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Data-driven stabilization of an oscillating flow
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This paper presents advances towards the data-based control of periodic oscillator flows,
from their fully developed regime to their equilibrium stabilized in closed loop, with
linear time-invariant (LTI) controllers. The proposed approach directly builds upon the
iterative method of Leclercq et al. (J. Fluid Mech., vol. 868, 2019, pp. 26–65) and provides
several improvements for an efficient online implementation, aimed at being applicable in
experiments. First, we use input–output data to construct an LTI mean transfer functions
of the flow. The model is subsequently used for the design of an LTI controller with
linear quadratic Gaussian synthesis, which is practical to automate online. Then, using
the controller in a feedback loop, the flow shifts in phase space and oscillations are
damped. The procedure is repeated until equilibrium is reached, by stacking controllers
and performing balanced truncation to deal with the increasing order of the compound
controller. In this article, we illustrate the method for the classic flow past a cylinder
at Reynolds number Re = 100. Care has been taken such that the method may be fully
automated and hopefully used as a valuable tool in a forthcoming experiment.

Key words: control theory, instability control

1. Introduction

For decades, understanding and controlling fluid flows have proven to be a considerable
challenge due to their inherent complexity and potential impact, attracting attention
from technological and academic research (Brunton & Noack 2015). In engineering,
applications span several domains, from drag reduction in transport, to lift increase or
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Figure 1. Streamlines of a snapshot of the incompressible flow past a two-dimensional cylinder at Reynolds
number Re = 100. Coloured by velocity magnitude.

acoustic noise reduction for aircraft, or mixing enhancement in chemical processes. Earlier
approaches mainly used passive control (i.e. without exogenous input), while active control
of flows is today an ongoing and fruitful research topic (Schmid & Sipp 2016; Garnier
et al. 2021). Active flow control can be itself separated into two categories: open-loop
control and closed-loop control. While open-loop control proves to be effective (e.g. with
harmonic signals in Bergmann, Cordier & Brancher (2005)), it usually requires large and
sustained control inputs to drive the system to a more beneficial regime. On the other hand,
closed-loop control aims at modifying the intrinsic dynamics of the system, therefore
usually requiring less energy, at the cost of an increased complexity in the design and
implementation phases.

In this article, we are interested in the feedback control of laminar oscillator flows
(Schmid & Sipp 2016). They form a particular class of flows that are linearly unstable,
dominated by a nonlinear regime of self-sustained oscillations and mostly insensitive to
upstream perturbations. The most well-known example of oscillator flow is probably the
flow past a cylinder in two dimensions (Barkley 2006), displaying a wake of alternating
vortices known as the von Kármán vortex street (see figure 1). This category of flows
generally exhibits two equilibria or more: an unstable fixed point (referred to as the base
flow) and an unsteady attractor. In this application, the objective is to drive the flow from an
initial state lying on the attractor, to the base flow stabilized in closed loop. It is notable that
open-loop control strategies cannot stabilize the equilibrium, while closed-loop strategies
can be designed as such.

From a control perspective, closed-loop strategies developed in the literature may be
categorized based on the flow regime they aim to address. The first category of approaches
focuses on preventing the growth of linear instabilities from a neighbourhood of the
stationary equilibrium, while the second category of approaches tackles the reduction of
oscillations in the fully developed nonlinear regime of self-sustained oscillations. For the
control law design, the main difficulty is due to the Navier–Stokes equations that are both
nonlinear and infinite-dimensional. Often, the choice of the regime of interest naturally
induces a structure for the control policy (e.g. linear or nonlinear, static or dynamic, etc.)
and/or a controller design method. In the following, we propose to sort control approaches
depending on the flow regime addressed, and we showcase some of the methods used
to circumvent the difficulty posed by the high dimensionality and nonlinearity of the
controlled system.
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Data-driven stabilization of an oscillating flow

1.1. Control in a neighbourhood of the equilibrium
The historical approaches to oscillator flow control aim at efficiently counteracting the
linear instabilities, whose development from equilibrium is eventually responsible for
self-sustained oscillations. To do so, one may linearize the equations about the unstable
equilibrium and work in the linear regime, in a neighbourhood of the equilibrium.
For applying linear synthesis techniques to the inherently high-dimensional system, a
common workaround is the use of a linear reduced-order model (ROM) that captures
the most essential features of the flow around a set point. Linear ROMs may be
established with a wide range of techniques, such as Galerkin projection of the governing
equations (Barbagallo, Sipp & Schmid 2009, 2011; Weller, Camarri & Iollo 2009),
system identification from time data (Illingworth, Morgans & Rowley 2011; Flinois &
Morgans 2016) or frequency data (Jin, Illingworth & Sandberg 2020), H∞ balanced
truncation (Benner, Heiland & Werner 2022) or low-order conceptual physical modelling
(Illingworth, Morgans & Rowley 2012). Using linear ROMs, linear control techniques of
various complexity may be applied: the control techniques range from proportional control
(Weller et al. 2009) and linear quadratic Gaussian (LQG) (Barbagallo et al. 2009, 2011;
Illingworth et al. 2011, 2012) to H∞ synthesis or loop-shaping (Flinois & Morgans 2016;
Jin et al. 2020; Benner et al. 2022). In an attempt to address some shortcomings of the
linearized approaches, a linear parameter varying approach was proposed in Heiland &
Werner (2023) for both low-order modelling and control; it shows an expanded basin of
attraction of control strategies around the equilibrium for a weakly supercritical flow.

These approaches are mainly restricted by the region of validity of the low-dimensional
linearized model of the flow, and the assumed knowledge of the equations. In particular,
these approaches are only satisfactory in the vicinity of the equilibrium (or for weakly
supercritical flows), but rapidly fail for strong nonlinearity when linearization about the
equilibrium becomes irrelevant (Schmid & Sipp 2016).

1.2. Control of the fully developed regime
The second category of approaches tackles the reduction of oscillations in the fully
developed nonlinear regime of self-sustained oscillations. To address this regime, both
data-based and model-based approaches may be suitable.

1.2.1. Nonlinear reduced-order modelling and control
In order to address the shortcomings of approaches using linear models, approaches were
developed to handle the nonlinearity in different ways, especially with low-dimension
nonlinear approximations of the flow. Linear ROMs may be extended with nonlinear
terms in Galerkin projection, in order to reproduce the oscillating behaviour of the flow
(e.g. Rowley & Juttijudata 2005; King et al. 2005; Lasagna et al. 2016). They may be
consequently used for the design of various linear and nonlinear control methods such as
linear parameter varying pole placement (Aleksić-Roeßner et al. 2014), model predictive
control (MPC) (Aleksić-Roeßner et al. 2014), backstepping (King et al. 2005), sliding
mode control (Aleksić et al. 2010), the sum-of-squares formulation (Lasagna et al. 2016;
Huang et al. 2017)) or more physically based solutions (Gerhard et al. 2003; Rowley
& Juttijudata 2005). These studies show that nonlinear ROMs may be used for the
design of control methods and provide satisfactory performance in a high-dimensional
nonlinear system. They, however, might require strong model assumptions for building a
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nonlinear ROM (e.g. mode computation, full-field information, etc.), which may hinder
their applicability in experiments with localized measurements, noise or model mismatch.

1.2.2. Approaches using the Koopman operator
More recent approaches use input–output data to directly build a surrogate nonlinear model
of the flow, and use it for control with the MPC framework, leveraging the prediction
power of cheap surrogate models. Rooted in Koopman operator theory, Korda & Mezić
(2018a) and Arbabi, Korda & Mezić (2018) developed a framework for computing a linear
representation of a dynamical system, in a user-chosen lifted coordinate space. Using a
moderate-dimension flow, they show the possibility of replacing full-state measurement
by sparse measurements with delay embedding. A similar approach is used in Morton
et al. (2018) with full-state measurement but the space of observables is learned with an
encoder neural network, which is illustrated for a weakly supercritical cylinder wake flow.
With the same idea, using Koopman operator theory, Peitz & Klus (2020) summarize
two findings introduced in two previous papers: in Peitz & Klus (2019), the flow under
any actuation signal is modelled using autonomous systems with constant input (derived
from data), and the control problem is turned into a switching problem; in Peitz, Otto &
Rowley (2020), a bilinear model is interpolated from said autonomous, constant-input flow
models and the control problem is solved on the bilinear model. In a related work, Otto,
Peitz & Rowley (2022) directly built a bilinear model using delayed sparse observables and
applied said model to the fluidic pinball, even providing decent performance at off-design
Reynolds number. In Page & Kerswell (2019), it is shown that a single Koopman expansion
might not be able to reproduce the behaviour of the flow around two distinct invariant
solutions (namely the stationary equilibrium and the attractor), which may underline the
necessity of building several such models for efficient model-based control. Not explicitly
linked to the Koopman operator, Bieker et al. (2019) modelled the actuated flow as a black
box, in a latent space with a recurrent neural network that may be updated online, and
demonstrated the possibility of efficiently addressing complex flows such as the chaotic
fluidic pinball, by only using a small number of localized measurements, provided large
amounts of training data are available.

1.2.3. Interacting with high-dimensional nonlinear systems
On the other side of the spectrum, some techniques try to address the control of
high-dimensional nonlinear systems with direct interaction with the system itself. Some
of these approaches use tools and controller structures from linear control theory, such
as with proportional integral derivative control (Park, Ladd & Hendricks 1994; Son &
Choi 2018; Yun & Lee 2022), or structured H∞ control (Jussiau et al. 2022), in order
to design controllers by direct interaction with full-size nonlinearity, either heuristically
(Park et al. 1994; Yun & Lee 2022) or with the help of optimization (Son & Choi 2018;
Jussiau et al. 2022). Furthermore, a significant body of literature uses nonlinear model-free
control laws, using information conveyed by the full-order nonlinear system. Examples of
such approaches are found in Cornejo Maceda et al. (2021) and Castellanos et al. (2022),
where nonlinear control laws consisting of nested operations (+,×, cos, etc.) are built with
optimization, for applications to the fluidic pinball. Naturally, the reinforcement learning
framework has also proved its efficiency at discovering control policies (see Garnier et al.
(2021) and Viquerat et al. (2022) for reviews of approaches, or Paris, Beneddine & Dandois
(2021), Rabault et al. (2019) and Ghraieb et al. (2021) for illustrations). A recent study
in reinforcement learning (Xia et al. 2023) demonstrates the effectiveness of including
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Figure 2. Graphical summary of the method: data-based stabilization of an oscillating flow with LTI
controllers, using the mean resolvent framework (Leclercq & Sipp 2023).

delayed measurements and past control inputs within a nonlinear control policy in discrete
time. This approach essentially transforms the control law from static to dynamic, utilizing
the concept of dynamic output feedback from control theory (Syrmos et al. 1997).

