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Abstract. We prove the convergence and ergodicity of a wide class of real and
higher-dimensional continued fraction algorithms, including folded and α-type variants
of complex, quaternionic, octonionic, and Heisenberg continued fractions, which we
combine under the framework of Iwasawa continued fractions. The proof is based on the
interplay of continued fractions and hyperbolic geometry, the ergodicity of geodesic flow
in associated modular manifolds, and a variation on the notion of geodesic coding that we
refer to as geodesic marking. As a corollary of our study of markable geodesics, we obtain
a generalization of Serret’s tail-equivalence theorem for almost all points. The results are
new even in the case of some real and complex continued fractions.
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‘. . .attempts to find a precise relation between the cutting sequence of [a geodesic] γ
and the continued-fraction expansions of endpoints of suitable lifts of γ are fraught
with minor discrepancies.’

—Caroline Series [57]

1. Introduction
1.1. Background. Since the early work by Lagrange and Gauss linking regular continued
fractions (CFs) to algebra and dynamical systems, an extensive and ongoing effort
has focused on expanding the scope of CF theory to new algorithms. While regular
CFs represent the fractional part x − �x� of a real number x ∈ R as a descending
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iterated fraction:

1

a1 + 1

a2 + · · ·

(1.1)

with positive integer digits, a menagerie of one-dimensional CF variants have been formed
by modifying various aspects of this simple construction: whether by changing positive
quantities to negative, altering the set of allowable digits, or selecting a different set of
numbers to have expansions. (See §1.2 for an introduction to many of these variants.)

After over 200 years of study, the one-dimensional CFs are largely well understood.
Most of them inherit the essential properties of regular CFs from the viewpoints of algebra,
dynamics, and geometry: Lagrange’s theorem, shift map ergodicity, and Diophantine
interpretation, respectively. The study of one-dimensional CFs has been facilitated by a
connection to hyperbolic geometry, pioneered by Artin [3] and developed by Series [57],
Katok and Ugarcovici [33–35], and others. In particular, Artin observed that the Gauss
map for regular CFs can be identified with a section of geodesic flow in a finite cover of
the modular surface; leading to extensive developments in both CF theory and the study of
geodesics on hyperbolic manifolds.

In trying to extend these properties beyond one-dimensional CFs, one is immediately
confronted by the question of how to generalize one-dimensional CFs to more than one
dimension. Several algorithms, such as those of Jacobi–Perron, Brun, and Selmer, act
by building up the CF expansion to several different real values simultaneously [55].
Other algorithms, such as the Hurwitz complex CF algorithm [30] or the Heisenberg CF
algorithm studied previously by the authors [38], treat points in these spaces as single
entities with a single continued fraction expansion. (Yet another type of CF-like algorithm
deriving more from geometric properties can be seen in [24, 27].) This is analogous to
how complex points can be understood either via their real and complex part (that is,
essentially in R

2) or as an element in complex space (in C). In this paper, we will generally
be interested in the latter form of higher-dimensional CF expansion, as it has a more natural
connection to hyperbolic geometry.

The story of these higher-dimensional CFs has been markedly different from their real
CF cousins. Despite interest in these topics stretching back to the 1850s [22, 23], only a
small number of algorithms are known to be well behaved. Among them is the A. Hurwitz
complex CF [30], which represents a complex number z with real and imaginary parts both
in [−1/2, 1/2) as a descending iterated fraction:

1

a1 + 1

a2 + 1

a3 + · · ·

, ai ∈ Z[i] \ {0, ±1, ±i}. (1.2)

(See §1.2.6 for a full description.) Proofs of, for example, ergodicity for these well-behaved
algorithms are extremely delicate [45]: the space of the algorithm has a serendipitous
decomposition, which results in a finite range property among other features, and this
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allows high-powered results (such as those in [32, 56]) to be applied. Should the algorithm
be perturbed, even slightly (see §1.2.6 and Figure 2), the decomposition will break down
and the methods will no longer apply.

As a major goal of this paper is to prove properties like ergodicity for a larger variety
of higher-dimensional CFs (including perturbed variations of standard algorithms), let us
discuss some of the roadblocks to using traditional techniques. First of all, one does not
expect the structure of the cylinder sets (the sets of numbers whose expansions all start
with the same sequence of digits) to have a simple structure, so methods like those cited
above will not apply. Second, the natural extension of even some one-dimensional CF
variants (see [2, §7]) as well as simple higher-dimensional CFs (see [18, 28]) is already
fractal in nature, which makes it difficult to prove results about the natural extension,
let alone about the simpler algorithm. Third, making a precise connection between CF
digits and geodesic coding is ‘fraught with minor discrepancies’ and in its strong form
would imply properties such as Serret’s tail equivalence theorem [50] that are known
to fail for higher-dimensional CFs. Indeed, the geodesic coding approach has long been
considered ‘intrinsically two-dimensional’ [1].

In this paper, we develop a softer version of geodesic coding, which we refer to as
geodesic marking. In a typical geodesic coding (what we describe here is an arithmetic
coding, in the terminology of Katok and Ugarcovici [33], where codings formed by
cutting sequences are related), we look at a given geodesic from two perspectives: first,
we have a bi-infinite sequence formed by the continued fraction digits of both the forward
and backward endpoints of the geodesic, and second, we have a bi-infinite sequence of
intersections of our geodesic with a particular cross-section. A shift in one sequence
should correspond to a shift in the other. In particular, returning to the cross-section after
flowing along the geodesic should move the CF expansion forward one digit. Our geodesic
marking still has the two bi-infinite sequences, but now returning to the cross-section can
move the CF expansion forward several digits at a time. Thus the first-return map to the
cross-section now corresponds to a jump transformation for the continued fraction. This
jump transformation, in practice, skips over strings of small digits. (What counts as a small
digit could be made effective, but we do not do so here.) It should be noted that small
digits appear to cause some of the roadblocks mentioned above: cylinder sets associated
with small digits tend to be irregular, while those of large digits are far better behaved,
for instance. So, in essence, geodesic markings skip over the troublesome parts of CF
algorithms.

Geodesic marking provides a robust connection between these higher-dimensional CFs
and hyperbolic geometry which is preserved even under perturbation of the algorithm. The
following theorem illustrates some significant cases to which our work applies.

THEOREM 1.1. Folded complex CFs, folded Hurwitz quaternionic CFs, folded octonionic
CFs, and folded Heisenberg CFs, as well as their α-type variants, are convergent and
ergodic.

In particular, this illustrates how our work applies to several different spaces (complex
numbers, quaternionic numbers, octonionic numbers, and the Heisenberg group) and many
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systems within those spaces (folded and α-type variants are discussed in more detail in
§1.2, see also Figure 2). Our results also apply to several one-dimensional CF algorithms,
such as folded real CFs and some of Nakada’s α-CFs (see §§1.2.3 and 1.2.4).

While convergence follows standard arguments, the ergodicity statement is a substantial
breakthrough for higher-dimensional CFs, where it was only previously known for
specific complex CF variants, such as the A. Hurwitz and J. Hurwitz CFs. Our approach
furthermore provides a flexible, unifying method for understanding both one-dimensional
and higher-dimensional CFs.

Theorem 1.1 follows from a more general result concerning CFs on boundaries
of rank-one symmetric spaces of non-compact type, which we refer to as Iwasawa
inversion spaces. CFs were first extended to this setting by the authors in [38],
where a CF theory on the non-commutative Heisenberg group was proposed. In [9],
Chousionis–Tyson–Urbanski, studying conformal iterated function systems, defined
Iwasawa continued fractions on the closely related Iwasawa groups (see §1.4). Here,
we extend the definition of Iwasawa CFs to an Iwasawa CF algorithm associating a digit
sequence to each point in an Iwasawa inversion space and leverage the connection to
hyperbolic geometry to prove the following theorem.

THEOREM 1.2. Every discrete and proper Iwasawa CF is convergent. Moreover, if it is
complete, then it is ergodic.

We will postpone the full definitions of these terms until §2, but will provide some
insight into them now. Discreteness simply says that the modular groupM associated with
our CF algorithm acts discretely on the corresponding hyperbolic space. It is necessary to
ensure that we have a finite-volume hyperbolic manifold (generalizing the modular surface)
in which to look at geodesic flow. Properness says that the only points under consideration
for our CF algorithm have norm bounded away from 1. This guarantees that CF expansions
converge quickly, among other properties. Properness also helps us avoid indifferent
fixed points in our dynamical system, which have been noted before to cause infinite
invariant measures [13]. Completeness says that the set of digits for our CF algorithm
is maximal in an appropriate sense, the upshot of which is that the sequence of digits in
the CF expansion of a point is functionally the only expansion the hyperbolic geometry
can see.

In the case where a system is not complete, we can still obtain a partial result.

THEOREM 1.3. Let T : K → K be the shift map for a discrete and proper Iwasawa CF
with n ≥ 1 central symmetries. Then T has at most n ergodic components.

A full description of central symmetries will appear in §3.7. For the moment, we can
consider centrally symmetric systems as ones where the system is incomplete due to the
appearance of hidden symmetries, such as x �→ −x, as in §1.2.4.

The use of geodesic marking, as opposed to classical geodesic coding, is critical
to Theorem 1.2. As noted above, one typical corollary of geodesic coding is Serret’s
tail-equivalence theorem for every point. That is, two points lie in the same orbit of the
modular group M if and only if the tails of their CF digit sequences agree. However,
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FIGURE 1. Different Iwasawa CF algorithms can be thought of as variations on the regular CF algorithm: the
equations for the shift map, digit extraction algorithm, and recombination algorithm remain the same, while the

underlying data are adjusted.

for the A. Hurwitz complex CFs, Lakein [36] provides an explicit counterexample to
tail-equivalence. (Lakein’s counterexample makes use of an element not belonging toM,
but this can be remedied by multiplying his choice of A by i.) Thus, one would not expect
for geodesic coding to be available in this case. Geodesic marking, however, avoids certain
points which exhibit pathological behavior, those with all small CF digits. This allows
for an ergodicity result and leads to the following almost everywhere (a.e.) tail equivalence
result for Iwasawa CFs (proven as Theorem 6.17), which is novel for all higher-dimensional
algorithms including folded A. Hurwitz complex CFs:

THEOREM 1.4. Almost surely, two points in a complete, discrete, and proper Iwasawa CF
are tail-equivalent if and only if they areM-translates of one another.

The question of tail-equivalence is being actively researched even for one-dimensional
CFs, see [5, 50]. The importance of small digits versus large digits to tail-equivalence has
been noted before in [48].

1.2. Key examples of CF algorithms. We now describe a number of well-known variants
of continued fractions, primarily in the one-dimensional case, which are of interest to
us. We will discuss the algorithms in an increasing order of complexity (see Figure 1
for a diagram), pointing out the variations that motivate the definition of Iwasawa CFs:
namely, the choice of underlying space, inversion, digit sequence, and fundamental domain
for the corresponding lattice; as well as the definitions of properness, completeness, and
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FIGURE 2. Four variants of the Hurwitz complex CF algorithm. The fundamental domain K in each case is
displayed inside the unit circle (fixed by the inversion ιc), and is decomposed into rank-1 cylinder sets. The lattice

Z = Z
2 is extended by the rotation (x, y) �→ (−x, −y) in the folded variant.

discreteness. A more thorough discussion of the class of Iwasawa CFs is provided in §3,
along with a more complete list of known Iwasawa CF algorithms in Table 1.

1.2.1. Regular CFs. The regular continued fraction representation of a number x ∈
[0, 1) represents it as a limit

x = 1

a1 + 1

a2 + · · ·

,

where ai ∈ N. (In the introduction, we ignore the behavior of points with finite CF
expansion for simplicity.) The digits ai are extracted from x by repeated applications of
the Gauss map T (x) = 1/x − �1/x�:

ai =
⌊

1
T i−1x

⌋
.
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The Gauss map is famously ergodic with an invariant measure given by the density
(1/log 2)(1/(1 + x)). (See [14] for a fuller treatment.)

In the framework of Iwasawa CFs, regular CFs are described using the following data:
(1) the underlying space X is R;
(2) the inversion used is ι(x) = 1/x;
(3) the allowed digits are elements of the latticeZ = Z;
(4) the set of ‘fractional points’ is K = [0, 1), which tiles R under integer translations.

As we show below, many standard and novel algorithms can be described by adjusting
the above data and leaving the formulas above essentially unchanged.

1.2.2. Backwards CFs. The backwards CF (sometimes called Rényi CF) reverses the
domain of the Gauss map to produce the Rényi map

TR(x) = TG(1 − x) = 1
1 − x

−
⌊

1
1 − x

⌋
.

The CF digits of x ∈ [0, 1) are then extracted in an analogous manner to the one used for
standard CFs, via

ai =
⌊

1
1 − T i−1x

⌋
, (1.3)

and recombined as

x = 1 − 1

a1 + 1 − 1

a2 + · · ·

.

The shift map TR is ergodic, but due to the presence of indifferent fixed points, the
corresponding invariant measure is infinite [1].

With a small adjustment, backwards CFs fit into the framework of Iwasawa CFs, as
follows.

The mapping x �→ (1 − x) conjugates backwards CFs to an equivalent system known
as the D-backwards CF with D = [0, 1), see Masarotto [41]. The resulting shift map is
then given by TD(x) = −1/x − �−1/x�. Adjusting Masorotto’s notation by using negative
integer digits ai < −1, we take

ai =
⌊ −1
T i−1x

⌋
(1.4)

and recombine the digits as

x = − 1

a1 + − 1

a2 + · · ·

.

All three CF algorithms discussed so far are real algorithms looking at points in [0, 1]
which use integers for their digits. The only difference between them is the choice of
inversion: x �→ 1/x for regular CFs, x �→ 1/(1 − x) for backwards CFs, and x �→ −1/x
for D-backwards CFs.

https://doi.org/10.1017/etds.2022.18 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.18


Ergodicity of Iwasawa continued fractions 1673

In the Iwasawa CF formalism, we will assume that inversions send 0 to ∞ and preserve
the unit circle. While the backwards CF algorithm a priori does not fit this requirement,
the conjugate D-backwards system is an Iwasawa CF.

We will make use of both of the allowed inversions ι+(x) = 1/x and ι−(x) = −1/x
throughout the paper.

Interestingly, backwards continued fractions are the more natural system within
the framework of Iwasawa CFs. The inversion ι− is an orientation-preserving
linear-fractional mapping, and is an element of the modular group PSL(2, Z), while
ι+ is orientation-reversing, which forces us to consider the larger group PGL(2, Z). This
leads us to the question of completeness of the digit set, see §1.2.4.

1.2.3. Nearest-integer and α-type CFs. The next set of CF algorithms adjusts the set of
‘fractional’ points and the corresponding rounding method, while also allowing variation
in the choice of inversion.

