with fixed θ∞ align with
contours Sc = St/C ∼ constant or equivalently Ω ∼ const.

Figure 5(b) considers the Stefan limit, with C � 1, plotting growth rate λ as a function
of St

−1/2 for data sampled from figure 2(a) with C � 1/5. Equation (A10) predicts that
the growth rate λ ∼ αSt

−1/2 when C � 1, StC � 1 and St
−1/2 � 1, where the prefactor

α asymptotes to a constant for small enough C with StC � 1. The data for St
−1/2 � 1

are broadly consistent with the suggested linear scaling, with the red line λ ∼ 1.4St
−1/2

representing a linear fit to data with the smallest C, where we expect the scaling to hold
best. As in the low-C limit of figure 4 there is some variation about this trend, likely due
to α depending on StC as suggested in Appendix A.2. The linear scaling breaks down
as St

−1/2 approaches 1, and there is a cross-over to a new regime for St
−1/2 � 1. This

is expected because the assumptions underlying the calculation in Appendix A.2 break
down for St

−1/2 � 1. The scaling λ ∼ αSt
−1/2 is also consistent with the observation in

figure 2(a) that the growth rate becomes independent of C for small C.

4. Mush with an imperfectly conducting boundary

We now consider the case of an imperfectly conducting boundary, as represented by
(2.8d) with a finite Biot number. Unlike the perfectly conducting case with infinite Biot
number, the temperature at the surface of the mushy layer responds to the initial change in
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Figure 5. Variation of the mush growth rate λ with (a) effective heat capacity Ω = 1 + St/C in the
low-solid-fraction limit with C � 1, and (b) St

−1/2 in the Stefan regime with C � 1. In (a) solid curves show
approximate theoretical solutions of the simplified model (A6) for different θ∞. Symbols show corresponding
data points with C � 5 for full calculations sampled from figure 2(a) with θ∞ = 2 (circles) and figure 2(b)
with St = 15.8 (stars with symbol colour indicating θ∞). In (b) data points are sampled from figure 2(a) in the
Stefan limit with C � 1/5, with symbol colour indicating the value of C, as shown in the colour bar. A line
of best fit to data with C = 0.002, θ∞ = 2 and St > 280 is plotted in red in (b), consistent with the predicted
asymptotic scaling (A10) for small C and St

−1/2 � 1 from Appendix A.2.

thermal forcing on a finite time scale, given by 1/Bi
2 in dimensionless form, rather than

instantaneously. This represents a departure from previous studies of mushy-layer growth,
either in this setting or in the directional solidification problem.

4.1. Method
We will use two different methods to investigate the effects of imperfect boundary
conduction. The first uses a direct numerical integration of the dynamical equations, while
the second considers approximate solutions of the simplified model for relatively low
solid fraction. This latter method builds on the approximation and solution discussed in
Hitchen (2017), which produces an analytical solution for the whole domain by combining
solutions for the mushy and liquid layers, with results presented here being an extension
of the model in Wells et al. (2019) to account for finite Biot number.

When interpreting the results, we consider the rescaled coordinate z̃ = z/
√

t with
depth scaled by the thermal diffusion length. This led to a self-similar solution when
Bi → ∞ in § 3, but for finite Bi we retain an additional dependency on time through
the self-similar Biot number, B̃i = Bi

√
t corresponding to the diffusion length scaled by

the length scale k/𝔥 arising from the boundary condition (1.1). We present results using
the quasi-self-similar (z̃, B̃i)-coordinates below. The self-similar Biot number becomes
a proxy for the time evolution of any given physical system, noting that there will also
be a spread in the vertical coordinate as the thermal diffusion length scale grows. These
coordinates could also be interpreted as comparing results at t = 1 for different Biot
numbers.

4.1.1. Numerical method
The numerical method combines the thermal and salinity equations (2.10) in the mush, as
well as the lever rule (2.6b) to eliminate the liquid salinity and liquid fraction in favour of
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the temperature

ceff
∂θ

∂t
= ∂2θ

∂z2 , ceff = 1 + StC
(C + 1 − θ)2 . (4.1a,b)

This is now a standard diffusion equation with a variable dimensionless heat capacity
ceff(θ) and the dimensionless conductivity is 1.

The system (4.1) is solved for a fixed-depth box using the MATLAB ‘pdepe’ partial
differential equation routine. The whole depth is treated as one domain by leveraging the
enthalpy method and providing the heat capacity ceff for θ � 1 and a value of ceff = 1
otherwise (i.e. in the liquid). Integrations were performed from a uniform initial state
and a box sufficiently deep for the results not to depend significantly on the box depth,
for a variety of Biot numbers. Results from each run and at different times are then
combined by rescaling the vertical coordinate by the time-evolving thermal diffusion
length scale, and calculating the corresponding self-similar Biot number. The computation
was benchmarked against both the shooting method of § 3.1 for infinite Biot number, and
also compared with the simplified model below for the high-liquid-fraction regime.

4.1.2. Approximate solution with high liquid fraction
We also consider an asymptotically simplified solution in a generalisation of the
near-eutectic limit (cf. Fowler 1985) where C � 1 − θ , resulting in a high liquid fraction
χ ≈ 1 − (1 − θ)/C which is close to one. Hence (4.1a) applies, but with effective heat
capacity ceff ≈ Ω = 1 + St/C in the mushy layer and ceff = 1 in the liquid.

Prior to reaching the freezing temperature, the liquid temperature is described by the
solution to the heat equation (4.1a) with ceff = 1, and boundary conditions (2.8a,d). This
yields

θ = θ∞ f (z̃, B̃i), f (z̃, B̃i) ≡ erf
(

z̃
2

)
+ exp

(−z̃2

4

)
erfcx

(
z̃
2

+ B̃i

)
, (4.2a,b)

(see Carslaw & Jaeger (1959), for example) where we have defined the function f (z̃, B̃i)
for later use. Here, erfcx( y) = exp(y2) erfc( y) is the scaled complimentary error function,
with erfc( y) = 1 − erf( y) and erf( y) = (2/

√
π)
∫ y

0 exp(−u2) du. The imperfect cooling
at the upper boundary causes a delay in cooling characterised by the B̃i dependent terms
in f (z̃, B̃i). This solution holds until the upper surface reaches the freezing temperature,
with θ∞f (0, B̃f ) = 1 at the freezing Biot number B̃i = B̃f (or equivalently freezing time
t = tf ).

