
5

Probabilistic Couplings from Program Logics
Gilles Barthe

MPI For Security and Privacy, Bochum & IMDEA Software Institute, Madrid
Justin Hsu

University of Wisconsin–Madison

Abstract: Proof by coupling is a powerful technique for proving properties about
pairs of probabilistic processes. Originally developed by probability theorists, this
proof technique has recently found surprising applications in formal verification,
enabling clean proofs of probabilistic relational properties. We show that the
probabilistic program logic pRHL is a formal logic for proofs by coupling, with
logical proof rules capturing reasoning steps in traditional coupling proofs. This
connection gives a new method to formally verify probabilistic properties.

5.1 Introduction

Formal verification of probabilistic programs is an active area of research which aims
to reason about safety and liveness properties of probabilistic computations. Many
important properties for probabilistic programs are naturally expressed in terms of
two program executions; for this reason, such properties are called relational. While
there exist established approaches to verify relational properties of deterministic
programs, reasoning about relational properties of probabilistic programs is more
challenging. In this chapter we explore a powerful method called proof by coupling.
This technique—originally developed in probability theory for analyzing Markov
Chains—is surprisingly useful for establishing a broad range of relational properties,
including:

• probabilistic equivalence (also differential privacy): two programs produce
distributions that are equivalent or suitably close from an observer’s point of view.
For instance, differential privacy requires that two similar inputs—say, the private
database and a hypothetical version with one individual’s data omitted—yield
closely related output distributions;

a From Foundations of Probabilistic Programming, edited by Gilles Barthe, Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.

145

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

146 Barthe and Hsu: Probabilistic Couplings from Program Logics

• stochastic domination: one probabilistic program is more likely than another to
produce large outputs;

• convergence (also mixing): the output distributions of two probabilistic loops
approach each other as the loops execute more iterations;

• truthfulness (also Nash equilibrium): an agent’s average utility is larger when
reporting an honest value instead of deviating to a misleading value.

At first glance, relational properties appear to be even harder to establish than
standard, non-relational properties—instead of analyzing a single probabilistic
computation, we now need to deal with two. (Indeed, any property of a single
program can be viewed as a relational property between the target program and the
trivial, do-nothing program.) However, relational properties often relate two highly
similar programs, even comparing the same program on two different inputs. In these
cases, we can leverage a powerful abstraction and an associated proof technique
from probability theory—probabilistic coupling and proof by coupling.
The fundamental observation is that probabilistic relational properties compare

computations in two different worlds, assuming no particular correlation between
random samples. Accordingly, we may freely assume any correlation we like for
the purposes of the proof—a relational property holds (or does not hold) regardless
of which one we pick. For instance, if two programs generate identical output
distributions, this holds whether they share coin flips or take independent samples;
relational properties do not require that the two programs use separate randomness.
By carefully arranging the correlation, we can reason about two executions as if they
were linked in some convenient way.
To take advantage of this freedom,we need someway to design specific correlations

between program executions. In principle, this can be a highly challenging task. The
two runs may take samples from different distributions, and it is unclear exactly how
they can or should share randomness. When the two programs have similar shapes,
however, we can link two computations in a step-by-step fashion. First, correlations
between intermediate samples can be described by probabilistic couplings, joint
distributions over pairs. For example, a valid coupling of two fair coin flips could
specify that the draws take opposite values; the correlated distribution would produce
“(heads, tails)” and “(tails, heads)” with equal probability. A coupling formalizes
what it means to share randomness: a single source of randomness simulates draws
from two distributions. Since randomness can be shared in different ways, two
distributions typically support a variety of distinct couplings.
A proof by coupling, then, describes two correlated executions by piecing together

couplings for corresponding pairs of sampling instructions. In the course of a proof,
we can imagine stepping through the two programs in parallel, selecting couplings
along the way. For instance, if we apply the opposite coupling to link a coin flip in one

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.1 Introduction 147

program with a coin flip in the other, we may assume the samples remain opposite
when analyzing the rest of the programs. By flowing these relations forward from
two initial inputs, a proof by coupling can focus on just pairs of similar executions
as it builds up to a coupling between two output distributions. This is the main
product of the proof: features of the final coupling imply properties about the output
distributions, and hence relational properties about the original programs.
Working in tandem, couplings and proofs by couplings can significantly simplify

probabilistic reasoning in several ways.

• Reduce to one source of randomness. By analyzing two runs as if they shared
a single source of randomness, we can reason about two programs as if they were
one.

• Abstract away probabilities. Proofs by coupling isolate probabilistic reasoning
from the non-probabilistic parts of the proof, which are more straightforward. We
only need to think about probabilistic aspects when we select couplings at the
sampling instructions; throughout the rest of the programs, we can reason purely
in terms of deterministic relations between the two runs.

• Enable compositional, structured reasoning. By focusing on each step of an
algorithm individually and then smoothly combining the results, the coupling
proof technique enables a highly modular style of reasoning guided by the code
of the program.

Proofs by coupling are also surprisingly flexible—many probabilistic relational
properties, including the examples listed above, can be proved in this style. Individual
couplings can also be combined in subtle ways, giving rise to a rich diversity of
coupling proofs.
After reviewing probability theory basics (Section 5.2), we introduce probabilistic

couplings and their key properties (Section 5.3). Then, we present intuition behind
proof by coupling (Section 5.4). To formalize these arguments, we draw a connection
to the program logic pRHL (Barthe et al., 2009). Proofs in the pRHL are formal
proofs by coupling: valid judgments imply the existence of a coupling, and logical
rules describing how to combine couplings to construct new couplings (Section 5.5).
We demonstrate several examples of coupling proofs in the logic (Section 5.6), and
conclude by briefly discussing related lines of work (Section 5.7).

Bibliographic note. This chapter is an updated and expanded version of the first
two chapters of the second author’s PhD thesis (Hsu, 2017).

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

148 Barthe and Hsu: Probabilistic Couplings from Program Logics

5.2 Preliminaries

A discrete probability distribution associates each element of a set with a number
in the unit interval [0,1], representing its probability. In order to model programs
that may not terminate, we work with a slightly more general notion called a
sub-distribution.

Definition 5.1 A (discrete) sub-distribution over a countable set A is a map
μ : A → [0,1] taking each element of A to a numeric weight such that the weights
sum to at most 1: ∑

a∈A
μ(a) ≤ 1.

We write SDistr(A) for the set of all sub-distributions over A. When the weights
sum to 1, we call μ a proper distribution; we write Distr(A) for the set of all proper
distributions over A. The empty or null sub-distribution ⊥ assigns weight 0 to all
elements.

We work with discrete sub-distributions throughout. While this is certainly a
restriction—excluding, for instance, some well-known distributions over the real
numbers—many interesting coupling proofs can already be expressed in our setting.
Our results should mostly carry over to the continuous setting, as couplings are
frequently used on continuous distributions in probability theory, but the general
case introduces measure-theoretic technicalities (e.g., working with integrals rather
than sums, checking sets are measurable, etc.) that would distract from our primary
focus.
We need several concepts and notations related to discrete distributions. First, the

probability of a set S ⊆ A is given by a sum:

μ(S) �
∑
a∈S
μ(a).

The support of a sub-distribution is the set of elements with positive probability:

supp(μ) � {a ∈ A | μ(a) > 0}.

The weight of a sub-distribution is the total probability of all elements:

|μ| �
∑
a∈A
μ(a).

Finally, the expected value of a real-valued function f : A → R over a sub-
distribution μ is

E
μ
[f] � E

a∼μ
[f (a)] �

∑
a∈A

f (a) · μ(a).

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.3 Couplings and liftings: definitions and basic properties 149

Under light assumptions, the expected value is guaranteed to exist (for instance,
when f is a bounded function).
To transform sub-distributions, we can lift a function f : A → B on sets to

a map f � : SDistr(A) → SDistr(B) via f �(μ)(b) � μ(f −1(b)). For example, let
p1 : A1 × A2 → A1 and p2 : A1 × A2 → A2 be the first and second projections
from a pair. The corresponding probabilistic projections π1 : SDistr(A1 × A2) →
SDistr(A1) and π2 : SDistr(A1 × A2) → SDistr(A2) are defined by

π1(μ)(a1) � p�1(μ)(a1) =
∑

a2∈A2

μ(a1,a2)

π2(μ)(a2) � p�2(μ)(a2) =
∑

a1∈A1

μ(a1,a2).

We call a sub-distribution μ over pairs a joint sub-distribution, and the projected
sub-distributions π1(μ) and π2(μ) the first and second marginals, respectively.

5.3 Couplings and liftings: definitions and basic properties

A probabilistic coupling models two distributions with a single joint distribution.

Definition 5.2 Given μ1, μ2 sub-distributions over A1 and A2, a sub-distribution
μ over pairs A1 × A2 is a coupling for (μ1, μ2) if π1(μ) = μ1 and π2(μ) = μ2.

Generally, couplings are not unique—different witnesses represent different ways
to share randomness between two distributions. To give a few examples, we first
introduce some standard distributions.

Definition 5.3 Let A be a finite, non-empty set. The uniform distribution over A,
written Unif(A), assigns probability 1/|A| to each element. We write Flip for the
uniform distribution over the set {0,1}. This can be viewed as the distribution of a
fair coin flip.

Example 5.4 (Couplings from bijections) We can give two distinct couplings of
(Flip,Flip):

Identity coupling:

μid(a1,a2) �
{
1/2 : a1 = a2
0 : otherwise.

Negation coupling:

μ¬(a1,a2) �
{
1/2 : a1 = 1 − a2
0 : otherwise.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

150 Barthe and Hsu: Probabilistic Couplings from Program Logics

More generally, any bijection f : A → A yields a coupling of (Unif(A),Unif(A)):

μ f (a1,a2) �
{
1/|A| : f (a1) = a2
0 : otherwise.

This coupling matches samples: each sample a from the first distribution is
paired with a corresponding sample f (a) from the second distribution. To take two
correlated samples from this coupling, we can imagine first sampling from the first
distribution, and then applying f to produce a sample for the second distribution.
When f is a bijection, this gives a valid coupling for two uniform distributions:
viewed separately, both the first and second correlated samples are distributed
uniformly.
For more general distributions, if a1 and a2 have different probabilities under
μ1 and μ2 then the correlated distribution cannot return (a1,−) and (−,a2) with
equal probabilities; for instance, a bijection with f (a1) = a2 would not give a valid
coupling. However, general distributions can be coupled in other ways.

Example 5.5 Let μ be a sub-distribution overA. The identity coupling of (μ, μ) is

μid(a1,a2) �
{
μ(a) : a1 = a2 = a

0 : otherwise.

Sampling from this coupling yields a pair of equal values.

Example 5.6 Let μ1, μ2 be sub-distributions overA1 andA2. The independent or
trivial coupling is

μ×(a1,a2) � μ1(a1) · μ2(a2).

This coupling models μ1 and μ2 as independent distributions: sampling from this
coupling is equivalent to first sampling from μ1 and then pairing with an independent
draw from μ2. The coupled distributions must be proper in order to ensure the
marginal conditions.

Since any two proper distributions can be coupled by the trivial coupling, the mere
existence of a coupling yields little information. Couplings are more useful when
the joint distribution satisfies additional conditions, for instance when all elements
in the support satisfy some property.