A nearest-integer CF replaces the unit interval [0, 1) with the interval [−1/2, 1/2),
and the floor function �·� with the nearest-integer mapping [·]. There are three standard
systems known as nearest-integer CFs, of which two fit directly into the Iwasawa CF
framework, and the third is semi-conjugate to an Iwasawa CF. The first two systems are
constructed by choosing the inversion function ι to be either ι+(x) = 1/x or ι−(x) =
−1/x. The corresponding shift map is given by T (x) = ι(x)− [ι(x)], and one has the
digits ai = [ι(T i−1x)], which are still integers. The third system is based on the shift map
T (x) = |1/x| − [|1/x|] and a more complicated system of digits, which we will discuss
more extensively in §1.2.4. Due to non-injectivity of the mapping x �→ [|1/x|], this third
variant does not fit the Iwasawa CF framework.

The α-type CFs, with α ∈ [0, 1], form a family of CF algorithms that interpolate
between regular and nearest-integer CFs by operating with the interval [−α, 1 −
α) and the corresponding rounding function [x]α = [x + α]. The forward shift is
given by T (x) = ι(x)− [ι(x)]α , where ι is chosen from ι+, ι = ι−, or x �→ |1/x|.
As above, the first two choices fit the Iwasawa CF framework, while the third
variant does not. All three families of systems are known to be ergodic for all
α ∈ [0, 1].
• Ergodicity of the ι+ variant for α /∈ {0, 1} follows from our results and for α ∈ [0, 1]

was simultaneously shown by [49].
• Ergodicity of the ι− variant for α /∈ {0, 1} is new in this paper (cf. [2]). The cases

α = 0 and α = 1 are also ergodic, since α = 0 gives the backwards CF and α = 1
gives a system that is conjugate to the regular CF.

• Ergodicity of the x �→ |1/x| variant was recently proven in [49].
Generalizing further, one can replace the unit interval with any measurable set K that

tiles R under integer translations and write T (x) = ι(x)− [ι(x)]K , where [x]K denotes
the unique integer satisfying x − [x]K ∈ K . Such systems fall under the framework of
Iwasawa CFs. Our results imply that the CF is convergent and the shift map is ergodic as
long as K is proper: that is, the closure of K is contained in the open unit ball (−1, 1).
Note that regular and backward CFs are not proper, but are nonetheless convergent and
ergodic.
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1.2.4. Folded CFs. We now discuss in more detail the nearest-integer system based
on the shift map T (x) = |1/x| − [|1/x|]. Because the mapping x �→ |1/x| is 2-to-1, the
standard approach is to keep track both of the integer digit and the choice made when
taking the absolute value

bi = [|1/x|], ci = sign(x),

so that one reconstructs

x = c1

b1 + c2

b2 + · · ·

.

To maintain similarity to previous algorithms, we combine the integer digit bi and the
sign ci into a single datum, namely the linear mapping ai(x) = ci(x + bi). This allows us
to rewrite the fraction in the format

x = 1

a1

(
1

a2(· · · )
) = lim

n→∞ ι+a1ι+a2 . . . ι+an(0),

where each ai is now a function and we take the convention of suppressing parentheses
and composition signs.

We thus transition from thinking of digits as elements of Z to thinking of them
as automorphisms of R. In the Iwasawa CF framework, we will assume that these
automorphisms are isometries of the underlying space, which is indeed the case here.

Therefore, for the algorithm under discussion, we are now interested in digits in the
expanded latticeZ generated by integer translations and negation, that is,Z = 〈x �→ x +
1, x �→ −x〉.

Inconveniently, moving the set of ‘fractional’ points K = [−1/2, 1/2) around by the
group Z causes overlaps, and we therefore exclude this CF variant from the class of
Iwasawa CFs.

Adjusting to the interval under consideration toK = [0, 1/2] provides a non-overlapping
tiling of R (that is, K is a fundamental domain for the action of Z), giving the folded CF
(see Marmi–Moussa–Yoccoz [40]) that now does fit in the Iwasawa CF framework.

The folded CF algorithm is defined by the following data:
(1) the underlying space X is R;
(2) the inversion used is ι+(x) = 1/x;
(3) the groupZ of allowed digits is generated by x �→ x + 1 and x �→ −x;
(4) the set of ‘fractional points’ is K = [0, 1/2), which tiles R under the action ofZ.

Given these data, we obtain a rounding function x �→ [x] ∈ Z that now provides
the unique linear mapping [x] ∈ Z combining an integer translation and possibly a
negation such that [x]−1(x) ∈ [0, 1/2). For example, we have that [5.1](x) = 5 + x and
[5.1]−1(x) = x − 5, while [5.7](x) = −(x − 6) and [5.7]−1(x) = −(x − 6).

For a point x ∈ [0, 1/2), we can then write the forward shift map as T (x) =
[1/x]−1(1/x) and extract the digits as ai = [1/T i−1(x)]. The point x is reconstructed
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from the digits by writing

x = lim
n→∞

1

a1

(
1

a2(. . . an(0))

),

or more compactly as x = limn→∞ a1ιa2ι . . . an(0).
The absolute value mapping from (−1/2, 1/2) to (0, 1/2) then provides a semicon-

jugacy between the | · |-based nearest-integer fractions and the folded CFs. Ergodicity
passes down (but not up!) through semiconjugacy, so folded CFs are ergodic. See
Marmi–Moussa–Yoccoz [40] for the corresponding invariant measure.

While Marmi–Moussa–Yoccoz do describe folded variants of all α-CFs, it is only the
nearest-integer variant α = 1/2 that fits within the Iwasawa CF framework, since the other
systems continue to operate with fractional sets K that are not fundamental domains for
any relevant lattice.

As it turns out, the folded CFs also arise naturally from the regular CF construction,
where we have Z = Z and ι = ι+. Since the shift map combines both elements of Z
and the mapping ι, analysis of the shift map revolves around understanding the group
M = 〈Z, ι+〉. The groupM includes the negation mapping x �→ −x since

1

1 + 1

−1 + 1
1 + x

= −x, (1.5)

so that the subgroupZ′ ⊂M of linear transformations (that is, the stabilizer of ∞) is the
groupZ′ = 〈x �→ x + 1, x �→ −x〉. We thus have that the group of allowed digitsZ = Z

is smaller than the natural group Z′ of linear transformations, giving what we call an
incomplete system. Expanding the set of digits to 〈Z, x �→ −x〉 while also contracting the
fundamental domain to [0, 1/2) provides a completion of the system, again giving us the
folded fractions.

1.2.5. Rosen CFs. We finish the discussion of one-dimensional CFs with the Rosen CFs,
whose definition is motivated by connections to hyperbolic geometry of triangle groups.

To define Rosen CFs, one takes the groupZ of allowed digits to be (2 cos(π/q))Z, and
the set of ‘fractional points’ to be K = [− cos(π/q), cos(π/q)).

Together with the inversion ι−, the lattice Z generates a Hecke group, which acts
discretely on the hyperbolic plane (with the case q = 2 reducing to the modular group
PSL(2, Z)).

From here, the choice of ι = ι− (as used by [43]) would provide an Iwasawa CF
algorithm; and our results imply that the corresponding shift map is ergodic. We emphasize
that the discreteness ofM = 〈Z, ι−〉 within the isometry group of hyperbolic space plays
a key role in our proof, and that other choices of multiplier in front ofZ would yield badly
behaved systems.
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Lastly, we note that Rosen’s original CF algorithm instead is based on the mapping
x �→ |1/x|, and is shown to be ergodic (in fact, weak Bernoulli) in [6]. This algorithm is
not encompassed by the Iwasawa CF framework.

1.2.6. Complex CFs. We now briefly touch on higher-dimensional CFs, in the planar
case. For more higher-dimensional CFs, including quaternionic and Heisenberg CFs, see
the discussion in §3.

Our primary example is the A. Hurwitz complex CF, first defined in [31]. It is described
by the following Iwasawa CF data:
(1) the underlying space X is C;
(2) the inversion used is ι(z) = 1/z;
(3) the groupZ of allowed digits is the group of Gaussian integers, Z[i];
(4) the specified fundamental domain K ofZ is the unit square centered at the origin.

Thus, the shift map is given by T (z) = 1/z− [1/z], where [·] finds the nearest Gaussian
integer; the digits are extracted via ai = [1/T i−1z], and reconstructed as

z = 1

a1 + 1

a2 + · · ·
It is common to write the system in real coordinates, with corresponding data:
(1) the underlying space X is R2;
(2) the inversion used is ι(x, y) = (x, −y)/(x2 + y2), (we will denote such conjugate-

reflections by ιc);
(3) the groupZ of allowed digits is the group Z

2;
(4) the specified fundamental domain K ofZ is the unit cube centered at the origin, i.e.

[−1/2, 1/2)× [−1/2, 1/2).
Both the real and complex descriptions of the Hurwitz CF are quite natural: the map-

pings ι and Z
2 both lift to isometries of real hyperbolic 3-space, while the corresponding

modular groupM = 〈Z, ι〉 is shown to be discrete by embedding into PSL(2, Z[i]), see
Proposition 3.15.

Ergodicity of the Hurtwitz CF was shown by Nakada in [45] (cf, [26]).
As in the case of ι+ real CFs, the system is not complete, since the stabilizer of ∞ in

M contains the unexpected mapping z �→ −z:
1

1 + 1

−1 + 1
1 + z

= −z.

As in the case of real folded fractions, we can create a folded variant by extending Z
to include negation and reducing K correspondingly. For example, one could take K =
[−1/2, 1/2)× [0, 1/2). In general, we will call a CF algorithm a folded variant if Z is
expanded to the stabilizer of ∞ inM, and K is similarly reduced.

One can likewise create α-type variants by shifting the location of the fundamental
domain, that is, replacing K with K + α; or create more exotic variants by choosing
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a different fundamental domain entirely, e.g. by choosing a tetromino to create the
Tetris CFs. However, it is not the case that we can arbitrarily shift folded variants. For
example, the set [−1/2, 1/2)× [−1/4, 1/4) is not a fundamental domain for the group
〈Z[i], (x, y) �→ (−x, −y)〉.

See Figure 2 for illustrations of these algorithms and some of their cylinder sets. The
finite range condition appears to fail in these cases. We recover ergodicity for folded
variants. For centrally symmetric systems like the Tetris variant, we are able to bound
the number of ergodic components by 2. The α-variant with α = 0.3 shown in the figure
is not complete and not centrally symmetric with respect to z �→ −z, and thus none of the
results of this paper apply to it.

1.3. Theorem 1.2 in a special case. We now outline our proof of ergodicity in the case
of nearest-integer CFs with inversion ι−, where some simplifications are possible (cf.
Remark 1.5). Ergodicity is certainly not new in the nearest-integer case, and connections to
geodesic flow have been used since at least the work of Adler–Flatto [1]. (From a historical
perspective, using ergodicity of geodesic flow to prove the ergodicity of a CF alogrithm is
backwards. The ergodicity of regular CFs was shown first, and the ergodicity of geodesic
flow in the modular surface was proven using this [3, 25].) For a more thorough treatment
of these techniques in the regular CF case, we recommend [19, §9.6].

We start by viewing R as the real axis in C, and interpret the upper half-plane as the
hyperbolic plane H

2
R

. Both the integer shifts Z and the inversion ι on R extend to the
half-plane, where they now act by isometries. The modular groupM generated by Z and
ι acts on H

2
R

discretely, and gives rise to a tiling of the space by translates of the tile T
bounded by the vertical lines x = ±1/2 and the unit circle S. Notably, each of the lines
x = ±1/2 are equal toMS for an appropriateM ∈M. We will study hyperbolic geodesics
γ , which takes the form of either a vertical line or a semi-circle that intersects R at right
angles.

We will derive ergodicity for the CF shift map from the ergodicity of the geodesic flow
on the modular surfaceM\H2

R
, which we can think of as the tile T with ‘opposite sides’

identified. That is, the sides x = ±1/2 are identified by the translation z �→ z+ 1, and the
two halves of the circular arc at the bottom are identified via z �→ −1/z. By Mautner’s
Theorem 6.3, geodesic flow in H

2
R

is ergodic. In particular, a generic geodesic γ is dense
inM\H2

R
, see Figure 3.

It appears to be intuitively clear that, for a geodesic γ ⊂ H, the continued fraction
expansion of the forward endpoint γ+ ∈ R can be immediately read off from the sequence
of tiles that γ traverses in H

2, or, equivalently, from the sequence of elements ofM that
are used to normalize it back to the starting tile. Indeed, it appears that the inversion
corresponds to γ crossing S and the digits count the number of vertical lines crossed before
returning to S after an inversion. Our goal will be to formalize this relationship in sufficient
detail to prove the ergodicity of the shift map T from the ergodicity of the geodesic flow
onM\H2

R
, doing so without relying on two-dimensional geometry, which has been central

to previous approaches.
Let γ be a vertical geodesic as in Figure 3. Let a1 = [−1/γ+] be the first nearest-integer

CF digit of γ+ and M−1
1 (z) = −1/z− a1 the corresponding element of PSL(2, Z)
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FIGURE 3. Wall-crossings of the vertical geodesic x = 0.1795 can be used to renormalize it to always stay within
the fundamental domain forM.

enacting the nearest-integer CF shift T (γ+). Applying M−1
1 to all of γ , we obtain

Figure 4a. We denote the natural elements of PSL(2, Z) enacting T i by M−1
i .

Consider now the subsegment γ ′ of γ strictly between the intersection with S and before
the intersection with M1S. The intersection of γ with M1S can be used to recover the first
CF digit of γ+, since we have that M−1

1 (z) = −1/z+ a1. However, intersections of γ ′
with otherM-translates of S do not correspond to digits of γ+. We wish to find a subset
of S for γ to intersect with that does not detect these ‘spurious’ intersections of γ ′ seen in
Figure 4a, but does continue to detect (most of) the crossings of γ with MiS. In this way,
intersections of γ with MS correspond strongly to iterations of the shift map T i on γ+,
and so the behavior of geodesic flow will strongly correlate to the behavior of the shift map
T. We will do this in the unit tangent bundle of H2

R
, by restricting the allowed unit vectors

over S. The process is summarized in Figure 4.
We first quickly prove that M−1

1 γ in fact crosses S. Indeed, we have that M−1
1 γ+ is

inside S, while |ai | ≥ 2, so that M−1
1 (γ−) = M−1

1 (∞) = −ai is outside of S. While this
bound appears to deteriorate to |M−1

i γ−| ≥ 1 with additional iterations, by looking at the
permissible digits, one shows that |M−1

i γ−| is bounded below by the golden ratio φ. See
Remark 1.5 for the more general approach to this step.

