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A new method named B-TIS (Bourgeois & Davoine, J. Comput. Phys., vol. 413, 2020,
109426) has recently been proposed for suppressing the influence of numerical Cherenkov
radiation that appears in particle-in-cell (PIC) simulation of laser wakefield acceleration
(LWFA). However, while this method provides good results when applied to the already
accelerated electrons, we show here that it cannot model correctly most of the plasma
electron bulk interacting with the laser field. We thus investigate in this paper the origins of
this limitation and propose an improved method for which this limitation is removed. This
new method, named B-TIS3, can now be applied to a much broader variety of problems
and improve the performance in comparison with the standard PIC algorithm. We show
that, for an electron interacting directly with a laser pulse, this new technique offers greater
accuracy in terms of momentum and motion than the conventional scheme used in many
PIC codes. These improvements translate into more faithful energy spectrum and electric
charge for the accelerated beam in simulations of vacuum laser acceleration (VLA) or
LWFA involving direct laser acceleration (DLA) at low plasma density. This new method,
easy to implement and not computationally demanding, should then prove useful to study
in depth and help develop novel VLA, DLA and LWFA techniques.

Key words: plasma simulation, intense particle beams

1. Introduction

Particle-in-cell (PIC) codes are known for their versatility and relative speed. They
are used to simulate a wide range of phenomena in kinetic and collisionless (or
weakly collisional) plasma physics. To solve Maxwell equations, many of them use the
finite-difference time-domain method first proposed by Yee (1966), a simple second-order
method easily parallelisable but suffering from some numerical dispersion error which
gives rise to what is known as numerical Cherenkov radiation (NCR) (Godfrey 1974).
There has been much work in recent years proposing different ways to limit the impact of
NCR (Lehe et al. 2013; Xu et al. 2013; Godfrey & Vay 2014; Yu et al. 2015; Lehe et al.
2016; Li et al. 2017, 2021). We recently proposed a novel approach to mitigate the effects
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of this numerical artefact through the modification of the field interpolation (Bourgeois &
Davoine 2020).

This new technique, which we called B-TIS for B-translated interpolation scheme, is
easy to implement in most PIC codes using the Yee scheme, has negligible impact on
performance or communications and showed good results to reduce the impact of NCR
in laser wakefield acceleration (LWFA) simulations, but we believe it could also help to
improve the modellisation of laser–particle interaction in a number of cases.

One domain where this interaction is particularly important, and thus could benefit
greatly from such improvements, is the simulation of vacuum laser acceleration (VLA):
where a laser beam directly interacts with electrons propagating in a vacuum to accelerate
them (Esarey, Sprangle & Krall 1995; Quesnel & Mora 1998; Yu et al. 2000; Cline et al.
2013; Varin et al. 2013). Though it is a difficult technique to set up experimentally, it
benefits from the extremely strong fields of the laser pulse (a few TV m−1) which makes
it a good candidate to produce MeV electrons at high repetition rate (Marceau et al. 2015;
Carbajo et al. 2016).

B-TIS allows for a better modellisation of laser–electron interaction by reducing the
error on the computed magnetic field which in turn leads to more accurate Lorentz force
and particle motion. The improvement is especially significant for electromagnetic fields
propagating at c along the electron acceleration axis. The study of VLA thus appears
as a logical next step as it fits well within the limitations of B-TIS and provides a
good benchmark to investigate the reproduction of the physical phenomena at play in
laser–electron interaction. This should also help to improve the modellisation of the direct
laser acceleration (DLA) regime appearing in LWFA which presents great similarities to
VLA (Pukhov, Sheng & Vehn 1999; Shaw et al. 2014, 2017; Zhang, Khudik & Shvets
2015).

In this article, we start in § 2 with the study of a single electron interacting with a
plane wave so as to compare and validate the simulation results against a simple analytical
model. This simple study highlights the limitations of the different simulation techniques
available and prompted us to develop an improved version of B-TIS that should be even
more robust and accurate than the previous one. In § 3 we see how the Gaussian shape of
a laser pulse impacts those results before, in § 4, looking into the acceleration of a bunch
of electrons by a laser beam and finally the application of our results to a case of DLA in
a LWFA simulation.

2. Electron dynamic in an electromagnetic plane wave

We first study the case of a single electron interacting with a propagating plane wave.
This simple situation can be analytically modelled which gives us a useful benchmark to
evaluate the accuracy of our numerical simulations.

2.1. Analytical model
Considering one electron in a vacuum, we can write its motion equation in terms of the
electromagnetic vector potential A as

dp
dt

= −e
[
−∂A

∂t
+ v × (∇ × A)

]
, (2.1)

where p is the electron momentum, v its velocity, e the elementary charge and the scalar
potential φ = 0.
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For a plane wave propagating along the x axis, the vector potential depends only on x
and is polarised in the yz plane. Assuming an electron initially at rest, we thus get to

dpx

dt
= − e2

meγ
A · ∂A

∂x
= − e2

2meγ

∂A2

∂x
, (2.2)

p⊥=eA, (2.3)

with p⊥ = pyey + pzez, me being the electron mass and γ its Lorentz factor. We
can recognise in (2.2) the expression for the relativist ponderomotive force in the
one-dimensional case.

From the conservation of energy equation for the electron and using the fact that for a
plane wave propagating at c along the x axis, (∂/∂t + c(∂/∂x))A = 0, we can then show
that the quantity γ − px/mec is conserved. With the electron being initially at rest, we have
γ (t = 0) = γ0 = 1 and px(t = 0) = px,0 = 0 which leads to

γ = 1 + px

mec
. (2.4)

We thus have three equations describing the dynamic of an initially at rest electron in a
propagating plane wave:

px

mec
= 1

2

(
eA
mec

)2

, (2.5)

p⊥
mec

= eA
mec

, (2.6)

γ = 1 + 1
2

(
eA
mec

)2

. (2.7)

2.2. Numerical simulations
All numerical simulations presented in this article were performed using the code
CALDER (Lefebvre et al. 2003). Before we delve into the results of those simulations
though, we first discuss the computation of electromagnetic fields and their resulting
actions in PIC codes in order to introduce and summarise the B-TIS method proposed
in Bourgeois & Davoine (2020).

