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Abstract. We say that the operator T on a Hilbert space H into itself is
strongly stable if Tnxk k ! 0 as n!1, for all x 2 H. If T is a contraction, then T is
said to be cs-stable if T has C0 completely non-unitary part. This note considers the
strong stability of operators A
 B and the p-hyponormality of operators A
 B. It
is shown that the contraction A
 B is cs-stable if and only if so are the contractions
cA and cÿ1B for some scalar c and A
 B is p-hyponormal if and only if A and B are.
We also characterize p-hyponormal A
 B for which the commutator jA
 Bj2pÿ
jA� 
 B�j2p is compact.

1991 Mathematics Subject Classi®cation. Primary 47A80, 47B20. Secondary
47A45, 47C15.

1. Introduction. Let H be a Hilbert space, and let B H� � denote the algebra of
bounded linear operators on H. Given A;B 2 B H� �, the tensor product A
 B, on
the product space H
H, has been considered variously by a number of authors;
(see [3,13,17,20,21] for further references). The operation of taking tensor products
A
 B preserves many a property of A;B 2 B H� �; but by no means all of them.
Thus, whereas the normaloid property is invariant under tensor products, the spec-
traloid property is not (see [20, pp. 623 and 631]); again, whereas A
 B is normal if
and only if A and B are [13,19], there exist paranormal operators A and B such that
A
 B is not paranormal [20, p. 629]. A
 B may have a property without (both) A
and B having the property. Precisely this happens in the case of strong stability of
operators. The operator T is said to be strongly stable if Tnxk k ! 0 as n!1, for
all x 2 H [15,16]. Strongly stable operators arise as models of discrete time invariant
in®nite dimensional free bounded linear systems of autonomous homogeneous dif-
ference equations xn�1 � Txn; x0 � x: It is clear that A
 B is strongly stable when-
ever A is power bounded (strongly stable) and B is strongly stable (resp., power
bounded). If A
 B is strongly stable (and so necessarily power bounded) and

normaloid (i.e. limn!1 A
 B� �n

 

1n� Ak k Bk k), then (at least) one of A and B, and
A
 B are contractions. A general strongly stable operator is cnu (=completely non-
unitary) but need not be a contraction or even similar to a contraction [16]; a
strongly stable contraction is a cnu contraction of the class C0. See [18]. Notice that
if A
 B has a property P, then so does cA
 cÿ1B

ÿ �
for all nonzero scalars c. It is

not necessary for A and B to be contractions for A
 B to be a contraction: given a
contraction A
 B, the best one can say is that there exists a scalar c 6� 0 such that
A1 � cA and B1 � cÿ1B are contractions.

Our purpose in this note is a twofold one. We consider the strong stabilty of
operators in Section 2, and prove that the operator A
 B is strongly stable if and
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only if at least one of the (power bounded) operators A and B is. For the case in
which A
 B is a contraction, we introduce the concept of cs-stability (to distinguish
it from strong stability). We say that the contraction T is cs-stable (=the cnu part is
strongly stable) if T has C0 cnu part. We prove that the contraction A
 B id cs-
stable if and only if the (associated) contractions A1 and B1 are cs-stable. In Section
3 we consider the tensor product of p-hyponormal operators. The operator T is said
to be p-hyponormal, 0 < p � 1, if T �j j2p� Tj j2p: Let H p� � denote the class of p-
hyponormal operators (so that H�1� denotes the class of 1-hyponormal, or simply
hyponormal, operators). Although H p� �, 0 < p < 1, contains H�1� as a proper sub-
class, H p� � operators have spectral properties very similar to those of H�1� operators
(see [1,2,5,6,7,22], and some of the references cited in these papers, for further infor-
mation on H p� � operators). It is shown that A
 B 2 H p� � if and only if A;B 2 H p� �.
We characterize thoseA
 B 2 H p� � for which the commutator A
 Bj j2pÿ A� 
 B�j j2p
is compact, and prove that ifA
 B 2 H p� �, then eitherA
 B has a non-trival invariant
subspace or (at least) one of A and B is the sum of a normal and a compact operator.