Definition 5.7 (Lifting) Let μ1, μ2 be sub-distributions over A1 and A2, and let
R ⊆ A1 × A2 be a relation. A sub-distribution μ over pairs A1 × A2 is a witness
for the R-lifting of (μ1, μ2) if:
(i) μ is a coupling for (μ1, μ2), and
(ii) supp(μ) ⊆ R.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.3 Couplings and liftings: definitions and basic properties 151

If there exists μ satisfying these two conditions, we say μ1 and μ2 are related by the
lifting of R and write

μ1 R� μ2.

We typically express R using set notation, i.e.,

R = {(a1,a2) ∈ A1 × A2 | Φ(a1,a2)}

where Φ is some logical formula. When the sets A1 and A2 are clear from the
context, we leave them implicit and just write Φ, sometimes enclosed by parentheses
(Φ) for clarity.

Example 5.8 Many of the couplings we saw before are more precisely described
as liftings.

Bijection coupling. For a bijection f : A → A, the coupling in Theorem 5.4
witnesses the lifting

Unif(A) G�
f

Unif(A).

where the relation G f � {(a1,a2) | f (a1) = a2} models the graph of f .
Identity coupling. The coupling in Theorem 5.5 witnesses the lifting

μ (=)� μ.

Trivial coupling. The coupling in Theorem 5.6 witnesses the lifting

μ1 �� μ2,

where � � A1 × A2 is the trivial relation relating all pairs of elements.

5.3.1 Useful consequences of couplings and liftings

A coupling μ between (μ1, μ2) can be used for proving probabilistic properties about
μ1 and μ2. Surprisingly, many properties already follow from the existence of a
lifting from some relation R—no analysis of the coupling distribution μ is required.
First of all, two coupled distributions have equal weight.

Proposition 5.9 (Equality of weight) Suppose μ1 and μ2 are sub-distributions
over A such that there exists a coupling μ of μ1 and μ2. Then |μ1 | = |μ2 |.

This follows because μ1 and μ2 are both projections of μ, and projections preserve
weight. Couplings can also show that two distributions are equal.

Proposition 5.10 (Equality of distributions) Suppose μ1 and μ2 are two sub-
distributions over A. Then μ1 = μ2 if and only if μ1 (=)� μ2.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

152 Barthe and Hsu: Probabilistic Couplings from Program Logics

Proof For the forward direction, define μ(a,a) � μ1(a) = μ2(a) and μ(a1,a2) � 0
otherwise. Evidently, μ has support in the equality relation (=) and also has the
desired marginals: π1(μ) = μ1 and π2(μ) = μ2. Thus μ is a witness to the desired
lifting.
For the reverse direction, let the witness be μ. By the support condition, π1(μ)(a) =
π2(μ)(a) for every a ∈ A. Since the left and right sides are equal to μ1(a) and μ2(a)
respectively by the marginal conditions, μ1(a) = μ2(a) for every a. So, μ1 and μ2
are equal. �

In some cases we can show results in the converse direction: if a property of two
distributions holds, then there exists a particular lifting. To give some examples, we
first introduce a powerful equivalence due to Strassen (1965).

Theorem 5.11 Let μ1, μ2 be sub-distributions over A1 and A2, and let R be a
binary relation over A1 and A2. Then μ1 R� μ2 implies μ1(S1) ≤ μ2(R(S1)) for
every subset S1 ⊆ A1, where R(S1) ⊆ A2 is the image of S1 under R:

R(S1) � {a2 ∈ A2 | ∃a1 ∈ A1, (a1,a2) ∈ R}.

(For instance, if A1 = A2 = N and R is the relation ≤, then R(S) is the set of all
natural numbers larger than minS.) The converse holds if μ1 and μ2 have equal
weight.

Strassen proved Theorem 5.11 for continuous (proper) distributions using deep
results from probability theory. In our discrete setting, there is an elementary proof
by the maximum flow-minimum cut theorem (see, e.g., (Kleinberg and Tardos,
2005)). For now, we use this theorem to illustrate a few more useful consequences of
liftings. First, couplings can bound the probability of an event in the first distribution
by the probability of an event in the second distribution.

Proposition 5.12 Suppose μ1, μ2 are sub-distributions over A1 and A2 respec-
tively, and consider two subsets S1 ⊆ A1 and S2 ⊆ A2. Then,

μ1 {(a1,a2) | a1 ∈ S1 → a2 ∈ S2}� μ2

implies μ1(S1) ≤ μ2(S2). The converse holds when μ1 and μ2 have equal weight.

Proof Let R be the relation {(a1,a2) | a1 ∈ S1 → a2 ∈ S2}. The forward
direction is immediate by Theorem 5.11, taking the subset S1. For the reverse
direction, consider any non-empty subset T1 ⊆ A1. If T1 is not contained in S1, then
R(T1) = A2 and μ1(T1) ≤ μ2(R(T1)) since μ1 and μ2 have equal weight. Otherwise
R(T1) = S2, so

μ1(T1) ≤ μ1(S1) ≤ μ2(S2) = μ2(R(T1)).

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.3 Couplings and liftings: definitions and basic properties 153

Theorem 5.11 gives the desired lifting:

μ1 {(a1,a2) | a1 ∈ S1 → a2 ∈ S2}� μ2. �

A slightly more subtle consequence is stochastic domination, an order on distri-
butions over an ordered set.

Definition 5.13 Let (A,≤A) be a partially ordered set. For every k ∈ A, let
k ↑� {a ∈ A | k ≤A a}. Suppose μ1, μ2 are sub-distributions over A. We say μ2
stochastically dominates μ1, denoted μ1 ≤sd μ2, if

μ1(k ↑) ≤ μ2(k ↑)

for every k ∈ A.

For an example of stochastic domination, take distributions over the natural
numbers N with the usual order and μ1 places weight 1 on 0 while μ2 places weight
1 on 1.
Stochastic domination is precisely the probabilistic lifting of the order relation.

Proposition 5.14 Suppose μ1, μ2 are sub-distributions over a set A with a partial
order ≤A . Then μ1 (≤A)� μ2 implies μ1 ≤sd μ2. The converse also holds when μ1
and μ2 have equal weight, as long as the upwards closed subsets of A are ∅, A and
k ↑ with k ∈ A (e.g., A = N or Z with the usual order).

Proof Let R � (≤A). For the forward direction, Theorem 5.11 gives

μ1(k ↑) ≤ μ2(R(k ↑)) = μ2(k ↑).

This holds for all k ∈ A, establishing μ1 ≤sd μ2.
For the converse, suppose μ1 ≤sd μ2 and μ1 and μ2 have equal weights, and let

S ⊆ A be any subset. Note that R(S) is upwards closed so we proceed by case
analysis on R(S). If R(S) = ∅, then S is also empty and μ1(S) ≤ μ2(R(S)). If
R(S) = A, then μ1(S) ≤ μ2(R(S)) since μ1 and μ2 have equal weights. Finally, if
R(S) is k ↑, and we have

μ1(S) ≤ μ1(R(S)) = μ1(k ↑) ≤ μ2(k ↑) = μ2(R(S)),

where the middle inequality is by stochastic domination. Theorem 5.11 implies
μ1 (≤A)� μ2. �

Finally, a typical application of coupling proofs is showing that two distributions
are close together.

Definition 5.15 Let μ1, μ2 be sub-distributions overA. The total variation distance

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

154 Barthe and Hsu: Probabilistic Couplings from Program Logics

(also known as TV-distance or statistical distance) between μ1 and μ2 is defined as

dtv (μ1, μ2) �
1
2

∑
a∈A

|μ1(a) − μ2(a)| = max
S⊆A

|μ1(S) − μ2(S)|.

In particular, the total variation distance bounds the difference in probabilities of
any event.

Couplings are closely related to TV-distance, as captured by the following
theorem. Theorem 5.16 is the fundamental result behind the so-called coupling
method (Aldous, 1983), a technique to show two probabilistic processes converge
by constructing a coupling that causes the processes to become equal with high
probability. Unlike the previous facts, the target property about μ1 and μ2 does not
directly follow from the existence of a lifting—we need more detailed information
about the coupling μ.

Theorem 5.16 (see, e.g., Lindvall (2002); Levin et al. (2009)) Let μ1 and μ2 be
sub-distributions over A and let μ be a coupling. Then

dtv (μ1, μ2) ≤ Pr
(a1,a2)∼μ

[a1 � a2].

In particular, if S ⊆ A × A and μ witnesses

μ1 {(a1,a2) ∈ A × A | (a1,a2) ∈ S → a1 = a2}� μ2,

then their TV-distance is bounded by the probability of the complement of S w.r.t. μ:

dtv (μ1, μ2) ≤ Pr
(a1,a2)∼μ

[(a1,a2) � S].

Moreover, there exists a coupling μ, called maximal coupling, such that

dtv (μ1, μ2) = Pr
(a1,a2)∼μ

[a1 � a2].

Proof We only prove the inequality. Let μ be a coupling of μ1 and μ2. We have:

dtv (μ1, μ2)

=max
P

���� Pra1∼μ1
[a1 ∈ P] − Pr

a2∼μ2
[a2 ∈ P]

����
=max

P

���� Pr
(a1,a2)∼μ

[a1 ∈ P] − Pr
(a1,a2)∼μ

[a2 ∈ P]
����

=max
P

���� Pr
(a1,a2)∼μ

[a1 ∈ P ∧ a1 = a2] + Pr
(a1,a2)∼μ

[a1 ∈ P ∧ a1 � a2]

− Pr
(a1,a2)∼μ

[a2 ∈ P ∧ a1 = a2] − Pr
(a1,a2)∼μ

[a2 ∈ P ∧ a1 � a2]
����

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.3 Couplings and liftings: definitions and basic properties 155

=max
P

���� Pr
(a1,a2)∼μ

[a1 ∈ P ∧ a1 � a2] − Pr
(a1,a2)∼μ

[a2 ∈ P ∧ a1 � a2]
����

≤max
P

(max(Pr
(a1,a2)∼μ

[a1 ∈ P ∧ a1 � a2], Pr
(a1,a2)∼μ

[a2 ∈ P ∧ a1 � a2]))

≤ Pr
(a1,a2)∼μ

[a1 � a2]

The proof is similar when μ witnesses

μ1 {(a1,a2) ∈ A × A | (a1,a2) ∈ S → a1 = a2}� μ2

by case analysis on (a1,a2) ∈ S rather than a1 = a2. �

5.3.2 Composition properties

Couplings and liftings are closed under various notions of composition. Most
important for our purposes will be sequential composition.

Theorem 5.17 Let μ ∈ Distr(A1 × A2) witness μ1 R� μ2, where μ1 ∈ Distr(A1)
and μ2 ∈ Distr(A2) and R ⊆ A1 × A2. Let M : A1 × A2 → Distr(B1 × B2)
such that M(a1,a2) witnesses for M1(a1) S� M2(a2) for every (a1,a2) ∈ R. Then
bind(μ,M) witnesses

bind(μ1,M1) S� bind(μ2,M2).

While this theorem may appear a bit cryptic at this point, it will play a key role
in later developments—informally, this result enables us to build a coupling for a
sequential composition of two processes by constructing a coupling for each piece.

5.3.3 Couplings and liftings for Markov chains

The previous results suggest an approach to proving properties of two distributions:
demonstrate there exists a coupling of a particular form. This approach is indirect,
but surprisingly fruitful, when employed to prove properties about probabilistic
processes modelled as discrete-time Markov chains. Recall that a discrete-time
Markov chain is given by a state space A, which we assume to be discrete, by an
initial distribution μ ∈ Distr(A) and by a transition map t : A → Distr(A).
Couplings and R-liftings naturally extend to (discrete-time) Markov chains.