Following the onset of freezing, heat transfer within the growing mushy layer instead
satisfies (4.1a) with ceff ≈ Ω . We exploit a heuristic approximation to the temperature for
t � tf , which matches the liquid temperature at t = tf and recovers the correct asymptotic
behaviour for large heat capacity (Ω � 1) and sufficiently large B̃i (as derived in
Appendix B and discussed below). We set

θ = f (z̃
√

Ω, B̃i/
√

Ω)

f (λ
√

Ω, B̃i/
√

Ω)
for 0 < z̃ < λ, (4.3a)

θ = θ∞ + (1 − θ∞)

[
1 − f (z̃, B̃i)

1 − f (λ, B̃i)

]
for λ < z̃ < ∞, (4.3b)
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Figure 6. The evolution of liquid fraction χ for a mushy layer in the high-liquid-fraction regime, plotted
against scaled depth z̃ = z/

√
t and self-similar Biot number B̃i = Bi

√
t which increases over time or with

increasing efficiency of heat loss at the boundary. Profiles are calculated via numerical solution of (4.1) for
C = 12.5, θ∞ = 1.25 and St = 125. The mush–liquid interface is shown as a solid red line. The red dashed
line shows the mush thickness calculated from the approximate solution (4.4). Three distinct periods are visible
(separated by grey dashed lines): no solidification for B̃i � 0.21, an adjustment region for 0.21 � B̃i � 100 and
a self-similar region for 100 � B̃i where χ becomes independent of B̃i.

where the scaled mush thickness λ = h(t)/
√

t satisfies

[
erfcx(λ/2)

erfcx(λ/2 + B̃i)
− 1

]
= (θ∞ − 1)

[
erf(λ

√
Ω/2) exp(λ2Ω/4)

erfcx(λ
√

Ω/2 + B̃i/
√

Ω)
+ 1

]
, (4.4)

from the continuity of temperature gradients at the mush–liquid interface (2.8c). For each
B̃i we solve (4.4) for λ using the MATLAB ‘fzero’ routine. The approximation (4.3)
satisfies the boundary conditions (2.8) and matches the liquid temperature (4.2) at
initial freezing because (4.4) yields λ→ 0 as B̃i → B̃f , and f (0, B̃f ) = 1/θ∞. The
approximation (4.3) is not, however, an exact solution of (4.1a). Whilst θ = A f (z̃

√
Ω,

B̃i/
√

Ω) satisfies (4.1a) with ceff = Ω and constant A, here A = 1/f (λ
√

Ω, B̃i/
√

Ω) may
implicitly depend on time through λ and B̃i. Similarly θ = B f (z̃, B̃i) + C satisfies (4.1a)
with ceff = 1 and constants B and C, but B = 1/[1 − f (λ, B̃i)] depends implicitly on time.
Hence, the approximation (4.3) is not formally justified during the period of rapid mush
growth immediately following first freezing when A and B vary significantly with time.
Nevertheless, we below find that (4.3) is a good approximation to the full numerical
solution for large Ω because it matches the exact form of θ at t = tf , and then at later times
A and B are approximately constant for Ω � 1 and sufficiently large B̃i. For example, for
the parameter values in figure 6, we calculate the L2 norm over 0 � z̃ � 2 of the difference
between the approximate solution (4.3) and a full numerical solution for θ . This yields
error that peaks at ≈9 % of the norm of the numerical solution shortly after onset of
freezing, before soon reducing to ≈1 % for much of the rest of the integration.
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4.1.3. Asymptotic behaviour for large effective heat capacity
In the previous section, we set out an approximate solution for mushy-layer growth in
the limit of low solid fraction and an imperfectly conducting boundary, which relies
on an assumption that the scaled mush growth rate λ does not vary strongly over
time. This assumption is justified at late times and the growth rate is zero at early
times before mushy-layer growth, but the assumption is harder to rigorously justify
during the intermediate adjustment period. Despite this, the approximate solution yields
decent quantitative agreement with full numerical solutions. In this section we build
understanding of the heuristic approximate solution from § 4.1.2 by considering the
behaviour for C � 1 and with large heat capacity Ω � 1. This limit facilitates a formal
asymptotic solution from a boundary-layer analysis of (4.1a) with ceff ≈ Ω in the mush
and ceff ≈ 1 in the liquid (see Appendix B). As discussed below we find consistent
behaviour of both of the heuristic approximate solution (4.3) and (4.4) and the formal
asymptotic solution of Appendix B for Ω � 1. This provides additional support for the
heuristic approximation (4.3) and (4.4), and insight into why it appears to capture the main
behaviour.

For Ω � 1, the large heat capacity within the mushy layer slows the diffusive
thermal spread, and the asymptotic solution in Appendix B shows that rapid temperature
variation is confined to a thermal boundary layer over a scale z̃ = z/

√
t = O(Ω−1/2),

before saturating as the mush–liquid interface is approached with scale λ = h/
√

t =
O(Ω−1/2

√
log[Ω1/2]). In the limit Ω � 1, the resulting mush thickness is small with

λ� 1, but still significantly larger than the narrow diffusive length scale in the mush,
with λ

√
Ω � 1. We show below that (4.4) recovers similar behaviour for the growth rate

λ, and (4.3) approaches the asymptotic behaviour derived in Appendix B for Ω � 1.
Using the asymptotic approximations erf( y) ∼ 1 − e−y2

/y
√

π and erfcx( y) ∼ 1/y
√

π

for y � 1, the corresponding dominant balance of (4.4) with λ� 1, λ
√

Ω � 1 and
B̃i � 1 yields

B̃i

θ∞ − 1
∼ exp

(
λ2Ω

4

)[
λ
√

Ω

2
+ B̃i√

Ω

]
. (4.5)

The leading-order behaviour can be analysed by taking logarithms, to yield

λ2Ω

4
∼ log

( B̃i

θ∞ − 1

)
− log

(
λ
√

Ω

2
+ B̃i√

Ω

)
, (4.6)

from which we find two distinct dominant balances.
In the first limit, 1 � B̃i/

√
log B̃i � √

Ω at intermediate times, and

λ ∼ 2√
Ω

[
log

( B̃i

θ∞ − 1

)]1/2

, (4.7)

where we have exploited the asymptotic approximations λ2Ω/4 � log (λ
√

Ω/2) for
λ
√

Ω � 1 and λ
√

Ω � B̃i/
√

Ω . The behaviour (4.7) of this heuristic solution is
consistent with the systematically derived asymptotic approximation (B12) for

√
Ω � 1.

We also find that f (λ
√

Ω, B̃i/
√

Ω) ∼ 1 is constant at leading order for λ
√

Ω � 1, and
thus (4.3a) recovers the asymptotic solution θ ∼ f (z̃

√
Ω, B̃i/

√
Ω) for the temperature

in the mush given by (B6). The dependence of θ on B̃i/
√

Ω shows that the mush
temperature adjusts slowly to the imperfect cooling at the boundary, as a result of the large
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Diffusive growth of mushy layers

effective heat capacity Ω � 1. By contrast, the liquid has lower heat capacity and the
thermal boundary layer grows rapidly by thermal diffusion, with (4.3b) approximating to
θ ∼ 1 + (θ∞ − 1) erf(z̃/2) for z̃ > λ, consistent with the systematic asymptotic
solution (B7) in Appendix B. Because the mush is comparatively thin, the temperature
profile in the liquid is approximately equivalent to thermal diffusion from an isothermal
boundary at the freezing temperature θ = 1. Note that the asymptotic solution in
Appendix B is not continuous with the temperature profile at initial freezing, and thus
breaks down for the initial transient adjustment following freezing when B̃i → B̃f .

The second limit of (4.6) occurs at late times when 1 � √
Ω

√
log

√
Ω � B̃i.

Approximating λ
√

Ω � B̃i/
√

Ω and combining the logarithmic terms in (4.6) yields

λ ∼ 2√
Ω

[
log

( √
Ω

θ∞ − 1

)]1/2

, (4.8)

which is approximately constant and consistent with the asymptotic solution (B14) for√
Ω � 1. This recovers the classical mushy-layer growth from an isothermal boundary

with h ∝ √
t , valid after the boundary temperature has adjusted to its equilibrium value

as B̃i → ∞. The temperature in the mush θ ≈ erf(z̃
√

Ω/2), and (B7) still applies in the

liquid. The cross-over between (4.7) and (4.8) occurs when B̃i = O(

√
Ω log

√
Ω).