While the use of data makes these approaches more easily applicable in experiments,
they still require large amounts of data and their training can be made more challenging
by various external factors, such as convective time delays stemming from convective
phenomena or partial observability (i.e. localized sensing, often requiring numerous
sensors to reconstruct worthwhile information).

1.3. Proposed approach
In this paper, we aim at driving the system from its natural limit cycle to its equilibrium,
stabilized in closed loop, by handling the nonlinearity iteratively, with the same idea as
Leclercq et al. (2019) that completely suppresses oscillations on top of a cavity, by solving
the nonlinear control problem using a sequence of low-order linear approximations.
Contrary to Leclercq et al. (2019), where the model is obtained from linearizing the
Navier–Stokes equations about the mean flow, our proposed method is fully data-based in
the sense that no knowledge about the governing equations is necessary. In addition, it aims
at being easy to design and implement, and does not require multiple sensors, extensive
training or tricky parameter tuning. It aims at handling the nonlinearity iteratively,
and tackles the large dimension of the system with system identification solely from
input–output data. Using the mean resolvent framework from Leclercq & Sipp (2023), we
can establish a linear time-invariant (LTI) model of the oscillating flow, uniquely from
input–output data, which is used to design a dynamic output feedback LTI controller.
While the constructed controller successfully reduces oscillations in the flow, it cannot
stabilize the flow completely due to the local validity (in phase space) of the LTI model.
Consequently, the flow reaches a new dynamical equilibrium characterized by a lower
perturbation kinetic energy. The procedure is then iterated from this new dynamical
equilibrium, until the flow is fully stabilized – the procedure is illustrated in figure 2.

The paper is structured as follows. In § 2, we present and justify the method and
its associated tools in detail. In § 3, we demonstrate the applicability of the method
to the canonical two-dimensional flow past a cylinder at Re = 100, essentially reaching
equilibrium with data-driven LTI controllers, and analyse the solution found. We discuss
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Step Leclercq et al. (2019) Our proposition

Modelling Linearization of the dynamics around
the time-averaged flow

Identification of mean transfer function
from input–output data (§ 2.4)

Controller synthesis Hand-tuned structured H∞ Low-gain LQG (§ 2.5)
Controller update Full-order stacking Stacking, balanced truncation and state

initialization (§ 2.6)

Table 1. Converting the method of Leclercq et al. (2019) into a data-based and automated method.

several points of the method in § 4. Finally, the main results are recalled and perspectives
are drawn in § 5.

2. Method and tools

2.1. Objective and overview of the method
We consider the flow past a cylinder in two dimensions, at Reynolds number Re = 100
(presented in more detail in § 2.3). This flow is an oscillator flow with an unstable
equilibrium, referred to as the base flow, and a periodic attractor, which is the regime
naturally observed: the von Kármán vortex street (figure 1). Our objective is to drive the
system from its attractor back to its equilibrium stabilized in closed loop, using a single
local sensor and a single actuator, in a fully data driven way (i.e. without the need for
knowledge of the equations, the base flow or sensor/actuator models).

The procedure is based on the same idea as that described in Leclercq et al. (2019).
In that previous study, the oscillating flow is modelled, from an input–output viewpoint,
as an LTI system enabling LTI controller design. However, as the controller is unable to
completely stabilize the flow, the feedback system converges to a new attractor with lower
perturbation energy, and the procedure is reiterated until the base flow is reached. More
specifically, in Leclercq et al. (2019), the authors used a linearized model around the mean
flow (i.e. equations linearized around the temporal average q̄ = 〈q(t)〉t of a statistically
steady flow), which is shown to represent features of the flow important for control
(Liu et al. 2018). Although the mean flow may be estimated in experiments, it remains
quite impractical for applications, and the linearization performed requires significant
assumptions (e.g. models for both the sensor and actuator, neglecting three-dimensional
effects, working with expensive three-dimensional equations, etc.). Also, they used
multi-objective structured H∞ synthesis (Apkarian & Noll 2006; Apkarian, Gahinet &
Buhr 2014) for the design of low-order controllers. While this technique is very powerful
and well suited to this problem (as it can enforce, for example, controller structure,
roll-off or location of poles in the closed loop), it is not easy to automate and often
requires the control engineer perspective to be used at its maximum potential. Finally,
as the controllers are being stacked onto each other during the iterations, the controller
effectively operating in closed loop has its order increasing linearly with the number of
iterations. In an experiment where the procedure would likely never really converge to
a steady equilibrium (due, at least, to residual incoming turbulence), this ever-increasing
order could be a problem for runtime and numerical conditioning.

In this study, we tackle these three shortcomings preventing the use of the method in
an automated data-based manner, summarized in table 1. First, the modelling part is done
solely with input–output data, using the mean resolvent framework introduced in Leclercq
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& Sipp (2023), identified with multisine excitations (Schoukens, Guillaume & Pintelon
1991). Not only is the mean transfer function easier to derive and implement, but it is
also better founded than the resolvent around the mean flow (Leclercq & Sipp 2023).
Second, the controller is designed with LQG synthesis, which is easy to automate. While
this method is arguably less powerful and flexible than structured H∞ synthesis, it permits
easy automation while maintaining some desirable properties for the controller. Third,
the increasing order of stacked controllers is managed with online controller reduction
with balanced truncation (denoted BT ; see Moore 1981; Zhou, Salomon & Wu 1999) and
transient regimes are handled with a two-step initialization of the new controller. Overall,
these advantages aim at making the method applicable in a real-life set-up. The overview
of the method is as follows, with i the iteration index:

S.1 Simulate flow with feedback controller K̃i(s). After transient regime, reach new
statistically steady regime (dynamical equilibrium). (§ 2.3)
↪→ At iteration 0, controller is null: K̃0(s) = 0.

S.2 Compute LTI ROM of the oscillating closed loop: Gi(s). (§ 2.4)
↪→With input–output data.

S.3 Synthesize new controller K+i (s) for the identified ROM. (§ 2.5)
↪→ Automated synthesis.

S.4 Stack controllers and reduce the order with the balanced truncation BT : define
K̃i+1(s) = BT(K̃i(s)+ K+i (s)) to use in closed loop. (§ 2.6)
↪→ Reduce controller order and control input transient.

S.5 Back to S.5 and iterate until condition is met.
↪→ For example, low norm of sensing signal.

2.2. Notations

2.2.1. Notations for the iterative procedure
One repetition of the identification-control process is referred to as an iteration, and
they are repeated until the equilibrium is reached. The following paragraph is described
graphically in figure 3. At the start of the process, numbered iteration i = 0, the flow is
simulated from its perturbed unstable equilibrium, with the feedback controller K̃0 = 0.
Therefore, the flow evolves towards its natural limit cycle (S.5). When the limit cycle is
attained, at time tI0, an exogenous signal uΦ(t) is injected for the identification of a model
G0(s) of the oscillating flow with data from t ∈ [tI0, tK0 ] (S.2). Then, a controller K+0 (s)
is synthesized (S.3) to control G0(s). At time t < tK0 , only the controller K0 = 0 is in
the loop. At time t ≥ tK0 , the new full-order controller is K1 = K̃0 + K+0 . After a short
duration Tsw (explained in § 2.6.3), K1 is reduced with balanced truncation BT and its
low-order counterpart K̃1 = BT(K0 + K+0 ) is used in its place (S.4). The flow reaches a
new dynamical equilibrium with lower perturbation kinetic energy. Iteration i = 1 starts
at t = tK0 , and the notations are alike for the rest of the procedure.

2.2.2. Control theory notations
The order of an LTI plant G is denoted ∂◦G ∈ N. The state-space representation of a
transfer G(s) with associated matrices (A, B, C, D) is denoted as

G =
[

A B

C D

]
, (2.1)
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)

Iteration 0
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Figure 3. At each iteration i, a time simulation is performed in closed loop with the controller K̃i(s); then,
an exogenous signal uΦ(t) is injected for the identification of an LTI model Gi(s), for which an LTI controller
K+i (s) is synthesized. This corresponds to the start of iteration i+ 1, where the controller in the loop is K̃i+1 =
BT (K̃i + K+i ) that should drive the flow to a new dynamical equilibrium with lower perturbation kinetic energy.
The process is then repeated.

such that the state, input and output x, u, y associated with this state-space realization of
G are as follows:

{
ẋ = Ax+ Bu,

y = Cx+ Du.
(2.2)

Note that most of the plants used in this study are single-input, single-output (SISO),
i.e. with scalar u, y. Also, for two plants G1, G2 with common input u and respective
outputs y1, y2, the plant sum Σ = G1 + G2 is defined as the plant with input u and output
yΣ = y1 + y2. Its state-space representation is derived easily.

2.3. Use case: flow past a cylinder at low Reynolds number

2.3.1. Configuration
In this paper, the use case is an incompressible bidimensional flow past a cylinder, used
in numerous past studies with slightly different set-ups and various control methods (e.g.
Illingworth 2016; Paris et al. 2021). Here, the configuration is taken from Jussiau et al.
(2022) and some details are recalled below. A cylinder of diameter D is placed at the
origin of a rectangular domain Ω , equipped with the Cartesian coordinate system (x1, x2).
All quantities are rendered non-dimensional with respect to the cylinder diameter D and
the uniform upstream velocity magnitude v1∞. The convective time unit is defined as
tc = D/v1∞ and the Reynolds number is defined as Re = v1∞D/ν, balancing convective
and viscous terms. The domain extends as −15 ≤ x1 ≤ 20, |x2| ≤ 10. The geometry is
depicted in figure 4.
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Figure 4. Domain geometry for the flow past a cylinder. Dimensions are in black, while boundary conditions
are in light grey. Drawing is not to scale.

(b)(a)

Figure 5. Cylinder flow regimes (velocity magnitude). Unstable base flow (a) and snapshot of the attractor
(b). Domain is cut for clarity.

The flow is described by its velocity v = [v1, v2]T and pressure p in the domain Ω , and
satisfies the incompressible Navier–Stokes equations:⎧⎨⎩

∂v

∂t
+ (v · ∇)v = −∇p+ 1

Re
∇2v,

∇ · v = 0.

(2.3)

This dynamical system is known to undergo a supercritical Hopf bifurcation at the critical
Reynolds number Rec ≈ 47 (Barkley 2006). Above the threshold, it displays an unstable
equilibrium (here referred to as the base flow; see figure 5a) and a periodic attractor (i.e. a
stable limit cycle; see figure 5b). In this study, we set Re = 100.

2.3.2. Boundary conditions, control and simulation set-ups
Unactuated flow. A parallel flow enters from the left of the domain, directed to the right
of the domain. The boundary conditions for the unforced flow, represented in figure 4, are
detailed below.
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u(t)>0

δ

Figure 6. Zoom on actuation set-up.