In the following, we shall denote the closure of the range and the orthogonal
complement of the kernel of an X 2 B H� � by ranX and ker?X, respectively. The
commutator ABÿ BA of A;B 2 B H� � will be denoted by A;B� �. We say that a con-
traction A is cnu (=completely non-unitary) if there exists no non-trivial reducing
subspace M of A such that the restriction of A to M, denoted by A Mj , is unitary.
The cnu contraction A is said to be of the class C0 of contractions if the power
sequence Anf g converges strongly to zero; i.e., Anxk k ! 0 as n!1, for all x 2 H
[18]. In the following the tensor product H
H will denote the completion of the
algebraic tensor product of H with H relative to the unique inner product
x
 y1; x2 
 y2� � � x1; x2� � y1; y2� �. The following elementary results on tensor pro-
ducts of operators will be used often (and without further reference) in the sequel:
A1 
 B1 � A2 
 B2 if and only if there exists a scalar c 6� 0 such that A1 � cA2 and
B1 � cÿ1B2. If Ai and Bi i � 1; 2� � are positive operators, then A1 
 B1 � A2 
 B2 if
and only if there exists a scalar c > 0 such that A1 � cA2 and B1 � cÿ1B2. The
proofs to these results are to be found in the papers by Hou [13] and Stochel [21].
(We do not need the full force of the results of Hou or Stochel here.)

It is my great pleasure to thank Professor Carlos Kubrusly for some very
enlightening correspondence regarding the strong stability of operators. My thanks
are also due to the referee for his suggestions, which have helped improve the pre-
sentation of the paper.

2. Stability. The operator T is strongly stable if Tnxk k ! 1 as n!1, for all
x 2 H. A strongly stable operator is power bounded (i.e. there exists a scalar M such
that sup T nk k �M) and the spectral radius r T� � of T is equal to one. In the case in
which the Hilbert space H is separable, an equivalent de®nition of strong stability is
provided by the following result.

Propostion 1. The power bounded operator T is strongly stable if and only if the
only (positive) solution X � 0 of T �XT � X is X � 0.

Proof. If T is stongly stable, then

X; x; x� � � lim
n!1 �T

��nXTnx; x� � � Xk k lim
n!1 Tnxk k2� 0:
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Hence X � 0. Suppose now that the only solution X � 0 of T�XT � X is X � 0 but
that there exists a non-trivial x 2 H such that Tnxk k 6! 0 as n!1. Then there
exists an operator S and a constant C > 0 such that Tnxk k � C; Sx; x� � > 0,
kerS � y 2 H : Tny



 

! 0 as n!1� 	
and T�ST � S; (see [4, Lemma 4]). This is

a contradiction.
Related to, but distinct from, the strong stability of an operator is the concept

of the uniform stability of an operator. T 2 B H� � is said to be uniformly stable if
Tnk k ! 0 as n!1. Uniform stability implies strong stability. It is seen that if
T 2 B H� � is uniformly stable, then r T� � < 1 and T is similar to a strict contraction.
Furthermore, T 2 B H� � is uniformly stable if and only if there exists an X� 0 and a
scalar �, with 0 < � < 1, such that T �XT � �X; (see [15] for more details). Taking
our cue from this we make the following de®nition.

The operator T � A
 B on H
H is uniformly stable if there exists an operator
Q � Q1 
Q2 � 0 and a scalar �; 0 < � < 1, such that T �QT � �Q.

Henceforth A and B will denote non-trivial operators. We prove the following
result.

Theorem 1. (a) Let A and B be power bounded operators on a separable Hilbert
space H. Then A
 B is stongly stable if and only if at least one of A and B is strongly
stable.

(b) A
 B is uniformly stable if and only if A1 and B1 are, where A1 � cA and
B1 � cÿ1B, for some scalar c > 0.