2.2.1. Temporal interpolation of the magnetic field B in PIC codes
2.2.1.1. Standard temporal interpolation Although there have been interesting new

developments to create dispersionless Maxwell solvers in recent years, notably most
recently (Pukhov 2020), CALDER, as many other PIC codes, still uses the simple
and robust finite-difference time-domain Yee scheme (Yee 1966) to solve the Maxwell
equations. Electric (E) and magnetic (B) fields are thus calculated using a leap-frog
method: they are defined on different grids which are offset spatially by half a cell but
also temporally by �t/2.

Let us consider the computation of the transverse Lorentz force applied to a moving
particle in our simulation. The particle can move freely in the whole simulated space while
the fields are computed only on specific grid points. It is thus necessary to interpolate the
electromagnetic fields onto the charged particle position to calculate its motion.

This simple situation, with the field amplitude values known on the different points of
the grid and an electron moving freely between those points, is shown in figure 1 for a
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(a) (b)

FIGURE 1. Usual interpolation process of electromagnetic fields on a one-dimensional spatial
grid at the nth time step in order to get the transverse force Fn

y applied on the particle represented
by the yellow circle. (a) The initial configuration where the field values are known at different
times and spatial points. The temporal interpolation to get B̃n is shown with dashed arrows. (b)
The subsequent spatial interpolation of En and B̃n on the particle (again with dashed arrows and
first order).

simple one-dimensional grid. Considering only the longitudinal dimension x to simplify
the notations, An

i then denotes the value of the field A at the nth time step and the ith point
of the spatial grid or in other terms An

i = A(t = n�t, x = i�x). Due to the leap-frog nature
of the Yee scheme, values of the Ey fields are known at integer time steps and grid points
while values for Bz are known at half-integer time steps and grid points. In the remainder
of this section, we only consider Ey and Bz – which are required to compute the transverse
force Fy – and then omit the y and z indices when it is not absolutely necessary so as not
to clutter the notation.

As the fields are initially not known at the same time step, a temporal interpolation
is necessary to get B̃n before the spatial interpolation and the computation of the force
which is done at the integer time step n. The simplest and most common method is the
linear time interpolation (LTI) B̃n = (Bn−1/2 + Bn+1/2)/2 as is shown in figure 1(a) but a
quadratic time interpolation (QTI), with

˜̃Bn
i+1/2 = 3

8
Bn+1/2

i+1/2 + 3
4

Bn−1/2
i+1/2 − 1

8
Bn−3/2

i+1/2 , (2.8)

can sometimes be used instead for higher accuracy (Lehe et al. 2014). Once both fields E
and B are known at the same time step, they are interpolated spatially onto the particles.
This step is shown in figure 1(b). Once again different kinds of spatial interpolation can be
used with varying orders of interpolation. The one depicted here is, for simplicity’s sake,
a first-order method (linear interpolation).

2.2.1.2. Bypassing the need for a temporal interpolation: B-TIS The idea behind our
new scheme proposed in Bourgeois & Davoine (2020) is to simply use the available
value of the magnetic field as the value we need. That is, interpolating the fields at
the particle position using (En

i , B̂n
i = Bn+1/2

i+1/2 ) instead of (En
i , B̃n

i+1/2) as previously shown.
Of course, doing so is only physically sound if Bn

i ≈ Bn+1/2
i+1/2 . Thankfully this condition

means for a wave propagating at c that B(x, t) ≈ B(x + �x/2, t + �t/2) which is true as
long as �x ≈ c�t. Although this last condition can be limited in the simulation by the
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(a) (b)

FIGURE 2. Modified interpolation process of electromagnetic fields: B-TIS on a
one-dimensional grid at the nth time step. (a) The same initial configuration as figure 1(a) but
instead of the temporal interpolation of B, the relation B̂n

i = Bn+1/2
i+1/2 is used. (b) The result of

this translation and the subsequent spatial interpolation of En and B̂n
i on a particle.

Courant–Friedrichs–Lewy condition, it is usually verified in PIC simulations as having a
ratio �x/�t close to c improves the quality of the results.

This new method effectively results in a translation of the calculated B field before the
spatial interpolation, hence its name: B-translated interpolation scheme. This process is
described in figure 2.

2.2.1.3. Computational error introduced Both approaches introduce an error on the
computed values of the magnetic field compared with an ideal situation where the
magnetic field can be computed at integer time steps.

Let us consider a given magnetic field B(ϕ) = B0 cos(ϕ). The computation of the
numerical value of that field in the simulation introduces an error ε which depends on
the method used:

εLTI = −B0 cos(ϕ) (1 − cos(δϕ)) , (2.9)

εQTI = −B0 cos(ϕ)

(
1 − cos(δϕ)

(
1 + 1

2
sin2(δϕ)

))
− 1

2
B0 sin(ϕ) sin3(δϕ), (2.10)

εB-TIS = −B0 cos(ϕ)
(
1 − cos(δ̂ϕ)

) − B0 sin(ϕ) sin(δ̂ϕ), (2.11)

with ϕ = kxx + kyy + kzz − ωt, δϕ = ω�t/2 and δ̂ϕ = (kx�x − ω�t)/2. Here ω is the
field’s angular frequency and kx, ky, kz its wavevector components.

