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Impulsive acceleration of a circular cylinder
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A present paper generalizes the work of Tyvand & Miloh (J. Fluid Mech., vol. 286,
1995, pp. 67–101) on the problem of the free surface flow generated by a submerged
circular cylinder moving impulsively with constant velocity to the case of a cylinder
moving with both initial velocity and acceleration. The nonlinear small-time asymptotic
solution for the velocity potential, free surface elevation and hydrodynamic pressure
force is calculated analytically in bipolar coordinates for a cylinder of arbitrary radius.
The analytical solution is obtained to the leading order of nonlinear interaction between
initial impulsive velocity and initial impulsive acceleration directed at arbitrary angles.
In the special case of the motion with constant acceleration, the complete fourth-order
free-surface flow problem is solved and the associated second-order hydrodynamic force
is computed. The leading-order contributions to the free surface elevation due to the
constant velocity and constant acceleration are compared for finite rectilinear cylinder
displacements. The role of constant acceleration consists of two contributions to the
leading nonlinear terms, where the amplitude of the first one is 25 % below the case of
constant velocity while the amplitude of the other exceeds it by 50 %.

Key words: surface gravity waves, wave-structure interactions, general fluid mechanics

1. Introduction

The flow of the fluid around a submerged body moving below the free surface is a classical
topic in hydrodynamics. Various aspects of this problem have been studied theoretically
and in experiments by numerous investigators. Studying the disturbances created on the
free surface by the motion of a submerged obstacle is relevant for prediction of wave effects
on submarines, underwater pipes and submerged parts of wave-absorbing power plants.
Of considerable practical importance are the unsteady hydrodynamic forces acting on a
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moving body in the fluid and the resulting free surface deformations. A striking application
of this problem has been recently found in a field unrelated to marine hydrodynamics,
namely in the magnetized target fusion power plants. Pardo et al. (2022) idealized the
situation when the magnetized plasma is injected into the rotating liquid metal inside the
fusion machine and then moves to the cavity in the rotating core to that of a submerged
cylinder in the fluid approaching the free surface.

A cylinder of circular cross-section is generally used as a test case to avoid the
difficulties of dealing with more complicated body shapes while keeping the key
features of the free surface flow. For these reasons, cylinders of non-circular form
have been investigated much less frequently. Kostikov & Makarenko (2016) applied a
conformal mapping technique to investigate the translatory and rotary motion of an elliptic
cylinder under the free surface. Semenov, Savchenko & Savchenko (2021) obtained the
first-order solution for the cylinder of arbitrary cross-section moving impulsively under
the undisturbed free surface by the integral hodograph method, in which the fluid region
in the physical plane was mapped into the first-quadrant in the parameter plane.

Theoretical studies on the water wave problem in the presence of a submerged body can
be classified into four categories, depending on whether the linear or nonlinear solution is
obtained, and steady-state or transient type of motion is described.

Steady-state processes from the standpoint of linear theory are most amenable to
theoretical treatment. The linearization of the free surface boundary conditions allows
us to find the analytical solution to the governing equations for the fluid flow in the
frequency domain at the expense of the limitation to small periodic disturbances on the
free surface. Havelock (1936), after Lamb (1913), approximated the cylinder in the forced
motion with constant speed under the free surface by a moving dipole in the complex plane
and obtained the complete linear solution for the free surface flow. Wehausen & Laitone
(1960), Dean (1948) and Ursell (1950) were particularly concerned with the linearized
diffraction and radiation of water waves interacting with a circular cylinder. In these
theories assuming oscillatory time dependence of the solution, the initial stage of the flow
was disregarded, since all the transients are transported away from the oscillating body,
when the fluid domain extends to infinity.

Ogilvie (1963) and Tuck (1965) considered the steady-state problem in the frequency
domain and took weakly nonlinear effects into account. Ogilvie (1963) calculated
second-order steady force in the situation when the cylinder is forced to oscillate in
otherwise calm water. Tuck (1965) improved the recursive scheme developed by Wehausen
& Laitone (1960) for the linear problem and built up the nonlinear solution for sufficiently
deep submergence depth of the cylinder by solving a sequence of linear problems. The
solution was based on the amplitude power expansion and described the stationary wave
train past a horizontally moving body.

Sretensky (1937) investigated the transient problem in the linear approximation and
presented the explicit analytical solution for a submerged contour of arbitrary form moving
with a variable horizontal speed under the free surface. His expressions for surface
elevation and fluid resistance force included integrals which were difficult to evaluate
at that time. Havelock (1949), in a particular problem of a circular cylinder, starting
to move impulsively from a state of rest and moving with constant velocity afterwards,
demonstrated the equivalence of his solution to that of Sretensky (1937).

The transient processes in nonlinear fluid–structure interaction problems are particularly
difficult to describe theoretically and hence the researchers often resort to numerical
or semianalytical methods. However, some attempts to approach the problem using the
perturbation techniques were made. Tyvand & Miloh (1995) found out that the problem
of the cylinder starting to move impulsively from a state of rest under the free surface
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can be solved analytically by looking for a solution in the form of the power series. They
investigated the short-time evolution of the solution with the use of small-time expansions,
bipolar coordinates and Fourier series. A carefully developed temporal expansion included
an infinite acceleration of the cylinder during an infinitesimal time interval. Thereby, the
cylinder was instantaneously put into motion with constant velocity. By Newton’s third
law of motion, the associated finite momentum representing a forced fluid motion in the
opposite direction occurs.

Independently, Makarenko (2003) constructed the small-time asymptotic solution for
the cylinder of small radius and arrived at the same expressions for the free surface
elevation. He used the method of Ovsyannikov, Makarenko & Nalimov (1985) to transform
the basic equations governing the fluid flow around the moving submerged body into
the boundary integro-differential system for the unknown functions on the free surface
only. Later, Kostikov & Makarenko (2018) generalized this solution and described
the nonlinear effects occurring in the flow around the cylinder of greater radius by
taking into consideration the higher-order terms in the boundary integro-differential
system. Pardo & Nedic (2021) took a further step in the development of this model
and extended the small-time asymptotic solution of Kostikov & Makarenko (2018) to
the higher orders with respect to time and cylinder radius by the advanced recursive
semianalytical procedure. The inability to continue the asymptotic solutions beyond an
uncertain time limit indicates a deficiency in either analytical or numerical models in
highly nonlinear problems. However, a homotopy analysis method exists (Liao 2004),
having an advantage over common analytic approximation methods of not requiring any
small parameter assumption. Application of this method can improve the convergence of
a series dramatically by means of the so-called convergence-control parameter. Zhong &
Liao (2018) derived an approximation by use of a homotopy analysis method for the Stokes
wave in highly nonlinear case of extremely shallow water.

A series of simulations based on various computational techniques were developed
to study the complex unsteady nonlinear process of wave generation by a submerged
cylinder in two dimensions. Haussling & Coleman (1979) used a body-fitted coordinate
system and finite difference technique to construct the numerical solution of the problem.
They illustrated the transition from deep submergence of the obstacle when nonlinear free
surface effects are negligible to shallow submergence when linearized analysis is no longer
accurate. A series of numerical calculations based on boundary integral equations and
the boundary element method has been made, see for example Telste (1987), Terent’ev
(1991), Greenhow & Moyo (1997) and Moyo & Greenhow (2000). Moreira & Peregrine
(2010) used a fully nonlinear unsteady boundary-integral solver to study the formation of
waves by a submerged cylinder in a uniform stream with surface tension. They established
that in the full nonlinear formulation the wave breaking is likely to occur for the large
cylinder radius to submergence depth ratio and investigated the effects of capillarity on
the steepness of the free surface disturbances.

In spite of substantial progress in computer simulations of the wave–structure interaction
problems, analytical methods in the description of nonlinear two-dimensional potential
flows remain relevant. An initial stage of the wave formation continues to be the problem
point in numerical algorithms due to the instability forming on the free surface when
the submerged body starts moving. Hence, the initial stage of the body motion under a
free surface is of continuing interest for scientists and engineers. In this paper, we revisit
this problem by considering a circular cylinder starting to move from a state of rest with
both initial velocity and initial acceleration directed at arbitrary angles. Our tasks are to
investigate the interaction of these two factors, explain the role of nonlinearity in this
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process and to close the gaps in the work of Tyvand & Miloh (1995). It is important to be
aware of the infinite acceleration needed during an infinitesimal time interval for setting
the cylinder impulsively into initial motion with finite velocity. In the present work we will
allow an additional finite acceleration to be maintained after the impulsive start.