The heuristic solution (4.3) and (4.4) and asymptotic solution of Appendix B both
capture the same limiting behaviour for Ω � 1 and B̃i � B̃f . The heuristic solution
ignores the impact of the variation of λ over time on thermal diffusion in the mush, and
hence ignores the corresponding impact of variation of λ with B̃i. The formal asymptotic
solution shows that this is justified for Ω � 1 at very late times when (4.8) holds. At
intermediate times there is a weak logarithmic variation of λ with B̃i according to (4.7),
which is sufficiently slow that it has a weak impact on thermal diffusion in the mush. The
heuristic approximation thus still yields a reasonably accurate approximation. Because the
heuristic approximation (4.3) recovers the leading-order asymptotic behaviour from the
systematic boundary-layer analysis for Ω � 1 and B̃i � B̃f , we exploit it below.

4.2. Analysis of results
The key regimes of mushy-layer growth with cooling via an imperfectly conducting
boundary are illustrated via the evolution of the liquid fraction in figure 6 in the
high-liquid-fraction regime. Since the self-similar Biot number increases with time, this
graph can be considered as showing the time evolution of the imperfectly cooled mushy
layer. Initially, the onset of solidification is delayed due to the time taken to cool the top
boundary below the initial liquidus temperature and χ = 1 everywhere for B̃i � B̃f =
0.21. There is rapid mushy-layer growth during an adjustment phase at intermediate times,
before approach to long-time behaviour for B̃i � 100 given by a self-similar, perfectly
conducting system. In this final regime the structure of the ice becomes independent of
the Biot number and therefore only depends on time via the stretch to the dimensional
vertical coordinate ẑ = z̃

√
κ t̂, representing the characteristic diffusive length scale. We

discuss these features in more detail below.
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Figure 7. The self-similar freezing Biot number, at which solidification first occurs, against the superheat of
the liquid θ∞ − 1. The analytical solution is shown by the black solid curve, whilst the cyan dash-dotted curve
shows a convenient ad hoc numerical approximation B̃f = 5.5 exp(−4/θ∞) with root-mean-square error of
10 % for intermediate 1.25 � θ∞ � 5.0. Scalings for θ∞ → 1 and θ∞ → ∞ are shown by the red dashed and
magenta dotted curves, respectively, and are discussed in the main text.

4.2.1. Solidification lag
Before solidification, the liquid temperature is described by (4.2). The onset of
solidification occurs when the surface temperature at z̃ = 0 reaches the liquidus
temperature

θ∞ erfcx
(
B̃i

)
= 1. (4.9)

We can invert (4.9) to find the self-similar freezing Biot number B̃i = B̃f , which is
shown in figure 7. The freezing Biot number decreases as the far-field liquid temperature
decreases because less cooling is required for solidification to start. When θ∞ approaches
1, the fluid starts very close to its initial liquidus temperature and can begin to
solidify with very little cooling. A Taylor expansion of erfcx(B̃f ) for small B̃f yields
B̃f ∼ (θ∞ − 1)

√
π/2 → 0 as θ∞ → 1. However, when θ∞ → ∞, the fluid starts very

far from its liquidus temperature and requires a rapid rate of cooling or a long time to
begin to solidify, and the freezing Biot number diverges with B̃f ∼ θ∞/

√
π (where we

have used the asymptotic limit erfcx( y) ∼ 1/y
√

π for y � 1).

4.2.2. The adjustment period
For 0.21 � B̃i � 100 the mush has begun to form in figure 6, but has not yet reached the
self-similar limiting state and imperfect conduction effects are important for the cooling
boundary. We will refer to this as the adjustment period. The evolution of this period
manifests itself in two significant ways. Firstly, the surface temperature, and hence liquid
fraction, are still varying and approaching their limiting values. This means that there
will be a difference between the surface temperature of the mush and the equilibration
temperature for the boundary, and that further internal solidification will occur near to
the surface. Secondly, the thickness of the mushy layer is smaller than expected from
the perfectly conducting models, but the instantaneous dimensional growth rate of the
mush is increased relative to the dimensional growth rate with perfect conduction. This is
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Diffusive growth of mushy layers

because growth is dominated by thermal diffusion, with a higher effective heat capacity
in the mush. When the mush is thinner, there is less material within the mush to cool than
would be the case for the thicker mush in the corresponding self-similar state. Hence, thin
mushy layers can grow faster, and there is faster growth in the adjustment period than in
the self-similar state. In this example, the adjustment period spreads over three orders of
magnitude for B̃i, which corresponds to six orders of magnitude for time and will therefore
be a very significant stage of the mushy-layer development.

Figure 8 illustrates the mush growth rate during the adjustment period. Figures 8(a) and
8(b) plot the growth rates against Biot number and either

√
Ω = √

1 + St/C, or far-field
liquid temperature, θ∞, where

√
Ω captures the scale of compression of the thermal

boundary layer from the enhanced heat capacity. To allow like-for-like comparisons, the
growth rate is scaled by the growth rate for the equivalent perfectly conducting state with
infinite Biot number, and the Biot number axis is scaled by the freezing Biot number.
Figures 8(a) and 8(b) show that increasing

√
Ω and decreasing θ∞ both increase the

length of the adjustment period (i.e. the range of B̃i/B̃f needed for the ratio λ(B̃i)/λ(∞)

to approach one). This behaviour is consistent with the asymptotic scalings in § 4.1.
Physically, an increase in the effective heat capacity of the mushy region decreases the
effective thermal diffusivity, changes take longer to diffuse through the mushy layer, and
the system takes longer to adjust. Meanwhile, the initial freezing time (dictated by B̃f )
decreases with decreasing θ∞ (see figure 7) as the liquid starts closer to the liquidus
temperature and ultimately more solid forms as θ∞ decreases. Hence, there is an earlier
start time for the adjustment period and more latent and specific heat to remove. The
adjustment period therefore lengthens with decreasing θ∞ as the boundary must do more
work to reach the self-similar state from first freezing.

Figures 8(c) and 8(d) evaluate the asymptotic scalings for B̃i � 1 from § 4.1 and
Appendix B. Figure 8(c) scales the computed growth rates so that the scaling (4.7)
for the growth rate at intermediate times corresponds to the magenta line with unit
slope. Consistent with expectation, the data points follow and collapse close to (but
slightly below) the theoretical scaling (4.7) for moderate B̃i, before tailing off to their
constant asymptote for larger B̃i during transition to the perfectly conducting regime. The
slight offset between data and theory (magenta line) could be due to either higher-order
corrections to the leading-order asymptotic result, or due to inaccuracies and lag from
neglecting the initial transient adjustment from the initial condition at first freezing.

Figure 8(d) illustrates the collapse onto the perfectly conducting approximation (4.8)

for late times, which is valid for B̃i/

√
Ω log

√
Ω � 1. The points collapse towards the

expected result (magenta dashed line) at late time, indicating the validity of the scaling
(4.8). The collapse improves with larger Ω , as would be expected for an asymptotic
approximation for Ω � 1.