Proof. (a) To prove our assertion we need only show that if Xi � 0; i � 1; 2� �,
and A
 B� �� X1 
 X2� � A
 B� � � X1 
 X2, then A�X1A � X1 and B�X2B � X2. The
operators A�X1A and B�X2B being positive, it follows that if A
 B� �� X1 
 X2� �
A
 B� � � X1 
 X2, then there exists a scalar c > 0 such that A�X1A � cX1 and
B�X2B � cÿ1X2: Let supn Ank k �M1 and supn Bnk k �M2. Then

cnj j X1k k � A�nX1A
nk k �M2

1 X1k k
and

cÿnj j X2k k � B�nX2B
nk k �M2

2 X2k k:
This implies that c � 1, and hence A�X1A � X1 and B�X2B � B.

(b) If A1 and B1 are uniformly stable, then

r A
 B� � � lim
n!1 A
 B� �n

 

1n� lim

n!1 A1 
 B1� �n

 

1n� lim
n!1 An

1



 

 Bn
1



 

� 	1
n< 1;

and hence A
 B is uniformly stable. Conversely, if A
 B is uniformly stable, then

A�Q1A
 B�Q2B � � Q1 
Q2� �
for some 0 < � < 1 and Q1 
Q2 � 0. Since Q1 
Q2 is invertible if and only if Qi is
i � 1; 2� �, there exists a non-zero scalar d such that X1 � dQ1 and X2 � dÿ1Q2 are
positive. The operators A�X1A and B�X2B being positive, there exists a scalar c > 0
such that

A�X1A � c2
���
�
p

X1 and B�X2B � cÿ2
���
�
p

X2:

This implies that A1 and B1 are uniformly stable.
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Contractions A
 B. If A
 B is a contraction, then 0 � A�A
 B�B � I
 I and
hence there exists a scalar d > 0 such that 0 � A�A � dI and 0 � B�B � dÿ1I. De®ne
operators A1 and B1 by A1 � cÿ1A and B1 � cB, where cj j2� d; then A
 B is a
contraction if and only if A1 
 B1 is a contraction if and only if A1 and B1 are
contractions.

In deference to (and to distinguish it from) the more established concept of the
strong stability of operators, we say that a contraction T 2 B�H� is cs-stable if T has
C0 cnu part. A characterization of contractions (in B�H�) with C0 cnu part is given
by the following result (cf. [7, Lemma 1]).

``The contraction T has C0 cnu part if and only if for every isometry V and
operator X such that T �X � XV� we also have TX � XV''.

Taking our cue from this characterisation we say in the following that the con-
traction T � A
 B is cs-stable if for every operator X � X1 
 X2 and isometry V on
H
H such that T�X � XV� we also have TX � XV.

Clearly, A
 B is cs-stable if and only if A1 
 B1� � is cs-stable. Let A1 and B1 be
cs-stable contractions. Then T � A1 
 B1 is a cs-stable contraction, as the following
argument shows. Let X � X1 
 X2, and let V be an isometry on H
H such that
T�X � XV�. Let X�i

�� ��2� Pi i � 1; 2� �. Then
A�1P1A1 
 B�1P2B1 � P1 
 P2;

and so there exists a scalar d > 0 such that

A�1P1A1 � dPi and B�1P2B1 � dÿ1P2:

A1 and B1 being contractions, this implies that

d P1k k � A�1P1A1



 

 � P1k k and dÿ1 P2k k � B�1P2B1



 

 � P2k k:
Hence d � 1 and, since A1;B1 are cs-stable, A1P1A

�
1 � P1 and B1P2B

�
1 � P2 (see [4]).

Thus ranP1 � ranX1 reduces A1; ranP2 � ranX2 reduces B1, and A1 ranX1

�� and
B1 ranX2j are unitary. We have

TX � TXV�V � TT�XV � XV:

The converse also holds, as the following result shows.

Theorem 2. The contraction A
 B is cs-stable if and only if the contractions A1

and B1 are cs-stable.