More complex phenomena such as wave breaking, exit of the cylinder from under the
surface, formation of cavity or splashes, the effects of fluid viscosity and surface tension
are beyond the scope of the present study. Consideration of a streamlined body moving
at a sufficient distance from the free surface with relatively large Froude numbers allows
us to address the problem in the framework of potential theory and incompressible fluid.
Despite the popularity of this problem, available experimental data are extremely limited.
One of the few experimental results was reported by Greenhow & Lin (1983) for the
vertical motion of the cylinder four decades ago. More recently, Pardo et al. (2022) built
an experimental facility, where the liquid was impulsively accelerated around a circular
cylinder, and compared the results with analytical models of Tyvand & Miloh (1995),
Kostikov & Makarenko (2018) and Pardo & Nedic (2021). They showed that analytical
predictions are in good agreement with the experiments for initial times.

The rest of the paper is organized as follows. In § 2, the formulation of the problem is
presented and bipolar coordinates, relevant for construction of the solution, are introduced.
In § 3, the leading-order nonlinear solution for the combination of impulsive velocity and
impulsive acceleration is constructed, including the case of pure impulsive acceleration of
the cylinder. Section 4 scrutinizes causal connections between the finite displacement of
the cylinder and early non-gravitational surface elevations for the nonlinear flow problem.
In § 5, the hydrodynamic forces acting on the moving cylinder are deduced. Finally, § 6
summarizes the main conclusions of the paper.

2. Formulation of the problem

2.1. Governing equations
We consider the unsteady motion of a circular cylinder of radius ε under the free
surface of an inviscid incompressible fluid of infinite depth and constant density ρ. The
two-dimensional flow is considered in Cartesian coordinate system Oxy with x-axis lying
on the undisturbed horizontal free surface, which is subject to a constant atmospheric
pressure, and y-axis directed upwards, as shown in figure 1. The fluid and the cylinder are
initially at rest. The cylinder starts moving impulsively from an initial position (0,−h)
(h > ε) with constant acceleration a0, remaining totally submerged under the free surface
y = η(x, t) at all times t. We will distinguish between two cases of the accelerated cylinder
motion: with (u0 /= 0, a0 /= 0) and without (u0 = 0, a0 /= 0) initial impulsive velocity.
The case of a cylinder moving with constant impulsive velocity without acceleration
(u0 /= 0, a0 = 0) was investigated previously by Tyvand & Miloh (1995).

The physical variables are given in dimensionless form by use of h, ρ and u0 as a
dimensionally independent set, i.e.

x̄ = x
h
, ȳ = y

h
, ε̄ = ε

h
, t̄ = tu0

h
, ā0 = a0h

u2
0
. (2.1a–e)

Quantities ρh2, ρu2
0, ρhu2

0 and ρhu2
0 denote the units of mass, pressure, force and

momentum, respectively. The important non-dimensional physical parameter λ = gh/u2
0

is the square of inverse Froude number. Special attention needs to be given to the case of
the vanishing initial velocity (u0 = 0). In this case, the velocity scale is calculated as

√
a0h,

with constant acceleration a0 taken as a unit, and the inverse Froude number reduces to
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x

y

0

Sε

y = η(x, t)

R(t)

r

g

Figure 1. Scheme of the problem.

the ratio λ = g/a0. For consistency, all equations, input parameters and resulting figures
will be given in dimensionless form with the bars dropped.

Since the fluid is assumed incompressible and the flow is irrotational, the fluid velocity
potential Φ(x, y) satisfies the Laplace’s equation in the flow domain,

∇2Φ = 0, (2.2)

nonlinear boundary kinematic and dynamic conditions on the free surface,

∂η

∂t
+ ∂Φ

∂x
∂η

∂x
= ∂Φ

∂y
, y = η(x, t), (2.3)

∂Φ

∂t
+ 1

2
|∇Φ|2 + λη = 0, y = η(x, t) (2.4)

and nonlinear kinematic condition at the cylinder surface,

(r − R) ·
(

∇Φ − dR
dt

)
= 0, |r − R| = ε. (2.5)

Vectors r and R(t) are position vectors of the fluid particles and the cylinder centre,
respectively. Under the assumption of a semi-infinite fluid domain, the far-field condition
implies

∇Φ → 0, x → ±∞, y → −∞. (2.6a–c)

Tyvand & Miloh (1995) pointed out that initiation of the flow in a reversible system
requires an algorithmic preparation, which is the only way a time arrow can emerge in
a system without entropy production. The impulsive start of a submerged body initiates
a process evolving with time. Mathematically we must allow a temporal singularity at
t = 0. An impulsively started velocity gives a Dirac delta function singularity for the flow,
while the velocity potential starts as a Heaviside unit step function. It is important to
consider negative times where the entire system is at rest, obeying Newton’s laws of the
balance of forces. Once the cylinder is put into motion, Newton’s third law requires that
the surrounding fluid responds to the induced motion by a net pressure force opposite to
the force applied on the cylinder. We prescribe the motion, so that the induced forces are
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caused by the motion and not the other way round. The static state at rest means that the
potentialΦ is identical to zero for all t < 0. It also means that all time derivatives ofΦ are
zero. This is worth noting because any initiation of the forced cylinder motion will lead
to a Heaviside singularity in the leading velocity potential. Due to the Bernoulli equation,
the time singularity for the pressure will be more severe than that of the velocity potential.
As we will see in § 5, the leading-order force for constant impulsive velocity will represent
a Dirac delta function in time.

It is assumed that the cylinder is set into motion during an infinitesimal time interval
0 < t < 0+ by the impulsive force. The initial velocity is finite, the fluid is initially at rest
and the free surface is flat. Due to the zero horizontal force during the impulsive start,
initial horizontal velocity of the fluid is zero on the free surface at t = 0+. Hence, the
initial conditions for the forced free surface flow are given as

Φ(x, 0, 0+) = 0, η(x, 0+) = 0. (2.7a,b)

In this study, we consider the forced motion of the cylinder, which is given as a series

R(t) =
(

0
−1

)
+ H(t)(R1t + R2t2 + R3t3 + . . . ). (2.8)

The Heaviside unit step function H(t) makes the expansion (2.8) applicable to both
negative and positive times. At negative times t < 0 the fluid is at rest with horizontal free
surface, and the cylinder is kept at rest with zero net force. It is useful to include negative
times for consistent treatment of the temporal singularity of an impulsive force. Equations
(2.2)–(2.8) form the complete formulation of the nonlinear initial boundary-value problem
of unsteady motion of a cylinder under the free surface in dimensionless variables.

The instantaneous position vectors of the forced cylinder motion can be expressed using
the angles α and β between the vectors of the forced velocity and acceleration and the
horizontal axis, respectively (see figure 2),

R1(α) = δ

(
cosα
sinα

)
, R2(β) = a

2

(
cosβ
sinβ

)
=

⎧⎪⎨
⎪⎩
δa
2

R1(β), δ /= 0,

a
2

R1(β), δ = 0.
(2.9a,b)

Here, the dimensionless parameter δ is equal to unity, when the cylinder accelerates with
non-zero initial velocity, and is equal to zero otherwise. The meaning of this parameter
is that it exposes the explicit dependencies between velocity and acceleration magnitudes
to each order in the small-time expansion that will follow. For the development of the
higher-order theory, it is convenient to include the factor δ explicitly in the derived
expressions, and discard terms with δ if initial velocity is zero. Here and in subsequent
derivations, we agree upon using the dimensionless acceleration parameter a0 without
zero subscript. It should be noted that direction angles α and β are independent from each
other.

2.2. The small-time expansion
We seek a solution to the initial boundary-value problem (2.2)–(2.8) in the form of a power
series with respect to the time variable t, given as

Φ(x, t) = H(t)(Φ0 +Φ1t +Φ2t2 + . . . ), (2.10)

η(x, t) = H(t)(η1t + η2t2 + η3t3 + . . . ). (2.11)
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h

ε

x

y

α
β

0

R2

R1

iR

Θ

Figure 2. Angles of the initial velocity and acceleration at the initial position of the cylinder.