(i) On the inlet Γi, the fluid has parallel horizontal velocity vi = (v1∞, 0), uniform
along the vertical axis x2.

(ii) On the outlet Γo, we impose standard outflow conditions with pon− Re−1∇vo ·
n = 0 where n is the outward-pointing vector.

(iii) On the upper and lower boundaries Γul, that were set far from the cylinder to mitigate
end effects, we impose an impermeability condition v2 = 0.

(iv) On the surface of the cylinder Γc where actuation is not active, we impose a no-slip
condition with vc = (0, 0).

Actuation. In this configuration, the actuation is injection/suction of fluid at the upper
and lower poles of the cylinder, in the vertical direction. Both actuators are 10◦ wide and
impose a parabolic profile v2p(x1) to the normal velocity of the fluid, modulated by the
control amplitude u(t) (negative or positive). On the controlled boundaries, the boundary
condition is vact(x1, t) = (0, v2p(x1)u(t)) (see figure 6). Both actuators are functioning
antisymmetrically, in order to maintain an instantaneous zero net mass flux. In other words,
a positive actuation amplitude u(t) > 0 corresponds to blowing from the top and suction
from the bottom, and conversely with u(t) < 0.

Sensing. It was shown in several past studies that a SISO (i.e. one actuator and one
sensor) set-up can be adequate for controlling the cylinder configuration (Flinois &
Morgans 2016; Jin et al. 2020; Jussiau et al. 2022) if the sensor is positioned in order to
reconstruct sufficient information, and to not suffer too much from convective time delays.
Following this trade-off, the sensor is chosen to provide the cross-stream velocity in the
wake: y(t) = v2(x1 = 3, x2 = 0, t). The sensor is assumed perfect and not corrupted by
noise. Note that including a linear sensor model (e.g. limited bandwidth with a low-pass
transfer function) would be seamless, as the approach is entirely based on data and only
assumes linearity.

Selecting the sensor location on the horizontal symmetry axis x2 = 0 of the base flow
yields an immediate benefit: the measurement value on the base flow can be deduced by
symmetry arguments as yb = 0. This has a direct advantage, allowing the controller to
operate directly on the measurement value y(t) while maintaining the natural base flow as
an equilibrium point of the closed-loop system. In the case where the sensor were placed
at a location with yb /= 0, two alternatives are suggested. The first option is the controller
operating on the error signal e(t) = y(t)− yb, requiring the computation of yb and qb,
which is excluded in this data-driven approach. The second option is using a controller
with zero static gain (i.e. K(0) = 0). In this case, it could operate directly with y(t), while
ensuring the base flow remains an equilibrium point, and no other equilibrium with zero
input may exist, as proven in Leclercq et al. (2019).
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2.3.3. Numerical methods
The incompressible Navier–Stokes equations in the two-dimensional domain (2.3) are
solved in finite dimension with the finite element method using the toolbox FEniCS
(Logg, Mardal & Wells 2012) in Python. The FEniCS toolbox is widely used for solving
partial differential equations because of its very general framework and its native parallel
computing capacity.

The unstructured mesh consists of approximately 25 000 triangles, more densely
populated in the vicinity and in the wake of the cylinder. Finite elements are chosen as
Taylor–Hood (P2, P2, P1) elements, leading to a discretized descriptor system of 113 000
states. For time stepping, a linear multistep method of second order is used. The nonlinear
term is extrapolated with a second-order Adams–Bashforth scheme, while the viscous term
is treated implicitly, making the temporal scheme semi-implicit. The time step is chosen
as 	t = 5× 10−3 for stability and precision. Each simulation is run in parallel on 24 CPU
cores with distributed memory (MPI). All large-dimensional linear systems are solved with
the software package MUMPS (Amestoy et al. 2000), a sparse direct solver well suited to
distributed-memory architectures and natively accessible from within FEniCS.

2.3.4. Additional notations for characterizing the flow
For characterizing the flow globally, we define several operations and quantities that are
reused in the following. First, the system (2.3) can be written as

E
∂q
∂t
= F (q), (2.4)

where the state variable is defined as q = [ vp ], E = [ I 0
0 0 ] and the nonlinear operator F is

expressed easily. The base flow denoted qb refers to the unique steady equilibrium of (2.4)
(Barkley 2006); we recall that it is linearly unstable. The model of the flow linearized
around the base flow qb (or indifferently a reduced-order approximation of said model) is
denoted Gb(s), and is used in the analysis of results in § 3. We also define the semi-inner
product between two velocity–pressure fields q = [ vp ] and q̃ = [ ṽp̃ ] as

〈q, q̃〉E =
∫

Ω

qT · E q̃ dΩ =
∫

Ω

vT · ṽ dΩ. (2.5)

In order to quantify the distance from a field q to the base flow qb, we define the field
ε(q) = (q− qb)

T · E(q− qb), providing information on a local level. In turn, the scalar
perturbation kinetic energy (PKE) associated with a velocity–pressure field q relative to
the base flow qb is defined as follows:

E(q) = 1
2

∫
Ω

ε(q) dΩ = 1
2
‖q− qb‖2E. (2.6)

While these quantities are only available in simulation, they are used a posteriori to
quantify the distance to the base flow, i.e. the distance to convergence.

Finally, when the flow is in a periodic regime (e.g. in feedback with a given controller),
we define the mean flow as the temporal average of the flow variables q̄ = 〈q(t)〉T over
a period. It is the same quantity used in Leclercq et al. (2019) for iterative identification,
control and analysis of the flow, and is used in §§ 3 and 4.
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2.4. Identification of an input–output model from data leveraging the mean resolvent

2.4.1. Introduction to the mean transfer function
It is at first not obvious that the oscillating flow may be well approximated with an
LTI model, moreover suitable for control purposes. Earlier justifications were given
with variations of dynamic mode decomposition (Williams, Kevrekidis & Rowley 2015;
Proctor, Brunton & Kutz 2016) whose theoretical link to the (linear) Koopman operator
was established in Korda & Mezić (2018b), and the models were used for control in, for
example, Korda & Mezić (2018a), Korda & Mezić (2018b) and Arbabi et al. (2018). In
Leclercq & Sipp (2023), a new relevant model around the limit cycle is introduced, based
upon observations from Dahan, Morgans & Lardeau (2012), Dalla Longa, Morgans &
Dahan (2017) and Evstafyeva, Morgans & Dalla Longa (2017). This model, the so-called
mean resolvent, is rooted in Floquet analysis and aims at providing the average linear
response of the flow to a control input. It is also shown to be linked to the Koopman
operator (Leclercq & Sipp 2023), and is extended to more complex attractors. This
framework is briefly described in the rest of this section.

First, the linear response of the flow refers to the response of the flow to a given
control input f (t) of small amplitude, i.e. small enough to allow linearization around the
periodic deterministic unforced trajectory. Using a perturbation formulation, if the periodic
unforced trajectory is denoted Q(t), the linear response to the control f (t) is δq(t), such
that q(t) = Q(t)+ δq(t).

Second, the average response of the flow is considered with respect to the phase on the
limit cycle when the input f (t) is injected. On a periodic attractor of pulsation ω, any
time instant t is parametrized by a phase φ = ωt mod 2π ∈ [0, 2π), so that every point is
described by its associated φ. The mean resolvent R0(s) is the operator predicting, in the
frequency domain, the average linear response (over φ) from a given input: 〈δq(s;φ)〉φ =
R0(s) f (s).

Here, we focus on a SISO transfer in the flow, i.e. the transfer between a single localized
actuator and a single sensor signal. The actuation signal is such that f (t) = Bu(t) and we
define the measurement deviation from the limit cycle as δy(t) = Cδq(t), where B, C are
actuation and measurement fields, depending on the configuration. In this case, we study
the SISO mean transfer function H0(s) : u(s) 
→ 〈δy(s;φ)〉φ , equal to H0(s) = CR0(s)B.
It is shown in the following that it is possible to identify H0(s) from data, with the full
measurement y(t) = Cq(t) (since δy(t) is not measurable in practice).

2.4.2. Mean frequency response
The identification of H0(s) is done in two steps. First, the frequency response H0(jω) is
extracted from input–output data on a discrete grid of frequencies. Second, a low-order
state-space model is identified from these data. The transfer function of the low-order
model is denoted G(s).

Multisine excitations. In order to extract the frequency response H0(jω), we use here
a particular class of input signals known as multisine excitations (Schoukens et al. 1991).
As shown in Leclercq & Sipp (2023), any class of input signals could be used for this task
(e.g. white noise, chirp, etc.), with various efficiency and a potential need for ensemble
averaging. A multisine realization is a superposition of sines, depending on a random
vector of independent identically distributed uniform variables Φ = [Φ1, . . . , ΦN] ∼
U([0, 2π]N):

uΦ(t) = 2√
N

N∑
k=1

Ak sin(kωut +Φk). (2.7)
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The fundamental frequency of the multisine is ωu and only harmonics kωu, 1 ≤ k ≤ N,
are included, each with chosen amplitude Ak (normalized by 1

2

√
N) and random phase Φk.

The numerical values of the parameters ωu, N, Ak are given in § 3.1.2. Multisines have
been chosen for their deterministic amplitude spectrum and sparse representation in the
frequency domain (Schoukens et al. 2008; Schoukens, Vaes & Pintelon 2016), but any
other input signal could be used for the identification in this context.

Average of frequency responses and convergence to the mean frequency response. For
a given input uΦ(t), we denote yΦ(t) = y(t)+ δyΦ(t) the measured output, which is by
definition the sum of the measurement signal of the unforced flow y(t), and the forced
contribution δyΦ(t) linear with respect to uΦ(t). Following Leclercq & Sipp (2023), the
Fourier coefficients of the input and output at the forcing frequencies kωu may be identified
with harmonic averages (denoting the imaginary unit j ):⎧⎪⎪⎪⎨⎪⎪⎪⎩

ûΦ(kωu) = lim
T ′→∞

1
T ′

∫ T ′

0
uΦ(t) e−jkωut dt,

ŷΦ(kωu) = lim
T ′→∞

1
T ′

∫ T ′

0
yΦ(t) e−jkωut dt,

(2.8)

which are approximated in practice with discrete Fourier transforms (DFTs) (see § 3.1.2
and Appendix A). Also, as the forcing frequency kωu is chosen outside the frequency
support of y(t) we have

δ̂yΦ(kωu) = ŷΦ(kωu). (2.9)

This is particularly important since we wish to identify the transfer between the input and
the linear part of the output, which is not easily measurable in practice. Then, a frequency
response depending on the phase Φ of the input may be computed as a ratio of Fourier
coefficients at forced frequencies:

HΦ(jkωu) = δ̂yΦ(kωu)

ûΦ(kωu)
. (2.10)

Now, using the expression of yΦ(t) deduced from Leclercq & Sipp (2023), it can be shown
that

E(HΦ(jkωu)) = H0(jkωu). (2.11)

Therefore, if the experiment is repeated over M realizations of uΦ(t) (i.e. by sampling
Φ), then the sample mean H̄Φ of HΦ approximates H0 with variance Var(H̄Φ(jkωu)) =
(1/M)Var(HΦ(jkωu)). It is notable that the ensemble average is done here on the multisine
phase Φ, and not the phase φ on the limit cycle where the signal uΦ(t) is injected (which
was done in Leclercq & Sipp (2023)). Here, the phase on the limit cycle φ is assumed
constant. In an experiment where φ cannot be chosen, the ensemble average would rather
be performed on φ only, maintaining Φ constant (i.e. injecting the same input signal at
different instants on the limit cycle). As such, it would be possible to obtain a sample
average of E(Hφ(jkωu)) = H0(jkωu).