Proof. We have to show that A
 B is cs-stable ) A1 and B1 are cs-stable. A1

and B1 being contractions,

lim
n!1A�

n

1 A
n
1 � X 2

1 and lim
n!1B�

n

1 Bn
1 � X2

2

are well de®ned positive operators. Hence

X1 
 X2� �2� lim
n!1 A�n1 An

1 
 B�n1 Bn
1

ÿ � � lim
n!1 A�1 
 B�1

ÿ �n
A1 
 B1� �n� �

is a well de®ned positive operator. Since
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lim
n!1A�1 A�n1 An

1

ÿ �
A1 � A�1 lim

n!1A�n1 An
1

� �
A1;

and

lim
n!1B�1 B�

n

1 Bn
1

ÿ �
B1 � B�1 lim

n!1B�
n

1 Bn
1

� �
B1;

A�1X
2
1A1 � X 2

1 and B�1X
2
2B1 � X2

2: �1�

Also, since X1A1� � A�1X1

ÿ ��X 2
1 � A�1X1

ÿ �
X1A1� �, X2B1� � B�1X2

ÿ ��X2
2 � B�1X2

ÿ �
X2B1� �,

X1A1 and X2B1 2 H 1� �: There exist isometries V1 and V2 such that X1A1 and X2B1

have the polar decompositions X1A1 � V1X1 and X2B1 � V2X1. We have

A1 
 B1� �� X1 
 X2� � � X1 
 X2� � V1 
 V2� ��; �2�

and so (since A
 B is cs-stable) also

A1 
 B1� � X1 
 X2� � � X1 
 X2� � V1 
 V2� �: �3�

We should like now to prove that A1;X1� � � 0 � B1;X2� �: We start by showing that
A1j j;X1� � � 0 � B1j j;X2� �:

Equations (2) and (3) together imply that

A1j j2
 B1j j2
ÿ �

X 2
1 
 X2

2

ÿ �
A1j j2
 B1j j2
ÿ � � X 2

1 
 X2
2;

hence there exists a scalar d > 0 such that A1j j2X 2
1 A1j j2� dX 2

1 and B1j j2X2 B1j j2�
dÿ1X2

2: Since A1 and B1 are contractions, d � 1, and hence we have

A1j j2X 2
1 A1j j2� X 2

1 and B1j j2X 2
1 B1j j2� X2

2: �4�

Let A1 and B1 have the polar decompositions A1 � U A1j j and B1 �W B1j j: Let
x 2 H; and let xnf g be the sequence de®ned by xn � X 2

1 A1j j2nx: Then

xnk k � X 2
1 A1j j2nx



 

 � A1j j2X 2
1 A1j j2n�2x



 

 by 4� �� �
� A1j j2xn�1


 

 � xn�1



 

;
and the sequence xn�1



 

� 	
is a monotonic increasing sequence bounded above.

Also,

xn�1


 

2 � xn�2; A1j j2xn�1

ÿ � �by �4��

� xn�2;xn
ÿ � � xnk k � xn�2



 


2

� �2

;

i.e., the sequence xnk kf g is convex. Hence xnk kf g is a constant sequence. In parti-
cular, X 2

1x


 

 � X 2

1

�� �� A1j j2x


 

; for all x 2 H and
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A1j j2X 2
1 ÿ X 2

1 A1j j2
ÿ �

x


 

2� A1j j2X 2

1x


 

2� X 2

1 A1j j2x


 

ÿ2Re X 2

1x; A1j j2X 2
1 A1j j2x

ÿ � � 0;

i.e. A1j j2;X 2
1

� � � 0; or equivalently A1j j;X1� � � 0: Taken together with (4) this
implies that A1j j4nX 2

1 � X 2
1 for all n � 0; 1; 2; � � �. Hence

A1j jX2
1 � X2

1 � X2
1 A1j j: �5�

A similar argument shows that B1j j;X2� � � 0 and

B1j jX2
2 � X2

2 � X2
2 B1j j: �6�

We show next that U;X1� � � 0 � W;X2� �:
Equations (2) and (3) taken together imply also that ran X1 
 X2� � reduces