It follows immediately that Laplace’s equation (2.2) and the far-field condition (2.6a–c)
are satisfied to each order in the small-time expansion (2.11),

∇2Φn = 0, x2 + ( y − 1)2 > ε, n = 1, 2, . . . (2.12)

|∇Φn| → 0, x → ±∞, y → −∞ n = 1, 2, . . . . (2.13)

Successive application of the operator of total time differentiation at the moving free
surface

d
dt

∣∣∣∣
η

= ∂

∂t
+ ∂η

∂t
∂

∂y
(2.14)

to free-surface kinematic condition (2.3) and putting t = 0 in the resulting small-time
expansions leads to the set of general kinematic conditions up to the third order,

η1 = ∂Φ0

∂y
, y = 0, (2.15)

2η2 = ∂Φ1

∂y
, y = 0, (2.16)

6η3 = 2
∂Φ2

∂y
+ 2

∂Φ0

∂y
∂2Φ1

∂y2 +
(
∂Φ0

∂y

)2
∂3Φ0

∂y3

−2
∂2Φ0

∂x∂y
∂Φ1

∂x
− 2

(
∂2Φ0

∂x∂y

)2
∂Φ0

∂y
, y = 0, (2.17)

and simplified kinematic condition to the fourth order,

4η4a = ∂Φ3

∂y
, y = 0; (2.18)

valid for the case of constant acceleration without initial impulsive velocity. We have added
a subscript a to the fourth-order free surface elevation to indicate that this contribution
represents the pure impulsive acceleration. It should be noted that initially the free surface
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is undisturbed and its impulsive horizontal velocity is zero, which implies the identities

∂Φ0

∂x
= 0,

∂2Φ0

∂x2 = 0. (2.19a,b)

Thereby, the free surface elevation of nth order is induced by the potential up to the
(n − 1)th order and can be calculated recurrently.

The corresponding dynamic conditions on the free surface to each order are derived
in a similar way. Keeping in mind (2.15)–(2.16), we obtain the set of general dynamic
conditions up to the second order

Φ0 = 0, y = 0, (2.20)

Φ1 = −1
2η

2
1, y = 0, (2.21)

2Φ2 = −4η1η2 − λη1, y = 0, (2.22)

and simplified dynamic condition to the fourth order

3Φ3 = −4η2
2 − λη2, ( y = 0); (2.23)

valid only for the case of constant acceleration without initial impulsive velocity. It should
be noted that, in this case, the first-order free surface elevation η1 and consequently the
first-order potential Φ1 should necessarily vanish.

In order to construct the expansion of the boundary conditions on the cylinder surface
(2.5), we need to introduce the polar coordinates (R,Θ) with origin in the initial cylinder
centre, defined in a way suitable for the bipolar coordinates to be introduced below,

x = R sinΘ, y = −1 + R cosΘ. (2.24a,b)

Here, coordinate Θ measures an angle between the unit vector iR extending from the
cylinder centre and the vertical axis, and varies in the interval (−π,π), see figure 2.
The kinematic conditions on the cylinder to each order are derived in a similar way
from the non-leaking condition (2.5) by applying successively the operator of total time
differentiation,

d
dt

∣∣∣∣
Sε

= ∂

∂t
+ dR

dt
· ∇, (2.25)

tracking the cylinder in its forced motion. The first factor r − R in the scalar product in
(2.5) has no effect on time differentiation and can be replaced by the parallel unit vector
iR. Evaluation of each time derivative (2.25) of (2.5) at t = 0 results in the succession of
the exact kinematic conditions at the cylinder contour up to the second order,

iR · (∇Φ0 − R1) = 0, R = ε, (2.26)

iR · (∇Φ1 − 2R2)+ R1 · ∇(iR · ∇Φ0) = 0, R = ε, (2.27)

iR · (2∇Φ2 − 6R3)+ 2R2 · ∇(iR · ∇Φ0)

+2R1 · ∇(iR · ∇Φ1)+ R1 · ∇(R1 · ∇(iR · ∇Φ0)) = 0, R = ε, (2.28)

3iR · ∇Φ3 + 2R2 · ∇(iR · ∇Φ1) = 0, R = ε, (2.29)

where the last equation is valid only for the case of constant acceleration.
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x

y

θ = 0

ζ = ζ0

θ = −π/2

ζ = 0

θ = π/2
0

Figure 3. Coordinate lines of bipolar coordinate system (ζ, θ).

2.3. Bipolar coordinates
We will follow the approach proposed by Tyvand & Miloh (1995) and will solve the
exact boundary value problems to each order by means of bipolar coordinates. Figure 3
gives a sketch of the computational domain as represented by bipolar coordinates ζ and
θ . In bipolar coordinates, the curves of constant ζ correspond to non-concentric circles,
concurring with the contour of the cylinder at time t = 0 and in the limit ζ → 0 coincide
with undisturbed free surface y = 0. In the new coordinate system, the doubly connected
semi-infinite flow domain is mapped into a rectangular {(θ, ζ ) : −π < θ < π, 0 < ζ <

ζ0}. Another important feature of bipolar coordinates is that Laplace’s equation (2.2) in
two dimensions separates to (

∂2

∂ζ 2 + ∂2

∂θ2

)
Φ = 0. (2.30)

The transformation equations between Cartesian and bipolar coordinate systems is given
by

x = r sin θ
cosh ζ + cos θ

, y = − r sinh ζ
cosh ζ + cos θ

. (2.31a,b)

The scale factors for ζ and θ are equal and given by

hζ = hθ = r
cosh ζ + cos θ

, (2.32)

where r is a dimensionless length, representing the centres (0,±r) of the bipolar
coordinate system and is related to the radius via

r =
√

1 − ε2. (2.33)

The expressions of the bipolar coordinate ζ0, appearing in the mathematical derivations of
subsequent sections, can be represented through the dimensionless radius of the cylinder,

sinh ζ0 = r
ε
, cosh ζ0 = 1

ε
, tanh ζ0 = r. (2.34a–c)
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For simplicity of mathematical expressions, that will follow, we introduce a series of
constants determined through hyperbolic functions by analogy with constants r and ε from
the above,

sinh nζ0 = rn

εn
, cosh nζ0 = 1

εn
, tanh nζ0 = rn, n = 2, 3, . . . . (2.35a–c)

The angle transformations between polar and bipolar coordinate systems will become
useful when integrating along the cylinder contour,

sinΘ = r sin θ
1 + ε cos θ

, cosΘ = ε + cos θ
1 + ε cos θ

,
dΘ
dθ

= r
1 + ε cos θ

. (2.36a–c)

Note, that expressions (2.36a–c) are only valid along the cylinder contour. In what
follows, we will utilize bipolar coordinates to represent the solutions. The derivatives
in the equations presented above in Cartesian coordinates will be transformed to bipolar
coordinates by the formula

∂

∂y

∣∣∣∣
y=0

= −2 cos2(θ/2)
r

∂

∂ζ

∣∣∣∣
ζ=0

. (2.37)

3. The solution to each order

The leading-order nonlinear solutions for a submerged cylinder starting impulsively from
rest with constant speed has been previously obtained by Tyvand & Miloh (1995). A
similar problem in the linear domain has been studied earlier by Venkatesan (1985) and
Greenhow & Li (1987). In this section, we provide an extension to the existing nonlinear
solution by considering the cylinder which moves with both impulsive velocity and
impulsive acceleration at independent direction angles. To distinguish between different
factors of unsteady motion (impulsive velocity, impulsive acceleration, self-interaction of
velocity, interaction between velocity and acceleration, self-interaction of acceleration)
the potential at each order will be expanded in terms of δ and a. In our notation, we
will distinguish between two types of contributions: due to the forced motion and its
induced free-surface effects φn (φn have zero normal derivative along the initial cylinder
contour); and due to the cylinder motion ψn (ψn is equal to zero on the undisturbed
free surface). These distinctions are useful for solving the higher-order problems step
by step with the use of the superposition principle. In this section, we will look for
the corresponding functions φn and ψn satisfying the Laplace’s equation (2.2) and
non-homogenous boundary conditions on the free surface and the cylinder contour,
respectively.