2.4.3. System identification
Now that H0(jω) has been sampled on a grid of ω, we wish to find a low-order
state-space representation of the transfer function G(s) approximating the unknown H0(s),
accessible to control techniques. This task is performed with a subspace-based frequency
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identification method, but could be performed with any other frequency identification
method, e.g. the eigensystem realization algorithm in frequency domain (Juang & Suzuki
1988) or vector fitting (Gustavsen & Semlyen 1999; Ozdemir & Gumussoy 2017).
Subspace methods form a class of blackbox linear identification methods that do not rely
on nonlinear optimization as most iterative model-fitting methods do. Here, the frequency
observability range space extraction (FORSE) (Liu, Jacques & Miller 1994) estimates a
discrete-time state-space model with order fixed a priori, in two distinct steps. Matrices A
and C are built directly from a singular value decomposition of a Hankel matrix built from
the frequency response. Matrices B and D are then found by solving a linear least squares
problem. More details can be found in Liu et al. (1994) or in Appendix B for a SISO
version. Additional stability constraints may be enforced with linear matrix inequalities
(Demourant & Poussot-Vassal 2017), as the transfers H0(s), G(s) are expected to exhibit
some marginally stable poles in this context.

For the sake of rendering the procedure as automatic as possible, the order of the model
identified at each iteration, denoted nG = ∂◦G, is fixed. The choice of nG is discussed in
§ 3.1.2.

2.5. Control of the flow using the mean transfer function

2.5.1. Rationale
After we have determined an LTI model G(s) of the fluid flow around its attractor, we
wish to control it in order to reduce the self-sustained oscillations. Among the classic
control methods such as pole placement, LQG, H∞ techniques (e.g. mixed-sensitivity,
loop-shaping, structured H∞, etc.) and MPC, we choose the LQG framework for synthesis.
It combines several advantages, such as being easy to automate, having predictable
controller gain to some extent and producing a controller with relatively low complexity.

2.5.2. Principle of observed-state feedback
Linear quadratic Gaussian control is very popular in flow control (see e.g. Schmid & Sipp
(2016), Barbagallo et al. (2009), Kim & Bewley (2007), Carini, Pralits & Luchini (2015)
and Brunton & Noack (2015) and references therein) due to its ease of use. The principle
and main equations are recalled in Appendix C. Here, we simply recall that the dynamic

LQG controller for a SISO plant G =
[

A B

C 0

]
can be calculated from the observer gain

L (depending on state noise and output noise covariances W , V) and the state-feedback
gain K (depending on state and input costs Q, R) and expressed as follows:

KLQG =
[

A+ BK + LT C −LT

K 0

]
. (2.12)

We provide important remarks on the LQG controller below.

(i) The state-feedback gain K and the observer gain L are computed independently.
Additionally, each problem may be normalized. For the state feedback, the state
weighting is chosen as Q = In and the problem is only parametrized by the value
R > 0 penalizing the control input. Symmetrically, for the estimation problem,
we choose W = In and the problem is parametrized by V > 0. This approach is
more conservative because states are weighted equally, but allows for parametrizing
the LQG problem easily with only two positive scalars R, V > 0. In the following,
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a controller stemming from a LQG synthesis with weightings R, V is denoted
KLQG(R, V).

(ii) The matrix weights may be tuned to enforce specific behaviours for the solution
controller (which was already underlined in Sipp & Schmid 2016). For the
state-feedback problem, one can prioritize small control inputs (R→∞, low gain
K ) or reactive control (R→ 0, large gain K ). Symmetrically, for the estimation
problem, the choice is made between slow estimation (V →∞, low gain L) or fast
estimation (V → 0, large gain L).

(iii) While linear quadratic regulator controllers exhibit inherent robustness (in gain and
phase margins) given diagonal Q, R (Lehtomaki, Sandell & Athans 1981), these
guarantees generally do not hold for LQG and stability margins may be arbitrarily
small (Doyle 1978) but can be checked a posteriori.

2.6. Controller stacking, balanced truncation and state initialization

2.6.1. Rationale
At the beginning of iteration i+ 1 of the procedure, a new controller K+i is synthesized
and coupled to the flow, which is already in closed loop with the control law Ki. The new
controller operating in the loop would be

Ki+1 = Ki + K+i . (2.13)

In the general case, while the newly designed controller K+i has manageable order
(∂◦K+i = ∂◦Gi = nG), the total controller Ki+1 has order ∂◦Ki+1 = ∂◦Ki + ∂◦K+i = (i−
1)nG + nG that is increasing linearly with iterations.

In order to reduce the order of the controller, we resort, at each iteration, to balanced
truncation of the controller operating in the loop. In other words, instead of using the full
controller Ki+1 = Ki + K+i in the loop, we use a reduced-order version K̃i+1. Repeating
the operation at each iteration leads to

K̃i+1 = BT(K̃i + K+i ), (2.14)

where the operation BT refers to the balanced truncation described below, enabling
order reduction: ∂◦[BT(K)] ≤ ∂◦K. This operation makes state initialization of the new
controller more challenging, which is tackled in the following as well.

2.6.2. Balanced truncation
Balanced truncation was already introduced in previous flow control articles (Rowley
2005; Kim & Bewley 2007) with the intent to reduce the order of flow models. As the
traditional balanced truncation algorithm introduced in Moore (1981) is not applicable to
high-dimensional models of dimension O(105) and higher, it has led to the development of
various approximate techniques. However, the objective is different here: order reduction is
performed on the controller which initially has moderate dimension O(10), enabling direct
balanced truncation methods (see Gugercin & Antoulas (2004) for an in-depth survey).

More specifically, given a controller K of order ∂◦K = nK , we wish to find a
reduced-order controller K̃ = BT(K) of order ∂◦K̃ = ñK < nK such that the controllers
K, K̃ have similar behaviour, quantified as the H∞ norm of the difference. This is done by
first computing a balanced realization of K (Moore 1981; Laub et al. 1987), then truncating
the balanced modes of K with the lowest controllability and observability, quantified by its
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Hankel singular values (HSVs), denoted σj, j ∈ {1, . . . , nK} (Pernebo & Silverman 1982).
For a truncation to order ñK , the reduction error is bounded explicitly (Enns 1984):

‖K(s)− K̃(s)‖H∞ ≤ 2
nK∑

j=ñK+1

σj. (2.15)

If K has unstable modes (which cannot be prevented in the LQG framework), a possibility
is to separate K into unstable and stable contributions K = Ku + Ks, and perform the
reduction on Ks only (Zhou et al. 1999).

2.6.3. Controller switching and state initialization
When adding a new controller to the flow, careful state initialization is needed in order to
reduce transients in the control input (e.g. so as to not saturate the actuator in a real-life
set-up or to not trigger nonlinear effects). Many techniques from the control literature
address smooth switching, either with bumpless methods (usually requiring a precise full
plant model; Zaccarian & Teel 2005), by focusing on fast controller transients (Cheong &
Safonov 2008; see also references therein for a brief overview), or by using past data for
initializing the controller (Paxman 2004). Although these techniques are very attractive,
they did not seem to provide consistent performance on our study case. The explanation
might come from the fact that the flow model is very crude by definition: nonlinearity is
neglected, and the time-dependent variations of the input–output transfers are averaged in
the mean transfer function. We present below a basic two-step method that proved to be
consistent and efficient in this study.

The controller initialization and switching are done in two steps: first, basic state
initialization for the full-order controller in order to reach a new dynamical equilibrium
with moderate transient; then, state initialization of the reduced controller based on the
past transient signal, ensuring seamless transition between the high-order and low-order
controllers. For simplicity of notations, we redefine time with respect to the current
iteration: t = 0 is the time instant where the full-order controller Ki+1 is inserted, and
t = Tsw is the instant where Ki+1 and its reduced-order counterpart K̃i+1 = BT(Ki+1) are
exchanged.

First step: full-order controller state initialization. Without controller order reduction,
the new controller K+i is added to the flow with internal state x0

K+i
= 0. The current internal

state xK̃i
of the closed-loop controller K̃i is untouched, so that the stacked controller Ki+1

has initial internal state

x0
Ki+1
=

[
xK̃i
0

]
, (2.16)

as in Leclercq et al. (2019). Initialized as such, the controller in closed loop generally
produces a control input u(t) and a corresponding measurement signal y(t) with moderate
transient amplitude, because of the choice of LQG weightings detailed in § 3.1.3. Once
the transient term related to controller state initialization has decayed, after a duration Tsw,
we perform a seamless switch to the reduced-order controller.

Second step: reduced-order controller state initialization and switch. Just as the
previous step, this step is still a controller initialization problem: How should the state
of the reduced-order controller xK̃i+1

be set in order to produce small control transient
when exchanging controllers in the loop at time t = Tsw? To solve this, we exploit the fact
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that both controllers produce close outputs u(t), ũ(t) under the same history of input signal
y(τ ), 0 ≤ τ ≤ t. Indeed, by definition of the H∞ norm, for ‖y(t)‖2 > 0,

‖u(t)− ũ(t)‖2
‖y(t)‖2 ≤ ‖Ki+1(s)− K̃i+1(s)‖H∞, (2.17)

where ‖Ki+1(s)− K̃i+1(s)‖H∞ is bounded from (2.15) and expected to be small due to
the truncation of balanced modes with small HSVs. As a result, u and ũ may be expected
to be close under the same input y. Then, if we denote the full-order controller Ki+1 =[

AK BK

CK 0

]
, we may write its output as

u(t) = CK eAK tx0
Ki+1
+

∫ t

0
CK eAK (t−τ)BK y(τ ) dτ, (2.18)

where y, arising from the closed loop, can be considered an external signal to the controller.