A1 
 B1 and A1 
 B1� � ran X1 
 X2� ��� is unitary. Consequently,

X1 
 X2 � A1 
 B1� � X1 
 X2� � V�1 
 V�2
ÿ �

and hence

X2
1 
 X2

2 � A1X
2
1A
�
1

ÿ �
 B1X
2
2B
�
1

ÿ �
:

Arguing as above (see (4)) it now follows that

A1X
2
1A
�
1 � X2

1 and B1X
2
2B
�
1 � X2

2: �7�

This implies that

U�X2
1 � U�A1X

2
1A
�
1 � A1j jX2

1 A1j jU� � X2
1U
� �see �5��

and

W�X2
2 �W�B1X

2
2B
�
1 � B1j jX2

2 B1j jW� � X2
2W
� �see �6��:

Thus U;X1� � � 0 � W;X2� �; and hence A1;X1� � � 0 � B1;X2� �:
The commutativity of A1 and X1 when taken along with (1) implies that

X2
1 � lim

n!1A�n1 X2
1A

n
1 � X2

1 lim
n!1A�n1 An

1 � X4
1:

Hence X1 is a projection, and we have from (1) and (7) that A1jranX1 � A1jranX1� � is
unitary and A1 ran Iÿ X1� � 2 C0:

�� A similar argument shows that X2 is a projection,
B1 ranX2j is unitary and B1 ran Iÿ X2� � 2 C0:

�� This completes the proof.

Remark 1. Our de®nition of cs-stability of the contraction A
 B is a particular
case of ``generalised Putnam-Fuglede (commutativity) theorems'' (see [6,7,8,9,10,12,19]).
Let �AB : B H� � ! B H� � denote the generalised derivation �AB X� � � AXÿ XB; let
dAB : B H� � ! B H� � denote the elementary operator dAB X� � � AXBÿ X, and let
DAB � �AB or dAB. Let P1 and P2 be two classes of operators. The pair P1;P2� � is
said to have the (generalised) Putnam-Fuglede (commutativity) property, denoted
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P1;P2� � 2 PF D� �; if kerDAB � kerDA�B� , for every operator A 2 P1 and operator
B� 2 P2: The Putnam-Fuglede property holds for a number of pairs of classes P1

and P2, chief amongst them classes P1 and P2 consisting of normal or subnormal or
hyponormal operators (see [9,10,19]). (See also [8] for more information on classes
P1 and P2 for which P1;P2� � 2 PF �� �() P1;P2� � 2 PF d� �; and further references.)

Remark 2. The tensor product A
 B can be identi®ed with multiplication on
the Hilbert space C2 H� � of Hilbert-Schmidt class operators on H. More precisely,
A
 B can be identi®ed with the mapping �AB� C2 H� ��� , where �AB� X� � � AXB� [3].
Theorem 2 implies that �AB� C2 H� ��� is a contraction with C0 cnu part if and only if
A1 and B1 are contractions with C0 cnu part.

4. H( p) operators. We say that the operator T is p-hyponormal, 0 < p � 1, if
T �j j2p� Tj j2p. Let H p� � denote the class of p-hyponormal operators (so that H 1� �
denotes the class of hyponormal operators). The class H p� � is monotonic decreasing
on p; i.e., if T 2 H p� �, then T 2 H q� � for all 0 < q � p, and we may assume without
loss of generality that 0 < p < 1

2 : (Indeed one may assume, without loss of generality
that p � 2ÿn, for some integer n > 1.) H 1

2

ÿ �
operators were introduced by Xia (see

[22, p238] for the appropriate reference), and H p� � operators for a general 0 < p < 1
2

have since been considered by a number of authors (see [1,2,5,6,22] for further
references). Although the class of H p� � operators 0 < p < 1

2, is strictly larger than the
class of hyponormal operators, H p� � operators share a large number of properties
with hyponormal operators. Throughout the following we assume that A;B are non-
trivial H p� � operators �0 < p < 1

2 � which are linearly independent (i.e., there exists no
scalar 
 such that A � 
B). We start by considering the p-hyponormality of the
tensor product A
 B.