4.2.3. Imperfect conduction in the Stefan regime
In the previous section, we showed that an adjustment period exists before the system
reaches its self-similar behaviour at long times, in the high-liquid-fraction regime. Figure 9
plots the corresponding mushy-layer growth rate and structure against the self-similar Biot
number (which increases over time). The plot is for a system in the Stefan regime, where
the freezing point depression is small compared with the temperature scale, C � 1, and we
anticipate a region of mush with high solid fraction as the system tends towards large times.
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Figure 8. Adjustment period illustrated via mushy-layer growth rates calculated from (4.4), showing (a) scaled
growth rate λ(B̃i)/λ(B̃i = ∞), against scaled Biot number, B̃i/B̃f , and mushy diffusivity factor,

√
Ω arising

due to the effective heat capacity Ω , with θ∞ = 1.43, and (b) similar for varying initial liquid superheat
θ∞ − 1, with

√
Ω = 6.3 and using logarithmic scales. The size of the adjustment period increases as

√
Ω

increases or θ∞ decreases. (c) Symbols show scaled mushy-layer growth rates λ
√

Ω/2 from subsampled points
with varying

√
Ω (indicated by symbol shape in the legend), varying θ∞ (indicated by symbol colour and

colour bar varying logarithmically with θ∞ − 1), and varying B̃i, compared with the scaling result (4.7) which
is valid for intermediate B̃i (magenta dashed line). (d) Corresponding growth rates scaled by the large-B̃i limit

(4.8) with the magenta dashed line indicating the limit (4.7), which is appropriate for B̃i/

√
Ω log

√
Ω � 1.

Note that panels (c,d) omit the time series with θ∞ = 10 and
√

Ω = 10, where the scale separation assumed in
deriving (4.7) and (4.8) breaks down and we would not expect the asymptotic scalings to work effectively. For
these parameter values there is comparatively little time between initial freeze up at B̃f = 5.6 and the end of the

adjustment period for B̃i ≈
√

Ω log
√

Ω = 15, and memory of the initial temperature distribution at freezing
is likely to be important.

There are a number of similarities to the corresponding figure 6 for the low-solid-fraction
regime, but also some striking differences.

As before, there is no mushy-layer growth initially (here for B̃i < B̃f = 0.53) as
the liquid cools to the freezing point. After first solidification, the whole depth of
the mushy layer has a high liquid fraction for an appreciable range of times, which
contrasts with the perfectly conducting solution that confines the region of high liquid
fraction to an interfacial boundary layer immediately following first freezing. As time
progresses the liquid fraction reduces, and the mush eventually transitions to an upper
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Figure 9. The evolution of a mushy layer in the Stefan limit with C � 1. The liquid fraction χ varies with
the scaled depth z̃ and scaled Biot number B̃i for C = 0.017, θ∞ = 1.7 and St = 500, with the mush–liquid
interface shown as a red solid line. Recall that the self-similar Biot number B̃i = Bi

√
t increases over time

or with increasing efficiency of heat loss at the boundary. Three distinct periods are visible, separated by
grey dashed lines. There is no solidification for B̃i � 0.53, an adjustment period for 0.53 � B̃i � 1000 and a
self-similar region for B̃i � 1000. The interface curve no longer shows a uniform concave behaviour, and shows
a clear acceleration in growth for B̃i ∼ 10. For comparison, the growth rate calculated using the simplified
model (4.4) in the low-solid-fraction limit is shown as a red dashed curve. Orange contour shows χ = 0.5.

layer of low porosity with a higher-porosity boundary layer near the mush–liquid interface
(consistent with the perfectly conducting limit of § 3). We also observe that there is an
acceleration in the growth rate as this transition in the surface liquid fraction occurs. We
link this change to the effective mushy heat capacity described in (4.1), which can be
rewritten as

ceff = 1 + χ2St/C, (4.10)

using the lever rule (2.6b). As the liquid fraction decreases, the effective heat capacity also
decreases, allowing for considerably more rapid thermal transport and faster growth. The
effect of this enhanced transport is particularly noticeable for larger B̃i when compared
with the growth rates calculated using the simplified model for C � 1, which are shown
by the red dashed line. The simplified model has a uniform heat capacity of Ω = 1 + St/C
and neglects the variation of ceff with χ . We see that the growth rates for the full and
simplified dynamics diverge significantly once the surface liquid fraction reaches around
0.5. From here, the surface liquid fraction and heat capacity decrease further in the full
model, and we see a rapid growth in the region of low liquid fraction and low heat capacity
which is the driving force behind the increase in the growth rate. The simplified model
with ceff = Ω does not have this variable heat capacity and so does not experience this
acceleration.

5. Geophysical application to sea-ice growth

In this section we consider how the previous results may provide insight into a geophysical
application of sea-ice growth in calm ocean conditions. It is important to note that our
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Ice depth (cm)

T∞ − Tc θ∞ St C λ
Porosity

at surface
High

porosity % 1 d. 10 d. 60 d.

5 ◦C 1.67 27.8 1 0.55 0.5 100 5.9 19 46
10 ◦C 1.25 10.4 0.38 0.74 0.27 54 7.8 25 60
18 ◦C 1.11 4.6 0.17 0.93 0.14 34 9.8 31 76

Table 2. Estimate of typical parameter values for sea-ice growth, and consequences for the scaled growth
rate λ, porosity χ and ice depth in the limit of a perfectly conducting boundary from § 3. Values are for
different temperature ranges T∞ − Tc between an initial temperature of T∞ = 0 ◦C and the lower cooling
temperature Tc, in water of salinity Ŝ∞ = 35 g kg−1, liquidus gradient Γ = 0.085 ◦C kg g−1, latent heat L =
3.334 × 105 J kg−1 and heat capacity cp = 4 × 103 J kg−1 K−1 (Hitchen 2017). The dimensionless far-field
liquid temperature θ∞, Stefan number St, and concentration ratio, C, are calculated for the imposed temperature
range and an initial liquidus temperature TL∞ = −2 ◦C. The liquid fraction or porosity at the surface is also
the minimum liquid fraction, whilst the percentage of the depth which has a high porosity with χ > 50 % is
shown to indicate the size of the interfacial region with high liquid fraction. Finally, the ice depths after 1, 10
and 60 days of growth are given.

model neglects convective flow, and hence is only valid until the onset of significant brine
rejection by convective overturning (see Worster & Rees Jones (2015), Wells et al. (2019)
and Hitchen & Wells (2025), for a more detailed discussion).

Focussing first on the case with a perfectly conducting boundary (cf. § 3), we estimate
typical parameter values and the consequences for the internal structure of sea ice in
table 2. The values of C vary from 0.17 � C � 1 thus spanning from the Stefan limit
to the cross-over point transitioning towards the high-liquid-fraction limit. Indeed, with
temperature difference of 5 ◦C the ice is relatively porous with χ > 0.5 throughout the
whole depth. For T∞ − Tc = 20 ◦C, the surface is now around six-sevenths solid and only
a third of the depth has a relatively high porosity with χ > 0.5. The latter shows some
evidence of the porosity localisation of the Stefan limit, but with modest scale separation
between the boundary-layer thickness and mush depth. Regions of high porosity are
important for biogeochemical activity within sea ice, but also control the permeability and
localisation of flow within porous sea ice. The results for a perfectly conducting boundary
suggest that early season ice, grown in comparatively warm conditions, will show
relatively high porosity throughout the depth, whilst ice grown in colder temperatures,
experienced following mid-winter lead opening for example, will begin to exhibit porosity
localisation near the mush–liquid interface. Such porosity localisation will be enhanced
by convective brine rejection which is not included in the present model. Heuristically,
such brine rejection will reduce the salinity of the ice, and thus have a qualitatively similar
effect to reducing Ŝ∞ and C.