If the reduced-order controller K̃i+1 =
[

ÃK B̃K

C̃K 0

]
were fed the same signal y, but only

u were fed back to the flow (i.e. not ũ), then its output signal would be equivalently

ũ(t) = C̃K eÃK tx0
K̃i+1
+

∫ t

0
C̃K eÃK (t−τ)B̃K y(τ ) dτ. (2.19)

Assuming Tsw is chosen such that the initial condition contribution becomes negligible,
then the state of the reduced-order controller producing the output (2.19), defined as
ũ(Tsw) = C̃K xK̃i+1

(Tsw), is

xK̃i+1
(Tsw) =

∫ Tsw

0
eÃK (Tsw−τ)B̃K y(τ ) dτ. (2.20)

Therefore, the two controllers are switched at time t = Tsw, by setting the state of the
reduced-order controller as per (2.20). More importantly, the closed-loop behaviour of the
measurement signal y for τ ≥ Tsw is expected to remain similar since the two controllers
are designed to show similar input-output behaviour. In this study, we have set Tsw = 50
which is usually larger than the characteristic time scales of the controllers (computed
from the eigenvalues of AK , ÃK ).

Illustration. The two-step switching process is illustrated in figure 7, with data from
§ 3.2.4. For the first step, the signal u(t) (solid blue) generated by the full-order controller
Ki+1 is used in closed loop for t < Tsw, with initial state x0

Ki+1
as per (2.16). For the second

step, for t ≥ Tsw the signal ũ(t) (solid red) generated by the reduced-order controller K̃i+1
is used in place of u(t), by setting its internal state as per (2.20). For representation
purposes, we compute and represent the signals ũ(t), t < Tsw and u(t), t ≥ Tsw as dashed
red and blue lines, respectively. In practice, they need not be computed. Figure 7 confirms
the benefit of this switching procedure: the transient regime is moderate and the transition
from the full-order to the reduced-order controllers is almost seamless.

3. Results: driving the flow from the limit cycle to the base flow

3.1. Unforced flow: a test-bed for choosing parameters
The first iteration for the identification-control procedure starts at time t1 = 500, when the
unforced flow is fully developed, as no controller is in the loop yet. The unforced fully

999 A86-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.904


W. Jussiau, C. Leclercq, F. Demourant and P. Apkarian

0 10 20 30 40 50

Time (tc)
60 70 80 90 100

–0.5

–0.3

–0.1

u(
t)

0.1

0.3

0.5

u(t), t < Tsw
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Figure 7. Controller initialization and switching procedure. The control signal used is first u(t), t < Tsw (solid
blue) generated by the full-order controller, initialized as (2.16); then, it is switched to ũ(t), t ≥ Tsw (solid red)
generated by the reduced-order controller, initialized as (2.20). The dashed signals need not be computed in
practice, but are represented nonetheless.

developed flow at t1 = 500 is exploited in order to evaluate the sensitivity of the method
to its parameters.

3.1.1. Unstable equilibrium and unforced flow
To compute the fully developed regime of self-sustained oscillations, the flow initially
on its unstable equilibrium is perturbed infinitesimally to leave the equilibrium. The
fundamental oscillation frequency of the flow continuously shifts from the frequency of
the unstable pole of the flow linearized around the equilibrium Gb(s) : ωb = 0.779 rad/tc
to the frequency of the limit cycle ω0 = 1.062 rad/tc on the attractor (see spectrogram in
figure 8). Also, it is notable that almost no high-order harmonics are visible at small time
instants near the equilibrium, which is a sign of the complex exponential divergence; while
several higher-order harmonics appear due to the nonlinearity at greater time instants.
This phenomenon is also more visible in the far wake. Note that by half-wave symmetry
of the unforced signal y(t) (i.e. y(t) = −y(t + T/2)), only odd harmonics appear in its
frequency representation. This symmetry of the cross-stream velocity component on the
symmetry axis of the geometry is justified in Barkley, Tuckerman & Golubitsky (2000) by
the alternation of vortex shedding from the upper and lower mixing layers over a period.

3.1.2. Identification: multisine design and ROM
Design of input signal. The first step of the iterative process is identifying the mean
transfer function of the flow thanks to multisine excitations, as per § 2.4. The fundamental
pulsation ωu, that enables gathering the frequency response at pulsations kωu, is chosen as
ωu = 2π× 10−2, providing fine enough sampling of the frequency response, especially
near resonant modes. Consequently, the input signal is periodic with period Tu = 100.
The N = 5000 frequencies included in the input signal are such that the highest
frequency is Nωu = 2π× 1

4 fs (where fs = 200 is the sampling frequency), in order to
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Figure 8. Spectrogram of cross-stream velocity probe at x1 = 3, x2 = 0 (used for feedback), flow trajectory
from unstable equilibrium to natural stable limit cycle. The pulsation continuously shifts from ωb to ω0, and
higher-order odd harmonics gradually appear.

cut high-frequency harmonics ( f > 1
4 fs) that are weakly amplified by the flow, therefore

not useful for identification or control.
For the first iteration, we choose the amplitude of the input uΦ(t) as A = 10−3 to

guarantee small perturbation, i.e. ‖δyΦ(t)‖∞ � 1. However, the closer the system is to
the equilibrium (i.e. at higher iterations of the procedure), the more A is reduced because
the relative impact of forcing increases. Note that this would need to be taken into account
in an experiment, where the output noise may be important, so there is a balance to strike
between small input uΦ(t) and convenient signal-to-noise ratio.

The mean frequency response H̄Φ(jkωu) is estimated by averaging M = 4 realizations
of HΦ(jkωu). The choice of the value for M is justified in Appendix A, where we also
provide some details on the estimation in practice. For each realization, the forced system
is simulated on a duration (Ptr + P)Tu, with Ptr = P = 4. The first portion of the input and
output signals of duration PtrTu is discarded for containing the contribution of damped
Floquet modes in the flow response (Leclercq & Sipp 2023). The second portion of
duration PTu is utilized for estimating HΦ(jkωu) = δ̂yΦ(kωu)/ûΦ(kωu) (2.10).

Identified mean transfer function. The mean frequency response and the associated
identified low-order model G0 at the first iteration are represented in figure 9 (as blue
circles for the frequency response, and as a solid red line for G0). The ROM shows good
fit with respect to the frequency data at low frequency, and manages to recover the resonant
poles as well as the linear slope of the phase in the pulsation range ω ∈ [1.1, 3] rad/tc. For
ω ≥ 3, the ROM does not match the frequency response as closely, which is especially
visible on the phase plot. This is explained in Appendix A, suggesting the need for more
realizations of HΦ(jkωu) to converge the sample mean at higher frequencies.

Order of the ROM. In order to avoid overfitting the frequency response (which is not
always fully converged due to a lack of data), the order is chosen as low as nG = 8 at each
iteration. Identifying greater orders tends to introduce spurious modes into the ROM, and
keeping a low order proves to still capture the main features of the flow response (resonant
modes and unstable zeros). The mean transfer function is expected to have poles on the
imaginary axis (Leclercq & Sipp 2023), so the identification algorithm is tuned to enforce
�( p0) ≤ 0 for all poles p0 ∈ C thanks to linear matrix inequality constraints (Demourant
& Poussot-Vassal 2017). Numerically, the poles are usually found in the strictly stable
half-plane (�( p0) < 0), but marginally unstable poles would not pose an issue for control
in this case.
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Figure 9. Mean frequency response (blue circles) and identified ROM G0 (solid red line) at the first iteration.

3.1.3. Control design: choice of LQG weights
By construction, the mean transfer function ROM G is valid for small control input
(and weakly unsteady flow in the sense that the time-varying nature of the flow may
be safely neglected from an input–output viewpoint), which is an incentive to design a
controller with small gain. With LQG synthesis, it corresponds to the limit R→∞ (high
penalization of control input, slow controller) and V →∞ (noisy measurement, slow
observer). However, for infinitesimal control input, while the LTI approximation is valid,
it is likely that the control produces imperceptible change in the flow. On the contrary, as
the gain increases, modification of the flow should be more and more discernible, until the
nonlinear phenomena become more present and the assumption of linearity fails.

In order to choose the more appropriate weights for the LQG controller, we coarsely
mesh R, V , generate the associated controllers KLQG(R, V) and plug them in the fully
developed flow. The flow in feedback with the control law KLQG(R, V) reaches a new
dynamical equilibrium after some transient regime. A controller is deemed satisfactory if
it achieves both of the following:

(i) Average PKE (defined in § 2.3.4) on the new dynamical equilibrium in closed loop
E1(R, V) lower than the natural limit cycle PKE E0. This criterion is conveyed
by δE1(R, V) = E1(R, V)/E0 − 1. A map of δE1(R, V) is shown in figure 10(a).
Desirable control laws should yield δE1(R, V) < 0.

(ii) Moderate control input u(t) in order to avoid potential actuator saturation, conveyed
by the quantity maxt |u(t)|, in figure 10(b).

The low-gain control region, with expensive control R→∞ and slow estimation
V →∞, corresponds to the upper-right corners in figures 10(a) and 10(b). On the
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Figure 10. Meshing of parameters R, V for LQG synthesis at the first iteration. A controller is deemed
satisfactory when it achieves PKE reduction (a) and moderate control input transient (b). In this study, the
chosen parameters are indicated as crosses (green for the first iteration, black for subsequent iterations).
(a) The PKE criterion δE1 and (b) input signal peak maxt |u(t)|.

contrary, the high-gain control region, with cheap control R→ 0 and fast estimation
V → 0, corresponds to the lower-left corners of the same figures. As expected, for
low-gain controllers, almost no modification in the PKE is observed (upper-right corner in
figure 10a). When increasing the gain (either decreasing R, or V , or both), energy reduction
becomes increasingly more perceptible, until the performance ultimately degrades, most
probably due to nonlinearity, corresponding to the limit of validity of the mean transfer
function (lower-left corner in figure 10). It appears clearly that the low-gain limit (small
PKE reduction) is achieved with either R→∞ (right-side boundary of figure 10a)
corresponding to low control gains K , or V →∞ (upper boundary of figure 10a)
corresponding to low estimation gains L. This limit may be thought of as a safe zone
for choosing parameters (since a controller would likely not disturb the flow perceptibly)
but not guaranteeing sufficient PKE reduction.

For the first iteration, assuming that the maximum value of the control input that can be
implemented in simulation (corresponding to an actuator saturation in an experiment) is
around maxt |u(t)| ≈ 2, values of R, V are chosen as R = 104, V = 10−3 (green cross) that
offer PKE reduction of δE1 ≈ −20 % and moderate control input, without exceeding the
arbitrary saturation. For subsequent iterations, parameters are chosen more conservatively
because energy maps can be expected to vary slightly: R = 104, V = 100 (black
cross).