3.1. Zeroth-order potential and first-order free surface elevation
It follows from (2.20) and (2.26) that the zeroth-order potential Φ0 includes only the term
of ψ-type,

Φ0 = δψ0, (3.1)

which satisfies the boundary conditions

ψ0 = 0 (ζ = 0),
∂ψ0

∂ζ
= δ R1(α) · iR (ζ = ζ0). (3.2a,b)

Tyvand & Miloh (1995), in the problem of the cylinder impulsive motion without
acceleration, found function ψ0 by use of the Fourier expansion technique in the form
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of an infinite series,

ψ0(θ, ζ ) = 2r
∞∑

n=1

kn

n
sin(nθ + α) sinh(nζ ), (3.3)

where coefficients

kn = (−1)nne−nζ0

cosh nζ0
, n = 1, 2, . . . , (3.4)

are introduced here for brevity. In the case of the cylinder acceleration without initial
impulsive velocity (δ = 0), the zeroth-order potential ψ0 gives no contribution to the
general solution. The expression for the gradient ∇ψ0 at the cylinder contour,

∇ψ0(θ, ζ0) = 2(1 + ε cos θ)
ε

∞∑
n=1

kn

εn

(
rn cos(nθ + α)

sin(nθ + α)

)
, (3.5)

will be useful for calculation of the hydrodynamic force in § 5.
The first-order free surface elevation is derived from (2.15) with the use of coordinate

transformation (2.37), and attains the form

η1(θ;α) = −4δ cos2(θ/2)
∞∑

n=1

kn sin(nθ + α), (3.6)

or, alternatively, the linear form with respect to the trigonometric functions as

η1(θ;α) = −δ
1∑

i=−1

∞∑
n=1

C2
i+1kn sin([n + i]θ + α), (3.7)

where C2
i+1 is the binomial coefficient, equal to the number of (i + 1)-combinations of a

set with two elements. The expression (3.7) will be sometimes preferable for the purpose
of the higher-order analysis of the solution. Hereafter, the free surface elevation can be
expressed in Cartesian coordinates by using the inverse transformation formula,

θ(x) = 2 arctan (x/r) . (3.8)

In the following subsections, we will apply the same approach to calculate next-order
terms of the flow potential taking into account the influence of impulsive acceleration and
its interaction with impulsive velocity.

3.2. First-order potential and second-order free surface elevation
The first-order potential Φ1 has two contributors: from the self-interaction of initial
velocity proportional to δ2; and from the initial acceleration, proportional to a,

Φ1 = δ2(φ̂1 + ψ̂1)+ aψ1, (3.9)

which means that acceleration of the cylinder has an effect on the flow starting from the
first order. This follows from substitution of the functions η1 and ψ0 obtained above into

969 A12-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.557


P.A. Tyvand and V.K. Kostikov

the boundary conditions (2.21) and (2.27). Thus, we can formulate the conditions satisfied
by harmonic functions φ̂1, ψ̂1 and ψ1 on both boundaries of the flow domain,

φ̂1 = −1
2
η2

1
δ2 (ζ = 0),

∂φ̂1

∂ζ
= 0 (ζ = ζ0), (3.10a,b)

ψ̂1 = 0 (ζ = 0),
∂ψ̂1

∂ζ
= −R1(α)

δ
· ∇(iR · ∇ψ0) (ζ = ζ0), (3.11a,b)

ψ1 = 0, (ζ = 0),
∂ψ1

∂ζ
= 2R2(β)

a
· iR (ζ = ζ0). (3.12a,b)

Potentials φ̂1 and ψ̂1, were found previously by Tyvand & Miloh (1995) for the problem
of the cylinder moving with constant impulsive speed without acceleration, and we refer
to the solution given therein, reformulated in our notation,

φ̂1(θ, ζ ) = 1
4

∞∑
n,m=1

1∑
i,j,κ=−1

κ C2
i+1C2

j+1knkm cos([n + κm + i + κj]θ + [κ + 1]α)

× cosh(n + κm + i + κj)(ζ − ζ0)

cosh(n + κm + i + κj)ζ0
, (3.13)

ψ̂1(θ, ζ ) = −R1(α)

δ
∇ψ0 − sinα

1∑
i=−1

∞∑
n=1

C2
i+1kn sin([n + i]θ + α)

× cosh(n + i)(ζ − ζ0)

cosh(n + i)ζ0
. (3.14)

The respective derivatives from φ̂1 and ψ̂1, taken at the undisturbed free surface (ζ = 0),

∂φ̂1

∂y
(θ, 0) = cos2(θ/2)

2r

∞∑
n,m=1

1∑
i,j,κ=−1

κ(n + κm + i + κj)C2
i+1C2

j+1knkmrn+κm+i+κj

× cos([n + κm + i + κj]θ + [κ + 1]α), (3.15)

∂ψ̂1

∂y
(θ, 0) = −4 cosα

x2 + r

∞∑
n=1

kn(sin θ sin(nθ + α)− 2n cos2(θ/2) cos(nθ + α))

− 2 sinα
r

cos2(θ/2)
1∑

i=−1

∞∑
n=1

C2
i+1knrn+i(n + i) sin([n + i]θ + α), (3.16)

will be used below in the calculation of the higher-order terms in the expansion of the free
surface elevation. The value of the second function at the cylinder contour will be needed
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in the calculation of the forces in § 5:

ψ̂1(θ, ζ0) = 2r sin θ
ε

∞∑
n=1

kn

εn
(cosα sin(nθ + α)+ rn sinα cos(nθ + α))

+ 2(ε + cos θ)
ε

∞∑
n=1

kn

εn
(sinα sin(nθ + α)− rn cosα cos(nθ + α))

− sinα
1∑

i=−1

∞∑
n=1

C2
i+1knεn+i sin([n + i]θ + α). (3.17)

The first-order potential ψ1 due to impulsive acceleration can be related to the
zeroth-order potential ψ0 due to impulsive velocity by making the substitution α → β

in (3.2a,b) and using transformation (2.9a,b), as follows:

ψ1(θ, ζ ;β) = ψ0(θ, ζ ;β) = 2r
∞∑

n=1

kn

n
sin(nθ + β) sinh(nζ ). (3.18)

Applying expansion (3.9) to free surface boundary condition (2.16) gives the
corresponding expansion for the second-order free surface elevation, expressed in terms
of the first-order potentials,

η2(x) = δ2

2

(
∂φ̂1

∂y
(x, 0)+ ∂ψ̂1

∂y
(x, 0)

)
+ a

2
∂ψ1

∂y
(x, 0). (3.19)

Replacing the respective derivatives of the potentials with the expressions provided
above, we obtain the explicit formula for the calculation of the second-order free surface
elevation, induced by both impulsive velocity and impulsive acceleration,

η2(θ;α, β) = δ2 cos2(θ/2)
4r

∞∑
n,m=1

1∑
i,j,κ=−1

κ(n + κm + i + κj)C2
i+1C2

j+1knkmrn+κm+i+κj

× cos([n + κm + i + κj]θ + [κ + 1]α)

− 2δ2 cosα
x2 + r

∞∑
n=1

kn(sin θ sin(nθ + α)− 2n cos2(θ/2) cos(nθ + α))

− δ2 sinα cos2(θ/2)
r

1∑
i=−1

∞∑
n=1

C2
i+1knrn+i(n + i) sin([n + i]θ + α)

+ η2a(θ;β). (3.20)

Here the term η2a is responsible for the contribution from the acceleration alone and is
directly related to the first-order solution η1 via the transformation

η2a(θ, β) = a
2
∂ψ1

∂y
(x, 0;β) = a

2
∂ψ0

∂y
(x, 0;β) = a

2δ
η1(θ;β). (3.21)
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Figure 4. Second-order free surface elevation η2(x) for the cylinder of non-dimensional radius (a–c) ε = 0.4
and (d–f ) ε = 0.8 moving in different directions: (a,d) upward (α = β = π/2), (b,e) downward (α = β =
−π/2), (c, f ) horizontal (α = β = 0).

It is remarkable that the effect of the forced acceleration on the free surface flow is
inherited from that of the forced velocity and is explicitly described by the formula

η2a(θ, β) = −2a cos2(θ/2)
∞∑

n=1

kn sin(nθ + β). (3.22)

The analysis of the general solution for arbitrary angles of impulsive velocity and
acceleration can be complicated. Therefore, we limit the presentation of our results to
the cases where both vectors of impulsive velocity and acceleration are aligned and the
cylinder motion is rectilinear. Figure 4 illustrates the effects of reciprocity between initial
impulsive velocity and acceleration on the second-order free surface elevation, predicted
by (3.20), for the cylinders of two representative radii starting to move in three primary
directions. The plots in figure 4 were obtained by truncating the sums in (3.20) to 20 terms.
For upward motion of the cylinder, initial impulsive velocity and acceleration reinforce
each other creating a larger cumulative swell above the body. For vertical submersion,
two factors work in opposite directions resulting in the mitigation of the free surface
disturbance. As it is observed in figure 4, acceleration is responsible for the wave, which
travels with the horizontally moving cylinder, while velocity creates the wave, which is
symmetric with respect to the vertical axis. This can be explained by the fact that the
respective terms of the solution due to velocity and acceleration are represented by even
and odd functions, respectively.

