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Abstract. Recent high-resolution observations have pointed out that prominences are made
of small threads (also named fibrils) piled up to form the body of the prominence. These fine
structures also seem to support their own oscillatory modes, while their effect on the global
modes of the prominences are less certain. We study the effect of adding a smooth transition layer
between the prominence material and the corona along the magnetic field line, since previous
studies have considered a jump in density in this interface. Then we compare the results with
previous models and check that these transition layers do not affect significantly the periods of
the modes.
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1. Introduction
Oscillations in prominence threads (also known in the literature as fibrils) have been

reported in observational papers, specially recently using high resolution (Lin 2004, Lin
et al. 2005, Lin et al. 2007). The fine structure is composed of thin magnetic flux ropes
oriented along the magnetic field. These studies have revealed that the threads may
oscillate independently with their own periods, which range between 3 and 20 minutes,
superimposed with movements of dense material and flows (Lin et al. 2005).

The first theoretical investigation of periodic prominence perturbations taking into
account prominence fine structure was performed in a Cartesian geometry by Joarder
et al. (1997). Dı́az et al. (2001) corrected and extended these results, and in Dı́az et al.
(2002), Dı́az et al. (2003) the model was studied in more detail with the addition of longi-
tudinal propagation and cylindrical geometry. The most important conclusions extracted
from these studies are that prominence threads support only a few modes of oscillation
corresponding to the lowest frequencies. Also, high harmonics are not trapped inside thin
structures, and the spatial structure of the fundamental (even and odd) kink modes is
such that the velocity amplitude outside the thread takes significant values over large
distances, i.e. the energy confinement of the thread is poor. As a consequence, threads
oscillate in groups rather than individually.

On the other hand, the internal structure of the threads is assumed to consist in a
region where the dense material is located in the magnetic dip of the magnetic field line
that supports it, while the rest of the rope is filled with coronal plasma. A sketch of this
model can be seen in Fig. 1. However, a slab profile is just an approximation to a realistic
profile, which would be smooth, but with a narrow transition region between the dense
material and the evacuated part. The inclusion of a smoothed profile in the direction
across the magnetic field leads to coupling between modes and resonant absorption (see
for example see Goossens et al. 2006 and references therein).

The aim of this study is to investigate the properties of the stationary modes of a thread
which a smooth transition to the coronal material along the magnetic field lines. Recently
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there have been a number of studies dealing with the effects of including structure along
the field lines in coronal loops when line-tying boundary conditions in the photospheric
surfaces are included (Nakariakov et el. (2000), Nakariakov & Ofman (2001), Lorna 2003,
Mendoza-Briceño et al. 2004, Dı́az et al. (2002), Dı́az et al. (2004), Dı́az et al. (2006),
Andries et al. 2005a, Andries et al. 2005b, Donnelly et al. 2006, McEwan et al. 2006,
Dymova & Ruderman 2006, Erdélyi & Verth (2007), Dı́az et al. (2007), Verth et al. 2007).
Some of the effects that arise are shifts in the periods and modification in the spatial
structure of the modes. In oscillations of prominence threads, these effects are also present
if we compare them with a homogeneous loop filled with prominence material, since the
existence of a evacuated part of the loop in the footpoints is a type of structuring along
the magnetic field. However, we are interested in studying the differences between models
with a jump compared with models with smoothed variations of density.

Figure 1. Sketch showing a simple equilibrium configuration for a prominence thread, which
consists in a straight magnetic flux tube embedded in coronal plasma. The central part of the
tube is filled with prominence material, while the rest of it is filled with coronal one. We are
interested in studying a smooth transition along the magnetic field

2. Equilibrium model
Following the idea outlined above, we model a thread as a long flux tube with cylindri-

cal geometry and line-tied to the photosphere at both sides. The flux tube has a length
2L, which is believed to be much longer than the observed thread length, named 2W . The
tube has a radius a. The magnetic field B0 = B0ez is assumed to be uniform throughout
the medium and is aligned with the thread. The equilibrium density ρ0 is structured both
radially and longitudinally. Gravitational effects are ignored. We have included a sketch
of this equilibrium configuration in Fig. 1.