In addition to increasing solidification occurring within the ice itself, a larger air–ocean
temperature difference also results in faster growth of ice thickness. Ice growth of 5–10 cm
in 24 h is predicted as T∞ − Tc ranges from 5 ◦C to 20 ◦C, although a more detailed model
accounting for unequal thermal properties in the phases is needed for a better quantitative
comparison with experiments or observations.

We can also compare our model with the field experiments of Notz & Worster (2008).
To do this, we modify (4.1) to include phase weighting of the thermal conductivity and
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heat capacity[
1 + (rρcp − 1) (1 − χ) + StC

(C + 1 − θ)2

]
∂θ

∂t
= ∇ · {[1 + (rk − 1) (1 − χ)] ∇θ} ,

(5.1)

where rρcp = (ρcp)s/(ρcp)l is the ratio of solid and liquid heat capacities, and rk = ks/kl
the ratio of solid and liquid thermal conductivities. Of the two changes introduced here,
the effect on the thermal conductivity is the more significant, with rk − 1 roughly six times
larger than rρcp − 1. The magnitude of the Stefan number also reduces the effects of the
phase-dependent heat capacity since St is also roughly six times larger than rρcp − 1.

Figure 10 shows a numerical solution of (5.1), compared with field data from Notz &
Worster (2008). The simulation was started with the fluid temperature T∞ = −1 ◦C and
salinity Ŝ∞ = 35 psu. A cooling temperature of Tc = −30 ◦C was applied, representative
of winter lower atmospheric Arctic temperatures, and the simulation was run for six days
of model time. These lead to a concentration ratio C = 0.11, far-field liquid temperature
θ∞ = 1.1 and Stefan number St = 3.0. A cooling coefficient of 𝔥 = 6.3 Wm−2 K was
used, equivalent to radiative and sensible heat transfer with a wind speed of 2 m s−1 (see
Appendix of Hitchen & Wells 2016). The modelled ice depth (red curve) compares well
with ice depth measurements from figure 8(a) of the field measurements of Notz & Worster
(2008) shown with green crosses. Note that the inclusion of unequal thermal properties is
important here; with rρcp = 1 and rk = 1 the model significantly underpredicted the depth
of the mushy layer. The imperfect cooling boundary condition (1.1) is also important
for accurately characterising ice growth. For example, if we consider the corresponding
scenario to figure 10 but with an isothermal boundary (here approximated from the
asymptote of simulations with increasingly large 𝔥), then the result for an isothermal
boundary with Bi → ∞ yields an ice thickness of 32 cm after 72 h, vs the observed ice
thickness of 17 cm. Growth from an isothermal boundary also misses the evolution of
surface temperature and surface porosity seen in figure 10.

For θ∞ = 1.1, the freezing Biot number is B̃f = 0.085 which can be inverted to give
a first-freezing time of 350 s. This time scale is too short to be noticeable in figure 10,
which measures time in hours and days. Notz & Worster (2008) did not determine an
initial freezing time, although they note that ‘ice growth started very rapidly’.

At the other extreme of time, figures 6 and 9 suggest self-similar growth is only
approached when B̃i is around 100–1000. Using the lower value yields a corresponding
time of 15 years, which is longer than the seasonal growth time scale. Thus the fact that
the boundary is imperfectly conducting rather than perfectly conducting has a significant
impact on the temperature and porosity of young sea ice. This is reflected in figure 10(a),
with both the surface temperature and surface liquid fraction showing clear evolution over
the six day period. By the end of the simulation, the temperature at the surface of the ice
had dropped to −25 ◦C, and the liquid fraction had reached χ = 0.2, compared with the
respective long-time limits of −30 ◦C and 0.1. Figure 3 of Notz & Worster (2008) also
shows a decaying surface temperature (measured at 0.5 cm) over the six day experiment,
although there is also noise arising from environmental fluctuations in both Tc and 𝔥 which
will impact the cooling rate in a fashion not described in the current model.

The above Bi-dependent variation also impacts the internal liquid fraction. Whilst the
value of C = 0.11 is approaching the Stefan regime with appreciable internal solidification,
figure 10(b) shows that the Bi-dependent lag in solidification results in the high-porosity
region occupying a significant fraction of the full depth throughout the six days. This
high porosity increases permeability and promotes conditions for internal brine convection
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Figure 10. (a) Surface temperature and liquid fraction, and (b) liquid-fraction profiles from a simulation of
experimental conditions in Notz & Worster (2008). Water of salinity Ŝ∞ = 35 g kg−1 is cooled from an
initial temperature T∞ = −1 ◦C by an atmosphere at Tc = −30 ◦C over six days, with an effective atmospheric
conductivity of 𝔥 = 6.3 Wm−2 K, corresponding to radiative transfer and sensible heat fluxes with a wind speed
of 2 m s−1. In (b), the red and orange curves indicate the interface and the χ = 0.5 contour, respectively, and
depth measurements from Notz & Worster (2008) are shown with green crosses. Both the surface temperature
and surface liquid fraction are evolving throughout the simulation with the surface liquid fraction reaching a
value of 0.2 (shown on the colour scale in thick black), compared with a long-time limiting value of χ = 0.1
(grey). To achieve realistic growth rates, the simulation uses material properties that depend on phase with
ratios rρcp = 0.501 and rk = 4.24, liquid properties k = 0.523 Wm−1 K−1 and cp = 4.22 × 103 J kg−1 K−1,
along with L = 3.334 × 105 J kg−1 and Γ = 0.085 ◦C kg g−1.

during the initial growth period. Indeed, the observations of Notz & Worster (2008) show
faster formation of low-porosity regions and overall greater solidification, with porosities
of less than 0.1 over 3 cm after 24 h, and very nearly complete solidification throughout the
majority of the layer after two days (their figure 8a). This discrepancy is likely caused by
internal convection, which removes salt from the growing mushy layer resulting in greater
solidification. Figure 8(b) of Notz & Worster (2008) shows a significant decrease in the
bulk salinity that closely echoes the solid formation. We explore the impact of porosity on
the onset of convection in Part 2 (Hitchen & Wells 2025).

It is interesting to note, however, that the absence of convection does not seem to have
significantly impacted our predictions of the ice depth. This is similar to the observation
by Rees Jones & Worster (2014) that the ice depth is relatively insensitive to the amount
of convection, due to two competing effects caused by convection removing salt and
increasing internal solidification. Since the solid phase has a larger thermal conductivity
than the liquid phase, this increases thermal transport and enhances the growth rate. On
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the other hand, the increased internal solidification also results in more latent heat release,
which inhibits overall growth of ice thickness. These two effects offset one another.

This section has assumed that congelation ice forms by direct freezing of the ocean
surface immediately after reaching the freezing point, and neglects granular ice production
by the nucleation and growth of frazil ice crystals suspended in the turbulently mixed
ocean surface layer (cf. Petrich & Eicken 2010). The present model is therefore more
relevant to settings with layers of basal mushy-layer growth that are much thicker than any
layers of granular ice which have accumulated, or other geophysical/metallurgical settings
where turbulent frazil is less relevant.