3.3. Second-order potential and third-order free surface elevation
As will be appreciated from the description below, the second-order potential Φ2 has
three contributions, among which are the effect of the gravitational force and the leading

969 A12-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

55
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.557


Impulsive acceleration of a cylinder under free surface

nonlinear interaction between impulsive velocity and impulsive acceleration with arbitrary
respective angles α and β of initial motion,

Φ2 = δφ2g + aδ(φ2 + ψ2)+ δ3(φ̄2 + ψ̄2). (3.23)

The term with δ3, originating from triple self-interaction of the impulsive velocity,
will be disregarded in subsequent considerations. It should be noted that Φ2 gives no
contribution to the solution when initial impulsive velocity is zero (δ = 0) and includes no
self-interaction of impulsive acceleration. Using the solutions to the previous orders given
above, the kinematic and dynamic boundary conditions (2.22) and (2.28) can be broken
down into three distinct boundary-value problems for each of the harmonic functions in
expansion (3.23):

φ2g = − λ
2δ
η1 (ζ = 0),

∂φ2g

∂ζ
= 0 (ζ = ζ0), (3.24a,b)

φ2 = −2
η1

δ

η2a

a
(ζ = 0),

∂φ2

∂ζ
= 0 (ζ = ζ0), (3.25a,b)

ψ2 = 0 (ζ = 0),
∂ψ2

∂ζ
= −R2(β)

a
· ∇(iR · ∇ψ0)− R1(α)

δ
· ∇(iR · ∇ψ1) (ζ = ζ0).

(3.26a,b)

Equations (3.24a,b) and (3.25a,b) can be solved immediately by analytical continuation
of the functions in the right-hand sides into the half-plane ζ > 0. Here, it is convenient to
use (3.7) to expand these into the linear series with respect to trigonometric functions. The
unknown potentials can be found, as follows:

φ2g(θ, ζ ;α) = λ
2

1∑
i=−1

∞∑
n=1

C2
i+1kn sin([n + i]θ + α)

cosh(n + i)(ζ − ζ0)

cosh(n + i)ζ0
, (3.27)

φ2(θ, ζ ;α, β) = 1
2

1∑
i,j,κ=−1

∞∑
n,m=1

κC2
i+1C2

j+1knkm

× cos([n + κm + i + κj]θ + α + κβ)
cosh(n + κm + i + κj)(ζ − ζ0)

cosh(n + κm + i + κj)ζ0
.

(3.28)

With transformations (2.9a,b) and (3.18) between the leading-order terms of the two
modes of motion, the condition (3.26b) at the cylinder contour attains the form

∂ψ2

∂ζ
= −R1(β)

2δ
· ∇(iR · ∇ψ0(α))− R1(α)

δ
· ∇(iR · ∇ψ0(β)) (ζ = ζ0). (3.29)

Hence the function ψ2 can be broken down into two similar components differing by a
constant and positioning of the arguments α and β:

ψ2(α, β) = 1
2 ψ̃2(β, α)+ ψ̃2(α, β). (3.30)

Then we look for harmonic function ψ̃2, which satisfies the following boundary
conditions:

ψ̃2 = 0 (ζ = 0),
∂ψ̃2

∂ζ
= −R1(α)

δ
· ∇(iR · ∇ψ0(β)) (ζ = ζ0). (3.31a,b)
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From this point, it is sufficient to work with the vector of impulsive velocity R1 and
zeroth-order potential ψ0, which refer to the case of constant impulsive velocity only.
Thus, function ψ̃2 expresses the effect of finite penetration of constant velocity into the
flow field established by the constant acceleration. By mere substitution we can calculate
the effect of finite penetration of constant acceleration into the flow field established by
constant velocity. It should not be surprising that these two effects are linked by the factor
1
2 , indicating that the second effect appears as the smallest of the two. In view of the fact
that (3.11a,b) and (3.31a,b) share the same structure, we can express the solution ψ2 based
on the previous results as

ψ2(θ, ζ ;α, β) = −R1(α)

δ
· ∇ψ0(β)− R1(β)

2δ
· ∇ψ0(α)

−
1∑

i=−1

∞∑
n=1

C2
i+1kn

(
sinα sin([n + i]θ + β)+ 1

2
sinβ sin([n + i]θ + α)

)

× cosh(n + i)(ζ − ζ0)

cosh(n + i)ζ0
, (3.32)

where the gradient operator refers to the Cartesian coordinate system, to which all the
physical quantities belong. The value of this potential at the cylinder contour will be used
in the calculation of the forces in § 5:

ψ2(θ, ζ0) = −R1(α)

δ
· ∇ψ0(β)− R1(β)

2δ
· ∇ψ0(α)

−
1∑

i=−1

∞∑
n=1

C2
i+1knεn+i

(
sinα sin([n + i]θ + β)+ 1

2
sinβ sin([n + i]θ + α)

)
.

(3.33)

Substituting the expansions (3.1), (3.9) and (3.23) into (2.17) and neglecting the terms
proportional to δ3, we find the following representation of the third-order free surface
elevation through derivatives of the functions obtained above:

η3(x) = δ

3
∂φ2g

∂y
(x, 0)

+ aδ
3

(
∂φ2

∂y
(x, 0)+ ∂ψ2

∂y
(x, 0)+ ∂φ0

∂y
∂2ψ1

∂y2 (x, 0)− ∂2φ0

∂x∂y
∂ψ1

∂x
(x, 0)

)
. (3.34)

The equation (3.34) can be further simplified by use of the fact that the derivatives of ψ1
in the last two terms of the formula vanish. Based on previous results of this section, we
find the explicit formula for the third-order free surface elevation in bipolar coordinates:

η3(θ;α, β)

= η3g(θ;α)+ aδ cos2(θ/2)
3r

×
∞∑

n,m=1

1∑
i,j,κ=−1

C2
i+1C2

j+1κ(n + κm + i + κj)knkmrn+κm+i+κj

× cos([n + κm + i + κj]θ + α + κβ)
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− 4aδ sin θ
3(x2 + r)

∞∑
n=1

kn

(
sin(nθ + β) cosα + 1

2
sin(nθ + α) cosβ

)

+ 4aδ(1 + cos θ)
3(x2 + r)

∞∑
n=1

nkn

(
cos(nθ + β) cosα + 1

2
cos(nθ + α) cosβ

)

− aδ(1 + cos θ)
3r

1∑
i=−1

∞∑
n=1

C2
i+1knrn+i(n + i)

×
(

sinα sin([n + i]θ + β)+ 1
2

sinβ sin([n + i]θ + α)

)
, (3.35)

where the term

η3g(θ;α) = δλ cos2(θ/2)
3r

∞∑
n=1

1∑
i=−1

C2
i+1(n + i)knrn+i sin([n + i]θ + α) (3.36)

represents the contribution of the gravitational force.
The way the third-order free surface elevation η3 depends on α and β has additional

complexities compared with the second-order term η2. It contains the products of
trigonometric functions depending on the two direction angles α and β, representing the
forced velocity and the forced acceleration, respectively. This dependency demonstrates
that the interplay between the velocity and acceleration grows stronger with time.

Figure 5 shows the third-order free surface elevation predicted by (3.35), with the sums
truncated to 20 terms, for different non-dimensional radii of the cylinder and directions
of motion. Without acceleration the gravity is the only driving force for the fluid motion
to this order. By prescribing alternately a = 0 and a = 1 in (3.35), we can isolate the
terms responsible for the gravitational force and nonlinear interaction between impulsive
velocity and acceleration. Figure 5 demonstrates that impulsive acceleration intensifies the
flow field, induced by gravitational force, when the cylinder moves vertically, and violates
the symmetry of the wave profile when the cylinder moves horizontally. Nonlinear terms
contribute to the splitting of the splash jet formed by impulsive submersion of the cylinder
observed for the cylinders of bigger radius.

3.4. Third-order potential and fourth-order free surface elevation
So far, we have included the impulsive velocity and impulsive acceleration in our
development of the solution in the form of the Taylor expansion in time. The impulsive
start of the cylinder was accompanied by simultaneous velocity and acceleration
directed arbitrarily. In this paragraph, we sum up the results for the case of pure
acceleration (δ = 0, a = 1), and calculate the third-order potential and the fourth-order
free surface elevation. In this case, the zeroth- and second-order potentialsΦ0 andΦ2 give
no contributions to the general solution. The only non-zero component of the first-order
potential ψ1 is related to the zeroth-order potential ψ0 by (3.18) and the leading-order free
surface elevation η2a is given by (3.22).