Definition 5.18 A coupling between two Markov chains given by initial sub-
distributions μ1 and μ2 and transition functions t1 and t2 is aMarkov chain given by an
initial sub-distributions μ and a joint transition function t : (A×A) → Distr(A×A)
such that:

• μ is a coupling for μ1 and μ2;

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

156 Barthe and Hsu: Probabilistic Couplings from Program Logics

• for every x1 and x2, t(x1, x2) is a coupling for t1(x1) and t2(x2).

The notion of R-lifting extends similarly.

Definition 5.19 Let R ⊆ A1 × A2 be a relation. A R-lifting between two Markov
chains given by initial sub-distributions μ1 and μ2 and transition functions t1 and
t2 is a Markov chain given by an initial sub-distributions μ and a joint transition
function t : (A × A) → Distr(A × A) such that:

• μ is a R-lifting for μ1 and μ2;
• for every (x1, x2) ∈ R, t(x1, x2) is a R-lifting for t1(x1) and t2(x2).

The definition of R-lifting naturally extends to families of relations (Ri)i∈N.
In this case one requires that the sub-distributions obtained by iterating k times
the transition functions on the initial sub-distributions are related by Rk . Other
definitions relax these conditions; for instance, in shift couplings the relation needs
not be pointwise, i.e. one can relate the two processes at different steps k1 and k2.

5.4 Proof by coupling

Finding appropriate couplings requires ingenuity and is often the main intellectual
challenge when carrying out a proof by coupling. Given a conjecture, how are we
supposed to find a witness distribution with the desired properties? To address
this challenge, probability theorists have developed a powerful proof technique
called proof by coupling. We close this section with an informal explanation and an
example of the proof technique in action.
Given two probabilistic processes, a proof by coupling builds a coupling for the

output distributions by coupling intermediate samples. In a bit more detail, we
imagine stepping through the processes in parallel, one step at a time, starting from
two inputs, and decoupling the transition function into a random sampling and
a deterministic computation. For the samplings, we pick a valid coupling for the
sampled distributions. The selected couplings induce a relation on samples, which
we can assume when analyzing the rest of the computation (i.e. the deterministic
part). For instance, by selecting couplings for earlier samples carefully, we may be
able to assume the samplings yield equal values.

Example 5.20 Consider a probabilistic process that tosses a fair coin T times and
returns the number of heads. If μ1, μ2 are the output distributions from running this
process for T = T1,T2 iterations respectively and T1 ≤ T2, then μ1 ≤sd μ2.

Proof by coupling For the first T1 iterations, couple the coin flips to be equal—this
ensures that after the first T1 iterations, the coupled counts are equal. The remaining
T2 − T1 coin flips in the second run can only increase the second count, while

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.5 A formal logic for coupling proofs 157

preserving the first count. Therefore under the coupling, the first count is no more
than the second count at termination, establishing μ1 ≤sd μ2. �

For readers unfamiliar with these proofs, this argument may appear bewildering.
The coupling is constructed implicitly, and some of the steps are mysterious. To
clarify such proofs, a natural idea is to design a formal logic describing coupling
proofs. Somewhat surprisingly, the logic we are looking for was already proposed in
the formal verification literature, originally for verifying security of cryptographic
constructions.

5.5 A formal logic for coupling proofs

We will work with the logic pRHL (probabilistic Relational Hoare Logic) proposed
by Barthe et al. (2009). Before detailing its connection to coupling proofs, we
provide a brief introduction to program logics.

5.5.1 Program logics: A brief primer

A logic consists of a collection of formulas, also known as judgments, and an
interpretation describing what it means—in typical, standard mathematics—for
judgments to be true (valid). While it is possible to prove judgments valid directly by
using regular mathematical arguments, this is often inconvenient as the interpretation
may be quite complicated. Instead, many logics provide a proof system, a set of
logical rules describing how to combine known judgments (the premises) to prove
a new judgment (the conclusion). Each rule represents a single step in a formal
proof. Starting from judgments given by rules with no premises (axioms), we can
successively apply rules to prove new judgments, building a tree-shaped derivation
culminating in a single judgment. To ensure that this final judgment is valid, each
logical rule should be sound: if the premises are valid, then so is the conclusion.
Soundness is a basic property, typically one of the first results to be proved about a
logic.

Program logics were first introduced by Hoare (1969), building on earlier ideas
by Floyd (1967); they are also called Floyd-Hoare logics. These logics are really
two logics in one: the assertion logic, where formulas describe program states, and
the program logic proper, where judgments describe program behavior. A judgment
in the program logic consists of three parts: a program c and two assertions Φ and Ψ
from the assertion logic. The pre-condition Φ describes the initial conditions before
executing c (for instance, assumptions about the input), while the post-condition Ψ
describes the final conditions after executing c (for instance, properties of the output).
Hoare (1969) proposed the original logical rules, which construct a judgment for a

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

158 Barthe and Hsu: Probabilistic Couplings from Program Logics

program by combining judgments for its sub-programs. This compositional style of
reasoning is a hallmark of program logics.
By varying the interpretation of judgments, the assertion logic, and the logical

rules, Floyd-Hoare logics can establish a variety of properties about different kinds
of imperative programs. Notable extensions reason about non-determinism (Dijkstra,
1976), pointers and memory allocation (O’Hearn et al., 2001; Reynolds, 2001, 2002),
concurrency (O’Hearn, 2007), and more. (Readers should consult a survey for a
more comprehensive account of Floyd-Hoare logic (Apt, 1981, 1983; Jones, 2003).)
In this tradition, Barthe et al. (2009) introduced the logic pRHL targeting security

properties in cryptography. Compared to standard program logics, there are two
twists: each judgment describes two programs,1 and programs can use random
sampling. In short, pRHL is a probabilistic Relational Hoare Logic. Judgments
encode probabilistic relational properties of two programs, where a post-condition
describes a probabilistic liftings between two output distributions. More importantly,
the proof rules represent different ways to combine liftings, formalizing various
steps in coupling proofs. Accordingly, we will interpret pRHL as a formal logic for
proofs by coupling.
To build up to this connection, we first provide a brief overview of a core version of

pRHL, reviewing the programming language, the judgments and their interpretation,
and the logical rules.

5.5.2 The logic pRHL: the programming language

Programs in pRHL are defined in terms of expressions E including constants, like
the integers and booleans, as well as combinations of constants and variables with
primitive operations, like addition and subtraction. We suppose E also includes
terms for basic datatypes, like tuples and lists. Concretely, E is inductively defined
by the following grammar:

E � X | L (variables)
| Z | E + E | E − E | E · E (numbers)
| B | E ∧ E | E ∨ E | ¬E | E = E | E < E

(booleans)
| (E, . . . ,E) | πi(E) | [] | E :: E | O(E)

(tuples, lists, operations)

Expressions can mention two classes of variables: a countable set X of program
variables, which can be modified by the program, and a set L of logical variables,
1 Logics reasoning about two programs are known as relational program logics and were first considered by
Benton (2004); see Section 5.7 for a discussion of other prior systems.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.5 A formal logic for coupling proofs 159

which model fixed parameters. Expressions are typed as numbers, booleans, tuples,
or lists, and primitive operations O have typed signatures; we consider only well-
typed expressions throughout. The expressions (E, . . . ,E) and πi(E) construct and
project from a tuple, respectively; [] is the empty list, and E :: E adds an element
to the head of a list. We typically use the letter e for expressions, x, y, z, . . . for
program variables, and lower-case Greek letters (α, β, . . .) and capital Roman letters
(N,M, . . .) for logical variables.
We writeV for the countable set of values, including integers, booleans, tuples,

finite lists, etc. We can interpret expressions given maps from variables and logical
variables to values.

Definition 5.21 Program states are memories, maps X → V; we usually write m
for a memory and State for the set of memories. Logical contexts are maps L → V;
we usually write ρ for a logical context.

We interpret an expression e as a function [[e]]ρ : State → V in the usual way,
for instance:

[[e1 + e2]]ρm � [[e1]]ρm + [[e2]]ρm.

Likewise, we interpret primitive operations o as functions [[o]]ρ : V → V, so that

[[o(e)]]ρm � [[o]]ρ([[e]]ρm).

We fix a setDE of distribution expressions to model primitive distributions that our
programs can sample from. For simplicity, we suppose for now that each distribution
expression d is interpreted as a uniform distribution over a finite set. So, we have
the coin flip and uniform distributions:

DE � Flip | Unif(E)

where E is a list, representing the space of samples. We will introduce other
primitive distributions as needed. To interpret distribution expressions, we define
[[d]]ρ : State → Distr(V); for instance,

[[Unif(e)]]ρm � U([[e]]ρm)

whereU(S) is the mathematical uniform distribution over a set S.
Now let’s see the programming language. We work with a standard imperative

language with random sampling. The programs, also called commands or statements,
are defined inductively:

C � skip (no-op)
| X ← E (assignment)
| X $← DE (sampling)

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

160 Barthe and Hsu: Probabilistic Couplings from Program Logics

| C; C (sequencing)
| if E then C else C (conditional)
| while E do C (loop)

We assume throughout that programs are well-typed; for instance, the guard expres-
sions in conditionals and loops must be boolean.
We interpret each command as a mathematical function from states to sub-

distributions over output states; this function is known as the semantics of a
command. Since the set of program variables and the set of values are countable,
the set of states is also countable so sub-distributions over states are discrete. To
interpret commands, we use two basic constructions on sub-distributions.

Definition 5.22 The function unit : A → SDistr(A) maps every element a ∈ A
to the sub-distribution that places probability 1 on a. The functionbind : SDistr(A)×
(A → SDistr(B)) → SDistr(B) is defined by

bind(μ, f)(b) �
∑
a∈A
μ(a) · f (a)(b).

Intuitively, bind applies a randomized function on a distribution over inputs.

We use a discrete version of the semantics considered by Kozen (1981), presented
in Fig. 5.1; we write m[x �→ v] for the memory m with variable x updated to hold v,
and a �→ b(a) for the function mapping a to b(a). The most complicated case is for
loops. The sub-distribution μ(i)(m) models executions that exit after entering the
loop body at most i times, starting from initial memory m. For the base case i = 0,
the sub-distribution either returns m with probability 1 when the guard is false and
the loop exits immediately, or returns the null sub-distribution ⊥ when the guard is
true. The cases i > 0 are defined recursively, by unrolling the loop.
Note that μ(i) are increasing in i: μ(i)(m) ≤ μ(j)(m) for all m ∈ State and i ≤ j. In

particular, the weights of the sub-distributions are increasing. Since the weights are
at most 1, the approximants converge to a sub-distribution as i tends to infinity by
the monotone convergence theorem (see, e.g., Rudin (1976, Theorem 11.28), taking
the discrete counting measure over State).