6. Conclusions

We have considered how the initial composition and applied thermal conditions impact
the growth and internal structure of mushy layers formed by freezing binary alloys. We
focussed on cases with unidirectional growth in a deep fluid layer, with growth controlled
by thermal diffusion from a boundary that is either perfectly conducting and isothermal, or
imperfectly conducting with a linearised boundary condition where the cooling heat flux
depends on the boundary temperature.

For growth from an isothermal boundary, two main regimes were identified depending
on the concentration ratio C = Γ (Ŝ∞ − Ŝs)/(TL∞ − Tc) between the characteristic
freezing point depression caused by the liquid salinity and the thermal driving from the
temperature difference between the freezing temperature of the liquid and the cooling
boundary. The limit C � 1 has small thermal driving vs the freezing point depression and
yields low solid fraction throughout the mush (this is very similar to the well-studied
near-eutectic limit cf. Fowler (1985), where small solid fractions are obtained when
the liquid composition is close to the eutectic concentration). Consistent with previous
work on the near-eutectic limit, growth is well characterised by a simplified model with
a dimensionless effective heat capacity Ω = 1 + St/C = 1 + L/cpΓ (Ŝ∞ − Ŝs) which
accounts for latent heat released during internal solidification (Worster 1997). Growth rates
are derived from (A6), and increase with decreasing θ∞ when the initial fluid temperature
is closer to the liquidus temperature so that less cooling is needed to reach freezing. Growth
rates decrease as the effective heat capacity Ω increases and slows thermal transfer due
to substantial latent heat released from internal solidification. We described the second
limit C � 1 as the so-called Stefan regime, resulting from larger thermal driving vs the
salinity-dependent depression of the freezing point. The Stefan regime is characterised by
high solid fraction over most of the mush depth (with small surface liquid fraction χ ∼ C),
but with a thin interfacial boundary layer of dimensionless thickness of O(C) where the
majority of the solidification and latent heat release occurs. The limit C → 0 resembles
the classical Stefan problem for growth of a pure solid into a liquid. In this Stefan regime,
the dimensionless growth rate scales with St

−1/2 for C � 1 This yields a dimensional
mush thickness ĥ ∝ [cp(TL∞ − Tc)/L]1/2

√
κ t̂ that depends primarily on the temperature

difference across the mushy layer and is roughly independent of C.
Section 4 considered the effects of imperfect boundary conduction, as described by

the Biot number B̃i = 𝔥
√

κ t̂/k, which characterises the efficiency of heat transfer at the
boundary vs thermal diffusion in the mush, but can also be considered a proxy for time.
With imperfect conduction, there is a lag in the onset of solidification, which starts when
the Biot number reaches the freezing Biot number, satisfying erfcx(B̃f ) = 1/θ∞. After
solidification begins, there is an adjustment period where the surface temperature adjusts
in response to boundary cooling, and the ice thickness and amount of solid fraction
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throughout the layer increase. For large Biot numbers or long times the solution approaches
the self-similar state for growth from a perfectly conducting boundary. The simplified

model with low solid fraction predicts an adjustment period B̃f < B̃i �
√

Ω log
√

Ω ,
which starts earlier when θ∞ is lower and the fluid is initially closer to the liquidus
temperature, thus promoting freezing. The adjustment period ends later for larger Ω ,
when latent heat is larger compared with the specific heat and the release of latent heat
slows the cooling. An approximate solution (4.3) and (4.4) of the simplified model was
identified that transitions between the temperature profile at onset of solidification and
two asymptotic results for intermediate and late times that can be systematically derived
in the limit of large effective heat capacity Ω � 1 (see Appendix B). This yields a
mush thickness ĥ ∝ √

γ [cp(Γ (Ŝ∞ − Ŝs)/L]1/2
√

κ t̂ where γ (t̂) ∼ log [𝔥
√

κ t̂/k(θ∞ − 1)]
depends weakly on time later in the adjustment period, i.e. for intermediate times with

1 � B̃i �
√

Ω log
√

Ω . At long times for B̃i �
√

Ω log
√

Ω the perfectly conducting

limit is approached, and γ ∼ log [
√

Ω/(θ∞ − 1)] saturates to a constant. The Stefan
regime shows similar behaviour, but with accelerated growth at the time where the surface
solid fraction becomes large. The effective heat capacity is large near the mush–liquid
interface where substantial solidification and latent heat release occurs, but drops off once
the solid fraction starts to saturate. Thus thermal diffusion is enhanced through the highly
solidified region, driving faster cooling and rapid interfacial growth.

We also considered an application to sea-ice growth, prior to the onset of convective
flow. Typical growth conditions lie between the low-solid-fraction and Stefan regimes,
depending on the effective atmospheric cooling temperature Tc. With an isothermal ice
surface, the solid fraction varies significantly throughout the depth of the layer, with
some potential for localisation of the high-porosity zone near the base of the ice in
colder midwinter temperatures. Such porosity localisation would impact transport and
biogeochemical processes in sea ice, because regions of low liquid fraction provide
considerable resistance to convective overturning and biological growth, which tend to be
confined to regions with a large liquid fraction close to the interface. However, imperfect
boundary cooling may initially result in modest solid fraction throughout the ice depth
prior to the onset of convective brine drainage, because the surface temperature lags
the atmospheric temperature over the initial growth period of order months. This would
provide a larger region for biological growth and there is potential for convection to be
driven over a greater depth. This illustrates the significant impact that the efficiency of
heat loss to the atmosphere may have on sea-ice properties.

The internal porosity evolution described here may have important implications for
a range of applications. Whilst we have focussed on a binary alloy, solidifying liquids
may contain other chemical tracers which are segregated and concentrated into the pore
liquid as the solid fraction changes. For sea ice this has important implications for
biogeochemical transport, the biological habitability of liquid pores in the ice matrix and
potential supersaturation and nucleation of gas bubbles (Vancoppenolle et al. 2013). The
porosity also impacts the material properties of mushy layers, such as the electromagnetic
response for remote sensing measurements of sea ice (Tucker et al. 1992), or the
mechanical properties of rapidly quenched products in industrial solidification. For the
latter, cooling strategies that emulate imperfectly conducting boundary conditions may
offer a tool to control the porosity structure at different times. The porosity evolution
of porous materials also impacts their permeability, which can control the possibility of
convective overturning. We investigate the impact of porosity variations on convective
onset in Part 2 (Hitchen & Wells 2025).
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Appendix A. Asymptotic limits for an isothermal cold boundary

In this appendix we derive several asymptotic scalings that are useful for understanding
the full numerical solutions for mush growth from a perfectly conducting boundary in § 3.
In the self-similar coordinates, using the lever rule (2.6b) to eliminate χ from the heat
equation (3.1a) yields

0 = ∂2θ

∂ z̃2 + z̃
2

[
1 + StC

(C + 1 − θ)2

]
∂θ

∂ z̃
, 0 < z̃ < λ, (A1)

in the mush, with boundary conditions

θ = 0 at z̃ = 0; θ = 1,
∂θ

∂ z̃

∣∣∣∣+− = 0 at z̃ = λ. (A2a–c)

In the liquid region χ = 1, and the solution to (3.1a) which satisfies θ = 1 at z̃ = λ and
θ → θ∞ as z̃ → ∞ is

θ = θ∞ − (θ∞ − 1)
erfc(z̃/2)

erfc(λ/2)
, z̃ > λ, (A3)

which yields
∂θ

∂ z̃

∣∣∣∣+ = (θ∞ − 1)√
π erfc(λ/2)

exp
(

−λ
2

4

)
, (A4)

as the heat flux in the liquid in (A2c).
We now consider asymptotic solutions in both the low-solid-fraction and Stefan limits,

for cases where θ∞ = O(1).