According to boundary conditions (2.23) and (2.29) the third-order velocity potential
Φ3 can be decomposed into three harmonic components

Φ3 = φ3g + φ3 + ψ3, (3.37)
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Figure 5. Third-order free surface elevation η3(x) for λ = 6 and the cylinder of non-dimensional radius
(a–c) ε = 0.4 and (d–f ) ε = 0.8 moving in different directions: (a,d) upward (α = β = π/2), (b,e) downward
(α = β = −π/2), (c, f ) horizontal (α = β = 0).

satisfying the following boundary conditions:

φ3g = −λ
3
η2a (ζ = 0),

∂φ3g

∂ζ
= 0 (ζ = ζ0), (3.38a,b)

φ3 = −4η2
2a

3
(ζ = 0),

∂φ3

∂ζ
= 0 (ζ = ζ0), (3.39a,b)

ψ3 = 0 (ζ = 0),
∂ψ3

∂ζ
= −2R2

3
· ∇(iR · ∇ψ1) (ζ = ζ0). (3.40a,b)

Since the dimensionless acceleration parameter a equals unity in this case, the different
powers of a are not relevant in expansion (3.37). In the absence of the forced impulsive
velocity, the dimensionless parameter λ in (3.38a,b) represents the ratio between the
gravitational acceleration and the forced acceleration of the cylinder: λ = g/a0.

Conditions (3.38a,b) and (3.39a,b) can be brought into correspondence with conditions
(3.24a,b) and (3.10a,b), respectively, by use of (3.21) relating the second-order free surface
elevation η2a due to impulsive acceleration with the first-order free surface elevation η1
due to impulsive velocity. Hence, combining the results of the previous paragraphs, the
first two components of the third-order potentials can be related to the previous-order
contributions:

φ3g(θ, ζ ;β) = 1
3φ2g(θ, ζ ;β), φ3(θ, ζ ;β) = 2

3 φ̂1(θ, ζ ;β). (3.41a,b)

The similarity between two sets of (3.11a,b) and (3.40a,b) allows us to establish the
direct correspondence between their solutions by use of transformation (2.9a,b), relating
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Impulsive acceleration of a cylinder under free surface

the vectors of impulsive velocity and acceleration. By analogy, we can obtain

ψ3(θ, ζ ;β) = 1
3 ψ̂1(θ, ζ ;β). (3.42)

As implied by (2.18), in the case of pure acceleration, the only contribution to the
fourth-order surface elevation η4 comes from the third-order potential Φ3. It is worth
mentioning that the second-order surface elevation η2 has been obtained previously by
a similar formula (see (2.16)). Fourth-order free surface elevation can be then found as

η4a = 1
12
∂φ2g

∂y
(x, 0)+ 1

6
∂φ̂1

∂y
(x, 0)+ 1

12
∂ψ̂1

∂y
(x, 0). (3.43)

Comparing (3.34) and (3.43), we can point out that gravitational third- and fourth-order
terms of free surface elevation are directly related through the constant 1/4.

We have now completed the nonlinear theory up to the fourth order in time for the free
surface elevation caused by impulsive start of a circular cylinder of arbitrary radius from
a state of rest with constant acceleration.

4. The leading-order surface elevation by linear and nonlinear theory

In order to improve our causal understanding of the process considered in this paper,
we will now summarize some basic results from the previous section. As we have seen,
gravitational effects emerge slowly for the impulsively driven flow, where the initial free
surface is horizontal. The early effects are therefore non-gravitational, in both linear
and nonlinear theories. Under the circumstances where gravity can be disregarded, the
instantaneous free surface is primarily determined by the instantaneous position of the
cylinder, with some cumulative nonlinear influence during the earlier motion of the
cylinder since its start. When we can consistently neglect gravity, we are able to look
at the relationships between the finite displacement of the cylinder in its forced motion
and the resulting finite displacement of the free surface. It will then be useful to replace
the small-time expansion by a similar expansion in terms of a small spatial parameter.

4.1. The non-gravitational linearized elevation of the free surface
We will now study the instantaneous elevation of the free surface caused by a finite
displacement of the cylinder�R. We neglect gravitational effects since we want to discuss
the relationship between the finite displacement of the cylinder and the resulting finite
elevations of the initially horizontal free surface.

In the general case, the displacement of the cylinder, put into the forced motion
with initial velocity and initial acceleration during the time interval �t, is given by the
vector sum

�R = R1�t + R2(�t)2, (4.1)

and in the Cartesian coordinates as

�X = δ�t cosα + a
2
(�t)2 cosβ, �Y = δ�t sinα + a

2
(�t)2 sinβ, (4.2a,b)

where �X and �Y are the horizontal and vertical components of the cylinder
displacement, respectively.
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To check that the superposition principle holds for the net effect of the two added
motions, we calculate the total free surface elevation according to the linear theory:

η(θ,�t) = η1(θ;α)�t + η2a(θ;β)(�t)2. (4.3)

From (3.21), after inserting δ = 1, we have

η2a(θ;β) = a
2
η1(θ;β). (4.4)

The analytical verification of the superposition principle for the total free surface
elevation due to the general motions with different direction angles for the initial
velocity (α) and initial acceleration (β) can be carried out numerically. The focus of the
present paper is on the superposition of leading-order elevations for the case when two
direction angles are equal (α = β). In this case, (4.3) reduces to

η(θ,�t) = η1(θ;α)�t
(

1 + a
2
�t
)
, (4.5)

and the horizontal and vertical displacements are related as
�X

cosα
= �Y

sinα
= �t

(
1 + a

2
�t
)
. (4.6)

The last two equations show that initial acceleration aligned with the initial velocity
increases the displacement components by a factor equal to the relative increment of the
free surface elevation. Thus, we have confirmed the validity of the superposition principle
for a rectilinear motion of the cylinder, by which the total free surface elevation sums up
the contributions from the initially forced velocity and acceleration.

4.2. On the leading nonlinear free surface elevation
In our further analysis we will compare the free surface elevations predicted by the
leading-order nonlinear theory, treating constant velocity and constant acceleration
separately. In that case, when both direction angles are equal, the radial displacement of
the cylinder during the time interval �t is given by

�R = δ�t + a
2
(�t)2. (4.7)

If to consider the two cases of cylinder motion separately, the time interval needed to
achieve a radial displacement �R is given by two options:

�t =
{
�R, δ = 1, a = 0,√

2�R, δ = 0, a = 1.
(4.8)

We consider the exposition of a total nonlinear solution, found in § 3, as a
small-parameter expansion in terms of the dimensionless radial displacement �R instead
of a small-time expansion, using the substitution of variables (4.8). The two versions of
the free surface elevation, corresponding to the cases of constant impulsive velocity and
constant impulsive acceleration, can be written in the form

η(x,�R) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
η1(x)�R +

(
1
2
∂φ̂1

∂y
(x, 0)+ 1

2
∂ψ̂1

∂y
(x, 0)

)
�R2 + . . . , δ = 1, a = 0,

2η2a(x)�R +
(

2
3
∂φ̂1

∂y
(x, 0)+ 1

3
∂ψ̂1

∂y
(x, 0)

)
�R2 + . . . , δ = 0, a = 1.

(4.9)
Note, that contribution of the gravitational force has been neglected in (4.9).
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Earlier, we have established that free surface elevations to the leading order, η1 and η2a,
are related by factor 1

2 , see (4.4). Here, we elaborate a similar comparison for the leading
nonlinear contributions to the free surface elevation induced by the forced velocity and the
forced acceleration. In (4.9), the nonlinear terms consist of two parts, responsible for the
free-surface nonlinearity, ∂φ̂1/∂y, and for the nonlinearity due to the finite displacement of
the cylinder, ∂ψ̂1/∂y, with different weights. The case of constant acceleration increases
the elevation due to the dynamic pressure at the free surface by factor 4

3 , compared with
the case of constant impulsive velocity. The finite penetration of the cylinder into the fluid
which has the opposite effect of decreasing the elevation by factor 2

3 . Since the relative
contributions of ∂φ̂1/∂y and ∂ψ̂1/∂y depend on parameters ε and α, we cannot produce
the general conclusion whether the leading nonlinear effects on the surface elevation are
enhanced or reduced for constant acceleration, as compared with constant velocity leading
to the same displacement of the cylinder.