For longitudinally propagating waves with ω/kx ≈ c and c�t ≈ �x, δ̂ϕ can become
very small and the gain in accuracy should then be significant. This improvement of the
computation of the magnetic field is what enables B-TIS to effectively suppress the effects
of NCR. Indeed, the more accurate computation result in the induced Lorentz force, from
the interaction of the NCR with particles, being negligible. In effect, the spurious radiation
is still generated and present in the simulation but has no impact on the simulated particles.

2.2.2. Comparison of the different temporal interpolation methods
Three simulations were originally performed, each with a different temporal

interpolation method introduced earlier: LTI, QTI and B-TIS. To reproduce in a
two-dimensional simulation the situation presented above, we use a plane wave
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(a) (b)

FIGURE 3. (a) Temporal profile (normalised vector potential a) of the incident wave. The
dashed line describes the trapezoidal envelope. (b) Initial situation of the simulation. The
incident wave is propagating to the right.

propagating along the x axis, infinite in width along the y axis. Periodical boundary
conditions are used on the longitudinal edges of the simulation box to recreate the infinite
transverse property of the wave.

We chose the polarisation direction in the simulation plane (along the y axis). The laser
wavelength is λ0 = 2πc/ω0, with ω0 the laser angular frequency, and the wave amplitude
is characterised by a0 = eA0/mec = 5. Simulations were performed in a moving window
following the wave propagation of 960 × 200 cells with �x = 0.15c/ω0, �y = 10 c/ω0
and a time step �t = 0.149 1/ω0.

The propagating wave’s temporal profile has a finite extension with a trapezoidal
envelope as shown in figure 3(a). Each ramp and the plateau of the trapezoidal profile
are 4λ0 long. We take care that

∫
Ey(t) dt = 0, otherwise Ay, and thus py, is non-zero even

once the laser has passed. To make the analysis easier we also chose the temporal profile
so that

∫ t2
t1

Ey(t) dt = 0, with t1 and t2 being the time boundaries of the profile ramps or
plateau. This ensures that the transverse impulsion py is zero on average during the whole
passing of the laser intensity plateau by the electron.

Only one particle is considered here. It is initially at rest at the centre of the simulation
box. This single particle is given a very small statistical weight in the simulation so that
the charge density (computed within each cell of the simulation) around the particle is
negligible and does not affect the particle dynamic. Figure 3(b) shows the initial state of
the simulation. It is an electron density map (normalised to the plasma critical density
nc = ε0meω

2
0/e2) showing the initial position of the particle superimposed on a map of the

wave transverse electric field Ey.
Considering a propagating plane wave along x, polarised along the y axis and with a

temporal envelope f such as A = A0f (t − x/c) sin(ω0(t − x/c))ey, then (2.5), (2.6) and
(2.7) may be rewritten as

px

mec
= 1

2
a2

0f 2(t − x/c) sin2(ω0(t − x/c)) , (2.12)

py

mec
= a0f (t − x/c) sin(ω0(t − x/c)) , (2.13)

γ = 1 + 1
2

a2
0f 2(t − x/c) sin2(ω0(t − x/c)) . (2.14)
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(a)

(b)

FIGURE 4. Evolution of the electron normalised momenta px (a) and py (b) with respect to the
normalised coordinate ct − x for the considered different methods. The red dashed line shows
the theoretical px (respectively py) given by (2.12) (respectively (2.13)).

Figure 4 shows results for each simulation by comparing the particle momenta px and
py with those expected according to theoretical computations based on (2.12) and (2.13).
These figures use normalised values, meaning t is expressed as multiples of 1/ω0, x as
multiples of c/ω0 and the momentum p as multiples of mec.

The QTI and B-TIS methods give values of py closer to the theoretical value than LTI
but, overall, all three simulations reproduce fairly well the transverse behaviour of the
particle with small differences.

Still, notable differences between analytical and simulation results though are present at
the beginning and end of the trapezoid ramps (t − x ≈ 20 and t − x ≈ 90) in figure 4(b).
Those are due to a small difference in how the laser temporal profile is defined: in the
theoretical case we considered a trapezoidal envelope for the vector potential A, whereas
we considered a trapezoidal envelope for the electric and magnetic fields E and B in the
simulation, as it is easier to initialise the value of those fields. This definition gives rise
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to vector potential A with a slightly different shape when A varies significantly within a
single wavelength, as is the case at the boundaries of the temporal profile of the wave.

The longitudinal momentum is more problematic and only the LTI method reproduces
qualitatively the expected behaviour of the particle, with a notable error on the maximal
value of px which is underestimated. Both QTI and B-TIS lead to an overestimation of px
with an error increasing over time (artificial increase in the energy of the particle). This
error leads to a non-physical residual momentum after the wave has gone by.

In the next section we investigate the source of this error and present a possible solution
for the B-TIS method.

2.3. Inaccurate longitudinal momentum with QTI and B-TIS
The laser wave propagation in CALDER is computed using the fields E and B not the vector
potential A so we will use here expressions with respect to the electromagnetic fields. The
electron motion equation, for the longitudinal momentum, is thus

dpx

dt
= −e

(
Ex + vyBz − vzBy

)
. (2.15)

Considering a plane wave propagating along x and polarised along the y axis such that
Ey = E0 cos(ϕ) with ϕ = ω0(t − x/c), then Bz = (E0/c) cos(ϕ) and Ex = 0, By = 0. The
previous equation thus becomes

dpx

dt
= −eE0

c
vy cos(ϕ). (2.16)

From (2.6), we get that vy ∝ A(ϕ) ∝ sin(ϕ), which leads to

px(t) =
∫ t

0

dpx

dt
dt ∝

∫ t

0
sin(ϕ) cos(ϕ) dϕ. (2.17)

This means that for an electron initially at rest, after an integer number of wave periods,
the momentum px should be 0 again as

∫ 2π

0 sin(ϕ) cos(ϕ) dϕ = 0. This is indeed what is
observed in figure 4 for the theoretical curve and LTI but not for QTI and B-TIS. This error
comes from the computational error introduced during the magnetic field interpolation
step.