In Figure 4(a), we see that γ ′ has (at least) two intersections that we do not want to code:
the intersection with the sphere centered at the point (1, 0) and the intersection with the
vertical line x = 1.5. The first of these is avoided simply by restricting to the vectors in T 1

S

that point towards K = [−1/2, 1/2) (that is, whose corresponding geodesics terminate in
K). By completeness, any (non-identity)Z-translate of these vectors must land outside of
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FIGURE 4. Constructing the section CW of geodesic flow.

K. In particular, the corresponding vectors on the sphere centered at (1, 0) point to the
interval [1/2, 3/2), whereas we know that M−1

1 γ+ ∈ K . Thus this intersection is avoided.
The second spurious intersection in our example requires more work, and we rule it out

by making two observations about M−1
1 γ ′ that are predicated on the use of horoheight

and horoballs (shown in green in Figure 4, cf. Ford circles). We may measure horoheight
either from ∞, in which case horoheight is simply the y coordinate and a horoball is a
set of the form {(x, y) : y > y0}, or from a (rational) point on the x-axis, in which case
horoheight can be thought of as the depth into the corresponding cusp, and horoballs
appear as Euclidean disks tangent to the x-axis. For our first observation, the fact that
|M−1

1 γ+| ≤ 1/2 and |M−1
1 γ−| ≥ φ implies that the intersection of M−1

1 γ ′ with S occurs
away from the x-axis, in the smaller ‘wall’ region (see Figure 4b):

W = {
z ∈ S : Im(z) >

√
3
2 (5

√
5 − 11) ≈ 0.52

}
,

and that the intersection with M−1
1 S is likewise bounded away from the x-axis. That

is, M−1
1 γ ′ is contained in a horoball B = {y > ε} for some ε > 0. For our second

observation, consider a mapping M ∈M that sends the line x = 1.5 to S. Normalizing
M−1

1 γ ′ further by M, we see (Figure 4c) that MM−1
1 γ ′ ⊂ MB is now contained in one of

the horoballs based at a finite rational point. In particular, this provides (see Corollary 5.6)
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an upper bound c = ( 3
2 (5

√
5 − 11))−1/2 ≈ 1.923 on how far MM−1

1 γ ′ travels away from
the x-axis. We can reject the intersection of MM−1

1 γ ′ with S (and thus the intersection
of M−1

1 γ ′ with the line x = 1.5) by restricting to the vectors in T 1
W that are returning

from a cusp excursion towards ∞ of depth at least c. We will denote by CW the set of such
vectors that also point towards K. This is our desired refinement of S (Figure 4d).

Our choice of CW by construction avoids all spurious intersections, but may also
inadvertently ignore some intersections corresponding to small digits or even entire
geodesics. We say that a geodesic γ is markable if it intersects M-translates of CW
infinitely often in both the past and future, and it is easy to see that almost every geodesic is
markable, see Corollary 6.6. The markable geodesic Theorem 5.1 records the desired link
between the CF digits of a markable geodesic γ and its intersections withM-translates of
CW: intersections occur only with walls of the form MiCW, the intersections occur in the
desired order, and no other intersections occur.

With the section CW in hand, we return to the question of ergodicity. We begin by
working through a number of closely related functions acting on different spaces, pulling
ergodicity from one function to the next. The ergodicity of geodesic flow on the modular
surface M\H2

R
implies the ergodicity of the first return map to the projection of CW

onto the modular surface. We can then lift this first return map back to H
2
R

to obtain
an isomorphic and thus equally ergodic map ψ : CW → CW (Proposition 6.9). We then
conjugate this system with the projection π from the unit tangent bundle of H2

R
to R̂ × R̂

that takes any geodesic γ to its forward and backward endpoints (γ+, γ−), obtaining an
ergodic mapping 	 = π ◦ ψ ◦ π−1 on π(CW). This map acts by taking a point (γ+, γ−)
to (M−1

i γ+, M−1
i γ−) for some i. Thus, in the first coordinate, 	 acts by T i , where i may

depend on the value of γ+, that is, this is a jump transformation associated with T.
Although we could conclude that this jump transformation is ergodic, the ergodicity

of a jump transformation does not imply the ergodicity of the original map in general.
So to recover the ergodicity of T, we step back to R̂ × R̂. Namely, we consider a
natural-extension-like function T̂ onK × R̂ such that the action of T̂ on the first coordinate
is simply T. We show that the action of T̂ onK = ⋃∞

i=0 T̂
iπ(CW) is well behaved (Lemma

6.10) and that, in fact, 	 is simply the map induced by restricting T̂ to π(CW) (Lemma
6.11). Induced maps have far greater structure than jump transformations and so we are
able to conclude the ergodicity of T̂ on K from the ergodicity of 	 (Lemma 6.12) and
from there conclude the ergodicity of T by restricting to the first coordinate.

Remark 1.5. There are two sources of complexity in the full proof of Theorem 1.2.
The first is that we would like to work in sufficient generality to include Heisenberg
continued fractions. This requires working with hyperbolic spaces defined over complex
numbers and quaternions, and obtaining some new results about inversions for the
corresponding horospherical coordinates with boundary, see Theorem 2.11. The second
source of complexity is the fact that, even for simple CF algorithms, the pointM−1

i γ− need
not remain outside of the sphere S, and the properness assumption is necessary to guarantee
that some intersections do occur. For example, the α-CF algorithm with α > 2/3 and
inversion ι+ would send the geodesic with endpoints γ+ = 2

3 and γ− = ∞ to the geodesic
with endpoints M1γ+ = 1/2 and M1γ− = −1, which does not intersect S. However, Miγ
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cannot remain under S forever: applying the identity |1/x − 1/y||x||y| = |x − y|, we see
that additional iterations of the shift map must pull the endpoints of Miγ apart and push
Miγ− out of the unit circle. The need to wait several iterations before a collision is detected
then complicates the construction of the wall region W and the section CW.

1.4. Further remarks. Iwasawa CFs are the most general setting for our methods,
which rely heavily on the fact that Iwasawa inversion spaces are boundaries of rank-one
symmetric spaces of non-compact type. Indeed, Iwasawa inversion spaces are precisely the
spaces with this property, with the exclusion, due to the break down of vector-space-based
techniques, of the exceptional X1

O
that can be defined over the non-associative octonions.

Our notion of Iwasawa inversion space differs slightly from the notion of Iwasawa groups
of [9], which excludes Xn

R
and allows X1

O
.

We remark further that boundaries of rank-one symmetric spaces of non-compact type
are arguably the most general setting for geometric CFs and Diophantine theory: they are
characterized [12, 37] as homogeneous geodesic locally compact spaces admitting both a
dilation (a notion of fraction) and a well-behaved inversion. (The Cygan metric we work
with is not itself geodesic, but gives rise to a geodesic path metric.)

The present work suggests the following further directions of study.

Question 1. Under what conditions is the invariant measure for the CF shift map finite or
(piecewise) analytic?

Question 2. Is the CF shift map mixing?

Question 3. Does Theorem 1.2 hold for incomplete Iwasawa CFs or for improper Iwasawa
CFs with weak contact with the unit sphere (such as J. Hurwitz CFs)?

Question 4. Can one characterize periodic Iwasawa CF expansions, analogously to the
quadratic surd characterization of periodic regular CFs in R (cf. [63])?

Question 5. Can one describe the set of exceptions to tail-equivalence in Theorem 1.4 (cf.
[36])?

Question 6. What Iwasawa CF algorithms are not represented in Table 1?

1.5. Outline of the paper. Following this introduction, in §2 we provide the general
theory and definitions for Iwasawa inversion spaces. In §3, we define Iwasawa CFs, give
further examples (including Table 1), and study conditions that guarantee discreteness,
properness, and completeness. In §4, we quickly prove the convergence of Iwasawa CFs.
In §5, we will build up the theory surrounding markable geodesics, culminating in the
markable geodesic theorem. In §6, we use the markable geodesic theorem to prove the
ergodicity of the CF shift map for an Iwasawa CF expansion and, in applications of this
result, prove Theorems 1.3 and 1.4.
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2. General theory
We now outline the structure of Iwasawa inversion spaces X = X

n
k , the associated upper

half-spaces Hn+1
k , and the continued fraction algorithms that can be built on X using this

structure. We encourage the reader to skip this section on the first reading, following the
intuition of the Euclidean space X = X

n
R

= R
n and hyperbolic half-space H = H

n+1
R

lying
above it.

2.1. Iwasawa inversion spaces. Abstractly, an Iwasawa inversion space X is an Iwasawa
N-group associated by the Iwasawa (KAN) decomposition with a non-exceptional rank one
semi-simple Lie group G and the parabolic boundary at infinity of the rank-one symmetric
space G/K . We now recall the explicit construction and Euclidean-like structure of these
spaces. Most of the contents of this section can be found in [9, 21, 51].

Fix an associative division algebra k over the reals—the real, complex, or quaternionic
numbers (when working over quaternions, we will use the convention p/q := pq−1)—and
an integer n ≥ 1. (It appears that one could also consider the exceptional case of octonions,
but we will not do so here.) Recall that k has a real part Re(k) isomorphic to R and a
complementary imaginary part Im(k) satisfying dimR(Im(k)) = dimR(k)− 1. We denote
the standard norm of an element of k or kn by ‖ · ‖, and refer to ‖ · ‖-preserving k-linear
automorphisms of kn as unitary transformations.

Remark 2.1. For k = R, one has Im(k) = {0}. Note that Im(k) remains a subset of k;
in particular, we do not identify Im(k) with R when k = C. We furthermore exclude
non-holomorphic transformations such as z �→ z from the unitary group, purely for
notational convenience.

Definition 2.2. (Iwasawa inversion space) The Iwasawa inversion space X = X
n
k is the set

kn × Im(k) with coordinates (z, t) and group law

(z, t) ∗ (z′, t ′) = (z+ z′, t + t ′ + 2Im〈z, z′〉),
where the inner product of the vectors z, z′ is given by 〈z, z′〉 = ∑

i ziz
′
i .

Over the reals, Xn
R

reduces to R
n with ∗ acting by the usual vector addition. For k �= R,

X
n
k is a step-2 nilpotent group (one uses ∗ to emphasize the non-commutativity), with

identity (0, 0), and the inverse of a group element (z, t) given by (−z, −t).
One gives X a gauge | · | and Cygan metric d (also known in different contexts as the

Korányi metric or gauge metric) by defining

|(z, t)| := ‖‖z‖2 + t‖1/2, d((z, t), (z′, t ′)) := |(−z, −t) ∗ (z, t)|.
The Cygan metric is largely analogous to the Euclidean metric, insofar as its auto-

morphisms include analogs of translations (left multiplication by an element of X is
an isometric isomorphism); dilations (for each r > 0, the mapping δr(z, t) = (rz, r2t)

is a group isomorphism that rescales the metric by factor r); and rotations (unitary
automorphisms of kn extend to isometric group isomorphisms of X).

However, the metric is fractal for k �= R: it is not a path metric (cf. the closely asso-
ciated Carnot–Carathéodory path metric) and gives X Hausdorff dimension n dimR(k)+
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2(dimR(k)− 1) which is not equal to its topological dimension (n+ 1) dimR(k)− 1. The
latter is due to the fact that large metric balls are stretched by δr along the t direction, while
small ones are flattened out along the z direction.

The Korányi inversion ι− : X \ {0} → X \ {0} is defined by

ι−(z, t) =
( −z

‖z‖2 + t
,

−t
‖z‖4 + ‖t‖2

)
.

The Korányi inversion is a natural generalization of the mapping x �→ −1/x, and in
particular satisfies the following pair of identities for h, h′ ∈ X \ {0}, [12]:

|ι−h| = 1
|h| , d(ι−h, ι−h′) = d(h, h′)

|h||h′| . (2.1)

In particular, ι− sends each sphere S(0, r) to the sphere S(0, 1/r), and preserves the
unit sphere. We prove the identities in a broader context in Theorem 2.11.

More generally, X admits inversions of the form

ι(z, t) =
( −A(z)

‖z‖2 + t
,

−(det A)t
‖z‖4 + ‖t‖2

)
,

where A is a unitary transformation of kn. We show in Lemma 2.10 that all inversions
satisfy generalizations of (2.1).

2.2. Upper half-space. Fix an Iwasawa inversion space X = X
n
k . We extend the struc-

ture and Cygan metric of X to kn+1 as follows, motivated by Parker [51].

Definition 2.3. Extend the Heisenberg group law to kn × k = kn+1 as

(z, w) ∗ (z′, w′) = (z+ z′, w + w′ + 2Im〈z, z′〉),
and the gauge and metric as

|(z, w)| = ‖‖z‖2 + ‖Re(w)‖ + Im(w)‖1/2, d((z, t), (z′, t ′)) := |(−z, −t) ∗ (z, t)|.
Remark 2.4. In the case k = R, the Heisenberg group law on kn+1 reduces to
(z, w) ∗ (z′, w′) = (z+ z′, w + w′), and the gauge reduces to the Euclidean-like
|(z, w)| = (‖z‖2 + ‖w‖)1/2. One could adjust Definition 2.3, by taking a square root
along the Re(w) direction, so that it agrees with the Euclidean metric in the real case. We
will not do so.

Definition 2.5. The upper half-space H
n+1
k ⊂ kn+1 is the set

H
n+1
k = {(z, w) ∈ kn × k : Re(w) > 0},

satisfying ∂H = X.
One gives H two natural metrics: the restriction of the Cygan metric d on kn+1 (this was

introduced by Parker in [51] for H2
C

and generalized by Cao–Parker to H
2
O

in [8]); and the
negatively curved hyperbolic metric dH, defined via an embedding into P(kn+2). Unless
otherwise noted, H will always be equipped with the metric dH.
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Definition 2.6. (Projective embedding) Let φ : kn+1 → kn+2 be given by φ(z, w) =
(1,

√
2z, w + ‖z‖2), and set � = P ◦ φ : kn+1 → P(kn+2).

Consider the Hermitian form 〈·, ·〉J of signature (n+ 1, 1) defined on kn+2 by

J =
⎡
⎣ 0 0n −1

0n idn 0n
−1 0n 0

⎤
⎦ ,

and let S = {(1 : a : b) : ‖a‖ < 2Re(b)} ⊂ P(kn+2) be the Siegel region. One can show
that � induces a bijection between H and S, and furthermore S is the projectivization of
the negative cone of J. This induces an action of the projective unitary group G = PU(J )

on H, cf. §4.

Definition 2.7. (Hyperbolic metric) The hyperbolic metric dH on H is the unique
G-invariant Riemannian metric on H with sectional curvature pinched in the range
[−1, −1/4] if k �= R or equal to −1 if k = R.

For H = H
2
R

, dH agrees with the familiar metric 1
y
ds if one takes x = z and y = w2.

One has �(H) = {(1 : a : b) : 2b > a2} ⊂ RP
2, and a projective change of coordinates

recovers the Klein disk model of H2
R

with its SO(2, 1)-invariant metric.
In general, the Siegel region is projectively equivalent to a unit ball in projective

space P(kn+2). The mapping �|X : ∂H → ∂�(H) omits a single point, which we iden-
tify with the point ∞ in the one-point compactification of kn+1 (and its subsets X

and H).