3.1.4. Controller reduction: choice of the balanced truncation threshold
With K in balanced form with HSVs sorted by decreasing magnitude, states with HSV
σj such that σj/σ1 < gσ (with chosen threshold gσ ) are truncated. In our study case,
gσ = 10−3 provides a good trade-off between maintaining performance and sufficient
order reduction, usually such that ∂◦K ≤ 25. Note that a fixed maximum number of states
could be forced, with the risk of truncating important dynamics in the reduced-order
controller.
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Figure 11. Plot of PKE E(t) throughout iterations.

3.2. Main result: data-based convergence to equilibrium with piecewise LTI controller
The main result of this study is the stabilization of the cylinder from its natural limit cycle
to its unstable equilibrium, using only input–output data and LTI controllers, in a way that
could be implemented in an experiment. In the results presented here, the stabilization
took 8 iterations from the limit cycle in order to attain the equilibrium, stabilized by a
closed-loop LTI controller.

3.2.1. Iterative convergence to the base flow
The convergence to the base flow is shown through the PKE, defined in § 2.3.4. Although
this quantity is not available outside the simulation realm, it is used as a posterior criterion
of convergence to the base flow. At each iteration, it is observed in figure 11 that the
PKE E decreases to reach a new dynamical equilibrium with time-averaged value 〈E(t)〉t
(normalized by the PKE on the attractor E0). At the last iteration starting at t = 4000,
the flow is attracted to the base flow. We have limt→∞ E(t) = 0, and the convergence is
exponential: the system is stabilized around the base flow in closed loop in a linear sense.
It is notable that the approach is based solely on input–output data, so the PKE would
not be ensured to decrease at each iteration (and other solutions to the problem showed
that convergence can be achieved without monotonic decrease of the average PKE at each
iteration).

3.2.2. Probing the wake
The full stabilization of the flow is confirmed by inserting probes in the flow (not used for
feedback), on the symmetry axis x2 = 0, at x1 = 1, 2 (upstream of the feedback sensor)
and x1 = 5, 7, 10 (downstream of the feedback sensor). Additionally, it enables tracing
profiles of convergence of the cylinder wake: in figure 12, we compute the RMS value of
the signal at each probe location, normalized by the RMS of the same probe in the unforced
flow. Closer sensor signals (x1 ≤ 3) have normalized RMS decay very rapidly and reach
10 % as soon as iteration 4, while for downstream probes, the signal reduces very mildly
at first. It corresponds to the incremental lengthening of the recirculation bubble behind
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Figure 12. Normalized RMS of measured signals (performance sensors) depending on their position in the
wake, throughout iterations.

(e) ( f )

(b)(a)

(d )

(c)

Figure 13. Mean flow (velocity magnitude) q̄ = 〈q(t)〉t at the end of iterations 0 (uncontrolled, a), 1, 2, 4, 6, 8
(last iteration, q̄ = qb, f ). Colour scaling is constant.

the cylinder, so that closer sensors quickly lie in the mean recirculation bubble, while
downstream sensors still probe a strongly oscillating wake. It would be interesting to apply
the procedure with various feedback sensor positions, in order to identify the zones where
the feedback sensor is the most effective in a nonlinear setting.

The recirculation bubble of the mean flow is defined as the zone behind the cylinder,
inside the contour delimited by v(x1, x2) = 0 on the mean flow q̄ = 〈q(t)〉t (figure 13).
The recirculation bubble lengthens almost linearly throughout iterations, as the flow is
being stabilized, until it finally reaches the base flow.

Throughout iterations, the spatial distribution of PKE evolves in a manner similar to
the mean recirculation bubble. It is quantified with the mean flow deviation from the base
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Figure 14. Field ε(q̄) from iteration 0 (a) to iteration 5 (f ). Colour scaling is constant.

flow, i.e. with the steady field ε(q̄) = (q̄− qb)
T · E(q̄− qb) (figure 14). It is notable from

figure 14 that the PKE peak is located far downstream in the wake, near the downstream
limit of the mean recirculation bubble. The mean flow remains symmetric with respect
to the x2 axis, and the PKE is pushed downstream during iterations, with its peak value
decreasing exponentially in amplitude.

3.2.3. Frequency and nonlinearity analysis: spectrogram
Frequency of the flow. The attractor of the flow (unforced or controlled) stays periodic
throughout iterations, which facilitates the analysis to be done with spectrograms: only
one fundamental frequency and its harmonics are visible. The flow frequency throughout
iterations can be extracted from the feedback probe. As mentioned in § 3.1, the flow
leaves the equilibrium with a pulsation ωb = 0.779 rad/tc (associated to the most unstable
eigenvalue of the linearized operator) and settles on the natural attractor with a free
pulsation ω0 = 1.062 rad/tc after a continuous transition from one to the other. The
evolution of the instantaneous fundamental frequency of the flow throughout the iterative
process is displayed in figure 15: the blue curve is the divergence from the base flow (from
ωb (green line) to ω0 (red line)) and the red curve is the frequency throughout the iterative
process (from ω0 to ωcl (black line), which is defined in the paragraph below).

In a very small number of iterations (≈3), the frequency of the flow almost matches the
frequency of the base flow, but the flow is not stabilized yet. Indeed, the frequency remains
almost constant in subsequent oscillations, while the amplitude of all signals decreases. At
the very last iterations, the frequency of the flow does not match ωb, which is expected.
Indeed, the system at this point is equivalent to the closed loop between the base flow

Gb =
[

Ab Bb

Cb 0

]
and the last controller K =

[
AK BK

CK 0

]
. The dynamic matrix of the

closed loop is Ā = [ Ab BbCK
BK Cb AK

] and its singular mass matrix is Ē = [ E 0
0 I ]. The frequency

ωcl of the flow at the last iteration matches the least damped pole of this system, i.e. it is
the imaginary part of the eigenvalue with largest real part, from the following generalized
eigenvalue problem (singular, sparse, high-dimensional): λ ∈ Cs.t. ∃x /= 0 : Āx = λĒx.
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Figure 15. Spectrogram of the feedback sensor signal (dominant frequency versus time) throughout the
iterative procedure. The blue curve corresponds to the trajectory from the equilibrium to the natural attractor,
while the red curve corresponds to the iterative procedure itself. Notable pulsations are marked by horizontal
lines: ωb in green, ω0 in red and ωcl in black. Note that the pulsation of the flow leaving the equilibrium without
control (ωb) does not match the pulsation of the flow stabilized to the equilibrium by the control law (ωcl) –
see main text for an explanation.

Nonlinearity weakening throughout iterations. Another interesting observation is that
nonlinearities are less and less active during iterations, symmetrically to the observations
on the divergence from the base flow. Previously in § 3.1 (figure 8), it was observed
that nonlinearities appeared after a few time instants after perturbing the flow from
its equilibrium, as higher-order harmonics in the frequency content of signals. When
converging to the equilibrium with the iterative procedure, the observation is reversed (but
not shown in figure 15 for space reasons): the higher-order harmonics are very present in
the first 3 iterations, and they almost disappear in subsequent iterations. However, even
with weaker nonlinearity, the stabilization of the flow still takes a moderate amount of
additional iterations.

3.2.4. Control law
A piecewise LTI control law. The control law produced by the iterative procedure is in
essence piecewise LTI: for a fixed iteration index, the total controller is a sum of LTI
controllers, and the iteration index is a piecewise-constant function of time. The control
law at any given time instant t can be expressed as K(t, s) = Ki(t)(s), where i(t) is a
piecewise-constant function of time. The control law can also be considered adaptive,
in that the trajectory in phase space is not defined a priori; instead, at each iteration,
controllers are synthesized to control a specific regime of the flow and reach a new,
previously unknown regime.

It is notable that implementing the final controller directly from the limit cycle does
not lead to stabilization of the flow, while the same controller implemented at the last
iteration stabilizes the flow. First, it confirms that the control law produces a finite basin
of attraction around the equilibrium, which does not encompass the natural limit cycle.
Second, it indicates that the control law found here uses the variation in time of the flow to
ultimately reach equilibrium, which is confirmed in the following. For the cylinder, several
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Figure 16. Controller order throughout iterations, without reduction method (blue) and with balanced
truncation (red).

studies have reported full stabilization of the flow with single LTI controllers (finite basin
of attraction encompassing the natural attractor, and no time variation of the control law) at
Re = 100, but they usually use strong model hypotheses such as ROMs from linearization
or Galerkin projection (see e.g. Camarri & Iollo 2010; Illingworth 2016; Jussiau et al.
2022).

Controller order reduction. Without controller order reduction, the order of the
controller at iteration i would be i× nG, while balanced truncation permits a controller
order remaining almost constant throughout iterations. It only peaks at nK = 23, then
settles down to nK = 22 (to be compared with a full order of 64 at the last iteration without
balanced truncation in the process), as per figure 16. If needed, the reduction can also be
performed with a maximum order constraint instead of a fixed HSV threshold gσ , but there
is a risk of neglecting critical dynamics for efficient control.

Control input. One objective of the switching method from § 2.6.3 is to induce small
transients in the control input, and still manage to control the flow. The control input u(t)
throughout iterations is represented in figure 17. As expected from the tuning of LQG
control at the first iteration, there is large overshoot in the transient of the control input at
time t1 = 500. In the following iterations, moderate transient in the control input is indeed
observed, although the control input peaks more at some iterations (e.g. iterations 3, 8).

A last observation is that stabilizing the flow does not require increasing control input
power in general. Indeed, the control input is maximal during the first iterations and keeps
reducing as iterations advance, to finally reach u(t)→ 0 on the equilibrium as t→∞. It
underlines that the first iterations are the most critical from a control input point of view,
and that constraints on the control input (i.e. on the controller gain) may be relaxed as the
flow comes closer to equilibrium.

Independence of dynamical equilibrium from controller initial state. On this
configuration, the statistically steady flow regime, reached after adding a controller in
the loop, seems almost independent from the initial condition of the controller. Controller
initialization only has an impact on the transient before reaching said statistically steady
regime, which allows using any technique for switching, such as those evoked in § 2.6.3 if
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Figure 17. Control input u(t) throughout iterations. The RMS(u(t)) is indicated by a red horizontal level at
each iteration.

the transient is not deemed to be an important factor. As the two-dimensional flow past a
cylinder at Re = 100 naturally exhibits only one attractor, this observation may be different
on a more complex flow where several attractors exist simultaneously, e.g. the flow over
an open cavity in Bengana et al. (2019) for 4410 ≤ Re ≤ 4600.

4. Discussion

4.1. Modal analysis: mean flow and implicit models

4.1.1. Closed-loop identification and implicit flow model
At each iteration, whenever the flow is in feedback with the control law K, it lies on a
dynamical equilibrium and we aim at identifying the mean transfer function G for the
following control step. The mean transfer function G corresponds to a closed-loop system:
it is the flow alone, in feedback with a known controller K. Therefore, one may remove
the influence of the controller, to retrieve an LTI model of the flow itself, denoted GI , as
illustrated in figure 18. More specifically, we can write

G = Fb(GI, K) = GI

1− GIK
, (4.1)

and one can then deduce the implicit model of the flow alone GI :

GI = G
1+ GK

. (4.2)

From the frequency response of G and K, we compute the frequency response,
GI(jω) = G(jω)/(1+ G(jω)K(jω)), and identify GI(s) as a low-order model. In
practice, it proves satisfactory to choose GI(s) with the same order as G(s).