Looking at (2.9)–(2.11), for all three methods, we can see that the error depends on a
term that is proportional to cos(ϕ) but in the case of QTI and B-TIS there is a second term
proportional to sin(ϕ). It is this last part which is problematic here. Taking a look at the
numerically computed momentum pnum

x in our simulation, we can express it as

pnum
x (t) = px(t) +

∫ t

0
−eE0

c
vy ε dt = px(t) + εp, (2.18)

where εp is the numerical error on the momentum px. Thus, with LTI, we get that

εLTI
p = K (1 − cos(δϕ))

∫ t

0
sin(ϕ) cos(ϕ) dϕ, (2.19)
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with K a constant depending on the wave amplitude. This error will fluctuate with time
but it will periodically cancel out, whereas with QTI and B-TIS we get

εQTI
p = K ′

∫ t

0
sin(ϕ) cos(ϕ) dϕ + 1

2
K sin3(δϕ)

∫ t

0
sin2(ϕ) dϕ, (2.20)

εB-TIS
p = K ′′

∫ t

0
sin(ϕ) cos(ϕ) dϕ + K sin(δ̂ϕ)

∫ t

0
sin2(ϕ) dϕ, (2.21)

with K ′ = K(1 − cos(δϕ)(1 + 1
2 sin2(δϕ))) and K ′′ = K(1 − cos(δ̂ϕ)). The second term

in these expressions leads to an error that grows continuously and monotonically with time
instead of periodically cancelling out. This explains the divergence of results observed in
figure 4 though the initial error is really small. Note also that, with our values for the
parameters �x and �t, 1

2 sin3(δϕ) ≈ 2 × 10−4 whereas sin(δ̂ϕ) ≈ 5 × 10−4. This explains
the difference in growth rate for the error with QTI and B-TIS.

The obvious solution would be to use a finer grid so as to minimise �t and �x − c�t
– thus minimising δϕ, δ̂ϕ and the induced error – but this is highly detrimental to
computation performance. Restricting oneself to using only small values of a0 is another
way to circumvent this problem – as the error is proportional to a2

0 – but it is problematic in
the case of the study of VLA or DLA. In any case, both of those approaches only mitigate
the problem as the error will still be present and, though small initially, it will compound
and increase with time.

It is, however, possible to slightly modify B-TIS in a way that drastically reduces this
source of error while still benefiting from all of the advantages of this method.

2.4. B-TIS modification
As we saw earlier, B-TIS replaces the following temporal interpolation of the magnetic
field:

B̃n
i+1/2 = 1

2

(
Bn+1/2

i+1/2 + Bn−1/2
i+1/2

)
(2.22)

with the following translation (as shown in figure 2a):

B̂n
i = Bn+1/2

i+1/2 . (2.23)

This is based on the assumption that the wave propagates at c along the x axis and that
c�t ≈ �x.

However, if the value of the magnetic field is conserved going forward in time and space,
it is also conserved when going backward, and within those assumptions, that translation
is completely equivalent to

B̂n
i = Bn−1/2

i−1/2 . (2.24)

Both possible translations are shown in figure 2(b) where the assumption that the
magnetic field B propagates at c and that c�t ≈ �x means that B is constant along the
diagonals of the grid, hence the equivalence of the two translations.

Let us call rB-TIS the ‘reversed’ version of B-TIS using B̂n
i = Bn−1/2

i−1/2 . This method then
introduces the following error on the magnetic field:

εrB-TIS = −B0 cos(ϕ)
(
1 − cos(−δ̂ϕ)

) − B0 sin(ϕ) sin(−δ̂ϕ), (2.25)

= −B0 cos(ϕ)
(
1 − cos(δ̂ϕ)

) + B0 sin(ϕ) sin(δ̂ϕ). (2.26)

With the exception of the sign of the second term, this is the same expression as the
error for the ‘classical’ B-TIS. As such, we should be able to eliminate that second term
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by combining both B-TIS and rB-TIS. We can indeed choose to use both translations in
conjunction at each time step through a simple average such as

B̂n
i = 1

2

(
Bn+1/2

i+1/2 + Bn−1/2
i−1/2

)
. (2.27)

It is important to note, though, that it is not a simple temporal averaging as is used in LTI:
both the time index and the spatial index are different. This new method, which we call
B-TIS3, then introduces the following error on B:

εB-TIS3 = 1
2
εB-TIS + 1

2
εrB-TIS, (2.28)

= −B0 cos(ϕ)
(
1 − cos(δ̂ϕ)

)
. (2.29)

The second term involving sin(ϕ) has indeed disappeared as we expected. The expression
of this error is similar to the one introduced by LTI with the important difference though
that we have δ̂ϕ < δϕ, which should point to an improvement of accuracy.