5.5.3 The logic pRHL: judgments and validity

The program logic pRHL features judgments of the following form:

c1 ∼ c2 : Φ =⇒ Ψ

Here, c1 and c2 are commands and Φ and Ψ are predicates on pairs of memories. To
describe the inputs and outputs of c1 and c2, each predicate can mention two copies

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.5 A formal logic for coupling proofs 161

[[skip]]ρm � unit(m)
[[x ← e]]ρm � unit(m[x �→ [[e]]ρm])
[[x $← d]]ρm � bind([[d]]ρm, v �→ unit(m[x �→ v]))

[[c; c′]]ρm � bind([[c]]ρm, [[c′]]ρ)

[[if e then c else c′]]ρm �
{
[[c]]ρm : [[e]]ρm = true
[[c′]]ρm : [[e]]ρm = false

[[while e do c]]ρm � lim
i→∞
μ(i)(m)

μ(i)(m) �
⎧⎪⎪⎨⎪⎪⎩
⊥ : i = 0 ∧ [[e]]ρm = true
unit(m) : i = 0 ∧ [[e]]ρm = false
bind([[if e then c]]ρm, μ(i−1)) : i > 0

Figure 5.1 Semantics of programs

x〈1〉, x〈2〉 of each program variable x; these tagged variables refer to the value of x
in the executions of c1 and c2 respectively.

Definition 5.23 Let X〈1〉 and X〈2〉 be the sets of tagged variables, finite sets of
variable names tagged with 〈1〉 or 〈2〉 respectively:

X〈1〉 � {x〈1〉 | x ∈ X} and X〈2〉 � {x〈2〉 | x ∈ X}.

Let State〈1〉 and State〈2〉 be the sets of tagged memories, maps from tagged
variables to values:

State〈1〉 � X〈1〉 → V and State〈2〉 � X〈2〉 → V .

Let State× be the set of product memories, which combine two tagged memories:

State× � X〈1〉 1 X〈2〉 → V .

For notational convenience we identify State× with pairs of memories State〈1〉 ×
State〈2〉; for m1 ∈ State〈1〉 and m2 ∈ State〈2〉, we write (m1,m2) for the product
memory and we use the usual projections on pairs to extract untagged memories
from the product memory:

p1(m1,m2) � |m1 | and p2(m1,m2) � |m2 |,

where the memory |m| ∈ State has all variables in X. For commands c and
expressions e with variables in X, we write c〈1〉, c〈2〉 and e〈1〉, e〈2〉 for the
corresponding tagged commands and tagged expressions with variables in X〈1〉 and
X〈2〉.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

162 Barthe and Hsu: Probabilistic Couplings from Program Logics

We consider a set P of predicates (assertions) from first-order logic defined by
the following grammar:

P � E〈1/2〉 = E〈1/2〉 | E〈1/2〉 < E〈1/2〉 | E〈1/2〉 ∈ E〈1/2〉
| � | ⊥ | O(E〈1/2〉, . . . ,E〈1/2〉) (predicates)
| P ∧ P | P ∨ P | ¬P | P → P | ∀L ∈ Z, P | ∃L ∈ Z, P

(first-order formulas)

We typically use capital Greek letters (Φ,Ψ,Θ,Ξ, . . .) for predicates. E〈1/2〉 denotes
an expression where program variables are tagged with 〈1〉 or 〈2〉; tags may be
mixed within an expression. We consider the usual binary predicates {=, <,∈, . . . }
where e ∈ e′ means e is a member of the list e′, and we take the always-true and
always-false predicates � and ⊥, and a set O of other predicates. Predicates can be
combined using the usual connectives {∧,∨,¬,→} and can quantify over first-order
types (e.g., the integers, tuples, etc.). We will often interpret a boolean expression e
as the predicate e = true.
Predicates are interpreted as sets of product memories.

Definition 5.24 Let Φ be a predicate. Given a logical context ρ, Φ is interpreted
as a set [[Φ]]ρ ⊆ State× in the expected way, e.g.,

[[e1〈1〉 < e2〈2〉]]ρ � {(m1,m2) ∈ State× | [[e1]]ρm1 < [[e2]]ρm2}.

We can inject a predicate on singlememories into a predicate on product memories;
we call the resulting predicate one-sided since it constrains just one of two memories.

Definition 5.25 Let Φ be a predicate on State. We define formulas Φ〈1〉 and Φ〈2〉
by replacing all program variables x in Φ with x〈1〉 and x〈2〉, respectively, and we
define

[[Φ〈1〉]]ρ � {(m1,m2) | m1 ∈ [[Φ]]ρ} and [[Φ〈2〉]]ρ � {(m1,m2) | m2 ∈ [[Φ]]ρ}.

Valid judgments in pRHL relate two output distributions by lifting the post-
condition.

Definition 5.26 (Barthe et al. (2009)) A judgment is valid in logical context ρ,
written ρ |= c1 ∼ c2 : Φ =⇒ Ψ, if for any two memories (m1,m2) ∈ [[Φ]]ρ there
exists a lifting of Ψ relating the output distributions:

[[c1]]ρm1 [[Ψ]]�ρ [[c2]]ρm2.

For example, a valid judgment

|= c1 ∼ c2 : Φ =⇒ (=),

states that for any two input memories (m1,m2) satisfying Φ, the resulting output

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.5 A formal logic for coupling proofs 163

distributions from running c1 and c2 are related by lifted equality; by Theorem 5.10,
these output distributions must be equal.

5.5.4 The logic pRHL: the proof rules

Valid judgments in pRHL state that the output distributions of two programs
are related in a specific way. However, it is generally not possible to directly
prove validity—even simple probabilistic programs with loops can produce highly
complex output distributions, and we typically do not have a description of the
output distribution that is more precise than the probabilistic program itself.
To make reasoning about probabilistic programs more tractable, pRHL includes a

collection of logical rules to inductively build up a proof of a new judgment from
known judgments, combining proofs about sub-programs into proofs about larger
programs. The rules are superficially similar to those from standard Hoare logic.
However, the interpretation of judgments in terms of liftings means some rules in
pRHL are not valid in Hoare logic, and vice versa.
Before describing the rules, we introduce some necessary notation. A system of

logical rules inductively defines a set of derivable formulas; we use the head symbol
� to mark such formulas. As is standard in logic, the premises in each logical rule
are written above the horizontal line, and the single conclusion is written below the
line; for easy reference, the name of each rule is given to the left of the line.
The main premises are judgments in the program logic, but rules may also use

other side-conditions. For instance, many rules require an assertion logic formula to
be valid in all memories. Other side-conditions state that a program is terminating,
or that certain variables are not modified by the program. We use the head symbol
|= to mark valid side-conditions; while we could give a separate proof system for
these premises, in practice they are simple enough to check directly.
We also use notation for substitution in assertions. We write Φ {e/x} for the

formula Φ with every occurrence of the variable x replaced by e. Similarly,
Φ {v1, v2/x1〈1〉, x2〈2〉} is the formula Φ where occurrences of the tagged vari-
ables x1〈1〉, x2〈2〉 are replaced by v1, v2 respectively.

Now, we take a tour through the logical rules of pRHL. While most of these rules
were proposed in prior works, we use the coupling interpretation to give a new way
of thinking about what the rules mean. It turns out that certain steps of the informal
coupling proofs we saw in Section 5.4 correspond to specific logical rules in pRHL,
seen from the right perspective. We summarize this reading in Section 5.5.
One important feature of coupling proofs can already be seen in the form of the

proof rules: though the notion of validity and target properties are probabilisitic—i.e.,
they describe pairs of probability distributions—assertions describe individual mem-

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

164 Barthe and Hsu: Probabilistic Couplings from Program Logics

Skip
� skip ∼ skip : Φ =⇒ Φ

Assn
� x1 ← e1 ∼ x2 ← e2 : Ψ {e1〈1〉, e2〈2〉/x1〈1〉, x2〈2〉} =⇒ Ψ

Sample
f : supp(d1) → supp(d2) is a bijection

� x1 $← d1 ∼ x2 $← d2 : ∀v ∈ supp(d1), Ψ {v, f (v)/x1〈1〉, x2〈2〉} =⇒ Ψ

Seq
� c1 ∼ c2 : Φ =⇒ Ψ � c′

1 ∼ c′
2 : Ψ =⇒ Θ

� c1; c′
1 ∼ c2; c′

2 : Φ =⇒ Θ

Cond

|= Φ→ e1〈1〉 = e2〈2〉
� c1 ∼ c2 : Φ ∧ e1〈1〉 =⇒ Ψ � c′

1 ∼ c′
2 : Φ ∧ ¬e1〈1〉 =⇒ Ψ

� if e1 then c1 else c′
1 ∼ if e2 then c2 else c′

2 : Φ =⇒ Ψ

While
|= Φ→ e1〈1〉 = e2〈2〉 � c1 ∼ c2 : Φ ∧ e1〈1〉 =⇒ Φ
� while e1 do c1 ∼ while e2 do c2 : Φ =⇒ Φ ∧ ¬e1〈1〉

Figure 5.2 Two-sided pRHL rules

ories, rather than distributions over memories. Abstracting away from probabilistic
aspect of the program makes probabilistic reasoning significantly easier, and is a
key reason why the coupling proof technique is so powerful.
The rules of pRHL can be divided into three groups: two-sided rules, one-sided

rules, and structural rules. All judgments are parameterized by a logical context
ρ, but since this context is assumed to be a fixed assignment of logical variables—
constant throughout the proof—we omit it from the rules. The two-sided rules in
Fig. 5.2 apply when the two programs in the conclusion judgment have the same
top-level shape.
The rule [Skip] simply states that skip instructions preserve the pre-condition.

The rule [Assn] handles assignment instructions. It is the usual Hoare-style rule: if
Ψ holds initially with e1〈1〉 and e2〈2〉 substituted for x1〈1〉 and x2〈2〉, then Ψ holds
after the respective assignment instructions.
The rule [Sample] is more subtle. In some ways it is the key rule in pRHL,

allowing us to select a coupling for a pair of sampling instructions. To gain intuition,
the following rule is a special case:

Sample*
f : supp(d) → supp(d) is a bijection

� x $← d ∼ x $← d : � =⇒ f (x〈1〉) = x〈2〉

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.5 A formal logic for coupling proofs 165

In terms of couplings, the conclusion states that there exists a coupling of a distribution
d with itself such that each sample x from d is related to f (x). Soundness of this
rule crucially relies on d being uniform—as we have seen, any bijection f induces a
coupling of uniform distributions (cf. Theorem 5.4). It is possible to support more
general distributions at the cost of a more complicated side-condition,2 but we will
not need this generality. The full rule [Sample] can prove a post-condition of any
shape: a post-condition holds after sampling if it holds before sampling, where x〈1〉
and x〈2〉 are replaced by any two coupled samples (v, f (v)).
More generally, a key feature of coupling proofs can be seen in the rule [Sample]:

reducing two separate sources of randomness into a single source of randomness. A
priori, two sampling instructions in the two programs are completely independent—
we have no reason to think that the results of their random draws are related in any
way. The sampling rule shows that for the purpose of the proof, it is sound to assume
that the results from the two sampling statements are related by a bijection. In this
way, we may analyze the two programs with their separate sources of randomness
as if they shared a single, common source of randomness. When the original
programs have similar shapes—as is the typical case in relational verification—this
coordination enables us to limit our attention to pairs of highly similar program
executions.
The rule [Seq] resembles the normal rule for sequential composition in Hoare

logic, but this superficial similarity hides some complexity. In particular, note that
the intermediate assertion Ψ is interpreted differently in the two premises: in the first
judgment it is a post-condition and interpreted as a relation between distributions
over memories via lifting, while in the second judgment it is a pre-condition and
interpreted as a relation between memories, not distributions over memories.
The next two rules deal with branching commands. Rule [Cond] requires that

the guards e1〈1〉 and e2〈2〉 are equal assuming the pre-condition Φ. The rule is
otherwise similar to the standard Hoare logic rule: if we can prove the post-condition
Ψ when the guard is initially true and when the guard is initially false, then we can
prove Ψ as a post-condition of the conditional.
Rule [While] uses a similar idea for loops. We again assume that the guards are

initially equal, and we also assume that they are equal in the post-condition of the
loop body. Since the judgments are interpreted in terms of couplings, this second
condition is a bit subtle. For one thing, the rule does not require e1〈1〉 = e2〈2〉 in all
possible executions of the two programs—this would be a rather severe restriction,
for instance ruling out programs where e1〈1〉 and e2〈2〉 are probabilistic. Rather,
the guards only need to be equal under the coupling of the two programs given by
the premise. The upshot is that by selecting appropriate couplings in the loop body,