Theorem 3. A
 B 2 H p� �()A and B 2 H p� �.

Proof. Suppose that A
 B 2 H p� �. Let Aj j and Bj j have the spectral decom-
positions

Aj j �
Z
�dE �� � and Bj j �

Z
�dF �� �;

and let f : 0;1� � ! 0;1� � be such that f xy� � � f x� �f y� �. Then

f Aj j 
 Bj j� � �
Z Z

f ��� �dE �� � 
 dF �� � �
Z

f �� �dE �� �
� �



Z

f �� �dF �� �
� �

� f Aj j� � 
 f Bj j� �:

Choosing f x� � � xp we have

A�j j2p
 B�j j2p � f A�j j2
 B�j j2
� �

� f A� 
 B�j j2
� �

� A� 
 B�j j2p
� A
 Bj j2p� f A
 Bj j2ÿ � � f Aj j2
 Bj j2ÿ � � Aj j2p
 Bj j2p:
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Hence there exists a scalar c > 0 such that

A�j j2p� c Aj j2p and B�j j2p� cÿ1 Bj j2p:

Since

Aj jpk k2� A�j jp

 

2� sup xk k�1 A�j j2px; x
� �

� sup xk k�1 c Aj j2px; xÿ � � c Aj jpk k2

and

Bj jpk k2� B�j jp

 

2� sup xk k�1 B�j j2px; x
� �

� sup xk k�1 cÿ1 Bj j2px; xÿ � � cÿ1 Bj jpk k2;

we must have c � 1, and then A;B 2 H p� �.
Conversely, if A;B 2 H p� �, then

Aj j2pÿ A�j j2p
� �


 Bj j2pÿ B�j j2p
� �

� 0

) Aj j2p
 Bj j2pÿ �ÿ A�j j2p
 B�j j2p
� �

� Aj j2p
 B�j j2p� A�j j2p
 Bj j2pÿ2 A�j j2p
 B�j j2p

� Aj j2pÿ A�j j2p
� �


 B�j j2p� A�j j2p
 Bj j2pÿ B�j j2p
� �

� 0:

Hence A
 B 2 H p� �.

Corollary 1. �AB� C2 H� � 2 H p� ��� if and only if A;B 2 H p� �.

Proof. As noted earlier, �AB� C2 H� ��� can be identi®ed with A
 B.

Remark 3. The same sort of characterisation (as in Corollary 1) cannot be valid
for more general elementary operators. Thus, for example, the elementary operator
X! AXB� � A�XB restricted to C2 H� � is self-adjoint for all A;B 2 B H� �.

Remark 4. Suppose that A;B are doubly commuting (i.e., AB � BA and
AB� � B�A) hyponormal operators. Then

A� B� �� A� B� � � A�A� A�B� B�A� B�B
� AA� � AB� � BA� � BB� � A� B� � A� B� ��;

so that A� B is hyponormal. This implies that A
 I� I
 B 2 H 1� � for all opera-
tors A;B 2 H 1� �. Given A;B 2 H p� �, does A
 I� I
 B 2 H p� �?

Let A
 B 2 H p� �, and let D denote the commutator

0 �� �D � A
 Bj j2pÿ A
 B� ���� ��2p� Aj j2p
 Bj j2pÿ A�j j2p
 B�j j2p:

The proof of our next result, which considers the compactness of the commutator D,
uses the following simpler version of [13, Theorem 3.1].
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Lemma 1. If A1;A2 are linearly independent operators and A1 
 B1 � A2 
 B2 is
compact, for some operators B1 and B2, then B1 and B2 are compact.

Recall that an operator T is said to be essentially normal if the commutator
T�Tÿ TT� is compact.

Theorem 4. D is compact if and only if either
(i) A and B are normal compact or
(ii) A B� � is normal compact and B (respectively, A) is essentially normal.