To illustrate this point, let us consider a forward-propagating wave in a vacuum with
ω = ω0 and kx = k = ω0/c. We thus have δϕ = ω0�t/2 while δ̂ϕ = 1

2(ω0/c)(�x − c�t).
Then, per (2.9), (2.10), (2.11) and (2.29), with our numerical parameters we get

εlas
LTI = −B0 cos(ϕ) × 2.77 × 10−3, (2.30)

εlas
LTI = −B0 cos(ϕ) × 1.15 × 10−5 − B0 sin(ϕ) × 2.06 × 10−4, (2.31)

εlas
B-TIS = −B0 cos(ϕ) × 1.25 × 10−7 − B0 sin(ϕ) × 5 × 10−5, (2.32)

εlas
B-TIS3 = −B0 cos(ϕ) × 1.25 × 10−7. (2.33)

On the other hand, let us consider a wave, propagating forward in the simulation at the
Nyquist frequency so that ω = π/�t and kx = k = π/�x. Then, as δϕ = π/2 and δ̂ϕ = 0:

ε
Nyq
LTI = −B0 cos(ϕ), (2.34)

εlas
LTI = −B0 cos(ϕ) − B0 sin(ϕ), (2.35)

εlas
B-TIS = 0, (2.36)

ε
Nyq
B-TIS3 = 0. (2.37)

Both of these simple cases show the immense improvement in accuracy that B-TIS3 brings
to our simulations regarding the magnetic field over all the previously considered methods.

A comparison of the results from the B-TIS3 method and the previous one is presented
in figure 5. We can see that this improved B-TIS3 eliminates the troublesome compounding
error impacting B-TIS1 and leads to computed values of px even closer to the theoretical
ones than those obtained using LTI. Results on transverse momentum py are just as good
as before, the improvement margin being already very slim even with LTI.

At this point, the reader should note that we have focused on forward-propagating waves,
as they are those that are most commonly encountered in VLA and LWFA and for which
this scheme was designed. Counter-propagating radiation, however, can be present in a
few situations, because of backscattering for instance or even in the case of colliding laser
pulses. It is thus of interest to check the robustness of our new scheme in such scenarios.
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(a)

(b)

FIGURE 5. Evolution of the electron normalised momentum px (a) and py (b) with respect to
the normalised coordinate ct − x for the considered different methods. The red dashed line shows
the theoretical px (respectively py) given by (2.12) (respectively (2.13)).

The accuracy of both LTI and QTI is not impacted for a counter-propagating wave, as
we still have δϕ = ω�t/2. For B-TIS and B-TIS3, however, with kx = −k, we now get
δ̂ϕ = (k�x + ω�t)/2. With this, for a counter-propagating laser pulse we get

εback las
B-TIS3 = −B0 cos(ϕ) × 1.11 × 10−2. (2.38)

And for a wave propagating backward at the Nyquist frequency:

ε
back Nyq
B-TIS3 = −2B0 cos(ϕ). (2.39)

While these results appear much worse than in the case of forward propagation, it should
be noted that they are not that different from the accuracy level of LTI, with a factor
of 2 to 4 between them. Therefore, the presence of counter-propagating radiation in the
simulation, although not the ideal use case for B-TIS3, should not prove physics-breaking
and the overall gains might be well worth this trade-off.
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(a) (b)

(c) (d )

FIGURE 6. Evolution of the electron normalised momentum (a) px and (b) py and normalised
position (c) x and (d) y with respect to the normalised coordinate ct − x for LTI and B-TIS3.
The red dashed line shows the theoretical values expected from the analytical model introduced
earlier.

From these results, it appears that we have successfully solved the initial
problem encountered in the computation of the longitudinal momentum px and that
B-TIS3 appears well suited to reproduce the physics of VLA contrary to B-TIS1
and QTI.

As LTI is by far the most common method used in PIC codes, it seems an appropriate
method with which to compare. We then only present simulation results for both of these
methods. A summary of results for LTI and B-TIS3 is presented in figure 6. The better
reproduction of the momentum with B-TIS3 shown in figure 6(a,b) leads to an electron
trajectory more faithful to the theoretical predictions as can be seen in figure 6(c,d).

2.5. Simulations with initial longitudinal momentum
We have so far investigated only the case of an electron initially at rest but, in practice,
electrons are far more likely to have a non-zero initial momentum. Going back to the
analytical model developed in § 2.1, with px,0 �= 0 and γ0 �= 1 we now get

γ = γ0 + px

mec
− px,0

mec
, (2.40)
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(a) (c)

(b) (d )

FIGURE 7. Evolution of the electron normalised momentum (a) (respectively c) px and (b)
(respectively d) py with respect to the normalised coordinate ct − x for LTI and B-TIS3 with
p0 = me c (respectively p0 = 5 me c). The red dashed line shows the theoretical values expected
from the analytical model introduced earlier.

which leads to the three following equations now describing the electron motion:

px

mec
= px,0

mec
+ 1

2

(
γ0 + px,0

mec

)(
eA
mec

)2

, (2.41)

p⊥
mec

= eA
mec

, (2.42)

γ = γ0 + 1
2

(
γ0 + px,0

mec

)(
eA
mec

)2

. (2.43)

Figure 7 shows results from two simulations where the electron had an initial longitudinal
momentum p0: the first one with p0 = mec and the second one with p0 = 5mec. All other
numerical and physical parameters are the same as previously. The two methods result in
much more noticeable differences than previously.

It is apparent that the greater the initial velocity of the electron, the more LTI
underestimates the longitudinal momentum. The maximum longitudinal momentum px,max
being underestimated by a factor of at least 3 compared with the theoretical value when
using LTI with an initial momentum p0 = 5 me c. B-TIS3, on the other hand, slightly
overestimates px but overall produces results much closer to the predictions of the
analytical model.
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FIGURE 8. Initial situation with a spatially Gaussian wave.

Looking now at the transverse momentum py, both methods reproduce fairly well the
theoretical results, though both tend to overestimate them. Once again, the B-TIS3 results
appear closer to those of the model and, though the error increases when the initial
momentum p0 increases, this increase appears much smaller for B-TIS3 than for LTI.

Note that all of the presented simulations have been realised using the Boris pusher
(Boris 1970). We found very negligible differences between simulations using the Boris
scheme and simulations using the scheme proposed in Vay (2008) to correct the Boris
pusher inaccuracies at relativistic speed, and we observed the same inaccuracies with LTI
and the same improvements with B-TIS3, irrespective of the choice of pusher.