2.3. Inversion theorem. Returning to the Cygan metric, we record two connections to
the projective embedding.

LEMMA 2.8. (Parker [51]) Suppose p, q ∈ H, with either p or q in X = ∂H. Then the
Cygan metric satisfies d(p, q) = ‖〈φ(p), φ(q)〉J ‖1/2.

LEMMA 2.9. Let h ∈ H and denote φ(h) = (1, a, b). Then |h| = ‖b‖1/2.

Proof. This is immediate from Definitions 2.3 and 2.6.

With the above machinery, we can provide a simple description of the Korányi inversion,
extended to H, and prove the inversion identities (2.1).

LEMMA 2.10. The Korányi inversion ι− : H \ {0} → H \ {0}, given by the mapping

(z, w) �→
( −z

‖z‖2 + w
,

w

‖‖z‖2 + w‖2

)
,

is induced by the matrix J ∈ G. That is, setting φ(z, w) = (1, a, b), one has
φ(ι−(z, w)) = (1, −a/b, 1/b) = φ(z, w)/−b, and in P(kn+2), one has �(ι−(z, w)) =
J�(z, w).
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Proof. We have φ(z, w) = (1,
√

2z, |z|2 + w), so that Jφ(z, w) = (−(|z|2 + w),√
2z, −1). Up to a factor of −(‖z‖2 + w), this is equivalent to(
1,

√
2

−z
‖z‖2 + w

,
1

‖z‖2 + w

)
=

(
1,

√
2

−z
‖z‖2 + w

,
∥∥∥∥ −z
‖z‖2 + w

∥∥∥∥2

+ w

‖‖z‖2 + w‖2

)
,

which in turn is equal to φ(ι−(z, w)) as desired.

THEOREM 2.11. (Inversion theorem) Let h ∈ (H ∪ X) \ {0} and h′ ∈ X \ {0}. The follow-
ing identities hold for the Korányi inversion ι−, Cygan metric d, and gauge | · |:

|ι−h| = 1
|h| and d(ι−h, ι−h′) = d(h, h′)

|h||h′| . (2.2)

Proof. Write φ(h) = (1, a, b) and φ(h′) = (1, a′, b′). By Lemma 2.10, φ(ι−(h)) =
(1, −a/b, 1/b), and the first identity thus follows from Lemma 2.9.

Since h′ ∈ X, Lemma 2.8 gives d(h, h′) = ‖〈φ(h), φ(h′)〉J ‖1/2 and d(ι−h, ι−h′) =
‖〈ι−φ(h), ι−φ(h′)〉J ‖1/2. Using Lemmas 2.10 and 2.9,

d(ι−h, ι−h′) =
∥∥∥∥
〈
φ(h)

−b ,
φ(h′)
−b′

〉
J

∥∥∥∥1/2

= d(h, h′)
‖b‖1/2‖b′‖1/2 = d(h, h′)

|h||h′| ,

which provides the second identity.

Remark 2.12. Surprisingly, Lemma 2.8 and the second identity of Theorem 2.11 fail when
both h and h′ lie in H.

Compositions of diagonal elements of G (as well as certain conjugation actions) with
the Korányi inversion continue to satisfy the conclusions of Theorem 2.11. We define the
following.

Definition 2.13. An inversion is a Möbius transformation ι : X \ {0} → X \ {0} satisfying
the conclusions of Theorem 2.11.

It follows from the classification of isometries of H that every inversion factors as a
composition of a rotation and the Korányi inversion.

LEMMA 2.14. If ι is an inversion, then there exists a unitary mapping f : kn → kn such
that ι = f ◦ ι−.

Proof. Since ι is a Möbius transformation, it extends to an isometry of H. The mapping
f = ιι− is an isometry of H that fixes the points 0 and ∞. It therefore maps the geodesic
γ joining 0 and ∞ to itself. Since ι− and ι fix the point (0, 1) ∈ γ by the first part of (2.2),
the same must be true for f. Thus, ι is represented in U(J ) by a matrix of the form⎡

⎣ 0 0n −1
0n A 0n
−1 0n 0

⎤
⎦ , (2.3)

where A is a unitary matrix over kn.
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In addition to the (negative) Korányi inversion ι−, we will also be interested in the posi-
tive inversion ι+ corresponding to the matrix A = −In in (2.3), and the conjugation inver-
sion ιc corresponding to the diagonal matrix A with diagonal entries (−1, 1, 1, . . . , 1).
For example, for p = (x, y, z) ∈ R

3, one has ι−(p) = −p/‖p‖2, ι+(p) = p/‖p‖2, and
ιc(p) = (x, −y, −z)/‖p‖2. Note that under the standard identification of C with R

2, the
mapping z �→ 1/z corresponds to the inversion ιc.

2.4. Isometries, lattices, and fundamental domains. We thus have an Iwasawa inversion
space X and associated hyperbolic space H, with the unitary group G acting on H

by isometries with respect to the Riemannian metric dH, and by generalized Möbius
transformations on X̂ = X ∪ {∞}. One shows that G is in fact the holomorphic isometry
group of H, and the group of (1-quasi-)conformal mappings of X ∪ {∞}. Restricting G to
the set of transformations StabG(∞) preserving infinity provides an action on X that can
be identified with the group of similarities of X. This allows us to think of Isom(X) as a
subgroup of Isom(H).

The group G is, in fact, a rank-one simple Lie group, with an Iwasawa decomposition
G = KAN . One can identify the subgroup N with the space X (with the group structure
provided above), and the subgroup A with the group of dilations {δr : r > 0}. The
subgroup K can be identified with the stabilizer of the point (0, 1) ∈ H, and includes the
Korányi inversion.

We will be interested in lattices and fundamental domains in Isom(X) and Isom(H),
equipped with the respective Haar measures.

Definition 2.15. Let Y be a metric space with an Isom(Y )-invariant measure. A lattice is a
discrete subgroup 
 ⊂ Isom(Y ) such that the quotient 
\Isom(Y ) has finite measure. The
lattice is uniform if 
\Isom(Y ) is furthermore compact, and non-uniform otherwise.

A fundamental domain for 
 is a measurable set K ⊂ Y such that X = ⋃
a∈
 aK and

the overlap K ∩ ⋃
a( �=id)∈
 aK has measure 0.

A rounding mapping [·] : Y → 
 associated with 
 and K is defined, almost every-
where, by the property that for each a ∈ 
 and x ∈ K , one has [a(x)] = a. This property
defines [·] uniquely away from the overlap, and [·] provides some choice of admissible
values has been made for points in the overlap.

3. Iwasawa continued fractions
We can now define Iwasawa continued fractions and establish some auxiliary terminology
and notation.

Definition 3.1. (Iwasawa continued fraction) The Iwasawa continued fraction algorithm is
defined by the following data:
(1) an associative division algebra k over R and integer n ≥ 1;
(2) the associated Iwasawa inversion space X = X

n
k ;

(3) an inversion ι (see Definition 2.13);
(4) a lattice Z ⊂ Isom(X), a fundamental domain K ⊂ X for Z, and an associated

rounding mapping [·] : X → Z (see Definition 2.15).
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Associated with an Iwasawa CF algorithm, we have the following:
(5) the hyperbolic space H = H

n+1
k satisfying ∂H = X;

(6) the holomorphic isometry group G of H;
(7) the modular groupM = 〈ι,Z〉 ⊂ G;
(8) the shift map T : K → K defined by T (0) = 0 if 0 ∈ K and otherwise by

T (x) = [ι(x)]−1(ι(x)).

For a point x ∈ X, we can then inductively define the continued fraction digits ai ∈ Z
and forward iterates xi ∈ K by taking

a0 = [x], x0 = a−1
0 (x),

ai+1 = [ι(xi)], xi+1 = a−1
i+1(ι(xi)) = T (xi),

where the sequences terminate if at some point, xi = 0. The (possibly finite) sequence (ai)
of elements of Z is the continued fraction sequence of x. (Note that later in the paper, we
will assign a bi-infinite string of digits to pairs of points one of which is in K, resulting in
a different notion of a0. For this reason, for points in K, we will leave a0 undefined.)

Given a sequence (ai) of elements of Z (possibly arising from the above algorithm),
one defines the convergent mappings Mi ∈M inductively by setting M0 to be the identity
mapping and Mn+1 = Mn ◦ ι−1 ◦ an+1. (In the following, we will often suppress the ◦
notation for convenience.) By construction, we see that x0 = Mn(xn). For each i, the
ith convergent of the continued fraction is then the point Mi(0). Note that T ix0 = xi =
M−1
i (x0).
We will be interested in conditions on the continued fraction algorithm that guarantee

the following properties.

Definition 3.2. The continued fraction algorithm is convergent if the continued fraction
digits of almost every point x ∈ K produce convergents Mi(0) that indeed converge to x
(clearly, every finite expansion is convergent). The algorithm is ergodic if the shift map T
is ergodic.

We will use the following definition of ergodicity.

Definition 3.3. Let (A, μ) be a measure space and f : A → A a measurable (but not
necessarily measure-preserving) transformation. Then, f is said to be ergodic with respect
to μ if for every measurable B ⊂ A, μ(f−1B�B) = 0 implies that μ(B) = 0 or μ(A \
B) = 0. If φ : A → A is a measurable flow, then φ is ergodic with respect to μ if
for every measurable B ⊂ A, μ(φt (B)�B) = 0 for all t ∈ R implies that μ(B) = 0 or
μ(A \ B) = 0.

Remark 3.4. Note that with this definition, ergodicity with respect to a measure μ implies
ergodicity with respect to any measure that is equivalent to μ. In this paper, the relevant
measure (or class of equivalent measures) will always be clear from the context, and will
often be a Lebesgue or Haar measure.

We will prove the convergence of the Iwasawa CFs under the assumptions of properness
and discreteness.

https://doi.org/10.1017/etds.2022.18 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.18


1688 A. Lukyanenko and J. Vandehey

Definition 3.5. (Properness and discreteness) The Iwasawa continued fraction is proper if
the closure of K is bounded away from the unit sphere: rad(K) = sup{|x| : x ∈ K} < 1.
It is discrete ifM is a discrete subgroup (and therefore, by construction, a lattice) in G.

There do exist convergent Iwasawa continued fractions that are not proper, most notably
regular continued fractions on R and J. Hurwitz continued fractions on C. Likewise, one
can construct proper but non-discrete Iwasawa continued fractions: for example, let X = R,
Z = εZ, and K = (−ε/2, ε/2]. The resulting continued fraction is generally not discrete,
but will be convergent by the Śleszyński–Pringsheim theorem [59] for ε < 1/2.

To prove ergodicity, we will need a further assumption of completeness, which rules out
hidden symmetries.

Definition 3.6. (Completeness) The Iwasawa continued fraction is complete if one has
StabM(∞) = Z.

For an incomplete continued fraction, one may pass to the completion by replacing Z
with the lattice StabM(∞) and making a corresponding modification to the fundamental
domain K and rounding function [·]. This will result in what are often termed ‘folded’
variants (see §1.2.4).

Definition 3.7. The Iwasawa continued fraction is incomplete with n central symmetries if
there exists a set R ⊂ Isom(X) such that:
(1) every element of R fixes 0, that is, is a rotation around the origin;
(2) the only element ofZ to fix 0 is the identity;
(3) StabM(∞) = 〈Z, R〉;
(4) every element of StabM(∞) can be written uniquely as ra for some r ∈ R, a ∈ Z,

and uniquely as a′r ′ for some a′ ∈ Z, r ′ ∈ R; and
(5) R contains n elements.

The set R is said to be the set of central symmetries ofM. We say that the fundamental
domain K forZ is symmetric if for any r ∈ R, rK is K up to a set of measure zero.

3.1. Further examples. With all of our notation now in place, we may describe many
examples of Iwasawa continued fractions. In Table 1, we list several types of continued
fractions, and for each of them denote the Iwasawa inversion space X on which it exists;
the lattice Z, which will often act by left-translation by a subset of X; the fundamental
domain K; the inversion, which in all cases will be identified by a ι signature; whether it is
complete and proper (the columns C and P respectively); and some basic references.

It should be noted that all cases under consideration are discrete.
In some cases where the fundamental domain is too complicated to write succinctly, we

have labeled it with the Dirichlet region. In this case, we mean the set of points that are
closer to 0 than to any translate of 0 underZ, with some choice of boundary.

Remark 3.8. Note as well that the fundamental domain K for the Shallit complex CF
algorithm is a rectangle with corners at .5 − .5i, 1, i, and −.5 + .5i [10].
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TABLE 1. Examples of Iwasawa continued fractions. The examples in X
2
R

= R
2 are usually presented as complex

CFs. See §§1.2 and 3.1 for more information about the algorithms.

Name X Z K ι C P References

Regular X
1
R

Z [0, 1) ι+ N N [57]

Backwards X
1
R

Z [0, 1) ι− Y N See §1.2.2

Nearest Integer X
1
R

Z [− 1
2 , 1

2 ) ι+ N Y [61]

Nearest Integer
(variant)

X
1
R

Z [− 1
2 , 1

2 ) ι− Y Y [31]

Folded Nearest
Integer

X
1
R

〈Z, x �→ −x〉 [0, 1
2 ] ι+ Y Y [40]

Nakada α,
α ∈ (0, 1)

X
1
R

Z [α − 1, α] ι+ N Y Cf. [2, 46]

Even X
1
R

2Z [−1, 1) ι− Y N Cf. [4, 34]

Rosen for q ∈ N≥3 X
1
R

λZ, λ = 2 cos(π/q) [−λ/2, λ/2) ι− Y Y [43], cf. [6]

α-Rosen for
q ∈ N≥3

X
1
R

λZ, λ = 2 cos(π/q) [λ(α − 1), λα),
α ∈ [1/2, 1/λ)

ι− Y Y New, cf. [15]

Hurwitz X
2
R

Z
2 [− 1

2 , 1
2 )

2 ιc N Y [10, 26]

Folded Hurwitz X
2
R

〈Z2, (x, y) �→
(−x, −y)〉

[− 1
2 , 1

2 )× [− 1
2 , 0] ιc Y Y Cf. [52]

Hurwitz Hexagonal X
2
R

Z[ρ], with ρ =
(1 + √−3)/2

Dirichlet region ιc N Y [30]

J. Hurwitz or
Tanaka

X
2
R

{(a, b) ∈ Z
2 :

a + b even}
Dirichlet region ιc Y N [10, 60]

Shallit X
2
R

Z
2 See Remark 3.8 ιc N N [10]

SKT X
2
R

Z[ρ], with ρ =
(1 + √−3)/2

[0, 1)ρ × [0, 1)ρ ιc N N [58]

Bianchi,
d = 1, 2, 3, 7, 11

X
2
R
Od , ring of integers Dirichlet region ιc N Y [17, 29]

3d X
3
R

Z
3 [− 1

2 , 1
2 )

3 ι+ N Y New

Quaternionic X
4
R

Z
4 [− 1

2 , 1
2 )

4 ιc N N [22, 23]

Hurwitz
Quaternionic

X
4
R

Hurwitz integers Dirichlet region ιc N Y [44]

Octonionic X
8
R

Cayley integers Dirichlet region ιc N Y New

Heisenberg X
1
C

Z
3 [− 1

2 , 1
2 )

3 ι− N Y [38]

Folded Heisenberg X
1
C

〈Z3, (z, t) �→
(iz, t)〉

[− 1
2 , 0]2 × [− 1

2 , 1
2 ) ι− Y Y New

Heisenberg
Hexagonal

X
1
C

Z[ρ] × √
3Z See Example 3.13 ι− N Y New

Heisenberg
Quaternionic

X
1
H (Z4 ∪ (Z +

1/2)4)× Z
3

Dirichlet region ι− N N New

The complex continued fractions, quaternionic continued fractions, and octonionic
continued fractions are embedded in higher-dimensional real spaces in the standard way,
C ∼= R

2, H ∼= R
4, and O ∼= R

8. The inversion ιc listed in all these cases is equivalent to
z �→ 1/z on C, H, or O. One reason for identifying these spaces is that the existence of
maximal orders, the Gaussian and Eisenstein integers in C, the Hurwitz integers inH, and
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the Cayley integers in O, give rise to lattices on R
2, R4, and R

8 that in turn generate proper
fundamental domains K. The Hurwitz integers inH are given by

{a + bi + cj + dk : a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1/2}. (3.1)

The Cayley integers in O are defined in Ch. 9 of [11] (where they are referred to by the
less common name of octavian integers), with properness of the corresponding Dirichlet
region following from lemma 6 of that chapter.