A.1. Low-solid-fraction limit
The near-eutectic limit is well studied (see Fowler (1985); and discussion in Wells et al.
2019), and we here exploit a minor adaptation where the composition is close to the
liquidus composition for the boundary temperature Tc. The relevant limit corresponds
to C � 1, with the lever rule (2.6b) then yielding large porosities throughout the mush.
Noting that 0 � 1 − θ � 1, (A1) simplifies to

0 ≈ ∂2θ

∂ z̃2 + Ω
z̃
2

∂θ

∂ z̃
, Ω ≡ 1 + St

C , (A5a,b)

and thus the growth rate will depend on the dimensionless effective heat capacity Ω which
accounts for latent heat release during porosity changes (cf. Worster 1997). The solution
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to this equation subject to (A2a) and (A2b) is given by θ = erf(z̃
√

Ω/2)/erf(λ
√

Ω/2),
where the scaled growth rate λ is given implicitly by manipulating (A2c) and (A4) into the
form

erf
(
λ
√

Ω/2
)

exp
[
λ2(Ω − 1)/4

]
√

Ω erfc(λ/2)
= 1

θ∞ − 1
. (A6)

Analysis of (A6) reveals that the growth rate decreases monotonically as Ω = 1 + St/C
increases. This is qualitatively consistent with the growth rate increasing as C increases
and decreasing as St increases, as seen for large values of C in figure 2.

A.2. Stefan limit
The other limit of interest considers the case where C � 1, which we describe as the
Stefan limit. In this limit the solution exhibits a boundary-layer structure with a mostly
solidified interior, and latent heat release significant in a narrow boundary layer near the
mush–liquid interface. To simplify the calculations, we will further restrict attention to
cases where StC � 1.

A.2.1. Interior solution
To characterise the interior dynamics, we rescale the vertical coordinate by the thickness of
the mushy layer, defining Z = z̃/λ. The rescaled boundary conditions are θ = 0 at Z = 0
and θ → 1 as Z → 1, with (A1) yielding

∂2θ

∂Z2 + λ2 Z
2

[
1 + StC

(1 − θ)2

]
∂θ

∂Z
≈ 0, (A7)

for C � 1, where we retain the second term in the square bracket in case St is large and
have approximated 1 − θ � C in this interior region away from the interface. The latter
approximation breaks down near the mush–liquid interface where θ ∼ 1. From the lever
rule (2.6b), we can see that this limit leads to a low porosity χ � 1 for the interior region
with 1 − θ � C.

There are two cases of interest here. For slow growth with λ� 1, then ∂2θ/∂Z2 ≈ 0 and
hence θ ∼ Z, varying linearly at leading order. Alternatively, if λ = O(1) and StC = O(1)

or smaller, then θ varies nonlinearly with Z, but with ∂θ/∂Z = O(1) because all variables
in (A7) are of order one or smaller. In both cases for λ we recover ∂θ/∂ z̃ = O(1/λ) in the
interior of the mushy layer.

A.2.2. Boundary-layer solution
The above solution breaks down in a boundary layer near the mush–liquid interface where
1 − θ = O(C), and from the lever rule (2.6b) we have porosity χ = O(1). Then the latent
heating term proportional to St can dominate the effective heat capacity in the second
term in (A1). Looking for a solution with rescaled temperature τ = (1 − θ)/C, we find
that the rescaled boundary-layer coordinate ζ = λSt(λ− z̃)/C transforms (A1) into the
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parameter-free equation

∂2τ

∂ζ 2 − 1
2(1 + τ)2

∂τ

∂ζ
≈ 0, (A8)

at leading order in C � 1. We have here neglected higher-order corrections in C � 1,
and approximated z̃ ≈ λ in the narrow boundary layer. The boundary conditions on (A8)
require τ = 0 at ζ = 0 at the mush–liquid interface, and matching to the interior solution.

To get from these asymptotically rescaled equations to an approximation for the growth
rate, we match the temperature gradients ∂θ/∂ z̃ as we transition between the two regions,
leading to

∂θ

∂ z̃
∼ 1
λ

∂θ

∂Z
∼ λSt

∂τ

∂ζ
. (A9)

Because θ and τ are solutions of differential equations with no singular behaviour, we
expect ∂θ/∂Z and ∂τ/∂ζ are O(1). Hence, the matching condition (A9) requires

λ ∼ α St
−1/2, (A10)

where α is a proportionality constant of order one. Due to its dependence on ∂θ/∂Z, this
proportionality constant can in principle depend on StC via (A7). However, α and λ both
become independent of C if StC � 1, which holds in the limit C → 0. Note that we have
assumed that λ = O(1) in the argument above, and so the scaling (A10) may break down
for St

−1/2 � 1. We have also indirectly assumed that the cooling of the liquid to the
liquidus temperature does not provide an important control on the growth rate, which is
instead dominated by the rate of heat transfer through the mush to the cooling boundary.

The lever rule (2.6b) yields χ = 1/(1 + τ), so that the thermal changes across the
boundary layer are accompanied by changes in porosity. From a physical perspective, the
scaling embodied in (A9) results from the conduction of heat through the interior of the
mushy layer removing the latent heat released in the narrow boundary layer during growth.
Because the porosity transitions from χ � 1 in the interior of the mushy layer to χ = 1 at
the mush–liquid interface, most of the solidification and latent heat release occurs within
this boundary layer of rapidly varying porosity. Noting that ζ = O(1) in the boundary
layer, and using (A10) yields a boundary layer of relative thickness (λ− z̃)/λ = O(C).

From a practical viewpoint, the rescaled differential equations (A7) and (A8) are
nonlinear and no easier to solve than the full equation (A1). Hence, we do not pursue
numerical solutions of (A7) and (A8) here, but instead in the main text explore the
implications of the relevant scalings for λ and the thickness of the high-porosity boundary
layer.