3. Interaction with a Gaussian beam

In order to get to more realistic cases, we now consider, as our incident wave, a laser
pulse with a Gaussian spatial profile instead of plane wave with an infinite transverse size.

3.1. Theoretical description
We keep the same trapezoidal temporal profile for our laser pulse so as to make
comparisons with earlier results easier; however, its transverse size is now finite and given
by a Gaussian profile with a width (full width at half maximum of the intensity profile) of
160ω0/c. Figure 8 shows this initial situation.

We can come back to the equations introduced in § 2.1 but considering now the more
general case of a wave polarised along the y axis and propagating along the x axis such that
A(x, y, t) = A(x, y, t)ey. The laser waist is assumed here much larger than the wavelength
and as such we can neglect the existence of a vector potential component along x (we
discuss this approximation later). The energy conservation equation then leads to

d
dt

(
γ mc2) = evy

∂A
∂t

. (3.1)

And the motion equation (2.1) gives us

dpx

dt
= −evy

∂A
∂x

, (3.2)

d
dt

(
py − eA

) = −evy
∂A
∂y

. (3.3)
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Using the fact that dA/dt = ∂A/∂t + (v · ∇)A, we finally get to

dpx

dt
= −evy

∂A
∂x

, (3.4)

dpy

dt
= e

(
∂A
∂t

+ vx
∂A
∂x

)
, (3.5)

d
dt

(
γ mc2) = evy

∂A
∂t

. (3.6)

This system is much more complex than the previous one and we do not attempt to
solve it analytically here. We can still gather though that the ponderomotive force of
the laser will push aside the electron and that it will gain a residual momentum, both
longitudinal and transverse. For an exact solution of the motion and acceleration of
electrons by the laser fields, we would have to consider the longitudinal component of
A (A = Axex + Ayey) which would modify (3.1) from (3.6) above. For simplicity’s sake,
however, we do not consider the component Ax which is negligible in our case. More
comprehensive descriptions and computations on this subject can be found in Mora &
Antonsen (1997) and Quesnel & Mora (1998).

3.2. Numerical results
Figures 9 and 10 sum up the simulation results for an electron initially close to the
propagation axis and, respectively, with no initial longitudinal momentum (p0 = 0) or with
p0 = mec.

The behaviour observed in the simulations is in accordance with our expectations:
the electron drifts transversely as it is being accelerated and thus ends up with residual
non-zero longitudinal and transverse momentum, px and py, even after it has exited the
laser beam. This residual extra momentum is quite small when the electron is initially at
rest but it quickly becomes more important when the electron has some initial velocity as
we can see in figure 10(a,b).

Both methods predict overall a similar behaviour for the electron though we can observe
notable differences in final momentum and positions. Indeed as the electron is evidently
more accelerated in the B-TIS3 case, it travels a much longer distance while inside the laser
pulse. This difference is especially apparent in the case with a non-zero initial momentum,
which is coherent with our previous observations.

As we cannot compare with an analytical model here, we use a numerical method to
estimate the theoretical result. When reducing both the spatial grid size and the time step
duration, both numerical methods should converge on a unique solution corresponding to
the physical solution.

We look at the results of three pairs of simulations where we chose �x = 0.15c/ω0 and
c�t = 0.149c/ω0 for the first one, �x = 0.10c/ω0 and c�t = 0.099c/ω0 for the second
and �x = 0.05c/ω0 and c�t = 0.049c/ω0 for the third. Observed momenta are shown
in figure 11. Those results clearly show that both methods are converging on the same
solution which appears fairly close to the one obtained initially through B-TIS3. We thus
observe once again that B-TIS3 tends to slightly overestimate the electron momentum
while LTI noticeably underestimates it.

It is important to note, however, that even when dividing by 3 both �t and �x (thus
increasing the computation time by a factor of 9), LTI still does not give better results than
B-TIS3 with a worse resolution. B-TIS3 appears, in that light, as a fairly good improvement
on the standard LTI.
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(a) (b)

(c) (d )

FIGURE 9. Evolution of the electron normalised momentum (a) px and (b) py and normalised
position (c) x and (d) y with respect to the normalised coordinate ct − x for LTI and B-TIS3 with
a transversely Gaussian laser beam and an electron initially at rest (p0 = 0).

3.3. Influence of the initial position
The ponderomotive force acting on a particle depends on the laser pulse intensity gradient
which varies widely depending on the transverse position.

We show in this section that we can indeed observe this behaviour in our
simulations. We present here in figure 12 the momenta of electrons with different initial
positions y0.

Both methods tend to predict similar final momentum for the electron as long as it is
outside of the stronger field region of the laser pulse. Indeed differences in results between
LTI and B-TIS3 are less important the farther is the electron initially from the propagation
axis.

As we showed that the error introduced by LTI was greater when the electron was
strongly accelerated, it thus seems logical that its predictions are better – thus more in
accordance with B-TIS3 – when the electron is far from the high-intensity region near the
propagation axis and less accelerated.

Though final momentum may appear similar, the small differences can have a
great impact on the particle trajectory. Furthermore, when trying to study VLA we
are of course more interested in the strongly accelerated electrons. Thus the usage
of the B-TIS3 method appears better suited to these simulations than the standard
LTI.
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(a) (b)

(c) (d )

FIGURE 10. Evolution of the electron normalised momentum (a) px and (b) py and normalised
position (c) x and (d) y with respect to the normalised coordinate ct − x for LTI and B-TIS3
with a transversely Gaussian laser beam and an electron with an initial longitudinal momentum
(p0 = mec).