4.3. Some comments on the accuracy of the expansions
We have now compared the leading-order free surface elevations induced by a cylinder
with constant acceleration and by a cylinder with constant impulsive velocity. With time
chosen to ensure equal displacements of the cylinders, the nonlinear free surface elevations
for these two cases will always differ, but their orders of magnitude will remain equal.

It would be a challenge to check the accuracy of our expansion in comparison with the
full nonlinear problem. We will not attempt it here and refer to one recent work where
such detailed comparisons have been carried out instead. Tyvand, Mulstad & Bestehorn
(2021a) solved a nonlinear Cauchy–Poisson problem of impulsive start with a small-time
expansion with respect to the free surface elevation. The analysis was similar to the
present one, but was implemented one order further, providing the exact solution to the
third order in time. This expansion in Eulerian variables was appropriately followed up
by a second-order expansion in terms of the Lagrangian description of motion (Tyvand,
Mulstad & Bestehorn 2021b).

Since the Lagrangian description is expected to treat the free surface nonlinearity
more efficiently than the Eulerian, these two truncated expansions could be considered
as sufficient approximations to the exact nonlinear problem as far as they were sufficiently
close to one another. This plausible argument was confirmed by a third approach of a
fully nonlinear numerical simulation, described in Tyvand et al. (2021a) and carried out
in Tyvand et al. (2021b).

These publications reveal how the breakdown of asymptotic solutions can be visualized
when the time limit for convergence is reached for strongly nonlinear flows. The
Lagrangian solution develops a visible mass defect, where there is a mismatch between
the water above and below the zero level of the initial free surface. The Eulerian solution
obeys exact mass balance, but it develops undulations of the surface, which are unphysical
and absent in the Lagrangian solution. Such analyses are outside the reach of our present
work, but illustrates how Lagrangian and Eulerian approaches to the same problem may
provide mutual corrections for the respective asymptotic theories.

The experiments by Greenhow & Lin (1983) showed that a large cylinder in rapid
upward motion tends to surround itself with an almost uniformly thick fluid layer in the
radial direction around the cylinder. Tyvand & Miloh (1995) confirmed this effect for the
case of impulsive velocity. Equation (4.9) shows that this trend of a radially uniform fluid
layer above the cylinder will be preserved for any rapid upward motion starting from rest
with undisturbed free surface.
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5. The hydrodynamic forces on the cylinder

The hydrodynamic force exerted on the submerged cylinder by surrounding fluid is given
by contour integration of the fluid pressure obtained from the Bernoulli equation over the
cylinder surface Sε, as follows:

F = −
∫

Sε

(
∂Φ

∂t
+ 1

2
|∇Φ|2

)
dS, (5.1)

where dS is the vectorial area element of the cylinder surface, which can be expressed in
bipolar coordinates as

dS = ε iR dΘ = εr
(1 + ε cos θ)2

(
r sin θ
ε + cos θ

)
dθ = −2r

∞∑
n=1

kn

εn

(
sin nθ
cos nθ

)
dθ. (5.2)

Here we used the transition formula from polar to bipolar coordinates (2.36a–c) and
the Fourier series expansion technique (Morse & Feshbach 1953). In the present theory,
we discard the upward hydrostatic buoyancy force λπε2 and do not include it in the
zeroth-order force generated by the impulsive motion of the cylinder.

The pressure integral (5.1) produces a small-time expansion for the hydrodynamic force,

F = δ(t)F −1 + H(t)(F 0 + F 1t + F 2t2 + . . . ), (5.3)

where δ(t) and H(t) are Dirac’s delta function and the Heaviside function, respectively.
The force components up to second order in time are given by

F−1 = −
∫

Sε
Φ0 dS, (5.4)

F 0 = −
∫

Sε
(Φ1 + 1

2 |∇Φ0|2)dS, (5.5)

F 1 = −
∫

Sε
(2Φ2 + ∇Φ0 · ∇Φ1) dS, (5.6)

F 2 = −
∫

Sε
(3Φ3 + 1

2 |∇Φ1|2 + ∇Φ0 · ∇Φ2)dS. (5.7)

An extra singular term F−1 describes an instantaneous force impulse that can be
interpreted as an added momentum of the submerged cylinder during the impulsive start.
The subscript −1 is chosen because the singular force impulse is one order stronger than
the Heaviside singularity induced by Φ0. The softer start of an accelerated cylinder gives
a Heaviside singularity F 0 for the force and an even weaker temporal singularity tΦ1 for
the acceleration potential.

5.1. The zeroth-order force
The total steady hydrodynamic force arises as a result of two simultaneous processes: the
emerging force induced by impulsive velocity and the immediate reaction force due to
impulsive acceleration. The instantaneous force is evaluated as a Fourier series in bipolar
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coordinates as

F−1 = −δ
∫

Sε
ψ0 dS = 4πδr2

∞∑
n=1

rnk2
n

nε2
n

(
cosα
sinα

)
. (5.8)

Following the expansions (3.1) and (3.9), the zeroth-order force (5.5) can be decomposed
into four integral components:

F 0 = −δ2
∫

Sε
φ̂1 dS − δ2

∫
Sε
ψ̂1 dS − δ2

2

∫
Sε
(∇ψ0)

2 dS − a
∫

Sε
ψ1 dS. (5.9)

Here, the first integral represents the steady force due to the dynamic pressure set up by
the initial flow surrounding the cylinder, the second integral is due to the finite geometric
displacement of the cylinder, the third integral is the steady force set up from the free
surface due to its leading-order nonlinearity, and the fourth integral is responsible for the
force influenced by acceleration. Integrating the functions obtained in the previous section
over the cylinder surface leads to

∫
Sε
φ̂1 dS = −πr

2

1∑
i,j,κ=−1

∞∑
n,m=1

κC2
i+1C2

j+1knkmkn+κm+i+κj

(
sin(κ + 1)α
cos(κ + 1)α

)
, (5.10)

∫
Sε
ψ̂1dS =

[
−4πr

∞∑
n=1

1∑
i=0

knkn+i

εiεnεn+i
+ 2πr2

ε

∞∑
n=1

knkn+1(rn+1 − rn)

εnεn+1

](sinα cosα
sin2 α

)

+
[
4πr

∞∑
n=1

k2
nrn

ε2
n

+ 2πr
ε

∞∑
n=1

knkn+1(rn+1 + rn)

εnεn+1

](− sinα cosα
cos2 α

)

+ 2πr sinα
∞∑

n=1

1∑
i=−1

C2
i+1knkn+i

(
cosα
sinα

)
, (5.11)

∫
Sε
(∇ψ0)

2 dS = 4πr
∞∑

n=1

1∑
i=0

knkn+i

εnεn+i

(1 + rnrn+i)

εi

(
0
1

)
. (5.12)

The added momentum due to the impulsive acceleration can be found directly from the
instantaneous force impulse, obtained above, by substitution α → β:∫

Sε
ψ1 dS =

∫
Sε
ψ0(β) dS. (5.13)

In this zeroth-order force, only the impulsive acceleration is taken into account (δ =
0). It is independent from the zeroth-order force due to nonlinear effects for the case of
constant velocity (δ = 1), which we find in Tyvand & Miloh (1995).

5.2. The first-order force
Following the expansions (3.1), (3.9) and (3.23), the first-order hydrodynamic force (5.6)
can be decomposed into four integral components:

F 1 = −2δ
∫

Sε
φ2g dS − 2aδ

∫
Sε
φ2 dS − 2aδ

∫
Sε
ψ2 dS − aδ

∫
Sε

∇ψ0∇ψ1 dS. (5.14)
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Here, the first integral represents the leading-order gravitational force due to the
impulsive acceleration, the second integral is due to the force from the leading nonlinear
free-surface interaction of impulsive velocity and impulsive acceleration, the third integral
is the force from the leading nonlinear effects of finite geometric displacement of the
cylinder contour, which combines the impulsive velocity and impulsive acceleration,
and the fourth integral is responsible for the force from the leading nonlinear effects of
dynamic pressure on the cylinder, which combines the impulsive velocity and impulsive
acceleration.