Appendix B. Low-solid-fraction limit with large heat capacity and an imperfectly
conducting boundary

To aid understanding of the mushy-layer structure with an imperfectly conducting
boundary, in this appendix we derive a patched asymptotic solution of the simplified
model in the low-solid-fraction limit (C � 1) where we further assume that there
is a large effective heat capacity Ω ≡ 1 + St/C � 1. As summarised in § 4.1.3, the
resulting patched asymptotic solution captures the same limiting behaviour as the heuristic
approximate solution of § 4.1.2, with the scaled growth rate λ showing a weak logarithmic
dependence on time during the intermediate adjustment period.
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Prior to solidification the temperature field satisfies (4.2). After the onset of
solidification with t > tf , the simplified model (4.1) yields

Ω
∂θ

∂t
= ∂2θ

∂z2 , z < h(t), (B1)

in the mush. In the liquid
∂θ

∂t
= ∂2θ

∂z2 , z > h(t), (B2)

and these two equations are subject to the boundary conditions (2.8).
In the limit Ω � 1, (B1) suggests rapid spatial variation of θ over a boundary layer of

thickness z ∼ Ω−1/2√t − tf following the onset of mush growth at t = tf . We hence define
a rescaled coordinate ζ = zΩ1/2/

√
t − tf . Substituting into the imperfectly conducting

boundary condition (2.8d) results in

∂θ

∂ζ
= ηθ at ζ = 0, (B3)

where η = BiΩ
−1/2√t − tf . Hence (B1) can be recast in terms of new variables (η, ζ ) as

1
2
η
∂θ

∂η
− 1

2
ζ

∂θ

∂ζ
= ∂2θ

∂ζ 2 , ζ < λ̃, (B4)

where
λ̃(η) = h(t)

√
Ω/
√

t − tf . (B5)

In what follows we will focus on a limit where η � 1, so that η is not too small. This
limit neglects the very initial transient response following onset of solidification as t → tf .
Imposing this limit aids analytical tractability by allowing certain boundary conditions
to be applied asymptotically as ζ → ∞, rather than at a finite and time-dependent
distance.

Returning to the remaining boundary condition on the mushy layer, (2.8b) yields θ = 1
at ζ = λ̃, where λ̃ is determined from a condition of continuity of the temperature gradient

∂θ/∂z at z = h(t). We justify below that λ̃ = O(

√
log

√
Ω) � 1, so we can approximate

the boundary conditions on the mush as θ → 1 as ζ → ∞, and (B3). The corresponding
solution of (B4) with initial condition θ → 1 as η → 0 (and hence t → tf ) is

θ = [
erf(ζ/2) + exp(−ζ 2/4) erfcx(η + ζ/2)

]
, (B6)

(cf. Carslaw & Jaeger 1959) where erf( y) and erfcx( y) are defined in the main text.
Meanwhile, the liquid temperature evolves on a longer diffusive length scale z ∼ √

t − tf
because of the lower heat capacity, which motivates use of the self-similar rescaling Z̃ =
z/

√
t − tf for the liquid region as in § 3, except with the time origin shifted to the start of

solidification. Using (B5), the boundary condition (2.8b) results in θ = 1 at Z̃ = λ̃/√Ω .
We will justify later that λ̃/

√
Ω � 1, and hence at leading order the liquid-region problem

reduces to the diffusion equation (3.1a) with boundary conditions θ → 1 as Z̃ → 0 and
θ → θ∞ as Z̃ → ∞. This has approximate solution

θ ≈ 1 + (θ∞ − 1) erf(Z̃/2). (B7)

The mush thickness h is determined by imposing continuity of ∂θ/∂z at z = h (2.8c).
In terms of the scaled coordinates in mush and liquid, we obtain the asymptotic matching
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condition
√

Ω
∂θ

∂ζ

∣∣∣∣
ζ=λ̃

≈ ∂θ

∂Z̃

∣∣∣∣
Z̃=0

, (B8)

at leading order in Ω−1/2, which yields the condition

√
Ω η exp

(−λ̃2/4
)
erfcx(η + λ̃/2) ≈ (θ∞ − 1)√

π
, (B9)

for λ̃ in terms of Ω , θ∞ and η. Because
√

Ω � 1 and assuming θ∞ = O(1), we anticipate
that λ̃� 1 and seek approximate scalings. Noting that erfcx( y) ∼ 1/y

√
π for y � 1, and

rearranging we approximate

η

η + λ̃/2
exp

(−λ̃2/4
) ∼ (θ∞ − 1)√

Ω
. (B10)

We observe two different asymptotic limits of (B10), corresponding to early times (η �
λ̃/2) and late times (η � λ̃/2). Applying the early-time limit, taking logarithms of (B10),
and noting that λ̃2/4 � log (λ̃/2) for λ̃� 1 we can rearrange to find

λ̃ ∼ 2
[

log
( √

Ω η

θ∞ − 1

)]1/2

. (B11)

Recalling that η = BiΩ
−1/2√t − tf , this implies that λ̃ increases with slow logarithmic

variation over time, and hence

h(t) ∼ 2
[

log
(Bi

√
t − tf

θ∞ − 1

)]1/2 √
t − tf√
Ω

. (B12)

At late times with η � λ̃/2, then η + λ̃/2 ≈ η and the corresponding limit of (B10) yields

λ̃ ∼ 2
[

log
( √

Ω

θ∞ − 1

)]1/2

. (B13)

Hence

h(t) ∼ 2
[

log
( √

Ω

θ∞ − 1

)]1/2 √
t − tf√
Ω

. (B14)

Equations (B12) and (B14) recover (4.7) and (4.8) from the main text, given
√

t − tf ≈ √
t

for t � tf . As a consistency check we note that (B13) is the large-Ω limit of (A6), and
the solution (B6) asymptotes at late time to the solution for an isothermal boundary, with
erfcx(ζ/2 + η) → 0 as η → ∞ and erf(λ̃/2) → 1. We also note that (B11) and (B13) both

predict an order of magnitude λ̃ = O(

√
log

√
Ω) � 1, confirming the scaling assumption

used above when applying the boundary conditions on (B6), and that λ̃/
√

Ω � 1 as
assumed in (B7).

The scaling λ̃� 1 indicates that the mush thickness is on an asymptotically larger
scale than the natural length scale z ∼ √

t − tf /
√

Ω used in (B4). Thus there is a
further asymptotic buffer layer reaching out to the mush–liquid interface where z ∼√

t − tf [log
√

Ω]1/2/
√

Ω . To demonstrate that this buffer layer does not impact the result
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above, we define a new stretched coordinate Z = [log
√

Ω]−1/2ζ , then (B4) transforms to
yield

1
2
η
∂θ

∂η
− 1

2
Z

∂θ

∂Z
= 1

log
√

Ω

∂2θ

∂Z2 . (B15)

The leading-order asymptotic behaviour for log
√

Ω � 1 shows that diffusion is weak,
and

η
∂θ

∂η
− Z

∂θ

∂Z
∼ 0, (B16)

which can be solved via the method of characteristics. This characterises an effective
advection on characteristic paths ∂η/∂s = η and ∂Z/∂s = −Z for arc length s, which yield
paths Z ∝ 1/η. For increasing time, and hence increasing η, θ is therefore advected along
characteristics in the direction of decreasing Z or decreasing ζ . Because θ = 1 is constant
at Z = λ̃/[log

√
Ω]1/2, we obtain θ ∼ 1 throughout the buffer region at leading order. This

layer of slowly varying θ is consistent with the asymptotic behaviour of (B6) for ζ/2 � 1,
and hence (B6) is a uniformly valid leading-order solution throughout the mush, and the
previous solution holds.

To summarise, the above patched asymptotic solution shows that a large effective heat
capacity in the mushy layer results in the influence of the imperfectly conducting boundary
being confined to a relatively narrow region near to the boundary that is thinner than the
overall mush thickness. The far-field liquid evolves much faster and on a larger diffusive
length scale, in response to the almost constant temperature in the buffer layer at the outer
edge of the mushy region. This behaviour yields approximate limits (B12) and (B14) for
the mush growth rate at intermediate and late times, respectively. Along with (B6) for the
mush temperature, these results recover scaling behaviour of the heuristic approximate
model of § 4.1.2, thus rationalising the good quantitative performance of the heuristic
model as discussed further in § 4.1.3.
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