We should emphasize that Table 1 does not cover all well-studied CF algorithms.
For example, odd CFs [5], CFs related to triangle groups [7], CFs related to the
Jacobi–Perron algorithm or other subtraction algorithms [54], regular chains [53], and
general (a, b)-continued fractions [35] do not fit into our framework. The N-continued
fractions [16] and u-backwards continued fraction [20] use an ι which is not an inversion
by our definition; however, our proofs could be modified to compensate. Regardless, they
would still not be proper.

Remark 3.9. We are not the first to encounter problems with the incompleteness of the
Hurwitz CF algorithm. Pollicott [52] studied a similar folded continued fraction, albeit
using conjugation in place of negation. Nakada [47] studied the full Hurwitz CF, but
took as his hyperbolic space the disjoint union of two different spaces and let negation
additionally act by swapping between the two.

3.2. Discreteness and properness. The difficulty of pushing into higher dimensions
(either by taking k �= R or n ≥ 2) is in finding an appropriate lattice Z and fundamental
domain K such that the resulting continued fraction is both discrete and proper.

The following proposition gives a useful framework for which to prove discreteness.

PROPOSITION 3.10. Fix an Iwasawa inversion space X = X
n
k , an inversion ι that is either

ι+, ι−, or ιc, and a discrete subring R ⊂ k such that 2 ∈ R. Consider the subgroup Z ⊂
Isom(X) consisting of left-translations by points (z, t) ∈ X such that z ∈ Rn and ‖z‖2 +
t ∈ R. ThenM = 〈Z, ι〉 ⊂ Isom(H) is discrete.

Example 3.11. For example, in the case of the first Heisenberg group X
1
C

, we might chose
R = Z[i] so z ∈ Z[i] and t ∈ iZ.

Proof. We can embedM as a subgroup of GL(n+ 2, k) by mapping ι to a matrix Jι of
the form (2.3), and left-translation by (z, t) to the matrix A(z,t), where

A(z,t) =
⎡
⎣ 1 0n 0√

2z idn 0n
‖z‖2 + t

√
2z 1

⎤
⎦ . (3.2)

It is now easy to check thatZ is a group.
Unless

√
2 ∈ R, the matrices A(z,t) will not be matrices over R itself. However, consider

the discrete set S of (n+ 2)× (n+ 2) matrices (ai,j )n+2
i,j=1 such that ai,j ∈ √

2R if i or j
(but not both!) is equal to 1 or n+ 2, and otherwise ai,j ∈ R. It is easy to check that S is
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closed under multiplication. Moreover, the generators Jι and A(z,t) ofM belong to S, so
thatM ⊂ S, soM must be discrete.

For the rest of this section, we will assume that all the hypotheses of Proposition 3.10
are satisfied, so that the only remaining difficulty is proving properness.

Example 3.12. Let us consider higher-dimensional generalizations of the nearest-integers
CFs. Let k = R, X = X

n
R

= R
n, for some n ≥ 1, and ι = ι+. The space R

n admits the
standard latticeZ = Z

n with fundamental domain K = [−1/2, 1/2)n.
When n = 1, we get the usual nearest-integer CFs. When n = 2, we get a variant of the

Hurwitz complex CFs (ι+ acts like z �→ 1/z). When n = 3, we get a three-dimensional CF
which we do not believe has been studied before. However, when n ≥ 4, the corresponding
K is no longer proper.

Examples 3.11 and 3.12 fit into the framework of Proposition 3.10 very easily. However,
in general, t may not belong to the ring R, but does belong to the additive subgroup R′ of
Im(R) defined by

R′ = {t ∈ Im(R) : ‖z‖2 + t ∈ R, there exists z ∈ Rn} ⊂ Im(R).

One shows that, as a set, we haveZ = Rn × R′.
LetK1 be the Dirichlet domain around 0 for R and letK2 be the Dirichlet domain around

0 forR′ with respect to the Euclidean metrics on kn and Im(k). Then a fundamental domain
forZ in X is given by K = Kn

1 ×K2. In particular, the radius of K is

rad(K) = 4
√
n2 rad(K1)4 + rad(K2)2.

Thus, to obtain a proper system, we require n2 rad(K1)
4 + rad(K2)

2 < 1.

Example 3.13. Suppose k = C andR = Z[i]. Then we haveR′ = iZ,K1 = [−1/2, 1/2)2,
K2 = [−1/2, 1/2)i. In this case, rad(K1) = 2−1/2 and rad(K2) = 2−1. When n = 1, this
implies that K is proper, and results in the Heisenberg continued fractions in Table 1 above.
However, rad(K) < 1 only for n = 1 and so this cannot be directly generalized to higher
Heisenberg groups.

It is tempting to get around this by replacing R with Z[e2πi/3], the Eisenstein integers,
as then K1 is a hexagon with radius 3−1/2. However, this gives R′ = √

3iZ, so that K2 =
[−√

3/2,
√

3/2)i, and again rad(K) < 1 only for n = 1.
We would, more generally, be interested in CFs on the Heisenberg group with

coordinates related to the ring of integers of imaginary quadratic fields. However, if we use
R = Od for d = 2, 7, 11, then the resulting fundamental domain K1 ×K2 is not proper
even when n = 1.

Example 3.14. Let k = H be the quaternions, n = 1, and R the Hurwitz integers (3.1),
so that R′ = Z[i, j, k]. Then rad(K1) = 2−1/2 (see [44]) and K2 = [−1/2, 1/2)3 so
rad(K2) = √

3/2. In particular, if we look at X1
H, we have rad(K) = 1, narrowly missing

the properness criterion. Other nearly proper CF algorithms such as the J. Hurwitz complex
CFs are known to be convergent and ergodic, so we hope to be able to extend our results
to this case.
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3.3. Completeness and incompleteness. We now demonstrate how one can identify
complete CFs, or identify symmetries of incomplete CFs.

PROPOSITION 3.15. CF algorithms associated with X
1
R

, Z = Z, and ι+(x) = 1/x (e.g.
regular or α-CFs) are incomplete with two central symmetries. CF algorithms associated
with X

1
R

,Z = Z, and ι−(x) = −1/x (e.g. backwards) are complete.

Proof. LetM+ andM− be the modular groups associated with ι+ and ι−, respectively.
We take advantage of the fact that one can embedM− into SL(2, Z), whileM+ naturally
embeds into the larger GL(2, Z).

That is, we may identify elements ofZ and the inversions ι± with matrices inGL(2, Z),
acting by the usual linear fraction transformations on R, with

Z =
{
An =

(
1 n

0 1

)
: n ∈ Z

}
ι± =

(
0 ±1
1 0

)
.

(Note that in the standard convention, translations act by upper-triangular matrices, cf.
(3.2).) To test for completeness, note that matrices in StabM±(∞) have the form(

a b

0 d

)
.

Since a, d ∈ Z and |ad| = 1, a, d must be units, so we can decompose the matrix as(
a b

0 d

)
=

(
1 b(d−1)

0 1

) (
a 0
0 d

)
,

a product of an element ofZ and a diagonal matrix. So the only things that can potentially
cause incompleteness are diagonal matrices in M. Since the only diagonal matrices in
SL(2, Z) are ±I , which act by the identity, we can concludeM− = StabM−(∞).

ForGL(2, Z), the only potential additional symmetry is given by x �→ −x, correspond-
ing to a diagonal matrix with a = −d . Indeed, this is contained inM+, represented by the
word ιA1ιA−1ιA1. In particular, CFs associated with ι+ are incomplete with two central
symmetries.

A proof similar to the above also implies that the Rosen CFs are complete.

PROPOSITION 3.16. Let k be the complex, quaternionic, or octonionic division algebra,
with Z given by translation by Gaussian or Eisenstein integers, quaternionic or Hurwitz
integers, or Cayley integers respectively. Any k-CFs associated withZ and an inversion of
either z �→ 1/z or z �→ −1/z is incomplete with at least two central symmetries.

Proof. One argues along the same lines as the proof of Proposition 3.15, embedding
M into GL(2, Ok), where Ok is the corresponding ring of integers. If ι(z) = 1/z, then
ιA1ιA−1ιA1 is again the central symmetry z �→ −z. If ι(z) = −1/z, then the central
symmetry z �→ −z can be represented by the word ιAiιA−i ιAi . In the Hurwitz complex
CF case, no other central symmetries can be obtained because the matrices of GL(2, Ok)
obtained by the embedding have determinant ±1, and hence the only diagonal matrices
have a = d or a = −d .
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PROPOSITION 3.17. The J. Hurwitz complex CF algorithm is complete.

Proof. As in Proposition 3.16, we embed M into GL(2, Z[i]), with ι = ι+ and Z =
{An : n ∈ (1 + i)Z[i]}. However, by taking M modulo 4 and performing an exhaus-
tive computational search, one can confirm that the central symmetry z �→ −z never
appears.

PROPOSITION 3.18. Standard Heisenberg continued fractions are incomplete with four
central symmetries.

Proof. EmbedM into GL(3, Z[i]) using (3.2). Diagonal matrices then correspond to the
rotations (z, t) �→ (ikz, t). All four of these are, in fact, realized, since one has

ιA(0,1)ιA(0,1)ιA(0,1) =
⎛
⎝ −i 0 0

0 1 0
0 0 −i

⎞
⎠ ,

corresponding to the rotation (z, t) �→ (iz, t).

4. Convergence
Convergence in the specific case of proper and discrete Iwasawa continued fractions with
k = C, n = 1, and Z left-translations by the integer Heisenberg group was given in [38],
lemma 3.19 through theorem 3.21. We now extend this to the following result.

THEOREM 4.1. Fix a proper and discrete Iwasawa continued fraction algorithm, and
let x ∈ K . If x has infinitely many CF digits, then the convergents Mi(0) converge to x;
otherwise, if x has exactly i CF digits, then Mi(0) = x.

As the proof is nearly identical to that in [38] with some notational changes, we only
highlight the general method and the new aspects of the proof. In [38], convergence
is proven by extending a regular CF formula for the distance between a point and its
convergents, which reads as

d(x, Mi(0)) =
∏i
j=0 |T jx|
‖qi‖1/2 ,

where qi is the denominator of Mi(0) (see below for a more precise definition). The
proof of this formula extends unchanged from the Heisenberg case, and since |T jx| ≤
rad K < 1 for proper Iwasawa CFs, convergence is immediate provided ‖qi‖ is bounded
away from 0. It is this last point where new techniques are required. In lemma 3.20 of
[38], the discreteness of the Gaussian integers was used to prove that qi �= 0, and thus,
since qi ∈ Z[i], we must have that ‖qi‖ ≥ 1. However, in the general Iwasawa CF case,
the rings generated by the coefficients ofM (in a given matrix representation) need not be
discrete, so a new technique is needed.

We proceed by first fixing a proper and discrete Iwasawa continued fraction algorithm.
Note that we will not use properness explicitly, but it is necessary for the remainder of the
proof in [38].
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Recall from §2.2 that H is the set {h = (z, w) ∈ kn × k : Re(w) > 0} with boundary
∂H = X. The coordinate Re(w) is the horoheight (at infinity) ht∞(h). Restricting the
horoheight from below produces a horoball at ∞, and applying a mapping M ∈M
produces a horoball at the pointM(∞). These can be defined directly using the horoheight
htM(∞)(h) := ht∞(M−1(h)). It follows from the characterization of horoballs as limits of
metric balls that horoballs are geodesically convex. We denote the horoball of height C
based at a point M(∞) by BM(∞)(C) = {h ∈ H : htM(∞)(h) ≥ C}.

The following generalizes the disjointness result for Ford circles.

THEOREM 4.2. There exists C0 > 0 such that for every C ≥ C0 and M1, M2 ∈M
satisfying M1(∞) �= M2(∞), the horoballs BM1(∞)(C) and BM2(∞)(C) are disjoint.

Sketch of proof. The result follows from the Margulis lemma by way of the thick–thin
decomposition (see, e.g. §5.10 of Thurston’s notes [62]) of the quotient orbifold M\H,
which has a cusp corresponding to the point ∞. To see that it has this cusp, note that the
translation length for elements of Z ⊂ H goes to zero at large horoheight (note that one
can compare actions at different horoheights by conjugating by the dilation δr ), so that a
horoball of sufficiently large horoheight must be contained in the thin part ofM\H.

We can conclude, in particular, that horoballs based at points other than ∞ are
quantitatively bounded with respect to horoheight from ∞.

COROLLARY 4.3. Let B = B∞(h1) be a horoball of height h1 based at ∞. Then for every
M ∈M satisfying M(∞) �= ∞, one has

ht∞(M(B)) := sup{ht∞(h) : h ∈ M(B)} ≤ C2
0/h1 =: h2.

Proof. We first show that for each M ∈M, there exists a CM > 0 such that
ht∞(M(B∞(h))) = CMh

−1 for each h > 0. To verify this, we use the fact thatM = 〈Z, ι〉
to expandM = ιan . . . a1ι for ai ∈ Z, noting that initial and final translations do not affect
the horoheight. However, each inversion acts, by lemmas 3.6 and 3.8 of [39], through

ht∞(ι(B∞(h))) = 1/h, ht∞(ι(Bx(h))) = h|x|−2.