4. Results for VLA and DLA simulations
4.1. Vacuum laser acceleration simulations

Now that we have determined that B-TIS3 gives more accurate results than LTI for a single
electron, we want to simulate a bunch of electrons and see the impact of the different
methods on more realistic cases. We thus introduce in our simulation a full electron
beam instead of a single particle while keeping the same laser profiles as described in
§ 3. The initial situation is presented in figure 13. Note that we chose here to initialise
the electron beam directly in the laser field so as to maximise electron acceleration. The
(two-dimensional) charge of the beam is quite low (≈4.5 pC μm−1) so as to limit space
charge effects and both the longitudinal and transverse spatial extensions are chosen to be
close to a laser wavelength of 800 nm.

Still comparing results of simulations using either LTI or B-TIS3, in both simulations we
observe the electron beam being longitudinally accelerated with the laser ponderomotive
force making it gradually blow up. The electrons then exit the laser pulse, mostly through
the sides without making it through longitudinally from end to end. Electrons are, however,
accelerated for much longer in the B-TIS3 simulation, resulting in the charge being
contained in the simulation box for a much longer propagation distance, as we can see
in figure 14.

Figures 15 and 16 give a comparison of the spatial positions of the electrons within the
laser beam as well as their phase space (x, px) for two different times of the simulation.
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(a)

(b)

FIGURE 11. Evolution of the electron normalised momentum (a) px and (b) py with respect to
the normalised coordinate ct − x for LTI and B-TIS3, with p0 = mec and varying cell sizes and
time steps.

As expected, we can see that the beam is progressively bursting apart due to the laser
ponderomotive force. The asymmetry in the explosion of the beam is due to the fact that
the electron bunch is initially not exactly on the propagation axis but in fact slightly above
it, hence the drift mostly towards positive values of y. Also, as the electron beam is initially
about as long as a laser wavelength, the back-end and the front-end are not in phase. They
interact initially with fields of different values – thus feel different forces which explains
the progressive separation of the two ends of the beam.

We can see in figure 15(a,b) that the beam is dispersed much more quickly in the
simulation using LTI compared to that using B-TIS3, and it is even more apparent in
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(a)

(b)

FIGURE 12. Evolution of the electron normalised momentum (a) px and (b) py with respect
to the normalised coordinate ct − x for LTI and B-TIS3, with p0 = mec and varying initial
transverse position y0 of the electron. Note that the transverse profile of the laser is centred
on y = 0.

figure 16(a) where there is almost no electron left in the laser beam while the electron
bunch is, at the same time, still clearly present in figure 16(b) for B-TIS3. The periodic
evolution of px that we saw earlier is also visible on the map of the (x, px) phase space,
especially in figures 15(d) and 16(d). Though this structure is quickly masked in the case
of LTI, we can still make it out in figure 15(c).

Figure 17 shows a comparison of the electron energy spectra after two different
propagation lengths. The remaining charge inside the simulation window is much more
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FIGURE 13. Initial situation with a spatially Gaussian laser beam and an electron bunch.

FIGURE 14. Charge inside the simulation box with respect to travelled length.

important in the case of B-TIS3 and reaches higher energies which is coherent with
previous observations.

In the end, it appears that B-TIS3 produces results significantly different from those
of LTI. Considering those results and the previous comparison with theoretical models,
LTI appears – barring a prohibitively costly refining of the grid – to not be well suited
to the study of VLA though B-TIS3 may be an easy-to-implement substitute to solve this
problem. Indeed, LTI may lead to an inadequate estimation of the accelerated charge and
of the beam energy, two key characteristics in electron acceleration.

4.2. Direct laser acceleration simulations
Investigating the use of B-TIS3 for VLA simulation has allowed us to highlight its
improvement compared with LTI. However, as VLA so far has been shown to be quite
limited as a reliable source of accelerated electrons, it is interesting to also study the use
of B-TIS3 in simulations of other acceleration methods.
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(a) (b)

(c) (d )

FIGURE 15. Electronic density map (greyscale) superimposed to the electric field Ey map
(colours) after a propagation of 570 μm for (a) LTI and (b) B-TIS3. Phase space (x, px) after
a propagation of 570 μm for (c) LTI and (d) B-TIS3.

We already demonstrated the usefulness of B-TIS in mitigating the impact of numerical
artefacts such as NCR in LWFA simulations (Bourgeois & Davoine 2020) and those results
still apply with B-TIS3. In addition to this, our new interpolation technique, B-TIS3,
should also bring great improvements to simulations of another situation: DLA.

In LWFA, DLA occurs when the laser beam is long enough to encompass part of the
bubble where electrons are being accelerated which brings about a coupling between
electrons and laser fields (Pukhov et al. 1999). Those electrons are then subject not only to
the electromagnetic wake fields but also to those of the laser pulse and their energy gain
is, in part, due directly to the laser wave and not only to the plasma wave.

To investigate this setting, we performed two two-dimensional simulations (one using
LTI the other B-TIS3), choosing laser and plasma parameters leading to the creation of a
wakefield with efficient electron acceleration but with a purposefully elongated temporal
profile for the laser, facilitating interaction between the accelerated electrons and the
laser field so as to get DLA. Figure 18 shows the temporal profile of the laser used in
the simulation which is realised by adding two Gaussian temporal profiles with different
amplitudes, lengths and delays (a0 = 6, τ = 42 fs for the first profile, where τ is the laser
intensity profile full width at half maximum, and a0 = 4, τ = 85 fs for the second one with
a 42 fs delay between the two maximums). This results in an asymmetric temporal profile
with duration of around 100 fs: the high-intensity pulse front generates the wakefield while
the low-intensity pulse tail fills the back of the bubble and interact with the electron beam
as shown in figure 19. This laser profile was specifically designed to favour laser interaction
with an accelerated electron beam and DLA in a fast two-dimensional simulation.
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(a) (b)

(c) (d )

FIGURE 16. Electronic density map (greyscale) superimposed to the electric field Ey map
(colours) after a propagation of 950 μm for (a) LTI and (b) B-TIS3. Phase space (x, px) after
a propagation of 950 μm for (c) LTI and (d) B-TIS3.