Next is to choose a density profile that models a prominence thread. The most simple
one is a slab profile with a dense density plateau in the center and a jump discontinuity
at the thread limits z = ±W :

ρ0(0, z) =
{

ρp |z| � W
ρc W < |z| � L

(2.1)

This profile has the advantage of being amenable to an analytical solution, but numer-
ically it is harder to solve directly, specially for finite differences methods. Therefore, it
might be convenient to study also a smooth profile that resembles the slab, for example,
one based on the Fermi-Dirac distribution:

ρ0(0, z) = ρc

[
1 + (ρp/ρc − 1)

exp [−W/δ] + 1
exp [(|z| − W )/δ] + 1

]
, (2.2)

https://doi.org/10.1017/S174392130801483X Published online by Cambridge University Press

https://doi.org/10.1017/S174392130801483X


Longitudinal structuring on prominence threads 169

where δ is a measure of the transition region width. In the limit δ → 0 the slab profile in
Eq. (2.1) is recovered, but for a finite δ the profile smoothly varies between the prominence
and coronal region of the tube. These profiles have been represented in Fig. 2 for a range
of transition region widths.

Figure 2. Density profiles along the magnetic field described by Eq. (2.2) for W/L=0.1 and
ρp/ρc = 10. The dotted line has δ = 0.1, the solid line δ = 0.05 and the dashed line δ = 0.01.

3. Wave equations
The ideal adiabatic MHD equations (neglecting gravitational effects) reduce to the

following system of coupled partial differential equations Dı́az et al. (2002):

∂pT

∂t
= ρ0c

2
A(z)

∂vz

∂z
− ρ0c

2
f (z)∇ · v , (3.1)

ρ0

[
∂2

∂t2
− c2

A(z)
∂2

∂z2

]
v⊥ = −∇⊥

[
∂pT

∂t

]
, (3.2)

ρ0

[
∂2

∂t2
− c2

T(z)
∂2

∂z2

]
vz = −c2

s (z)
c2
f (z)

∂2pT

∂z∂t
, (3.3)

where cA(z) = B0/
√

µρ0(z) and cs(z) =
√

γP0/ρ0(z) are the Alfvén and sound speeds,
cT

−2 = c−2
A + cs

−2 determines the tube speed cT, and c2
f = c2

A + c2
s . The subscript ‘⊥’

denotes components perpendicular to the equilibrium magnetic field, so the perturbed
flow is v = v⊥ + vzez . The perturbed total pressure is pT. Notice that in the derivation
of these equations the magnetic field and gas pressure have been assumed to be constant
in the z-direction, so the characteristic speeds depend only on the z-coordinate because
of the equilibrium density ρ0(z). Eqs. (3.1)–(3.3) apply in each region of the flux tube
and its environment.

The system of equations in Eqs. (3.1)–(3.3) are difficult to solve analytically. Therefore,
we can gain a lot of information by exploring situations in which the MHD modes are
decoupled. In prominence threads, the supporting magnetic arcade is long compared with
the thread thickness, while under prominence conditions the plasma beta is β ≈ 10−2
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(and β ≈ 10−3 in typical coronal conditions), making the low-beta plasma approximation
quite accurate. Under these conditions we obtain from Eqs. (3.1)–(3.3) (Dı́az et al. (2002))

[
∂2

∂t2
− c2

A(z)∇2
]

pT = 0 , (3.4)

which must be solved together with Eq. (3.2) for obtaining the normal components of the
perturbed velocity. This equation can be solved analytically (see Dı́az et al. (2001), Dı́az
et al. (2002) for a more detailed discussion). This is done by using separation of variables
in the form of

pT(r, θ, z, t) =
∞∑

s=0

us(r) Φ(ϕ) hs(z) eiωt , (3.5)