2 Roughly speaking, the probability of any set S under d should be equal to the probability of f (S) under d.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

166 Barthe and Hsu: Probabilistic Couplings from Program Logics

Assn-L
� x1 ← e1 ∼ skip : Ψ {e1〈1〉/x1〈1〉} =⇒ Ψ

Assn-R
� skip ∼ x2 ← e2 : Ψ {e2〈2〉/x2〈2〉} =⇒ Ψ

Sample-L
� x1 $← d1 ∼ skip : ∀v ∈ supp(d1), Ψ {v/x1〈1〉} =⇒ Ψ

Sample-R
� skip ∼ x2 $← d2 : ∀v ∈ supp(d2), Ψ {v/x2〈2〉} =⇒ Ψ

Cond-L
� c1 ∼ c : Φ ∧ e1〈1〉 =⇒ Ψ � c′

1 ∼ c : Φ ∧ ¬e1〈1〉 =⇒ Ψ
� if e1 then c1 else c′

1 ∼ c : Φ =⇒ Ψ

Cond-R
� c ∼ c2 : Φ ∧ e2〈2〉 =⇒ Ψ � c ∼ c′

2 : Φ ∧ ¬e2〈2〉 =⇒ Ψ
� c ∼ if e2 then c2 else c′

2 : Φ =⇒ Ψ

While-L

� c1 ∼ skip : Φ ∧ e1〈1〉 =⇒ Φ
|= Φ→ Φ1〈1〉 Φ1 |= while e1 do c1 lossless

� while e1 do c1 ∼ skip : Φ =⇒ Φ ∧ ¬e1〈1〉

While-R

� skip ∼ c2 : Φ ∧ e2〈2〉 =⇒ Φ
|= Φ→ Φ2〈2〉 Φ2 |= while e2 do c2 lossless

� skip ∼ while e2 do c2 : Φ =⇒ Φ ∧ ¬e2〈2〉

Figure 5.3 One-sided pRHL rules

we can assume the guards are equal when analyzing loops with probabilistic guards.
The rule is otherwise similar to the usual Hoare logic rule, where Φ is the loop
invariant.

So far, we have seen rules that relate two programs of the same shape. These are
the most commonly used rules in pRHL, as relational reasoning is most powerful
when comparing two highly similar (or even the same) programs. However, in some
cases we may need to reason about two programs with different shapes, even if
the two top-level commands are the same. For instance, if we can’t guarantee two
executions of a program follow the same path at a conditional statement under a
coupling, we must relate the two different branches. For this kind of reasoning, we
can fall back on the one-sided rules in Fig. 5.3. These rules relate a command of a
particular shape with skip or an arbitrary command. Each rule comes in a left- and
a right-side version.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.5 A formal logic for coupling proofs 167

The assignment rules, [Assn-L] and [Assn-R], relate an assignment instruction
to skip using the usual Hoare rule for assignment instructions. The sampling rules,
[Sample-L] and [Sample-R], are similar; they relate a sampling instruction to skip
if the post-condition holds for all possible values of the sample. These rules represent
couplings where fresh randomness is used, i.e., where randomness is not shared
between the two programs.
The conditional rules, [Cond-L] and [Cond-R], are similar to the two-sided

conditional rule except there is no assumption of synchronized guards—the other
command c might not even be a conditional. If we can relate the general command
c to the true branch when the guard is true and relate c to the false branch when the
guard is false, then we can relate c to the whole conditional.
The rules for loops, [While-L] and [While-R], can only relate loops to the skip;

a loop that executes multiple iterations cannot be directly related to an arbitrary
command that executes only once. These rules mimic the usual loop rule from Hoare
logic, with a critical side-condition: losslessness.

Definition 5.27 A command c is Φ-lossless if for any memory m satisfying Φ and
every logical context ρ, the output [[c]]ρm is a proper distribution (i.e., it has total
probability 1). We write Φ-lossless as the following judgment:

Φ |= c lossless

Losslessness is needed for soundness: skip produces a proper distribution on any
input and liftings can only relate sub-distributions with equal weights (Theorem 5.9),
so the loop must also produce a proper distribution to have any hope of coupling
the output distributions. For the examples we will consider, losslessness is easy to
show since loops execute for a finite number of iterations; when there is no finite
bound, proving losslessness may require more sophisticated techniques (e.g., Barthe
et al. (2018a); Ferrer Fioriti and Hermanns (2015); Chatterjee et al. (2016b,a, 2017);
McIver et al. (2018)).

Finally, pRHL includes a handful of structural rules which apply to programs of
any shape. The first rule [Conseq] is the usual rule of consequence, allowing us to
strengthen the pre-condition and weaken the post-condition—assuming more about
the input and proving less about the output, respectively.
The rule [Equiv] replaces programs by equivalent programs. This rule is par-

ticularly useful for reasoning about programs of different shapes. Instead of using
one-sided rules, which are often less convenient, we can sometimes replace a
program with an equivalent version and then apply two-sided rules. For simplicity,
we use a strong notion of equivalence:

c1 ≡ c2 � [[c1]]ρ = [[c2]]ρ

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

168 Barthe and Hsu: Probabilistic Couplings from Program Logics

Conseq
� c1 ∼ c2 : Φ′ =⇒ Ψ′ |= Φ→ Φ′ |= Ψ′ → Ψ

� c1 ∼ c2 : Φ =⇒ Ψ

Equiv
� c′

1 ∼ c′
2 : Φ =⇒ Ψ c1 ≡ c′

1 c2 ≡ c′
2

� c1 ∼ c2 : Φ =⇒ Ψ

Case
� c1 ∼ c2 : Φ ∧ Θ =⇒ Ψ � c1 ∼ c2 : Φ ∧ ¬Θ =⇒ Ψ

� c1 ∼ c2 : Φ =⇒ Ψ

Trans
� c1 ∼ c2 : Φ =⇒ Ψ � c2 ∼ c3 : Φ′ =⇒ Ψ′

� c1 ∼ c3 : Φ′ ◦ Φ =⇒ Ψ′ ◦ Ψ

Frame
� c1 ∼ c2 : Φ =⇒ Ψ FV(Θ) ∩MV(c1, c2) = ∅

� c1 ∼ c2 : Φ ∧ Θ =⇒ Ψ ∧ Θ

Figure 5.4 Structural pRHL rules

for every logical context ρ; more refined notions of equivalence are also possible,
but will not be needed for our purposes. For our examples, we just use a handful of
basic program equivalences, e.g., c; skip ≡ c and skip; c ≡ c.
The rule [Case] performs a case analysis on the input. If we can prove a judgment

when Θ holds initially and a judgment when Θ does not hold initially, then we can
combine the two judgments provided they have the same post-condition.
The rule [Trans] is the transitivity rule: given a judgment relating c1 ∼ c2 and a

judgment relating c2 ∼ c3, we can glue these judgments together to relate c1 ∼ c3.
The pre- and post-conditions of the conclusion are given by composing the pre- and
post-conditions of the premises; for binary relations R and S, relation composition
is defined by

R ◦ S � {(x1, x3) | ∃x2. (x1, x2) ∈ S ∧ (x2, x3) ∈ R}.

The last rule [Frame] is the frame rule (also called the rule of constancy): it
states that an assertion Θ can be carried from the pre-condition through to the
post-condition as long as the variables MV(c1, c2) that may be modified by the
programs c1 and c2 don’t include any of the variables FV(Θ) appearing free in Θ; as
usual, MV and FV are defined syntactically by collecting the variables that occur in
programs and assertions.
As expected, the proof system of pRHL is sound.

Theorem 5.28 (Barthe et al. (2009)) Let ρ be a logical context. If a judgment is

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.6 Constructing couplings, formally 169

derivable

ρ � c1 ∼ c2 : Φ =⇒ Ψ,

then it is valid:

ρ |= c1 ∼ c2 : Φ =⇒ Ψ.

5.5.5 The coupling interpretation

Now that we have seen the core logical rules of pRHL, we revisit the connection
with couplings. Not only do valid judgments assert the existence of a coupling
between two output distributions, the proof system itself is a formalization of proofs
by coupling, which we saw in Section 5.4. This perspective gives a better, more
precise understanding of what proofs by coupling are, and how they work.
In more detail, a valid judgment ρ |= c1 ∼ c2 : Φ =⇒ Ψ implies that for any two

input memories related by Φ, there exists a coupling with support in Ψ between the
two output distributions. By applying the results in Section 5.3, valid judgments
imply relational properties of programs.
Moreover, we can identify common steps in standard coupling proofs in the form

of specific logical rules. For instance, [Sample] selects a coupling for corresponding
sampling statements; the function f lets us choose among different bijection
couplings. The rule [Seq] formalizes the sequential composition principle for
couplings; when two processes produce samples related by Ψ under a particular
coupling, we can continue to assume this relation when analyzing the remainder of
the program. The structural rule [Case] shows we can select between two possible
couplings depending on whether a predicate Θ holds. In short, not only is pRHL a
logic for verifying cryptographic constructions, it is also a formal logic for proofs
by coupling.

5.6 Constructing couplings, formally

The coupling proof technique has been applied to a variety of probabilistic properties,
using the same basic pattern: construct a coupling of a specific form between the
output distributions of two programs, then use the existence of this coupling
to conclude a relational property using known consequences of couplings (cf.
Section 5.3). Given the close connection between coupling proofs and our logic,
we carry out this proof pattern in pRHL to build formal proofs of three classical
properties: equivalence, stochastic domination, and convergence.

Remark 5.29 There are some inherent challenges in presenting formal proofs on
paper. Fundamentally, our proofs are branching derivation trees. When such a proof

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

170 Barthe and Hsu: Probabilistic Couplings from Program Logics

is linearized, it becomes more difficult to follow which part of the derivation tree
the paper proof corresponds to. To help organize the proof, we generally proceed in
a top-down fashion, giving proofs and judgments for the most deeply nested parts of
the program first and then gradually zooming out to consider larger and larger parts
of the whole program.
Applications of sequential composition are also natural places to signpost the

proof. We typically consider the commands in order, unless the second command
is much more complex than the first. Finally, for space reasons we will gloss over
applications of the assignment rule [Assn] and minor uses of the rule of consequence
[Conseq]; a completely formal proof would necessarily include these details.