Thus, as long as, for each i, xi := (ai ι . . . a1ι)(∞) �= 0, we have

ht∞(M(B∞(h)) = h−1
1

n∏
i=1

|xi |−2.

If at some point xi = 0, then we must have (ιai ι . . . a1ι)(B∞(h)) = B∞(h), so that digits
a1, . . . , ai may be removed without altering the effect of M on B∞(h). With the reduction
implemented, the product CM := ∏n

i=1 |xi |−2 is well defined and has the desired property.
To complete the argument, note that from Theorem 4.2 we have that h−1CM < h for

h = C0, so CM < C2
0 and ht∞(M(B)) < h2, as desired.

Recall that we have an embedding φ : X → kn+2 given by φ(z, t) = (1,
√

2z, ‖z‖2 +
t); with a corresponding embedding of M into U(J ) ⊂ GL(n+ 2, k) acting on these
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vectors. Isometries of X then embed as lower block triangular mappings of the form⎡
⎣a 0n 0
b A 0n
c b† a

⎤
⎦ ,

where |a| = 1 and A is a unitary transformation. The matrix associated with the inversion
is given by Lemma 2.14.

Now, given a point x ∈ K with at least m continued fraction digits (note that [38] uses
the variable n instead), let qm be the denominator of Mm(0); that is, the first coordinate of
the vector Mmφ(0). Thus in the matrix representation of Mm, the top-left entry is qm and
the top-right entry, in norm, is ‖qm−1‖, matching the matrix representation in lemma 3.16
of [38].

LEMMA 4.4. Under the assumptions of Theorem 4.1, there exists C > 0 such that qm �= 0
implies ‖qm‖ > C.

Proof. By Theorem 4.2, there exists a horoball B based at ∞ of some horoheight C1 such
that theM-orbit of B consists of disjoint horoballs. Moreover, the proof of lemma 3.9 of
[39] (again, readily extended to the current setting) gives a constant s0 such that if qm �= 0,
then

ht∞(Mm(B)) := sup{ht∞(h) : h ∈ Mm(B)} ≥ s0‖qm‖−1.

The disjointness requirement forces ht∞(Mm(B)) < C1, so ‖qm‖ > s0/C1 =: C.

From here, it remains to show that qm �= 0. This is just the content of lemma 3.20 of
[38] and we can extend the argument to the general case by citing Lemma 4.4 above in
place of the fact that non-zero Gaussian integers have norm at least 1.

5. Markable geodesics
We now study the way a geodesic γ interacts with the modular groupM related to a proper,
discrete, and complete Iwasawa continued fraction algorithm, with the goal of proving the
markable geodesic Theorem 5.1 below. We will track the passage of a geodesic through
M\H by detecting intersections with the unit sphere

S = {h ∈ H : |h| = 1}
and its images under elements of M. We will obtain an analog of geodesic coding for
certain markable geodesics, and then show that markability is a generic condition. Note
that ∂S is the unit sphere in X, and that ι(S) = S.

THEOREM 5.1. (Markable geodesic theorem) Fix a complete, proper, and discrete Iwa-
sawa CF algorithm on an Iwasawa inversion space X, with the associated hyperbolic space
H, modular groupM, and fundamental domain K ⊂ X for the latticeZ = StabM(∞).

There exists a codimension-one set CW ⊂ T 1
H and a marking that assigns to every

markable geodesic satisfying γ (0) ∈ CW:
• digits ai ∈ Z and mappings Mi ∈M, for each i ∈ Z;
• increasing indices ij ∈ Z and times tj , for each j ∈ Z, with i0 = 0, t0 = 0;
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collectively called the marking of the geodesic γ such that the following properties exist.
(1) (Full Coverage) The segments [tj−1, tj ] have length uniformly bounded below and

hence cover all of R.
(2) (Relation to Shift Map) For each i ≥ 1, ai is the ith CF digit of γ+, and Mi is the

branch of T −i associated with the shift map T at γ+.
(3) (Cusp Detection) If, for t ∈ [tj−1, tj ], the horoheight of γ (t) from M∞ satisfies

htM∞ γ (t) > h0, and if M−1γ+ ∈ K for some M ∈M, then M = Mij .
(4) (Intersection Detection) Let M ∈M and t ∈ R. Then one has γ (t) ∈ MCW if and

only if for some j one has t = tj and M = Mij .
(5) (Shifted Gauss Equivariance) Let k ∈ Z. The marking {a′

i , M
′
i , i

′
j , t ′j } associated to

the markable geodesic γ ′(t) := M−1
ik
γ (t + tk) satisfies: t ′j = tj+k − tk , i′j = ij+k −

ik , a′
i = ai+ik , and M ′

i = M−1
ik
Mi+ik .

To begin with, in H
2
R

, it is apparent from the geometry that any geodesic can only
intersect S transversely at a single point; however, in other hyperbolic spaces, even a
generic geodesic may intersect S at more than one point; indeed when k �= R, H does not
admit any geodesically convex codimension-1 hypersurfaces. However, a generic geodesic
intersects S in finitely many points, so we may speak of the last intersection with S.

LEMMA 5.2. Let γ be a geodesic in H not contained in S. Then the set of intersections
γ ∩ S is finite. Furthermore, if there are times t1, t2 such that |γ (t1)| > 1 and |γ (t2)| < 1,
then γ does intersect S.

Proof. The existence of the intersection follows from the definition of S by | · | = 1.
Finiteness follows by an algebraic argument. Because Isom(H) acts transitively on

geodesics, we may write γ = g(γ2), where g ∈ G and γ2 is the geodesic joining 0 and ∞.
Because g acts by projective transformations on H, the condition |g(γ2(t))| = 1 induces
an algebraic condition on t. Thus, if the condition were to be satisfied for infinitely many t,
it must be satisfied for all t, so that γ ⊂ S, a contradiction.

We now establish the necessary results for the proof of the markable geodesic theorem.

5.1. Decomposing an arbitrary geodesic. In the first stage of the proof, we will break
up a geodesic γ into segments punctuated by intersections with expected images of the
sphere S, in a way that gives us control of the intermediate horoheights. For a more formal
statement, see Lemma 5.7 below.

We start by restricting our attention to geodesics that intersect near the top of S. Fix
ε > 0 such that ε + 1 < rad(K)−1 (this choice comes into play in Lemma 5.4). We then
have the following.

LEMMA 5.3. Suppose γ is a geodesic ray with |γ (0)| ≥ 1 + ε and γ+ ∈ K . Then the
horoheight of any intersection of γ with S satisfies ht∞(γ (t)) ≥ h2 for some h2 ∈ (0, 1)
depending only on ε.

Proof. The existence of the intersection follows from Lemma 5.2.
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To obtain the lower bound on the horoheight of each intersection, note that γ is
uniformly transverse to boundary X (note that we are not working in a conformal model,
so γ is not necessarily perpendicular to X), as this is true for the vertical geodesic joining
0 and ∞ and the endpoints of γ are contained in the compact set K × (H \ B(0, 1 + ε)).
Thus, there is a minimal horoheight h2 (that we may assume is in (0, 1)) that γ must reach
as it moves away from γ− and γ+ before an intersection can occur. The same bound must
hold for the intermediate segment by the convexity of horoballs.

We denote the subset of S having horoheight at least h2 as W, and refer to both W and
its images underM as ‘walls’.

We next fix a geodesic ray γ originating in W and terminating in K and let Mi ∈M be
the mappings associated with the CF expansion of γ+. We now look for intersections of γ
with wallsMi(W) by iterating the shift map on γ and identifying intersections ofM−1

i (γ )

with W. This happens within finitely many iterations, with control over the intermediate
digits.

LEMMA 5.4. There is a finite collectionM0 ⊂M such that the following holds. Suppose
γ is a geodesic with γ (0) ∈ W satisfying γ+ ∈ K \M∞. Then there exists a time 0 <
t1 < ∞ and a universally bounded i1 > 0 such that M−1

i1
(γ (t1)) ∈ W and Mi1−1 ∈M0.

At this point, for notational convenience, we will often drop parentheses when elements
ofM act on points or sets of points.

Proof. We note first that since γ+ �∈M∞, then the continued fraction expansion of γ+
does not terminate and so M−1

i γ+ is well defined and in K for all i ∈ N.
If |M1γ (0)| ≥ 1 + ε, the result is immediate by Lemma 5.3.
If not, we proceed iteratively on i, starting at i = 1, supposing at every stage that

|M−1
i−1γ (0)| < 1 + ε until we find the minimum positive i1 for i for which

|M−1
i γ (0)| ≥ 1 + ε. (5.1)

Note that M−1
i = a−1

i ιM−1
i−1, M0 = id, and moreover that a−1

i is an isometry of the
metric d.

When i = 1, we have by the above observation and our definition of inversions that

d(M−1
1 γ+, M−1

1 γ (0)) = d(ιM−1
0 γ+, ιM−1

0 γ (0)) = d(M−1
0 γ+, M−1

0 γ (0))

|M−1
0 γ+||M−1

0 γ (0)| (5.2)

≥ d(M−1
0 γ+, M−1

0 γ (0))
rad(K)(1 + ε)

= d(γ+, γ (0))
rad(K)(1 + ε)

. (5.3)

In particular, since d(γ+, γ (0)) ≥ d(K , W), this implies that

|M−1
1 γ (0)| ≥ d(M−1

1 γ+, M−1
1 γ (0))− |M−1

1 γ+| (5.4)

≥ d(K , W)
rad(K)(1 + ε)

− rad(K). (5.5)
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This lower inequality could be substantially improved if more was known about M−1
0 γ+.

In particular, if |M−1
0 γ+| ≤ r for

r = d(K , W)
(1 + ε)(1 + ε + rad(K))

,

then we could replace the rad(K) in the denominator of (5.3) and (5.5) with r and obtain
that |M−1

1 γ (0)| ≥ 1 + ε, so that i = 1 itself is the minimum index for which (5.1) holds.
Now we begin the iteration. At every stage we see that

d(M−1
i γ+, M−1

i γ (0)) ≥ d(M−1
i−1γ+, M−1

i−1γ (0))

|M−1
i−1γ+||M−1

i−1γ (0)|

≥ d(M−1
i−2γ+, M−1

i−2γ (0))

|M−1
i−1γ+||M−1

i−1γ (0)||M−1
i−2γ+||M−1

i−2γ (0)|
. . .

≥ d(γ+, γ (0))∏i−1
j=0 |M−1

j γ+||M−1
j γ (0)| ,

and thus

|M−1
i γ (0)| ≥ d(K , W)

(rad(K)(1 + ε))i
− rad(K), (5.6)

noting again that if |M−1
i−1γ+| ≤ r , then one copy of rad(K) in the denominator of the last

inequality can be replaced with r. Thus i satisfies (5.1).
Regardless of whether |M−1

i−1γ+| ≤ r at any stage, since rad(K)(1 + ε) < 1 by the
initial choice of ε, within a bounded number of steps independent of our choice of γ ,
the expression on the right of (5.6) exceeds 1 + ε. Thus, there must be a uniform bound on
i1 such that |M−1

i1
γ (0)| > 1 + ε.

Moreover, we see that if ever in our iterative process, |M−1
i−1γ+| ≤ r , then this i must

be the desired value i1. Thus for i = i1, we must have that |M−1
j γ+| > r , 0 ≤ j < i − 1.

However, recall that aj+1 = [ιMjγ+]. In particular, this tells us that aj+1 must belong to
a finite set of values for 0 ≤ j < i − 1, and since Mi−1 = ι−1a1ι

−1a2 . . . ι
−1ai−1, there

are finitely many options for what it could be.

COROLLARY 5.5. There exists a universal h1 > 0 such that under the assumptions of the
preceding lemma, we have ht∞(M−1

i1
γ (t)) > h1 for all 0 ≤ t ≤ t1.

Proof. We already know that ht∞(M−1
i1
γ (t1)) ≥ h2 since this point is contained in W.

Let us next consider the possible horoheights ofM−1
i1
γ (0) = a−1

i1
ιM−1

i1−1γ (0). The point

ιM−1
i1−1γ (0) lies in the relatively compact set ∪{ιM−1

W : M ∈M0}, so for some h3, we

obtain ht∞(ιM−1
i1−1γ (0)) > h3. Since translation along X does not affect horoheight, we

likewise have ht∞(M−1
i1
γ (0)) > h3.

The lemma now follows with h1 = min(h2, h3) by convexity of horoballs.
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We are now able to characterize Mi1 as the (essentially) unique element ofM that can
detect large horoheights along the geodesic segment between γ (0) and γ (t1). Let us define
an exceptional set E ⊂ K by

E = K ∩
⋃

a∈Z\{id}
aK . (5.7)

Since K is a fundamental domain forZ, E has measure zero.

COROLLARY 5.6. There is an h0 > 1 such that the following holds under the condi-
tions of Lemma 5.4, and for all 0 ≤ t ≤ t1. If M−1γ+ ∈ K \ E, M−1

i1
γ+ ∈ K \ E, and

htM∞(γ (t)) > h0, then M = Mi1 .

Proof. The geodesic segment M−1
i1
γ ([0, t1]) is contained in the horoball B = B∞(h1),

and by Corollary 4.3, there is an h0 such that the points of MB have horoheight based at
∞ of at most h0 when M∞ �= ∞. In particular, this applies to the geodesic segment.

Thus, if htM∞(γ (t)) > h0 for any 0 ≤ t ≤ t1, then we conclude that M∞ = Mi1∞
and thus thatM−1Mi1 ∈ StabM(∞) = Z, by completeness. Moreover, γ+ ∈ M(K \ E) ∩
Mi1(K \ E) so thatM(K \ E)∩Mi1(K \ E) �=∅. Thus (M−1Mi1(K \ E))∩(K \ E) �=∅.
By the definition of E, the only element ofZ that takes any part of K \ E back to itself is
the identity element. Thus M = Mi1 as desired.

We may assume without loss of generality that h0 > 1.

Iterating the above results gives us a sequence of indices ij and times tj with the
following properties.

LEMMA 5.7. Let h0 be the constant in Corollary 5.6 and γ a geodesic ray with γ (0) ∈ W,
γ (t) �∈ W for t > 0, and γ+ ∈ K \M({∞} ∪ E). Then there is an increasing sequence
ij , j ≥ 0, of indices starting with i0 = 0 and an increasing sequence of times tj , j ≥ 0,
starting with t0 = 0 such that the following conclusions hold.
(1) For each j ≥ 0: γ (tj ) ∈ MijW, while for t > tj , γ (t) �∈ MijW.
(2) For each j ≥ 1: if tj−1 ≤ t ≤ tj and a matrix M ∈M satisfies both M−1γ+ ∈ K

and ht∞ M−1γ (t) > h0, then M = Mij .