We can extract information about the fast mode oscillation by taking into account that
the tube radius is much smaller than its length, that is a � L (Dymova & Ruderman
2006). Thus, from Eq. (3.2) we obtain

[
∂2

∂t2
− c2

k(z)
∂2

∂z2

]
vr = 0. (3.6)

where ck is the kink speed, defined as

ck (z) =
[

2B2
0

µ (ρi (z) + ρe (z))

]1/2

, (3.7)

in a tube with internal plasma density ρi(z) and environment density ρe(z).
It should be remarked that Eq. (3.7) is valid for the kink and fluting modes, but the

sausage mode does not propagate in the thin tube limit, and therefore is not described
by that equation. The remaining modes (kink and fluting) have very similar frequencies,
so in this approximation their frequencies and z-dependent parts are the same.

4. Comparison between a smooth profile and a profile with a jump
We can solve Eq. (3.7) for the profiles in Eqs. (2.1) and (2.2). The solution for the slab

profile can be obtained analytically, while the one for the smooth profile can be obtained
with analytical approximations or by numerical methods.

First, we are interested in the properties of the modes for the slab profile in Eq. (2.1).
The frequencies are represented in Fig. 3. It is interesting to notice the avoided cross-
ings, similar to the results in Dı́az et al. (2007) for coronal loops with structure along
the field line, but in coronal loops the density enhancement is assumed to be near the
footpoints, while in prominence threads the density enhancement is located at the top of
the structure. Figure 3 can be compared with the plots in Dı́az et al. (2002) for a thread
with finite thickness, so we see that the frequencies are accurately reproduced with our
approximations.

Next we solve Eq. (3.7) for the profile in Eqs. (2.2). Since we are interested in comparing
the results with the slab profile, we choose a fixed width and density contrast between
the thread and the corona and plot the effect of changing the smoothness of the profile
varying δ. The result is represented in Fig. 4. We can see that when δ → 0 the results for
a slab profile are recovered (Fig. 3). However, in the expected range of this parameter,
which should be around 0.05 or less in prominence threads (since the transition seen in
high-resolution images is sharp Lin 2004, Lin et al. 2005, Lin et al. 2007), the changes
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Figure 3. Solution to Eq. (3.7) for a slab profile of width W/L = 0.1 and density contrast
ρp/ρc . Even modes are represented in solid lines, while odd modes are represented in dashed
lines. Only the six lower modes have been plotted.

in the frequencies are small, specially compared with those produced by changing other
parameters of the model, such as the thread width W or its density contrast with the
corona.

Figure 4. Numerical solution to Eq. (3.7) as a function of the transition layer thickness δ for
the profile described in Eq. (4) of width W/L = 0.1 and density contrast ρp/ρc = 100. Even
modes are represented in solid lines, while odd modes are represented in dashed lines. Only the
four lower modes have been plotted.

5. Conclusions
We have studied the effect of a transition layer of thickness δ in the fast modes of a

prominence thread. First of all, a differential equation was found for the fast kink modes
using the low-beta plasma approximation and the fact that the thread width is much
less than the length of the supporting magnetic arcade. With these assumptions the
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fast mode is governed by Eq. (3.7), with no damping or coupling due to the addition of
structuring.

Next we have compared the frequency of the modes of a smoothed profile with those
with a jump discontinuity at the end of the thread dense region. This type of discontinu-
ous models have been previously considered and their results match reasonably well with
current observational reports of thread oscillations (Dı́az et al. (2002)). We conclude that
the addition of these transition layers does not affect significantly the frequencies and
periods of the fast modes for the expected values of the layer thickness δ. Unfortunately,
it is difficult to use as a tool for coronal seismology, since small variations in other pa-
rameters, such as the density contrast or the thickness of the thread, can outweigh the
effect of the longitudinal structuring. Therefore, for more complicated studies, such as
the introduction of a transition layer across the thread or the interaction of bunches of
these threads, the effect of the longitudinal transition can be regarded as a secondary
effect.
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