5.6.1 Probabilistic equivalence

To warm up, we prove two programs to be probabilistically equivalent. Our example
models perhaps the most basic encryption scheme: the XOR cipher. Given a boolean
s representing the secret message, the XOR cipher flips a fair coin to draw the secret
key k and then returns k ⊕ s as the encrypted message. A receiving party who knows
the secret key can decrypt the message by computing k ⊕ (k ⊕ s) = s.
To prove secrecy of this scheme, we consider the following two programs:

k $← Flip;
r ← k ⊕ s

k $← Flip;
r ← k

The first program xor1 implements the encryption function, storing the encrypted
message into r . The second program xor2 simply stores a random value into r . If we
can show the distribution of r is the same in both programs, then the XOR cipher is
secure: the distribution on outputs is completely random, leaking no information
about the secret message s. In terms of pRHL, it suffices to prove the following
judgment:

� xor1 ∼ xor2 : � =⇒ r 〈1〉 = r 〈2〉

By validity of the logic, this judgment implies that for any two memories m1,m2,
the output distributions are related by a coupling that always returns outputs with
equal values of r; by reasoning similar to Theorem 5.10, this implies that the output
distributions over r 〈1〉 and r 〈2〉 are equal.3
Before proving this judgment in the logic, we sketch the proof by coupling. If

s〈1〉 is true, then we couple k to take opposite values in the two runs. If s〈1〉 is false,
then we couple k to be equal in the two runs. In both cases, we conclude that the
results r 〈1〉,r 〈2〉 are equal under the coupling.
3 To be completely precise, Theorem 5.10 assumes that we have lifted equality, while here we only have a lifting
where the variables r are equal. An analogous argument shows that the marginal distributions of variable r
must be equal.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.6 Constructing couplings, formally 171

To formalize this argument in pRHL, we use the [Case] rule:

Case

� xor1 ∼ xor2 : s〈1〉 = true =⇒ r 〈1〉 = r 〈2〉
� xor1 ∼ xor2 : s〈1〉 � true =⇒ r 〈1〉 = r 〈2〉

� xor1 ∼ xor2 : � =⇒ r 〈1〉 = r 〈2〉 .

For the first premise we select the negation coupling using the bijection f = ¬ in
[Sample], apply the assignment rule [Assn], and combine with the sequencing rule
[Seq]. Concretely, we have

Sample
f = ¬

� k $← Flip ∼ k $← Flip : s〈1〉 = true =⇒ k 〈1〉 = ¬k 〈2〉 ∧ s〈1〉 = true

Assn
� r ← k ⊕ s ∼ r ← k : k 〈1〉 = ¬k 〈2〉 ∧ s〈1〉 = true =⇒ r 〈1〉 = r 〈2〉

and we combine the two judgments to give:

Seq

� k $← Flip ∼ k $← Flip : s〈1〉 = true =⇒ k 〈1〉 = ¬k 〈2〉 ∧ s〈1〉 = true
� r ← k ⊕ s ∼ r ← k : k 〈1〉 = ¬k 〈2〉 ∧ s〈1〉 = true =⇒ r 〈1〉 = r 〈2〉

� xor1 ∼ xor2 : s〈1〉 = true =⇒ r 〈1〉 = r 〈2〉 .

For the other case s〈1〉 � true, we give the same proof except with the identity
coupling in [Sample]:

Sample
f = id

� k $← Flip ∼ k $← Flip : s〈1〉 � true =⇒ k 〈1〉 = k 〈2〉 ∧ s〈1〉 � true

and the assignment rule, we have

Assn
� r ← k ⊕ s ∼ r ← k : k 〈1〉 = k 〈2〉 ∧ s〈1〉 � true =⇒ r 〈1〉 = r 〈2〉 .

Combining the conclusions, we get

Seq

� k $← Flip ∼ k $← Flip : s〈1〉 � true =⇒ k 〈1〉 = ¬k 〈2〉 ∧ s〈1〉 � true
� r ← k ⊕ s ∼ r ← k : k 〈1〉 = k 〈2〉 ∧ s〈1〉 � true =⇒ r 〈1〉 = r 〈2〉

� xor1 ∼ xor2 : s〈1〉 � true =⇒ r 〈1〉 = r 〈2〉 .

By [Case], we conclude the desired post-condition r 〈1〉 = r 〈2〉.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

172 Barthe and Hsu: Probabilistic Couplings from Program Logics

5.6.2 Stochastic domination

For our second example, we revisit Theorem 5.20 and replicate the proof in pRHL.
The following program sdom flips a coin T times and returns the number of coin
flips that come up true:

i ← 0; ct ← 0;
while i < T do

i ← i + 1;
s $← Flip;
ct ← s ? ct + 1 : ct

(The last line uses the ternary conditional operator—s ? ct + 1 : ct is equal to ct + 1
if s is true, otherwise equal to ct.)
We consider two runs of this program executing T1 and T2 iterations, where

T1 ≤ T2 are logical variables; call the two programs sdom1 and sdom2. By soundness
of the logic and Theorem 5.14, the distribution of ct in the second run stochastically
dominates the distribution of ct in the first run if we can prove the judgment

� sdom1 ∼ sdom2 : � =⇒ ct〈1〉 ≤ ct〈2〉.

Encoding the argument from Theorem 5.20 in pRHL requires a bit of work. The
main obstacle is that the two-sided loop rule in pRHL can only analyze loops in a
synchronized fashion, but this is not possible here: when T1 < T2 the two loops run
for different numbers of iterations, no matter how we couple the samples. To get
around this problem, we use the equivalence rule [Equiv] to transform sdom into a
more convenient form using the following equivalence:

while e do c ≡ while e ∧ e′ do c;while e do c

This transformation, known in the compilers literature as loop splitting (Callahan
and Kennedy, 1988), separates out the first iterations where e′ holds, and then runs
the original loop to completion. We transform sdom2 as follows:

sdom′
2a �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
i ← 0; ct ← 0;
while i < T2 ∧ i < T1 do

i ← i + 1;
s $← Flip;
ct ← s ? ct + 1 : ct;

i ← 0; ct ← 0;
while i < T1 do

i ← i + 1;
s $← Flip;
ct ← s ? ct + 1 : ct;

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
� sdom1

sdom′
2b �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
while i < T2 do

i ← i + 1;
s $← Flip;
ct ← s ? ct + 1 : ct

We aim to relate sdom′
2a; sdom′

2b to sdom1. First, we apply the two-sided rule

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.6 Constructing couplings, formally 173

[While] to relate sdom1 to sdom′
2a. Taking the identity coupling with f = id in

[Sample], we relate the sampling in the loop body via

Sample
f = id

� s $← Flip ∼ s $← Flip : � =⇒ s〈1〉 = s〈2〉

and establish the loop invariant

Θ � i〈1〉 = i〈2〉 ∧ ct〈1〉 = ct〈2〉,

proving the judgment

� sdom1 ∼ sdom′
2a : � =⇒ Θ.

Then we use the one-sided rule [While-R] for the loop sdom′
2b with loop invariant

ct〈1〉 ≤ ct〈2〉:

� skip ∼ sdom′
2b : Θ =⇒ ct〈1〉 ≤ ct〈2〉.

Composing these two judgments with [Seq] and applying [Equiv] gives the desired
judgment:

Equiv
� sdom1; skip ∼ sdom′

2a; sdom′
2b : � =⇒ ct〈1〉 ≤ ct〈2〉

� sdom1 ∼ sdom2 : � =⇒ ct〈1〉 ≤ ct〈2〉

using the equivalence sdom1; skip ≡ sdom1.

5.6.3 Probabilistic convergence

In our final example, we build a coupling witnessing convergence of two random
walks. Each process begins at an integer starting point start, and proceeds for T
steps. At each step it flips a fair coin. If true, it increases the current position by
1; otherwise, it decreases the position by 1. Given two random walks starting at
different initial locations, we want to bound the distance between the two resulting
output distributions in terms of T . Intuitively, the position distributions spread out
as the random walks proceed, tending towards the uniform distribution on the even
integers or the uniform distribution over the odd integers depending on the parity of
the initial position and the number of steps. If two walks initially have the same parity
(i.e., their starting positions differ by an even integer), then their distributions after
taking the same number of steps T should approach one another in total variation
distance.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

174 Barthe and Hsu: Probabilistic Couplings from Program Logics

We model a single random walk with the following program rwalk:

pos ← start; i ← 0; hist ← [start];
while i < T do

i ← i + 1;
r $← Flip;
pos ← pos + (r ? 1 : −1);
hist ← pos :: hist

The last command records the history of the walk in hist; this ghost variable does
not affect the final output value, but will be useful for our assertions.
By Theorem 5.16, we can bound the TV-distance between the position distributions

by constructing a coupling where the probability of pos〈1〉 � pos〈2〉 tends to 0 as
T increases. We don’t have the tools yet to reason about this probability (we will
revisit this point in the next chapter), but for now we can build the coupling and
prove the judgment

� rwalk ∼ rwalk : start〈2〉 − start〈1〉 = 2K

=⇒ K + start〈1〉 ∈ hist〈1〉 → pos〈1〉 = pos〈2〉

where K is an integer logical variable. The pre-condition states that the initial
positions are an even distance apart. To read the post-condition, the predicate
K + start〈1〉 ∈ hist〈1〉 holds if and only if the first walk has moved to position
K + start〈1〉 at some time in the past; if this has happened, then the two coupled
positions must be equal.
Our coupling mirrors the two walks. Each step, we have the walks make symmetric

moves by arranging opposite samples. Once the walks meet, we have the walks
match each other by coupling the samples to be equal. In this way, if the first
walk reaches start〈1〉 + K, then the second walk must be at start〈2〉 − K since
both walks are coupled to move symmetrically. In this case, the initial condition
start〈2〉 − start〈1〉 = 2K gives

pos〈1〉 = start〈1〉 + K = start〈2〉 − K = pos〈2〉

so the walks meet and continue to share the same position thereafter. This argument
requires the starting positions to be an even distance apart so the positions in the two
walks always have the same parity; if the two starting positions are an odd distance
apart, then the two distributions after T steps have disjoint support and the coupled
walks can never meet.
To formalize this argument in pRHL, we handle the loop with the two-sided rule

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.6 Constructing couplings, formally 175

[While] and invariant

Θ �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
|hist〈1〉| > 0 ∧ |hist〈2〉| > 0
K + start〈1〉 ∈ hist〈1〉 → pos〈1〉 = pos〈2〉
K + start〈1〉 � hist〈1〉 → pos〈2〉 − pos〈1〉 =

2(K − (hd(hist〈1〉) − start〈1〉)),

where hd(hist) is the first element (the head) of the non-empty list hist. The last two
conditions model the two cases. If the first walk has already visited K + start〈1〉, the
walks have already met under the coupling and they must have the same position.
Otherwise, the walks have not met. If d � hd(hist〈1〉) − start〈1〉 is the (signed)
distance the first walk has moved away from its starting location and the two walks
are initially 2K apart, then the current distance between coupled positions must be
2(K − d).
To show the invariant is preserved, we perform a case analysis with [Case]. If

K+start〈1〉 ∈ hist〈1〉 holds then the walks have already met in the past and currently
have the same position (by Θ). So, we select the identity coupling in [Sample]:

Sample
f = id

� r $← Flip ∼ r $← Flip : K + start〈1〉 ∈ hist〈1〉 =⇒ r 〈1〉 = r 〈2〉 .