Only first-order forces which are influenced by impulsive acceleration are taken into
account. Thus, the first-order force due to triple nonlinear self-interactions of the forced
velocity and its induced surface motion will be disregarded in this paper. The contribution
from the gravitational force due to the forced velocity is governed by the linear theory and
is given by ∫

Sε
φ2g dS = −λπr

1∑
i=−1

∞∑
n=1

C2
i+1knkn+i

(
cosα
sinα

)
. (5.15)

It should be noted that below there will be calculated the second-order counterpart of the
gravitational force due to forced acceleration,

∫
Sε
φ2 dS = −πr

1∑
i,j,κ=−1

∞∑
n,m=1

κC2
i+1C2

j+1knkmkn+κm+i+κj

(− sinα
cosα

)
, (5.16)

∫
Sε
ψ2 dS = −2πr

∞∑
n=1

1∑
i=0

knkn+i

εnεn+iεi

(
(2 + rn) sinα cosβ + (1 + 2rn) cosα sinβ

3 sinα sinβ + 3rn cosα cosβ

)

+ πr
∞∑

n=1

1∑
i=−1

C2
i+1knkn+i

(
2 sinα cosβ + cosα sinβ

3 sinα sinβ

)
. (5.17)

The only other first-order force that we will calculate is the force due to the leading-order
nonlinear mutual interaction between impulsive velocity and impulsive acceleration. The
calculation must be done carefully for the general case with two different direction angles:
α for the forced velocity; and β for the forced acceleration of the cylinder. Using the
transformation (3.18) the expression for the force can be written in the form∫

Sε
∇ψ0 · ∇ψ1 dS =

∫
Sε

∇ψ0(α) · ∇ψ0(β) dS, (5.18)

and we insert the zeroth-order potential (3.3) to obtain the first-order pressure along the
cylinder contour. In bipolar coordinates it is given by evaluating the integrals of the triple
products of trigonometric functions, giving

∫
Sε

∇ψ0 · ∇ψ1 dS = 4πr
∞∑

n=1

1∑
i=0

knkn+i

εnεn+i

(1 + rnrn+i)

εi

(
0

cos(α − β)

)
. (5.19)

Equation (5.19) demonstrates that the first-order interaction force has only the vertical
component and it is determined by the mutual difference of the directional angles. The
interaction force vanishes when the directions of the forced velocity and acceleration are
orthogonal.
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5.3. The second-order force
In this paragraph, we provide the second-order hydrodynamic force for the special case
of the cylinder starting without initial impulsive velocity (δ = 0, a = 1). Substituting
the expansions (3.9) and (3.37) into the integral equation (5.7) we can decompose the
second-order force into four principal constituents:

F 2 = −3
∫

Sε
φ3g dS − 3

∫
Sε
φ3 dS − 3

∫
Sε
ψ3 dS − 1

2

∫
Sε

|∇ψ1|2 dS. (5.20)

Having obtained the solution up to third order, we can relate directly the integral
components of the fourth-order hydrodynamic force to those of the zeroth- and the
first-order forces. Application of relations (3.18), (3.41a,b) and (3.42) in (5.20) gives
alternative integral representation of the force,

F 2 = −
∫

Sε
φ2g dS − 2

∫
Sε
φ̂1 dS −

∫
Sε
ψ̂1 dS − 1

2

∫
Sε

|∇ψ0(β)|2 dS, (5.21)

which can be evaluated based on the results of the previous paragraphs.

6. Summary and outlook

In this paper, we have studied analytically the initial stage of the wave generation by
a submerged circular cylinder in two dimensions. To solve the problem, we applied a
small-time expansion in combination with spatial Fourier series expressed in biharmonic
coordinates. We have extended the theory of Tyvand & Miloh (1995), developed for the
cylinder starting with constant impulsive velocity, to take into account the interaction
between simultaneous impulsive velocity and impulsive acceleration and produced the
high-order solution for the pure acceleration case. Our fourth-order solution takes the
leading gravitational effects into account, as opposed to the solution of Tyvand & Miloh
(1995), which included the leading nonlinear terms in the second order and only the
gravitational term in the third order. We have also corrected the calculational mistakes
which occurred in the paper by Tyvand & Miloh (1995).

In this paper, the mathematical model of a circular cylinder moving with constant
acceleration under the free surface was developed in parallel with the model of a cylinder
moving with constant velocity (Tyvand & Miloh 1995). The following differences between
two models with respect to the free surface elevation were discovered.

(i) The leading-order solution is the product of the linear theory without gravitational
effects, which is of the first order for the constant velocity case and of the second
order for constant acceleration case.

(ii) The nonlinearity takes effect at the second order for the constant velocity case and
at the fourth order for the constant acceleration case.

(iii) The leading gravitational term appearing in the third order for the constant velocity
case and in the fourth order for the constant acceleration case is linearized. There is
a consistency of truncation after the fourth order with constant acceleration, since
the leading nonlinear effects as well as the leading gravitational effects are included.

From the standpoint of the hydrodynamic force acting on the moving cylinder, the
following differences between two models were established.

(i) The leading-order force, provided by the linear theory without gravity, is of singular
temporal order (a Dirac delta function) for the constant velocity case and of the
zeroth order for the constant acceleration case.
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(ii) The leading nonlinear contribution to the force is of the zeroth order for the case of
constant velocity and of the second order for the case of constant acceleration.

(iii) The leading gravitational effect was linearized, but it appears in the first order for
constant velocity and in the second order for constant acceleration. Again, there is
a consistency of truncation with constant acceleration after the second-order force,
at which the leading nonlinear effects as well as the leading gravitational effects are
included.

We can distinguish between three types of nonlinearity in the present study:

(i) the free-surface nonlinearity, which is well known from the general theory of water
waves;

(ii) nonlinearity at the cylinder contour due to its finite geometric displacement away
from its initial position;

(iii) nonlinearity at the cylinder contour due to the dynamic pressure, which is a quadratic
function of the fluid velocity.

The complicated nonlinearities occurring at the submerged body surface are underrated
in the field of wave–structure interaction, despite the fact that they are often of a greater
quantitative importance than the free-surface nonlinearities which are easier to handle
conceptually and mathematically. We have compared different nonlinear effects in our
nonlinear theory with the truncated order of the asymptotic small-time expansion.

The principal novelty of the present work is the combination of simultaneous impulsive
velocity and acceleration directed at independent arbitrary angles. The nonlinear solution
is given to the order of leading nonlinear interactions between these two factors. The
complicated general formulae for the free surface elevation and hydrodynamic force store
much more information than our figures are able to expose. The leading interaction terms
are of third order with respect to the surface elevation, and of first order with respect to the
hydrodynamic force. Interestingly, we have established, that nonlinear contributions to the
free surface elevation from the finite penetration of impulsive velocity into the initial field
set up by impulsive acceleration, and from the finite penetration of impulsive acceleration
into initial field set up by impulsive velocity, have the same form and differ by factor 1

2 .
The present study pushes the limits of what can be achieved by analytical calculation

of strong nonlinearities. Due to the application of reasonably convergent Fourier series
in biharmonic coordinates, no limitations are imposed on the initial distance from the
cylinder centre to the free surface. Tyvand & Miloh (1995) once demonstrated that good
convergence of the solution to the exact free surface elevation can be achieved even if
the cylinder rises above the initial level of the free surface. The deficiency of nonlinear
theories based on small-time expansion is that the convergence holds within a short time
interval. The interval of convergence can be extended by including the higher-order terms
in the Taylor expansion of the solution.

The nonlinear theory, proposed in this paper, cannot be applied to the early stage of the
free surface flow with wave breaking. Because the body should remain fully submerged
in the fluid, our theory cannot be applied to the floating bodies, where wavemaker-type
singularities seem to forbid consistent nonlinear analytical approaches (Peregrine 1972).
Just the opposite, linear theory works reasonably well with floating bodies, provided
that the flow singularities are integrable and are able to provide convergent results for
instantaneous impulsive forces. Basic singularities of the wavemaker problem of Peregrine
(1972) have been resolved by King & Needham (1994). Years later, Needham, Billingham
& King (2007) treated the more complicated problem of a wavemaker put impulsively
into constant velocity. It appeared that even in the case of a relatively smooth start with
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constant acceleration, the potential theory is insufficient and the Taylor time series are no
longer applicable.

A floating body in finite motion cannot be consistently modelled with Taylor time
series, because consistent Taylor expansion needs to maintain the role of the leading-order
solution to a linearized problem during subsequent motion of the body. This again requires
that there is a steady flow contribution that appears as if it was due to a forced normal
velocity at the initial location of the body contour. Such a situation cannot occur for a
floating body put into finite displacement at zero time.
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