(a) (b)

FIGURE 17. Energy spectrum of the accelerated electrons after a propagation of (a) 570 μm
and (b) 950 μm.

This laser is propagating in a 6 mm long and fully ionised plasma with an electron
density of ne = 0.0025nc. We used a density gradient injection technique (Bulanov et al.
1998; Suk et al. 2001; Ekerfelt et al. 2017) to facilitate electron injection in the bubble.
The simulation is performed inside a moving window of 6400 × 400 cells with c�t =
0.149c/ω0, �x = 0.15c/ω0 and �y = 3c/ω0.

Figure 19 gives an example of DLA in a numerical simulation. As in all LWFA cases,
the laser propagating inside the plasma excites a plasma wave in its wake which creates a
positively charged cavity in which electrons can be accelerated. The borders of this cavity
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FIGURE 18. Temporal profile of the electric field Ey.

FIGURE 19. Electron density map normalised to the critical density nc (greyscale)
superimposed to the electric field Ey map.

or bubble are delimited by a higher electron density and easily visible on the greyscale
map. A beam of electrons has already been injected and is being accelerated inside of
the bubble around y = 0c/ω0 and x = 20 350c/ω0. The laser oscillations are easily visible
and present over the whole length of the bubble meaning all of the injected electrons are
directly influenced by the laser field.

Both simulations predict the formation of an accelerating bubble in the wake of the laser
beam and the injection and subsequent acceleration of a similar charge of electrons. Note
that contrary to what was done in our previous paper (Bourgeois & Davoine 2020), B-TIS3
is now applied to all electrons in the simulation, irrespective of their energy.

There are nevertheless significant differences between the two simulations. The electron
beam appears much more focused in the B-TIS3 case. This effect is visible directly on
the transverse size of the beam as can be seen in figure 20, but also on the transverse
momentum of the accelerated electrons as shown in figure 21. It is important to note
that NCR is quite weak in these two-dimensional simulations and thus this numerical
artefact is not responsible for this variation in beam transverse size and divergence in the
way we observed in Bourgeois & Davoine (2020). In the present case, the difference is
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(a) (b)

FIGURE 20. Electron density map after 2.65 mm of laser propagation in the plasma: (a) LTI
simulation; (b) B-TIS3 simulation.

(a) (b)

FIGURE 21. Phase space map ( px, py) after 2.65 mm of laser propagation in the plasma:
(a) LTI simulation; (b) B-TIS3 simulation.

indeed due to the improved modellisation of the laser–electron interaction in the B-TIS3
simulation. Comparing the electron phase space ( px, py) of both simulations, we can see
that both beams have a similar structure but with a much higher dispersion in the LTI
case, especially for the transverse momentum of the most energetic electrons. This seems
to be in accordance with previous observations suggesting LTI tends to overestimate py
and thus the beam divergence. However, somewhat contrary to what could be expected,
LTI also predicts higher longitudinal momentum than B-TIS3 despite the fact that we
showed in our previous VLA simulations that LTI tends to underestimate px when B-TIS3
slightly overestimates it. This difference may be explained by the fact that electrons are
not accelerated only by laser fields as was previously the case. Direct laser acceleration is
the result of a complex coupling between the laser and the plasma fields and a small error
on the laser field effect can lead to an important perturbation of this coupling, leading to
the overestimation of both py and px.

Looking at the energy spectra of both beams (figure 22), we can again observe the
previously noted similarities and differences: LTI presents a broader spectrum which
reaches to higher energies whereas the B-TIS3 spectrum is much more peaked.

The overall similarity of those two simulations leads us to think that B-TIS3 does not
introduce adverse effects to the modellisation of DLA in our simulation. To the contrary
in fact, the previous results for the VLA simulations make us confident in the fact that
the modellisation of laser–electron interaction is improved by the use of B-TIS3 over LTI
leading to a better reproduction of the electron behaviour in both VLA and DLA.
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FIGURE 22. Energy spectrum of the accelerated electrons after 2.65 mm of laser propagation
in the plasma.

Note that DLA simulations presented here had relatively low electronic densities.
Simulations with higher densities were also performed and we found that differences
between simulations using LTI or B-TIS3 are less and less prevalent with higher electronic
densities (ne ≈ 0.01nc or higher) to the point of becoming almost negligible. We can
assume that, in those regimes, the plasma impacts the laser propagation sufficiently so
that there are real, physical differences in amplitude between the electric and magnetic
fields of the laser, making the error on the B amplitude introduced by LTI negligible.

5. Conclusion

In this paper we improved upon the already introduced technique of B-TIS, making
it more robust and accurate. We then demonstrated its usefulness, not only to mitigate
adverse effects of NCR, but also to better model laser–electron interaction phenomena,
getting more faithful results, especially in terms of momentum, than the traditional
PIC methods. These improvements appear particularly important in the case of VLA
simulations or simulations involving DLA with low electron densities where those small
differences lead to more realistic values of charge and energy for the accelerated electron
beams.

With the benefit of this technique established, it could now be used to study more
complex cases of LWFA, DLA, VLA or other situations where electron beam or plasma
co-propagates with an electromagnetic pulse in a PIC simulation box. For instance,
VLA with a radially polarised laser (Zaïm et al. 2017) could benefit from this improved
modellisation to better understand the polarisation impact and effects of other properties
on the acceleration process.
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