Proof. We have three possibilities:
either (a) Aj j2p and A�j j2p, also B�j j2p and B�j j2p, are linearly independent,
or (b) only Aj j2p and A�j j2p (only Bj j2p and B�j j2p) are linearly independent,
or (c) neither Aj j2p and A�j j2p nor Bj j2p and B�j j2p are linearly independent.

We start by showing that possibility (a) cannot occur.
If Aj j2p and A�j j2p are linearly independent and D is compact, then Lemma 1

implies that Bj j2p is compact. Hence Bj j, and so also B, is compact. Since a compact
p-hyponormal operator is normal [5] and B 2 H p� � by Theorem 3, B is normal
compact. But then Bj j2p� B�j j2p. Hence (a) cannot occur, and the only viable possi-
bilities are either (b) or (c). Notice that if B is normal, then
D � Aj j2pÿ A�j j2pÿ �
 Bj j2p is compact if and only if Aj j2pÿ A�j j2p and Bj j2p are com-
pact. Since this is possible if and only if B is normal compact and either A is normal
compact or A is essentially normal, it follows that possibility (b) occurs if and only if
either (i) or (ii) holds. Suppose now that possibility (c) occurs, and that there exists a
scalar r (necessarily, r � 1) such that Aj j2p� r A�j j2p. Then

D � Aj j2p
 Bj j2pÿr B�j j2p
� �

is compact if and only if A is normal compact and Bj j2pÿr B�j j2p is essentially nor-
mal. Since the normality of A implies that r � 1, we conclude (as in the case in which
(b) occurs) that (c) occurs if and only if either (i) or (ii) holds. This completes the
proof.

Recall from [2] that if the operator T is such that the negative part of
Tj j2pÿ T�j j2p is trace class, where 0 < p < 1

2, then

trace Tj j2pÿ T�j j2p
� �

� 1

�
m T� X� �

Z
� T�X� �

r2pÿ1drd�;

for any operator X satisfying trace�jXjp� <1. (Here m T� X� � denotes the multi-
plicity of T� X). Thus, if A is a ®nitely multicyclic H p� � operator, then
Aj j2pÿ A�j j2pÿ �

is trace class. Since trace class operators form an ideal, we have that

Aj j22pÿ A�j j22p� Aj j2p Aj j2pÿ A�j j2p
� �

� Aj j2pÿ A�j j2p
� �

A�j j2p

is trace class. Letting p � 2ÿn, and ®nitely repeating this argument, it follows that
Aj j2n�1pÿ A�j j2n�1p� Aj j2ÿ A�j j2 is trace class. Thus a ®nitely multicyclic H p� � operator
has trace class commutator, and hence is essentially normal. Combining this with
the theorem above, it follows that if A
 B 2 H p� � is ®nitely multicyclic, then
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(ker A � ker B � 0f g and) either (i) A;B are ®nitely multicyclic normal operators
or (ii) A (resp., B) 2 H p� � is ®nitely multicyclic and B (resp. A) is normal compact.

Corollary 2. Given A
 B 2 H p� �, either A
 B has a non-trivial invariant sub-
space or (at least) one of A and B is the sum of a normal and a compact operator.

Proof. If A
 B 2 H p� � does not have a non-trivial invariant subspace, then
A
 B has a rationally cyclic vector, so that the commutator D is trace class, and
hence compact (see above). Applying Theorem 4 we conclude that A (resp., B) is
normal and B (resp., A) is essentially normal. (Clearly (i) of the statement of Theo-
rem 4 cannot happen for the reason that if A and B are normal, then A and B have
non-trivial invariant subspaces, say H1 and H2; the completion of H1 
H2 is then a
non-trivial invariant subspace for A
 B.) For de®niteness, let us assume that A is
normal and B is essentially normal. Then B 2 H p� � does not have a non-trivial
invariant subspace, both B and B� have empty point spectrum (so that both B and
B� have the single valued extension property), and B is biquasitriangular [14, Theo-
rem 2.3.21]. Hence B � N� K for some normal N and compact K [11, Corollary
4.2]. This completes the proof.
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