Since K + start〈1〉 ∈ hist〈1〉 → pos〈1〉 = pos〈2〉 holds at the start of the loop,
we know pos〈1〉 = pos〈2〉 at the end of the loop; since K + start〈1〉 ∈ hist〈1〉 is
preserved by the loop body, the invariant Θ holds.
Otherwise if K + start〈1〉 � h〈1〉, then the walks have not yet met and should be

mirrored. So, we select the negation coupling with f = ¬ in [Sample]:

Sample
f = ¬

� r $← Flip ∼ r $← Flip : K + start〈1〉 � hist〈1〉 =⇒ ¬r 〈1〉 = r 〈2〉

To show the loop invariant, there are two cases. If K + start〈1〉 ∈ h〈1〉 holds
after the body, the two walks have just met for the first time and pos〈1〉 = pos〈2〉
holds. Otherwise, the walks remain mirrored: pos〈1〉 increased by r 〈1〉 and pos〈2〉
decreased by r 〈1〉, so pos〈2〉 − pos〈1〉 = 2(K + (hd(hist〈1〉) − start〈1〉)) and the
invariant Θ is preserved.
Putting it all together, we have the desired judgment:

� rwalk ∼ rwalk : start〈2〉−start〈1〉=2K =⇒ K+start〈1〉∈h〈1〉→pos〈1〉=pos〈2〉.

While this judgment describes a coupling between the position distributions, we
need to analyze finer properties of the coupling distribution to apply Theorem 5.16 –
namely, we must bound the probability that pos〈1〉 is not equal to pos〈2〉. We will
consider how to extract this information in the next chapter.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

176 Barthe and Hsu: Probabilistic Couplings from Program Logics

5.6.4 Verifying non-relational properties: independence and uniformity

As we have seen, couplings are a natural fit for probabilistic relational properties.
Properties describing a single program can also be viewed relationally in some cases,
enabling cleaner proofs by coupling. Barthe et al. (2017b) develop this idea to prove
uniformity, probabilistic independence, and conditional independence, examples of
probabilistic non-relational properties. We briefly sketch their main reductions.
A uniform distribution places equal probability on every value in some range.

Given a distribution μ over State and an expression e with finite range S (say, the
booleans), e is uniform in μ if for all a and a′ in S, we have

Pr
m∼μ

[[[e]]m = a] = Pr
m∼μ

[[[e]]m = a′].

When μ is the output distribution of a program c, uniformity follows from the pRHL
judgment

∀a,a′ ∈ S, � c ∼ c : (=) =⇒ e〈1〉 = a ↔ e〈2〉 = a′.

This reduction is a direct consequence of Theorem 5.12. Moreover, the resulting
judgment is ideally suited to relational verification since it relates two copies of the
same program c.
Handling independence is only a bit more involved. Given a distribution μ

and expressions e, e′ with ranges S and S′, we say e and e′ are probabilistically
independent if for all a ∈ S and a′ ∈ S′, we have

Pr
m∼μ

[[[e]]m = a ∧ [[e′]]m = a′] = Pr
m∼μ

[[[e]]m = a] · Pr
m∼μ

[[[e′]]m = a′].

This useful property roughly implies that properties involving e and e′ can be
analyzed by focusing on e and e′ separately. When e and e′ are uniformly distributed,
independence follows from uniformity of the tuple (e, e′) over the product set S ×S′

so the previous reduction applies. In general, we can compare the distributions of
e and e′ in two experiments: when both are drawn from the output distribution
of a single execution, and when they are drawn from two independent executions
composed sequentially. If the expressions are independent, these two experiments
should look the same. Concretely, independence follows from the relational judgment

∀a ∈ S,a′ ∈ S′, � c ∼ c(1); c(2) : Φ =⇒ e〈1〉 = a ∧ e′〈1〉 = a′ ↔

e(1)〈2〉 = a ∧ e′(2)〈2〉 = a′,

where c(1) and c(2) are copies of c with variables x renamed to x(1) and x(2)

respectively; this construction is also called self-composition since it sequentially
composes c with itself (Barthe et al., 2011). The pre-condition Φ states that the
three copies of each variable are initially equal: x〈1〉 = x(1)〈2〉 = x(2)〈2〉. Handling
conditional independence requires a slightly more complex encoding, but the general

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.7 Related work 177

pattern remains the same: encode products of probabilities by self-composition and
equalities by lifted equivalence (↔)�.
These reductions give a simple method to prove uniformity and independence.

Other non-relational properties could benefit from a similar approach, especially
in conjunction with more sophisticated program transformations in pRHL to relate
different copies of the same sampling instruction. Albarghouthi and Hsu (2018a)
consider how to automatically construct such coupling proofs by program synthesis
and verification techniques.

5.7 Related work

Relational Hoare logics and probabilistic couplings have been extensively studied
and (re)discovered in various research communities.

5.7.1 Relational Hoare logics

The logic pRHL is a prime example of a relational program logic, which extend
standard Floyd-Hoare logics to prove properties about two programs. Benton (2004)
first designed a relational version of Hoare logic called RHL to prove equivalence
between two (deterministic) programs. Benton used his logic to verify compiler
transformations, showing the original program is equivalent to the transformed
program. Relational versions of other program logics have also been considered,
including an extension of separation logic by Yang (2007) to prove relational
properties of pointer-manipulating programs. There is nothing particularly special
about relating exactly two programs; recently, Sousa and Dillig (2016) give a Hoare
logic for proving properties of k executions of the same program for arbitrary k.
Barthe et al. (2017a) give an extended logic ×pRHL where judgments also include
probabilistic product program simulating two coupled runs of the related programs;
in a sense, coupling proofs are probabilistic product programs.
Barthe et al. (2009) extended Benton’s work to prove relational properties of

probabilistic programs, leading to the logic pRHL. As we have seen, the key
technical insight is to interpret the relational post-condition as a probabilistic lifting
between two output distributions. Barthe et al. (2009) used pRHL to verify security
properties for a variety of cryptographic constructions by mimicking the so-called
game-hopping proof technique (Shoup, 2004; Bellare and Rogaway, 2006), where
the original program is transformed step-by-step to an obviously secure version (e.g.,
a program returning a random number). Security follows if each transformation
approximately preserves the program semantics. Our analysis of the XOR cipher is
a very simple example of this technique; more sophisticated proofs chain together
dozens of transformations.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

178 Barthe and Hsu: Probabilistic Couplings from Program Logics

5.7.2 Probabilistic couplings and liftings

Couplings are a well-studied tool in probability theory; readers can consult the
lecture notes by Lindvall (2002) or the textbooks by Thorisson (2000) and Levin
et al. (2009) for entry points into this vast literature.

Probabilistic liftings were also considered in connection with probabilistic
bisimulation, a powerful technique for proving equivalence of probabilistic transition
systems. Larsen and Skou (1991) were the first to consider a probabilistic notion of
bisimulation. Roughly speaking, their definition considers an equivalence relation
E on states and requires that any two states in the same equivalence class have
the same probability of stepping to any other equivalence class. The construction
for arbitrary relations arose soon after, when researchers generalized probabilistic
bisimulation to probabilistic simulation; Jonsson and Larsen (1991, Definition 4.3)
proposes a satisfaction relation using witness distributions, similar to the definition
used in pRHL. Desharnais (1999, Definition 3.6.2) and Segala and Lynch (1995,
Definition 12) give an alternative characterization without witness distributions,
similar to Strassen’s theorem (Strassen, 1965); Desharnais (1999, Theorem 7.3.4)
observed that both definitions are equivalent in the finite case via the max flow-min
cut theorem. Probabilistic (bi)simulation can be characterized logically, i.e., two
systems are (bi)similar if and only if they satisfy the same formulas in some modal
logic (Larsen and Skou, 1991; Desharnais et al., 2002, 2003; Fijalkow et al., 2017).
Deng and Du (2011) survey logical, metric, and algorithmic characterizations of
these relations.

While proofs by bisimulation and proofs by coupling are founded on the same
mathematical concept, they have been applied to different kinds of target properties.
Verification techniques based on bisimulation, for instance, typically focus on
possibly large, but finite state systems. In this setting, there are many algorithmic
techniques known for constructing these proofs. On the other hand, the main strength
of proofs by coupling is that by describing a binary relation between states using a
logical formula, the proof technique directly extends to infinite state systems and
systems with unknown parameters. At the same time, it appears that the coupling
proof technique requires enough structure on the states in order to express possibly
infinite relations with a compact logical formula. In contrast to the well-established
algorithmic techniques for bisimulation, there has been little research to date on
automating proofs of coupling (Albarghouthi and Hsu, 2018a,b). This direction
deserves further exploration.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

5.7 Related work 179

5.7.3 Approximate couplings and differential privacy

Differential privacy is a recent, statistical notion of privacy for database queries,
proposed by Dwork et al. (2006). This property is essentially a form of sensitivity:
pairs of similar input databases should lead to pairs of indistinguishable output
distributions. Inspired by pRHL, Barthe et al. (2013) developed an approximate
version of the program logic called apRHL to verify this property. The logic apRHL
relies on a probabilistic notion of relation lifting but unlike pRHL, this lifting is
approximate in a quantitative sense—it approximately models two given distributions
with a joint distribution.4 Much like for probabilistic couplings, the existence of an
approximate lifting with a particular support relating two distributions can imply
relational properties about the two distributions. For instance, the approximate lifting
of the equality relation relates pairs of indistinguishable distributions.
Approximate liftings can be fruitfully viewed as an approximate generalization of

probabilistic coupling. Moreover, the proof rules in apRHL immediately suggest
a clean method to build approximate couplings. Informally, we can construct
approximate couplings much like regular probabilistic couplings, while keeping
track of two numeric approximation parameters (ε, δ) on the side. To reason about
pairs of sampling instructions, we can apply any approximate coupling of the two
primitive distributions if we increment (ε, δ) by the parameters of the selected
coupling; in this way, we can think of (ε, δ) as kind of a cost that must be paid in
order to apply approximate couplings. This idea enables new proofs of differential
privacy by coupling, conceptually simpler and more amenable to formal verification
than existing arguments (Barthe et al., 2016b,a). The interested reader can consult
the thesis (Hsu, 2017) for more on the theory and applications of approximate
couplings.

5.7.4 Expectation couplings and the Kantorovich metric

Probabilistic couplings and approximate probabilistic couplings apply to distributions
over sets. In some cases, the ground sets may naturally come with a notion of distance.
For instance, programs may generate distributions over the real numbers (or vectors)
with the Euclidean distance. A classical way of comparing such distributions is with
the Kantorovich metric, which lifts a distance on the ground space to a distance on
distributions over the ground space. This metric is closely related to probabilistic
couplings—one way to define the Kantorovich metric is as the minimum average
distance over all couplings of the two given distributions. By constructing specific
couplings and reasoning about the expected distance, we can upper-bound the

4 There are several definitions of approximate relation lifting (Barthe and Olmedo, 2013; Olmedo, 2014; Sato,
2016; Albarghouthi and Hsu, 2018b); many of which can be shown equivalent (Barthe et al., 2017c).

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

180 References

Kantorovich metric between two output distributions and derive finer relational
properties of probabilistic programs. Barthe et al. (2018b) develop a program logic
EpRHL extending pRHL to carry out this kind of reasoning, and establish quantitative
relational properties including algorithmic stability of machine learning algorithms
and rapid mixing of Markov chains.

References
Albarghouthi, Aws, and Hsu, Justin. 2018a. Constraint-Based Synthesis of Coupling

Proofs. In: International Conference on Computer Aided Verification (CAV),
Oxford, England. To appear.

Albarghouthi, Aws, and Hsu, Justin. 2018b. Synthesizing Coupling Proofs of
Differential Privacy. Proceedings of the ACM on Programming Languages,
2(POPL). Appeared at ACM SIGPLAN–SIGACT Symposium on Principles
of Programming Languages (POPL), Los Angeles, California.

Aldous, David. 1983. Random Walks on Finite Groups and Rapidly Mixing Markov
Chains. Pages 243–297 of: Séminaire de Probabilités XVII 1981/82. Lecture
Notes in Mathematics, vol. 986. Springer-Verlag.