4.1.2. Implicit flow model and mean flow model
A question that might arise is the meaning of this implicit flow model. To that aim,
we compare the implicit flow model with the mean flow model used in Leclercq et al.
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uΦ δyΦ

Figure 18. Block diagram of the identified closed-loop system G (mean transfer function) and the model of
the flow alone GI (implicit model). The feedback of the system GI with the known controller K produces the
identified closed-loop G.
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Figure 19. Unstable pole of the implicit model GI
i (open circles) and mean flow model Ḡi (filled circles) in

complex plane, throughout iterations. The red circle is the unstable pole of the base flow model Gb, with its
frequency represented as the red line.

(2019) for control purposes. The mean flow model corresponds to the linearization of the
equations of the flow (2.4) around the mean flow q̄, and is denoted Ḡ. It is easily deduced
that the two models are not strictly identical. At the first iteration, the implicit flow model
is GI

0 = G0 (mean transfer function) because the controller in the loop is K0 = 0, so its
least stable poles are stable with very low damping (numerical artefact); and at the same
time, the mean flow model Ḡ0 (figure 19) has an unstable pole.

Displacement of the unstable pole in the complex plane. However, it can be checked
that at each iteration, both models GI

i and Ḡi remain close together. The location of their
respective unstable pole is tracked in figure 19 (open circles for GI

i , filled circles for Ḡi,
linked by a dotted line for the same iteration). At the first iteration, the pole of GI

0 has very
low damping, while the pole of Ḡ0 is unequivocally unstable. As iterations progress, the
poles drift together towards the unstable pole of the base flow (in red), while remaining
close to each other at each iteration.

999 A86-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.904


Data-driven stabilization of an oscillating flow

10–1 100 101 10–1 100 101

10–1 100

Pulsation ω (rad/tc)
101 10–1 100

Pulsation ω (rad/tc)
101

–60

–40

–20

G
ai

n
 (

d
B

)

0

20

40

0

100

200

300

400

P
h
as

e 
(d

eg
.)

–60

–40

–20

0

20

0

100

200

300

400

(b)(a)

(d )(c)

Figure 20. Bode diagrams of mean flow Ḡ (blue) and implicit GI (red) models. (a,c) At iteration 1
(unactuated flow). (b,d) At iteration 8 (last). The base flow model Gb is in dashed black.

Bode diagrams. Finally, we also depict the Bode diagrams of the implicit flow model and
the mean flow model in figure 20. While the resemblance of Ḡ0, GI

0 is not obvious (slightly
different frequency of the resonant/unstable pole, additional harmonics in the implicit
mode explained in Leclercq & Sipp (2023)), both Ḡ7 and GI

7 are very close together, and
close to the base flow model Gb (although the implicit model pole has larger damping).

It would be interesting to address more intricate flow regimes, such as the quasiperiodic
flow over an open cavity (Leclercq et al. 2019) that displays several unstable poles in its
mean flow model, and investigate whether the mean flow model and the implicit flow
model have common features in general.

4.1.3. Nonlinear relaxation of poles
At each iteration, the mean transfer function is supposed to exhibit poles on the imaginary
axis iR, although the identification of Gi places the poles in the stable half-plane. The aim
of the controllers K+i is to damp the poles of Gi, farther away from the imaginary axis.
After a transient regime where the flow shifts in phase space and reaches a new dynamical
equilibrium, a new mean transfer function Gi+1 can be identified as well, and also has poles
near the imaginary axis. Therefore, poles of Gi are first damped by an LTI controller K+i ,
then after a transient regime, are relaxed and rejoin the vicinity of the imaginary axis again,
which is illustrated in figure 21. This relaxation resembles a similar phenomenon, referred
to as nonlinear relaxation, in Leclercq et al. (2019). Below, we display the movement of
poles, from iR to the stable plane as they are damped by the controller, then back to iR due
to the nonlinear transient. The same observation as in figure 15 can be made, in that the
frequency of the oscillation quickly becomes constant, as the imaginary part of the pole
approaches the black line at ωcl.

4.2. Unmodelled phenomena and gaps to cover for experiments
Oscillator flows are typically considered as being dominated by self-sustained oscillations
and mostly insensitive to perturbations (in a broad sense: numerical or experimental noise,
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Figure 21. Nonlinear relaxation of resonant pole associated with the unique fundamental frequency,
throughout iterations. The resonant pole identified from the mean transfer function Gi (black circle) is displaced
into the stable plane (in green) by the controller K+i . A nonlinear transient regime leading to a new dynamical
equilibrium shifts the stabilized pole to the imaginary axis again (in blue). The red line is the pulsation of the
base flow ωb, the black line is the pulsation of the final closed loop ωcl. (h) The route of the stabilized poles is
indicated in green.

sometimes referred to as state noise), in contrast to noise amplifiers. However, in the
context of periodic oscillator flows, it was shown in Bagheri (2014) that a noisy limit
cycle is defined by two time scales: its natural time scale T , and a correlation time td
characterizing phase diffusion, which may cause oscillations to become uncorrelated after
a certain duration. Depending on the quality factor Q = 2π(td/T), the impact of noise
may be more or less important. Additionally, it is shown that eigenvalues of the Koopman
operator (which are the poles of the mean transfer function; Leclercq & Sipp 2023) are
expected to be damped instead of purely imaginary. For the transfer function estimation
in the presence of a noisy limit cycle, more sophisticated estimation techniques should be
used, such as the ones described in Van Overschee & De Moor (2012) for identification or
in Bendat & Piersol (2011) for random noise processing.

Regarding actuation and sensing, we have assumed that both the actuator and sensor
could be modelled in a linear fashion, although this is transparent from the data viewpoint.
In the future, attention should be paid to the impact of actuator saturations or rate
saturations. Also, both the actuator and sensor may be corrupted by noise, to which system
identification is naturally robust, but the impact should be assessed nonetheless. For the
sensor specifically, using a sensor in the wake in this study may not be limiting, as the
procedure is likely to be qualitatively comparable with a wall-mounted sensor.

5. Conclusion and perspectives

In this article, we have proposed an automated iterative methodology for the complete
stabilization of the flow past a cylinder at Re = 100 on its unknown natural equilibrium,
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using solely input–output data and LTI controllers, to produce a piecewise LTI adaptive
control law of low complexity. The objective of the approach is to drive the flow from its
fully developed regime of vortex shedding, to its natural unstable equilibrium stabilized
in closed loop in a linear sense. This is achieved in simulation with a sequence of 8 LTI
controllers of moderate order, synthesized using models inferred from input–output data.

The methodology builds upon a previous linear iterative method for the closed-loop
control of oscillator flows, proposed in Leclercq et al. (2019). The principle is to solve
this complex nonlinear control problem iteratively: instead of addressing stabilization of a
high-dimensional nonlinear system, the problem is solved as a sequence of low-order linear
approximations of the problem, whose resolution iteratively drives the system closer and
closer to equilibrium. Although this study demonstrated its capability to fully stabilize
the quasiperiodic flow over an open cavity, it is not entirely applicable to an automated
experimental set-up: it relies on the linearization of the equations about the mean state; it
uses structured H∞ synthesis that is arguably hard to automate reliably; and the order of
the controller is increasing linearly with the iterations. In the present study, using the same
principle, we target full automation of the procedure and rely only on input–output data
for experimental compatibility. The modelling of the flow with an LTI plant is justified by
the mean resolvent framework (Leclercq & Sipp 2023), providing keys for estimating the
mean transfer with measurable input–output data only; controller synthesis is addressed
with the LQG framework; and the order of the controllers is managed with online balanced
truncation.

The main result is that each new controller disrupts the current attractor, leading to a new
dynamical equilibrium with lower PKE, constituting an adaptive piecewise LTI control
law. This iterative process ultimately drives the flow to the natural equilibrium, stabilized
in closed loop. The key difference from the previous study (Leclercq et al. 2019) is that
our approach does not assume prior knowledge of the equations or the mean flow, and
may operate with minimal human supervision. In simulation, the whole method is also
computationally inexpensive: it only requires forward-time simulations of the actuated
flow, and low-dimensional numerical algebra.

Several investigations should be conducted in the simulation in order to study the
following points. Firstly, for model-based LTI control strategies, the mean transfer function
is, as an average model, the most appropriate model choice for synthesis. The optimal class
of input signals to obtain the frequency response of the mean transfer function efficiently
in practice (i.e. requiring the least amount of simulation or experimental time) is still an
open question. Also, to enhance flow control efficiency, the focus should not be directed
towards extensively polishing the identification process, but rather towards refining the
synthesis method. Although the LQG framework has demonstrated effectiveness in the
low-gain limit and is easily automated, alternative model-based control strategies could be
explored, possibly incorporating constraints: typically, MPC (as in Arbabi et al. (2018))
with iterative model adaptation would naturally handle actuator saturations.

However, there is little hope that energy decrease can be predicted and optimized using
solely linear criteria, as nonlinear effects are not incorporated in the mean resolvent
framework. Nevertheless, model-based LTI methods provide a simple yet efficient
framework for building control strategies, even based on data, and they may be more
physically grounded than the model-free control methods proposed by reinforcement
learning. In this sense, we would argue that model-based LTI strategies could be fine-tuned
with input–output data obtained directly from the nonlinear system, aligning with the
approach in Jussiau et al. (2022). As a final objective, the scope of this work suggests
trying to implement the method in an experiment. While the approach is theoretically
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fully data-based, some aspects of the method will still require being addressed in a
real-life set-up, such as sensor and actuator noise, saturations and rate saturations,
three-dimensionality or turbulence.
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Appendix A. Mean transfer function estimation in practice

We recall that the objective from § 2.4.2 is to estimate the mean frequency response
H0(jω) from input-output data, for which some equations are reproduced below. For
a multisine input uΦ(t) at frequencies kωu and a measured output yΦ(t), the Fourier
coefficients can be found as harmonic averages:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ûΦ(kωu) = lim
T ′→∞

1
T ′

∫ T ′

0
uΦ(t) e−jkωut dt,

ŷΦ(kωu) = lim
T ′→∞

1
T ′

∫ T ′

0
yΦ(t) e−jkωut dt = δ̂yΦ(kωu).