Proof. Given γ satisfying the assumptions of the lemma, the j = 0 case of conclusion (1)
is trivial.

Moreover, we obtain i1 and t1 from Lemma 5.4. There might be several choices of t1
due to multiple intersections with Mi1W (see Lemma 5.2); however, we let t1 be the last
of these. We then know thatM−1

i1
γ (t1) ∈ W, which is equivalent conclusion (1) for j = 1.

We then obtain conclusion (2) for j = 1 from Corollary 5.6.
We now proceed inductively: once tj and ij are defined, we replace γ with the geodesic

segment γ ′(t ′) = M−1
ij
γ (t ′ + tj ) restricted to t ′ ∈ [0, ∞). We then obtain t′1, i′1, and Mi′1

as before, and take tj+1 = tj + t′1 and ij+1 = ij + i′1. The desired properties follow from
the fact that the shift map acts as a shift on the digits of γ+, via the identity Mij+1 =
MijM

′
i′1

.
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Finally, we note that since h0 > 1, if ht∞ M−1γ (t) > h0, then t cannot be any of the tj
values, so there is no ambiguity in conclusion (2).

5.2. Decomposing a markable geodesic. Lemma 5.7 tells us how geodesic rays leaving
the wall W towards K return to other walls MW, for various M ∈M. In particular,
if a point on our ray has large horoheight with respect to M∞, then the ray should
cross the wall MW. We now use this to define a set CW ⊂ T 1

H lying over W, where
this ‘if’ condition becomes ‘if and only if.’ We will then call a geodesic markable if
it intersects M-translates of CW infinitely often in the past and future, and show in the
markable geodesic theorem (Theorem 5.1) that the behavior of a markable geodesic’s cusp
excursions is directly related to the continued fraction expansion of the forward endpoint.
We will see in Corollary 6.6 that markable geodesics are generic.

Definition 5.8. Using the constant h0 > 1 provided by Lemma 5.7, we define CW ⊂ T 1
H

as follows: a vector based at a point in W is in the set CW if and only if the corresponding
geodesic line γ satisfies:
(1) γ (0) ∈ W, while for t > 0, γ (t) /∈ W;
(2) γ+ ∈ K \M({∞} ∪ E), where E is the exceptional set (5.7);
(3) there exists a spotter time t̂ < 0 such that ht∞(γ (̂t)) > h0.

Critically, the third condition tells us that γ intersects some MCW for M ∈M at
some time tM if and only if there is an associated spotter time t̂M < tM satisfying
ht∞ M−1γ (̂tM) > h0, or equivalently htM∞ γ (̂tM) > h0.

Definition 5.9. A geodesic γ is markable if it intersects M-translates of CW infinitely
many times in both the past and the future. Unless stated otherwise, we will also assume
that γ (0) ∈ CW.

In the following lemma, we will show that for markable geodesics, spotter times follow
a natural progression. That is, if we see a spotter time t̂ associated with an intersection
time t, then we must move beyond t before seeing the spotter time associated with any
other intersection.

LEMMA 5.10. Let γ be a markable geodesic, and M , M ′ ∈M. Suppose that γ (a) ∈
MCW and γ (b) ∈ M ′CW, attested by the corresponding spotter times â, b̂. Then these
must alternate order: if a < b, then â < a < b̂ < b.

Proof. We will prove an equivalent statement: if max(̂a, b̂) < min(a, b), then a = b.
Suppose it is false. Since γ is markable, we may assume without loss of generality that
γ (0) ∈ CW, 0 < â < b̂ < min(a, b).

Let tj be the sequence in Lemma 5.7. Then for some fixed j, we have tj−1 < â ≤ tj .
Conclusion (2) of the same lemma states that, since â is in the correct range and γ (a) ∈
MCW, we have M = Mij and by the definition of tj (that is, conclusion (1) of the lemma)
we have a = tj . Furthermore, tj−1 < b̂ < a = tj , so by the same argument b = tj , as
desired.
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We can now show that if a geodesic starts in CW, its next intersection with a translate
of CW will be captured by an iteration of the shift map.

LEMMA 5.11. Let γ be a markable geodesic such that γ (0) ∈ CW, and suppose that the
next intersection with a translate of CW occurs at MCW. Then for some j ≥ 1, we have
M = Mij and γ (tj ) ∈ MCW, where ij , tj are defined for γ in Lemma 5.7.

Proof. Let t > 0 denote the time when γ (t) ∈ MCW. We know that there must exist a
spotter time t̂ associated with t and moreover, by Lemma 5.10, we know that 0 < t̂ < t .
Let j ≥ 1 be such that tj−1 ≤ t̂ ≤ tj . Then by conclusion (2) of Lemma 5.7, we have that
M = Mij and γ (tj ) ∈ MCW.

We can now prove the markable geodesic theorem.

Proof of Theorem 5.1. For positive i, let ai andMi be the digits and mappings correspond-
ing to the CF expansion of the forward endpoint γ+, making property (2) immediate. We
will define the remaining data iteratively.

Let t1 > 0 be the first positive time when γ intersects anM-translate of CW. Lemma
5.11 then provides an index k such that t1 = tk and a corresponding number ik which we
record as i1 satisfying γ (t1) ∈ Mi1CW. We will now show that properties (1), (4), and (3)
hold on the initial segment [t0, t1].

Let t̂1 be a spotter time associated with the intersection of γ with Mi1CW; that is, t̂1 <
t1 and htMi1∞ γ (t̂1) > h0 > 1. Since γ (t0) ∈ CW and γ (t1) ∈ Mi1CW, then by Lemma
5.10, we have that t̂1 ∈ [t0, t1]. Let ε be the distance (not depending on γ ) between the
horospheres ht∞(·) = 1 and ht∞(·) = h0. Since γ is a unit speed geodesic, t1 − t0 > ε,
and property (1) holds for j = 1.

Next, the ‘if’ direction of property (4) is immediate for j = 0 and j = 1 from the
definitions. Now suppose t ∈ (t0, t1] satisfies γ (t) ∈ MCW for some M ∈M. Then by
definition of t1, we have that t = t1, and from Lemma 5.7, we have that M = Mi1 . Thus
the ‘only if’ direction of property (4) holds for t ∈ (t0, t1].

Suppose next that t ∈ [t0, t1] satisfies htM∞ γ (t) > h0 for some M ∈M. Then by
Lemma 5.7, there exists � ≥ 1 and t ′ > t such that M = M�, and γ (t ′) ∈ M�W. By
definition of CW via spotter times, we obtain that γ (t ′) ∈ M�CW. Since we assumed that t1
is the first time that the forward ray of γ intersects CW, we have that t1 ≤ t ′. The converse
inequality is given by Lemma 5.10, since t is a spotter time associated to t ′, so that t1 = t ′
and M = Mi1 follows from property (4). So property (3) holds for j = 1.

To define tj , ij for j ≥ 2, we now consider a renormalized geodesic γ ′ = M−1
i1
γ with

γ ′(0) = M−1
i1
γ (t1). We may then find t ′1, i′1 for γ ′ as we did above and let t2 = t1 + t ′1

and i2 = i1 + i′1. Iterating this procedure gives tj , ij for all j ≥ 1. By the work above,
properties (1), (3), and (4) hold on the corresponding initial segment of the renormalized
geodesics and thus hold on the entire forward geodesic ray of γ . Moreover, from this
definition, we see that property (5) holds for all i, j , k that are non-negative.

To define ai , Mi for non-negative i and ij , tj for negative j, let t−1 be the smallest (in
norm) negative value for which γ (t−1) intersects a M-translate MCW of CW. Consider
a renormalized geodesic γ ′ = M−1γ with γ ′(0) = M−1γ (t−1) ∈ CW. Set i−1 = −i′1,
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ai = a′
i+i−1

, and Mi = M−1M ′
i−i−1

for i−1 < i ≤ 0. Since γ ′ is a markable geodesic
satisfying the conditions of the theorem and properties (1)–(4) hold for γ ′|[0,∞], properties
(1)–(5) hold for γ |[t−1,∞). Iterating this process yields the remaining definitions and
properties on the backwards ray of γ (note that the full ray is covered by property (1)).

6. Ergodicity
We now prove the ergodicity of the shift map by first relating the cross-section CW studied
in §5 to geodesic flow on a quotient of H, and then to the shift map on the boundary. We
start by recalling the ergodicity result for geodesic flow. This section culminates in the
ergodicity part of Theorem 1.2.

Remark 6.1. All statements concerning ergodicity and measure will be made with respect
to the relevant Hausdorff measure; depending on context, this can be interpreted as Haar
measure, surface measure, or Lebesgue measure. Because there are no surprises along the
way, we will suppress discussion of the details.

6.1. Ergodicity of the geodesic flow. The space (H, dH) is a symmetric space with a
complete Riemannian metric with pinched negative curvature. In particular, any pair of
points in H (indeed, in H ∪ {∞}) determines a unique geodesic. Alternately, a pointed
geodesic is determined by an element of the unit tangent bundle T 1

H, namely a point in H

and a unit vector over it.
The geodesic flow on T 1

H moves vectors along geodesics as follows.

Definition 6.2. (Geodesic flow) Given a vector (h, v) ∈ T 1
H, let γ : R → H be a

unit-speed geodesic satisfying γ (0) = h and γ ′(0) = v. The time-t geodesic flow of (h, v)
is then given by φt (v) := (γ (t), γ ′(t)) ∈ T 1

H.

Given a set A ⊂ T 1
H, one says that A is φ-invariant, if for each t ∈ R, the symmetric

difference (φ−1
t A)�A has measure zero. We will be interested in sets A that are

furthermore invariant under a lattice 
 ⊂ G, that is, μ(γ (A)�A) = 0 for every γ ∈ 
.
We can now state Mautner’s ergodicity theorem (cf. Moore’s extension of the result to

the frame bundle [65]).

THEOREM 6.3. (Mautner’s ergodicity theorem [42]) Let 
 be a lattice in G, andA ⊂ T 1
H

a 
-invariant set that is furthermore invariant under geodesic flow. Then either μ(A) = 0
or μ(T 1

H \ A) = 0.

6.2. Ergodicity of the markable cross-section. We continue working with a fixed
complete, discrete, and proper Iwasawa continued fraction algorithm. Consider the natural
projection πH : H →M\H.

Mautner’s Theorem 6.3 immediately applies to our setting. We record this in the
following lemma, which can be interpreted either in the formulation of Theorem 6.3 or,
equivalently, using orbifold geodesic flow.

LEMMA 6.4. Geodesic flow onM\H is ergodic.
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Proof. M is assumed to be discrete; to show it is a lattice, we must show that there exists
a finite-volume fundamental domain forM. LetK ′ be the region lying over both K having
horoheight at least ε > 0, for a choice of ε satisfying rad(K × [0, ε])−2 > 1. Given a
point h ∈ H, we may use Z to translate h so that it lies over K, and invert it if necessary
to increase its horoheight multiplicatively by at least rad(K × [0, ε])−2 (see [39] for the
interaction of horoheight and inversions), and translate again to place it over K. Within
finitely many iterations, we obtain an image of h contained in K ′. Thus, K ′ contains a
fundamental domain for theM action on H. Lastly,K ′ has horoheight bounded below and
bounded extent along X, so has finite hyperbolic volume.

LEMMA 6.5. The first-return map on πH(CW) is a.e. well defined and ergodic.

Proof. Consider the family F ⊂ T 1
H of geodesic rays that pass through CW. Recalling

that CW consists of geodesics coming from large horoheight through the wall W and
proceeding to K, it is clear F has positive measure. Since M is discrete, πH(F ) also
has positive measure. Thus, by ergodicity, almost every geodesic inM\H passes through
πH(CW).

Since πH(CW) is generically transverse to geodesic flow, we conclude that almost every
geodesic ray in πH(CW) returns to πH(CW), and that the resulting first-return map is
ergodic.

We are now able to show that markable geodesics are generic.

COROLLARY 6.6. Almost every geodesic γ satisfying γ (0) ∈ CW is markable.

Proof. By the previous lemma, the first-return mapping on πH(CW) is well defined. Thus,
given a generic geodesic ray γ in CW, πH(γ ) will return to πH(CW) after some time.
Lifting to H, this implies that γ intersectsMCW for someM ∈M. Iterating the first-return
map gives infinitely many intersections. Reversing the flow gives the same result for the
backward orbit of γ .

Now that we have shown that almost all geodesics are markable, we can quickly prove
that CW has no unexpected symmetries.

COROLLARY 6.7. The restriction of πH to CW is a.e. injective.

Proof. Suppose the statement is false, and there exists a non-identity mapping M ∈M
such that MCW ∩ CW has positive measure. Then by the previous corollary, there is a
markable geodesic γ with γ (0) ∈ MCW ∩ CW. However, then we have γ (0) ∈ CW and
Mγ(0) ∈ CW, and it follows from the intersection detection property of Theorem 5.1 that
M = Mi0 = id.

Definition 6.8. Let us define a mapping ψ : CW → CW by ψ(γ )(t) = M−1
i1
γ (t + t1),

where Mi1 and t1 are given by Theorem 5.1. This is well-defined a.e.

PROPOSITION 6.9. The mapping ψ : CW → CW is ergodic.
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Proof. The first-return map on πH(CW) is ergodic by Lemma 6.5. Corollary 6.7 then
allows us to identify πH(CW) with CW, and Theorem 5.1 tells us that ψ is indeed a lift of
the first-return mapping on πH(CW).

6.3. Ergodicity of a natural extension and of the shift map. At this point, we would
like to project CW onto the forward endpoint and use the ergodicity of ψ to derive the
ergodicity of T. However, the transformation that ψ induces on the forward endpoint is a
jump transformation associated with T and it is not the case that the ergodicity of a jump
transformation implies the ergodicity of the original transformation. (See, for example,
Chs. 17–19 of [54].) So we will instead project onto both endpoints and analyze the
resulting transformation more carefully.

Throughout the rest of this section, we will assume, without directly stating it, that
all statements about sets hold up to sets of zero measure and that any geodesic under
consideration is markable, since this is a generic condition. We continue to work with a
complete, discrete, and proper Iwasawa CF expansion.

Let π : CW → K × X be the injective map from a geodesic γ intersecting CW to its
forward and backward endpoints (γ+, γ−). On π(CW), ψ induces the isomorphic mapping
	 = π ◦ ψ ◦ π−1, which is ergodic on π(CW). Since, by the markable geodesic Theorem
5.1, ψ acts on a geodesic γ by the mapping Mi1 associated with γ+, we conclude that
	(γ+, γ−) = (M−1

i1
γ+, M−1

i1
γ−).