Apt, Krzysztof R. 1981. Ten Years of Hoare’s Logic: A Survey–Part I. ACM
Transactions on Programming Languages and Systems, 3(4), 431–483.

Apt, Krzysztof R. 1983. Ten years of Hoare’s logic: A survey–Part II: Nondetermin-
ism. Theoretical Computer Science, 28(1), 83–109.

Barthe, Gilles, and Olmedo, Federico. 2013. Beyond Differential Privacy: Composi-
tion Theorems and Relational Logic for f -Divergences between Probabilistic
Programs. Pages 49–60 of: International Colloquium on Automata, Languages
and Programming (ICALP), Riga, Latvia. Lecture Notes in Computer Science,
vol. 7966. Springer-Verlag.

Barthe, Gilles, Grégoire, Benjamin, and Zanella-Béguelin, Santiago. 2009. Formal
Certification of Code-Based Cryptographic Proofs. Pages 90–101 of: ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), Savannah, Georgia.

Barthe, Gilles, D’Argenio, Pedro R., and Rezk, Tamara. 2011. Secure Information
Flow by Self-Composition. Mathematical Structures in Computer Science,
21(06), 1207–1252.

Barthe, Gilles, Köpf, Boris, Olmedo, Federico, and Zanella-Béguelin, Santiago. 2013.
Probabilistic Relational Reasoning for Differential Privacy. ACM Transactions
on Programming Languages and Systems, 35(3), 9:1–9:49.

Barthe, Gilles, Fong, Noémie, Gaboardi, Marco, Grégoire, Benjamin, Hsu, Justin,
and Strub, Pierre-Yves. 2016a. Advanced Probabilistic Couplings for Differ-
ential Privacy. Pages 55–67 of: ACM SIGSAC Conference on Computer and
Communications Security (CCS), Vienna, Austria. There is an error in the
treatment of advanced composition; please see my thesis for the correction.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

References 181

Barthe, Gilles, Gaboardi, Marco, Grégoire, Benjamin, Hsu, Justin, and Strub, Pierre-
Yves. 2016b. Proving Differential Privacy via Probabilistic Couplings. Pages
749–758 of: IEEE Symposium on Logic in Computer Science (LICS), New York,
New York.

Barthe, Gilles, Grégoire, Benjamin, Hsu, Justin, and Strub, Pierre-Yves. 2017a.
Coupling Proofs Are Probabilistic Product Programs. Pages 161–174 of: ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), Paris, France.

Barthe, Gilles, Espitau, Thomas, Grégoire, Benjamin, Hsu, Justin, and Strub, Pierre-
Yves. 2017b. Proving Uniformity and Independence by Self-Composition
and Coupling. Pages 385–403 of: International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR), Maun, Botswana.
EPiC Series in Computing, vol. 46.

Barthe, Gilles, Espitau, Thomas, Hsu, Justin, Sato, Tetsuya, and Strub, Pierre-Yves.
2017c.�-Liftings for Differential Privacy. Pages 102:1–102:12 of: International
Colloquium on Automata, Languages and Programming (ICALP), Warsaw,
Poland. Leibniz International Proceedings in Informatics, vol. 80. Schloss
Dagstuhl–Leibniz Center for Informatics.

Barthe, Gilles, Espitau, Thomas, Gaboardi, Marco, Grégoire, Benjamin, Hsu,
Justin, and Strub, Pierre-Yves. 2018a. An Assertion-Based Program Logic for
Probabilistic Programs. In: European Symposium on Programming (ESOP),
Thessaloniki, Greece.

Barthe, Gilles, Espitau, Thomas, Grégoire, Benjamin, Hsu, Justin, and Strub,
Pierre-Yves. 2018b. Proving Expected Sensitivity of Probabilistic Programs.
Proceedings of the ACM on Programming Languages, 2(POPL). Appeared
at ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL), Los Angeles, California.

Bellare, Mihir, and Rogaway, Phillip. 2006. The Security of Triple Encryption
and a Framework for Code-Based Game-Playing Proofs. Pages 409–426 of:
IACR International Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT), Saint Petersburg, Russia. Lecture Notes
in Computer Science, vol. 4004. Springer-Verlag.

Benton, Nick. 2004. Simple Relational Correctness Proofs for Static Analyses
and Program Transformations. Pages 14–25 of: ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL), Venice, Italy.

Callahan, David, and Kennedy, Ken. 1988. Compiling Programs for Distributed-
Memory Multiprocessors. The Journal of Supercomputing, 2(2), 151–169.

Chatterjee, Krishnendu, Fu, Hongfei, Novotný, Petr, and Hasheminezhad, Rouzbeh.
2016a. Algorithmic Analysis of Qualitative and Quantitative Termination
Problems for Affine Probabilistic Programs. Pages 327–342 of:ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL), Saint
Petersburg, Florida.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

182 References

Chatterjee, Krishnendu, Fu, Hongfei, and Goharshady, Amir Kafshdar. 2016b.
Termination Analysis of Probabilistic Programs through Positivstellensatz’s.
Pages 3–22 of: International Conference on Computer Aided Verification
(CAV), Toronto, Ontario. Lecture Notes in Computer Science, vol. 9779.
Springer-Verlag.

Chatterjee, Krishnendu, Novotný, Petr, and Žikelić, D. 2017. Stochastic Invariants
for Probabilistic Termination. Pages 145–160 of: ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL), Paris, France.

Deng, Yuxin, and Du, Wenjie. 2011 (March). Logical, Metric, and Algorithmic
Characterisations of Probabilistic Bisimulation. Tech. rept. CMU-CS-11-110.
Carnegie Mellon University.

Desharnais, Josée. 1999. Labelled Markov Processes. Ph.D. thesis, McGill
University.

Desharnais, Josée, Edalat, Abbas, and Panangaden, Prakash. 2002. Bisimulation for
Labelled Markov Processes. Information and Computation, 179(2), 163–193.

Desharnais, Josée, Gupta, Vineet, Jagadeesan, Radha, and Panangaden, Prakash.
2003. Approximating Labelled Markov Processes. Information and Computa-
tion, 184(1), 160–200.

Dijkstra, Edsger W. 1976. A Discipline of Programming. Series in Automatic
Computation. Prentice Hall.

Dwork, Cynthia, McSherry, Frank, Nissim, Kobbi, and Smith, Adam D. 2006.
Calibrating Noise to Sensitivity in Private Data Analysis. Pages 265–284 of:
IACR Theory of Cryptography Conference (TCC), New York, New York. Lecture
Notes in Computer Science, vol. 3876. Springer-Verlag.

Ferrer Fioriti, Luis María, and Hermanns, Holger. 2015. Probabilistic Termination:
Soundness, Completeness, and Compositionality. Pages 489–501 of: ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), Mumbai, India.

Fijalkow, Nathanaël, Klin, Bartek, and Panangaden, Prakash. 2017. Expressiveness of
ProbabilisticModal Logics, Revisited. Pages 105:1–105:12 of: Chatzigiannakis,
Ioannis, Indyk, Piotr, Kuhn, Fabian, and Muscholl, Anca (eds), International
Colloquium on Automata, Languages and Programming (ICALP), Warsaw,
Poland. Leibniz International Proceedings in Informatics, vol. 80. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz Center for Informatics.

Floyd, Robert W. 1967. Assigning Meanings to Programs. In: Symposium on
Applied Mathematics. American Mathematical Society.

Hoare, Charles A. R. 1969. An Axiomatic Basis for Computer Programming.
Communications of the ACM, 12(10), 576–580.

Hsu, Justin. 2017. Probabilistic Couplings for Probabilistic Reasoning. Ph.D. thesis,
University of Pennsylvania.

Jones, Cliff B. 2003. The Early Search for Tractable Ways of Reasoning about
Programs. Annals of the History of Computing, 25(2), 26–49.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

References 183

Jonsson, Bengt, and Larsen, Kim Guldstrand. 1991. Specification and Refinement
of Probabilistic Processes. Pages 266–277 of: IEEE Symposium on Logic in
Computer Science (LICS), Amsterdam, The Netherlands.

Kleinberg, Jon, and Tardos, Eva. 2005. Algorithm Design. Addison-Wesley.
Kozen, Dexter. 1981. Semantics of Probabilistic Programs. Journal of Computer

and System Sciences, 22(3), 328–350.
Larsen, Kim Guldstrand, and Skou, Arne. 1991. Bisimulation through Probabilistic

Testing. Information and Computation, 94(1), 1–28.
Levin, David A., Peres, Yuval, and Wilmer, Elizabeth L. 2009. Markov Chains and

Mixing Times. American Mathematical Society.
Lindvall, Torgny. 2002. Lectures on the Coupling Method. Courier Corporation.
McIver, Annabelle, Morgan, Carroll, Kaminski, Benjamin Lucien, and Katoen,

Joost-Pieter. 2018. A new proof rule for almost-sure termination. Proceedings
of the ACM on Programming Languages, 2(POPL), 33:1–33:28.

O’Hearn, Peter W. 2007. Resources, Concurrency, and Local Reasoning. Theoretical
Computer Science, 375(1), 271–307. Festschrift for John C. Reynolds’s 70th
birthday.

O’Hearn, Peter W., Reynolds, John C., and Yang, Hongseok. 2001. Local Reasoning
about Programs That Alter Data Structures. Pages 1–19 of: International
Workshop on Computer Science Logic (CSL), Paris, France. Lecture Notes in
Computer Science, vol. 2142. Springer-Verlag.

Olmedo, Federico. 2014. Approximate Relational Reasoning for Probabilistic
Programs. Ph.D. thesis, Universidad Politécnica de Madrid.

Reynolds, John C. 2001. Intuitionistic Reasoning about Shared Mutable Data
Structure. Millennial Perspectives in Computer Science, 2(1), 303–321.

Reynolds, John C. 2002. Separation Logic: A Logic for Shared Mutable Data
Structures. Pages 55–74 of: IEEE Symposium on Logic in Computer Science
(LICS), Copenhagen, Denmark.

Rudin, Walter. 1976. Principles of Mathematical Analysis. Third edn. International
Series in Pure and Applied Mathematics. McGraw-Hill.

Sato, Tetsuya. 2016. Approximate Relational Hoare Logic for Continuous Random
Samplings. In: Conference on the Mathematical Foundations of Programming
Semantics (MFPS), Pittsburgh, Pennsylvania.

Segala, Roberto, and Lynch, Nancy A. 1995. Probabilistic Simulations for Proba-
bilistic Processes. Nordic Journal of Computing, 2(2), 250–273.

Shoup, Victor. 2004. Sequences of Games: A Tool for Taming Complexity in Security
Proofs. Cryptology ePrint Archive, Report 2004/332.

Sousa, Marcelo, and Dillig, Isil. 2016. Cartesian Hoare Logic for Verifying k-Safety
Properties. Pages 57–69 of: ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Santa Barbara, California.

Strassen, Volker. 1965. The Existence of Probability Measures with GivenMarginals.
The Annals of Mathematical Statistics, 423–439.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

184 References

Thorisson, Hermann. 2000. Coupling, Stationarity, and Regeneration. Springer-
Verlag.

Yang, Hongseok. 2007. Relational Separation Logic. Theoretical Computer Science,
375(1), 308–334. Festschrift for John C. Reynolds’s 70th birthday.

https://doi.org/10.1017/9781108770750.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.006