(A1)

Then, the frequency response depending on the phase Φ of the input may be computed as
a ratio of Fourier coefficients:

HΦ(jkωu) = δ̂yΦ(kωu)

ûΦ(kωu)
, (A2)

which is such that EΦ(HΦ(jkωu)) = H0(jkωu). Below, we describe how the input signals
uΦ(t) are designed, how harmonic averages from (A1) (initially in (2.8)) are approximated
with DFTs in practice and how the sample mean of HΦ(jkωu) is computed.

A.1. Design of numerical experiments and DFTs
In practice, time series are extracted with time step 	t and finite duration T to be defined,
and the computations are done in sampled time. For the harmonic averages in (2.8) to be
approximated with finite horizon T , the transient is discarded and a DFT is computed with
several adjustments. Indeed, when injecting the input uΦ , the measurement yΦ undergoes
a transient regime as per Leclercq & Sipp (2023), containing the contribution of damped
Floquet modes, before settling in a statistically steady regime, represented in figure 22.
The contribution of the transient to the harmonic average (2.8) vanishes for T →∞; in
practice, it is better to suppress it from the dataset for an estimation based on a finite time
window, using the DFT. Therefore, the beginning of the experiment, corresponding to the
first Ptr periods of the signal uΦ(t), is discarded. Also, as the DFT assumes periodicity of
the signals, which is not the case for yΦ(t), a Hann window is used. Accounting for the Ptr
discarded periods, the total duration of the experiment is (Ptr + P)(2π/ωu) with Ptr, P ∈
N, but a subset of length T = P(2π/ωu) is used for the estimation. The subsequent DFT
resolution is by definition 	ω = 2π/T , such that ωu = P	ω, i.e. non-zero contributions
in the input are retrieved every P point in the DFT. In practice, Ptr = P = 4 are fixed, and
the number of realizations M for the ensemble average is chosen as described below.
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Figure 22. Design of multisines – synthetic data. In this illustration, 12 periods of a periodic input uΦ(t) are
represented, along with the corresponding output yΦ(t). The first Ptr = 4 periods of both the input and the
output are discarded, for containing a transient regime due to damped Floquet modes (Leclercq & Sipp 2023).
To mitigate the quasiperiodicity of the remaining portion of yΦ(t), a Hann window is used when computing
both DFTs.

A.2. Convergence of the sample mean and the time-invariance hypothesis
The sample mean H̄(jω) of HΦ(jkωu) is computed by performing M independent
simulations of the nonlinear system with different realizations of the input uΦ(t), from the
same limit cycle phase φ. The output yΦ(t) of each simulation is gathered for the frequency
response computation. We perform a total of M̂ = 16 experiments. For each experiment
m ∈ [1, M̂], we can compute the frequency response Hm

Φ(jω). Now, for efficient estimation
in practice, we wish to be able to reduce M̂; we would like to find a lower value M ≤ M̂
such that the sample mean depending on M, defined below, is converged:

H̄Φ(jω;M) = 1
M

M∑
m=1

Hm
Φ(jω). (A3)

For that purpose, the reference is taken as H̄(jω) = H̄Φ(jω; M̂), which is reasonable in
practice since the value of H̄Φ(jω; M̂) is almost constant for M ∈ [12, 16].

First, we consider that the sample mean is converged with respect to M
at a given frequency when

√
VarH̄Φ(jω;M)� |H̄(jω)|. Since VarH̄Φ(jω;M) =

(1/M)VarHΦ(jω), the previous condition translates into

ζ(jω) =
√

VarHΦ(jω)

|H̄(jω)| �
√

M. (A4)

In the above expression, the variance of the frequency response itself VarHΦ(jω) is
estimated once with the full data M = M̂. Note that the formulation (A4) is similar to that
of Leclercq & Sipp (2023) with the quantity η(jω; u) that quantifies the variation of the
transfer with respect to the limit cycle phase φ (for a given input signal u). Here, φ is kept
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Figure 23. Comparison of ζ(jω) with ζ = 1 and
√

M for M = 4, 8, 16. It is notable that the mean transfer at
M = 4 cannot be considered entirely converged for ω ≈ 0.9 or ω ≥ 3. In turn, models presented in the paper
have low reliability for ω ≥ 3.

constant (signals are injected at the same phase of the limit cycle for every realization),
but the phase Φ of the input signal itself is varied.

In figure 23, we show the estimation of VarHΦ(jω) on the whole pulsation range, and
horizontal lines as

√
M for M = 4, 8, 16. In this situation, it appears that M = 4 offers a

fair estimation of the mean with low computational complexity. Although there seem to
be missed samples for the mean to be converged at high frequency (ω ≥ 3), a significant
part of the low-frequency content indeed lies beyond the horizontal line ζ = √4 = 2.

Besides, the horizontal line ζ = 1 in figure 23 conveys important information about
the relevance of the time-invariant approximation of the flow. Indeed, the samples of
HΦ(jω) are distributed around their mean H̄(jω) due to the time dependence of the
unforced flow (Leclercq & Sipp 2023). When approximating the frequency response
with its mean, representing a time-invariant model, it is important that H̄(jω) conveys
sufficient information. Here, ζ(jω)� 1 indicates that the mean transfer function is a
satisfactory time-invariant approximation of the model at said frequency and for a given
input signal (i.e. the time-varying effects are low), and conversely for ζ(jω)� 1. The
limit ζ = 1 is indicated as a black horizontal line in figure 23 and it may be observed
that the time-invariance hypothesis holds well in the range ω ∈ [0, 2.5] rad/tc, except in
the vicinity of the resonance at ω ≈ 1 rad/tc. Similarly to Leclercq & Sipp (2023), the
time-invariance hypothesis is poorer at higher frequency.

Appendix B. Subspace identification method: FORSE

The FORSE (Liu et al. 1994) estimates a discrete-time state-space representation in two
distinct steps, from the frequency response {H(jωi)}Mi=1. We denote 	t the sampling time
of the discrete-time SISO system (Â, B̂, Ĉ, D̂) estimated by the algorithm. We start by
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constructing a matrix containing the shifted frequency response:

Y =

⎡⎢⎢⎢⎣
H(jω1) . . . H(jωM)

H(jω1) ejω1	t . . . H(jωM) ejωM	t

...
...

...

H(jω1) ejω1(q−1)	t . . . H(jωM) ejωM(q−1)	t

⎤⎥⎥⎥⎦ , (B1)

where q ∈ N is a parameter of the identification algorithm. When working with a
frequency response directly, the influence of input and output is included in the matrix
Y ∈ Cq×M , and an impulse input matrix U ∈ Cq×M needs to be constructed, as follows:

U =

⎡⎢⎣ 1 . . . 1
...

...
...

ejω1(q−1)	t . . . ejω1(q−1)	t

⎤⎥⎦ . (B2)

At this point, it is possible to weight the frequency response with a positive-definite
diagonal matrix R ∈ RM×M in order to focus on particular frequency domains (e.g.
resonant modes). We denote the real part with �, the Moore–Penrose pseudo-inverse with
the superscript † and construct the following real matrix H , on which we subsequently
perform a singular value decomposition:

H = �(Y RY ∗)−�(YRU∗)�(URU∗)†�(Y RU∗)T

= [
Ψ q Ψ̃ q

] [
𝞢 0
0 𝞢̃

] [
Ψ q
Ψ̃ q

]
. (B3)

The nr largest singular values are stored in the diagonal matrix 𝞢 associated with the
singular vectors Ψ q, and the rest are discarded, dictating the precision of the ROM. Then,
we partition Ψ q as rows ψ i ∈ C1×nr , and construct submatrices Ψ q−1, Ψ̂ q−1 such that

Ψ q =

⎡⎢⎢⎢⎢⎣
ψ0
ψ1
...

ψq−2
ψq−1

⎤⎥⎥⎥⎥⎦ =
[
Ψ q−1
ψq−1

]
=

[
ψ0
Ψ̂ q−1

]
. (B4)

Finally, we estimate the discrete-time dynamics Â and the measurement matrix Ĉ as
follows:

Â = Ψ †
q−1Ψ̂ q−1, Ĉ = ψ0. (B5a,b)

If we wish to introduce stability constraints on the system to be identified, the
aforementioned pseudo-inverse operation (B5a,b) is augmented with linear matrix
inequalities on Â (Demourant & Poussot-Vassal 2017). After Â, Ĉ have been estimated,
the computation of the frequency response from the state-space realization is linear in B̂
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and D̂ at each frequency:

H(jωk) = Ĉ(e−jωk	tI − Â)−1B̂ + D̂ = P(jωk)

[
B̂
D̂

]
. (B6)

Finding estimates of B̂, D̂ is then reformulated as a linear least-squares problem:

B̂, D̂ = arg min
B,D

∥∥∥∥∥∥
⎡⎣H(jω1)

...

H(jωM)

⎤⎦−
⎡⎣P(jω1)

...

P(jωM)

⎤⎦[
B
D

]∥∥∥∥∥∥
2

F

. (B7)

Appendix C. The LQG synthesis

The principle of a LQG controller, which is an observed-state feedback, is recalled here
for SISO plants. Additional information in the context of flow control may be found in
e.g. Schmid & Sipp (2016), Barbagallo et al. (2009), Kim & Bewley (2007), Carini et al.

(2015) and Brunton & Noack (2015). Consider a SISO plant G =
[

A B

C 0

]
with state

vector x, control input u and measurement output y.
Linear quadratic regulator. We wish to solve an optimal control problem with full-state

information, i.e. find the control input u(t) that minimizes a performance criterion defined
as J = ∫∞

0 [x(t)TQx(t)+ Ru2(t)] dt with parameters R > 0, Q � 0 (positive semi-definite
matrix). The solution is a state feedback law u(t) = Kx(t), where K is a matrix of gains
computed as K = −R−1BTP, with P the solution of the Riccati equation: ATP + PA−
PBR−1BTP + Q = 0.

Construction of an observer. Here, the state x(t) of the reduced-order plant G cannot
be accessed directly, and only the output y(t) = Cx(t) is available for feedback control.
We construct an estimate x̂(t) of the state of the process based on past measurements and
inputs, and use it in an observed-state feedback law: u(t) = K x̂(t). The dynamics for the
estimated state x̂ reproduces the plant dynamics, with a corrective forcing ŷ− y weighted
by a gain L to be defined, accounting for measurements in real time:{ ˙̂x = Ax̂+ Bu+ LT(ŷ− y),

ŷ = Cx̂.
(C1)

It can be shown that solving for L is dual to the previous problem, with A← AT , B← CT

and new parameters W � 0, V > 0 that are covariances of additive white noise on the state
x(t) and measurement y(t).

Linear quadratic Gaussian regulator. The final controller is formed with the observer
gain L (depending on parameters W , V) and the state-feedback gain K (depending on
parameters Q, R) making it dynamic and expressed as follows:

KLQG =
[

A+ BK + LT C −LT

K 0

]
. (C2)
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