Let us extend the shift map T to act on K × X by T̂ (z, w) = (M−1
1 z, M−1

1 w), where
M1 ∈M is the mapping associated with z. Since T z = M−1

1 z, this truly is an extension.
Let K = ⋃∞

i=0 T̂
iπ(CW) ⊂ K × X.

We wish to compare how 	 acts on π(CW) with how T̂ acts on K . In the following
lemma, will show that the restriction T̂ |K of T̂ to K is well behaved.

LEMMA 6.10. T̂ |K : K → K is surjective. Furthermore, almost every point of K returns
to π(CW) within finitely many iterations of T̂ |K , so that we have

K =
∞⋃
i=0

T̂ |−i
K
π(CW). (6.1)

Proof. It is immediate from the definition of K that T̂ |KK ⊂ K . To prove the reverse
containment, we wish to show that for any (z, w) ∈ K , there exists (z′, w′) ∈ K with
T̂ |K(z′, w′) = (z, w).

Since (z, w) ∈ K , there exists a smallest non-negative integer i such that (z, w) ∈
T̂ |i
K
π(CW). If i ≥ 1, then clearly there is (z′, w′) ∈ T̂ |i−1

K
π(CW) such that T̂ |K(z′, w′) =

(z, w).
So suppose i = 0. Then (z, w) ∈ π(CW). Since	 is an onto map of π(CW) to itself, for

almost every (z, w), there exists some (z′′, w′′) such that 	(z′′, w′′) = (z, w). Thus, if we
let i1 be the index so that 	(z′′, w′′) = (M−1

i1
z′′, M−1

i1
w′′) = T̂ |i1

K
(z′′, w′′), then we have

that (z, w) ∈ T̂ |i1
K
π(CW) with i1 > 0 and the argument of the previous paragraph applies.

Implicit in the last paragraph is the idea that for almost every (z, w) ∈ π(CW),
	(z, w) ∈ π(CW) as well, so that (z, w) returns to π(CW) in a finite number of
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iterations of T̂ |K . Since every (z, w) ∈ K \ π(CW) appears in some T̂ |i
K
π(CW), say,

T̂ |i
K
(z′′, w′′) = (z, w), we can also extend this to say that almost every point in K returns

to π(CW) under a finite number of iterations.
This immediately shows that K ⊂ ⋃∞

i=0 T̂ |−i
K
π(CW) and the reverse inclusion is

trivial.

We restrict our attention to K , setting T̂ := T̂ |K .
Equation (6.1) looks similar to the definition of a natural extension, so raises the

following question, which we will not address.

Question 7. Is T̂ : K → K the natural extension of T : K → K?

One can look at, for example, [18] for a discussion of the natural extension in the case
of the A. Hurwitz complex CF.

Now we can state the connection between 	 and T̂ .

LEMMA 6.11. 	 is the transformation induced by restricting T̂ to π(CW).

Proof. Since Z is countable, the set of points in K with eventually periodic continued
fraction expansions is countable as well, and hence, since we are working up to measure
zero, we may assume any points under consideration are not eventually periodic.

Let (z, w) ∈ π(CW) and let i(z, w) be the minimal positive integer such that
T̂ i(z,w)(z, w) ∈ π(CW). The existence of i(z, w) a.e. follows from Lemma 6.10. We wish
to show that, where it exists, T̂ i(z,w)(z, w) = 	(z, w).

Let γ be the markable geodesic with endpoints (z, w), and let i1 be the corresponding
value from the marking in Theorem 5.1. Then 	(z, w) = (M−1

i1
z, M−1

i1
w) and thus

T̂ i1(z, w) = 	(z, w) ∈ π(CW). By the minimality of i(z, w), we have that i(z, w) ≤ i1.
We must show that i(z, w) cannot be strictly less than i1.

Suppose i(z, w) < i1 and consider the mappingM = Mi(z,w). Since (M−1z, M−1w) ∈
π(CW), M−1γ intersects CW. This means γ intersects MCW and thus by the intersection
detection property of Theorem 5.1,M = Mij for some j. Since the two mappings are equal,
we have that T i(z,w)z = M−1

i(z,w)z = M−1
ij
z = T ij z. However, since we have assumed z

does not have an eventually periodic expansion, this is only possible if i(z, w) = ij .
Additionally, since there are no positive ij between 0 and i1, we must have that i(z, w) =
i1, which completes the proof.

While there is a close connection between the dynamical properties of a map and the
dynamical properties a new map induced from the first, in general, one cannot use the
ergodicity of the induced map to conclude the ergodicity of the original map; however,
Lemma 6.11 when combined with (6.1) is enough to prove the following result immediately
(see theorem 17.2.4 of [54] for full details).

LEMMA 6.12. T̂ is ergodic on K .

We can now project to the first coordinate to complete the proof of Theorem 1.2 (see
also §1.3).
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Proof of Theorem 1.2. Let us suppose the shift map is not ergodic. Then there are
complementary subsets A and B of K that are both invariant under T and have non-zero
measure. We may extend these to complementary subsets A′, B ′ of K by taking their
preimages under projection to the first coordinate. Both A′ and B ′ have positive measure
since π(CW) ⊂ K and we claim there exists a neighborhood U of infinity in X such that
K × U ⊂ π(CW).

Let us now show that this set U does exist. Consider any pair (γ+, γ−) of endpoints of
a geodesic γ , such that γ+ ∈ K and |γ−| is sufficiently large. In particular, if |γ−| > 1 + ε

with ε as in Lemma 5.3, then the conclusion of that lemma and the definition of W imply
that the geodesic γ passes through W. Moreover, by taking the framework of Lemma 5.3
and dilating, we see that if |γ−| is sufficiently large, then the geodesic must travel far into
the cusp at infinity: namely, there must exist a time t̂ such that ht∞(γ (t̂)) > h0. Thus, γ
does intersect CW and (γ+, γ−) ∈ π(CW) as desired. (Since we are working up to measure
zero sets, we may assume that γ+ �∈M({∞} ∪ E) as well.)

Consider T̂ −1A′. Any point (z, w) ∈ K such that T̂ (z, w) ∈ A′ must clearly satisfy
T z ∈ A. In other words, z ∈ T −1A = A. Thus (z, w) ∈ A′, so T̂ −1A′ ⊂ A′ and like-
wise T̂ −1B ′ ⊂ B ′. Hence, A′ and B ′ are both disjoint T-invariant subsets of K with
positive measure. The ergodicity of T̂ : K → K provided by Lemma 6.12 gives the
contradiction.

Remark 6.13. We have proved ergodicity with respect to Lebesgue measure, but with the
framework we have developed, we may now consider the question of absolutely continuous
invariant measures as well.

First, note that since geodesic flow preserves Haar measure on H, there is a canonical
derivation of an invariant measure for ψ on CW. This then projects to an invariant measure
for	 on π(CW). Since	 is the transformation induced by restriction T̂ to π(CW), there is
again a canonical derivation of an invariant measure for T̂ onK (see [54, Theorem 17.1.6]).
From here, projection onto the first coordinate would give an invariant measure for T on K.
All of these operations preserve the fact that they are absolutely continuous with respect
to the corresponding Hausdorff measure.

Note that even though the measure on CW and π(CW) is bounded, the measure on K
and K may be infinite. Indeed, this occurs for the Rosen continued fractions [20].

6.4. Application: ergodic components of incomplete Iwasawa CFs. In this subsection,
we will prove Theorem 1.3.

Let R denote the set of central symmetries ofM (cf. Definition 3.7).

LEMMA 6.14. Let r ∈ R. Then for any a ∈ Z, there exists a′ ∈ Z, r ′ ∈ R such that aιr =
r ′a′ι. Moreover, if r ′ is the identity, then r must be as well.

Proof. Since aιrι−1 ∈ StabM(∞), the decomposability assumption on R implies that
there exist r ′ ∈ R and a′ ∈ Z such that aιrι−1ι = r ′a′ι, as desired.

Let r ′′ denote ιrι−1. Since this fixes 0 and ∞, it must belong to R. So if r ′ is the identity,
then r ′a′ = ar ′′ implies that a−1a′ = r ′′. However, R ∩Z = {id}, so r ′′ and hence r must
be the identity.
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At this point, we wish to start connecting the behavior of an incomplete Iwasawa CF
with n central symmetries with the behavior of its completion.

As such, let us specialize our notation. Let K be the symmetric fundamental domain for
the incomplete continued fraction overZ and letKc be an associated fundamental domain
for the completion of the continued fraction over StabM(∞) so that K = ⋃

r∈R rKc up to
a set of measure zero. Let T be the shift map on K that acts by ι and then an element ofZ.
Let Tc be the shift map on Kc that acts by ι and then an element of StabM(∞).

LEMMA 6.15. With the notation of the paragraph directly above, the map T on K is
isomorphic to a skew-product Tc � f on Kc × R over the map Tc on Kc.

Proof. There is an obvious isomorphism between Kc × R and K given by (z, r) ↔ rz.
The map T acts on rz by aι for some a ∈ Z. By Lemma 6.14, there exists a′ ∈ Z, r ′ ∈ R
such that T (rz) = r ′a′ι(z). Let r ′′ be such that r ′′a′ι(z) ∈ Kc, so that T can be considered
as acting on the space Kc × R by

(z, r) �→ (r ′′a′ιz, r ′r ′′−1).

Since r ′′a′ ∈ StabM(∞), this maps (z, r) to Tc(z) in the first coordinate. Let f (z, r) =
r ′r ′′−1, so that T = Tc � f . To show that Tc � f is truly a skew-product and finish the
proof, we must show that for almost all fixed z, f (z, ·) is an injection (and hence a
bijection).

Suppose that f (z, ·) is not an injection, so that r1 �= r2 but f (z, r1) = f (z, r2). This
implies that T (r1z) = T (r2z). Let a1, a2 ∈ Z be such that T acts by a1ι on r1z and acts by
a2ι on r2z. Then a1ιr1ι

−1(ιz) = a2ιr2ι
−1(ιz). However, for almost all z (namely, those z

not belonging to the exceptional set E (5.7)), a1ιr1ι
−1 is the unique element of StabM(∞)

that brings ιz to K. Thus, for such z, a1ιr1ι
−1 = a2ιr2ι

−1. Recall from the proof of the
previous lemma that ιr1ι−1, ιr2ι−1 ∈ R. So by the uniqueness of the decomposition, we
have that ιr1ι−1 = ιr2ι

−1, and hence r1 = r2. So f (z, ·) is injective.

Theorem 1.3 immediately follows from the next lemma.

LEMMA 6.16. Let A be any ergodic component of K with positive measure, then the
measure of A must be at least 1/|R| (all with respect to a normalized Lebesgue measure
on K).

Proof. We may consider A as a positive measure subset of Kc × R invariant under the
skew-product Tc � f defined in the previous lemma. Consider also the standard projection
onto the first coordinate: πK : Kc × R → Kc. Since Tc is the shift map associated with a
discrete, proper, and complete Iwasawa CF expansion, it will be ergodic due to Theorem
1.2, and thus it suffices to prove that πK(A) is a Tc-invariant set, since it must have full
measure on Kc (that is, 1/|R|).

Suppose z ∈ πK(A), so that there exists r ∈ R such that (z, r) ∈ A. Let z′ ∈ T −1
c z.

Then, since Tc � f is a skew-product, there exists (for almost all such z) r ′ ∈ R such
that (Tc � f )(z′, r ′) = (z, r). Thus (z′, r ′) ∈ (Tc � f )−1A = A, so z′ ∈ πK(A). Thus
T −1
c πK(A) is (up to measure zero), a subset of πK(A).
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Now suppose z ∈ πK(A) and again let r ∈ R be such that (z, r) ∈ A = T −1A. Thus
T (z, r) ∈ A, and projecting this into the first coordinate, we see that Tcz ∈ πK(A).
Thus πK(A) ⊂ T −1

c πK(A). This proves the two sets are equal up to measure zero, as
desired.

In certain cases, one can show that the skew-product over an ergodic transformation
is itself ergodic, see [64] and related papers of the second author for some interesting
examples. If we could prove such a result here, we could remove the completeness
condition in the case of centrally symmetric systems.

6.5. Application: tail equivalence. In this section, we prove Theorem 1.4 in the follow-
ing more precise formulation (note that markable geodesics are generic by Corollary 6.6).

THEOREM 6.17. (Tail equivalence of markable geodesics) Let γ be a markable geodesic
and γ ′ = Mγ with M ∈M and γ ′+ ∈ K . If ai , a′

i are the sequence of CF digits of γ+ and
γ ′+ respectively, then they have the same tail—that is, there exist some k, k′ ∈ N such that
ak+i = a′

k′+i for all i ≥ 1.

Remark 6.18. We note that the condition γ ′+ ∈ K is not necessary. If it were not there, we
could define a′

0 = [γ ′+] and let the continued fraction expansion of γ ′+ start with this a′
0;

however, since this a′
0 might be confused with the corresponding digit of the marking, we

will not use it here.

Proof. While γ ′ is a markable geodesic, it may or may not pass through CW.
The result follows immediately from Theorem 5.1 if γ ′ does pass through CW: the cusp

detection property gives us that for some j, M = M−1
ij

. So the marking of γ ′ is a shift of
the marking of γ . If j ≥ 0, then a′

i = aij+i for i ≥ 1, and if j < 0, then a′−ij+i = ai for
i ≥ 1.

We now assume that γ ′ does not pass through CW. If |γ ′−| ≥ 1 + ε, with ε as in Lemma
5.3, then we apply Lemma 5.2 to see that γ ′ intersects W. Let γ ′′(t) = γ ′(t + t ′) be such
that γ ′′(0) ∈ W. However, if |γ ′−| < 1 + ε, then we may apply the proof of Lemma 5.4
to γ ′ to find an index i1 and corresponding time t1 such that M−1

i1
γ ′(t1) ∈ W. (Note that

the condition in the lemma that γ (0) ∈ W is not actually used in the proof, only that
|γ (0)| < 1 + ε. Moreover, since γ ′ is markable, we know that γ ′+ �∈M∞.) In this case,
let γ ′′(t) = M−1

i1
γ ′(t + t1), so that once again γ ′′(0) ∈ W.

We claim that γ ′+ and γ ′′+ are tail-equivalent. This is obvious in the first case, since
γ ′+ = γ ′′+. In the second case, they are still tail-equivalent, since γ ′′+ = T i1γ ′+ and T again
acts via a shift of the digits. Moreover, γ ′′ is still a markable geodesic, since this property
isM-invariant.

By applying the idea of the proof of Lemma 5.11, we have that γ ′′ intersects MijCW
at time tj for some j. In particular, if we let γ ′′′(t) = M−1

ij
γ ′′(t + tj ), then by the same

argument as previously, we see that γ ′′′+ is tail-equivalent to γ ′′+ and hence to γ ′+. In
addition, γ ′′′ now passes through CW so our earlier argument applies and we see that
γ ′′′+ is tail-equivalent to γ+, as desired.
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