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Seeing is believing and the development of high-resolution microscopes originally 
provided the most conclusive evidence for the existence of bacteria or animalcules 
(tiny animals) as they were first described.1 Microscopy continues to be a central tool 
in modern bacterial biophysics and, when combined with quantitative image analysis 
tools, microscopes can provide unambiguous quantitative data to answer many of the 
questions related to bacterial behaviour.

A simple inverted optical microscope is shown in Figure 1.1. It follows a simple 
4f geometry, where f is the focal length of the condenser and objective lenses, and 
in practice, additional improvements are standard on laboratory microscopes e.g. 
Köhler illumination (to illuminate specimens in a uniform manner), phase contrast (to 
provide additional contrast for thin or transparent specimens), fluorescence optics (to 
allow imaging of fluorescent samples, Figure 13.8) and confocal pin holes (to improve 
background rejection, Figure 13.7).2

Once objects are identified in a microscopy image (the process of segmentation), 
analysing their dynamics by linking objects in consecutive images provides a rich 
source of additional information i.e. tracks are created that can be statistically ana-
lysed. Tracks can describe the motion of whole cells on the microscale, single mole-
cules on the nanoscale or organelles on intermediate length scales e.g. the swimming 
behaviour of Escherichia coli (of micrometre length scales), the motion of proteins 
attached to a membrane (of nanometre length scales) or the transverse fluctuations of 
the endoplasmic reticulum in eukaryotic cells (of 10–1 000 nm length scales).3

1.1  How to Track Cells

Experimentally, tracking single cells is less demanding than single molecules due 
to their larger size, so it is a good place to start.4 For strains of readily culturable 
bacteria, cells can be imaged with standard microscopy techniques using absorption 
contrast i.e. no complicated sample preparation is required, such as staining tech-
niques. To track cells, first a sequence of well-resolved microscopy images need to 
be acquired. Standard types of imaging modality that can be used to create movies 
of dispersed bacteria or early stages of biofilms include bright-field microscopy (very 
high speeds are possible i.e. ~105 frames per second), fluorescence microscopy (spe-
cific labelling is possible, but the technique is relatively slow due to the low photon 
yield of fluorescent processes) and confocal microscopy (allows three-dimensional [3D] 
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How to Track Cells and Molecules4

imaging, but the scanning process of image acquisition often makes it slow). State-
of-the-art super-resolution fluorescence microscopy techniques include lattice sheet 
microscopy that can achieve ~50 nm resolution at video rates (~50 frames per sec-
ond)5 and MINIFLUX (a variety of stimulated emission depletion microscopy, STED, 
Figure 13.10) that can achieve ~1 nm resolution at 1 000 frames per second.6 The 
super-resolution techniques tend to be technically challenging (Section 13.2.4), and 
bright-field microscopy is much easier for beginner microscopists.

Ideally, movies of cells should be as long as possible, in terms of the number of 
frames, to maximise the amount of information available in the resultant tracks. 
Track length can be limited by the depth of focus of the microscope (z sectioning), 
field of view of the microscope (sampling in x and y), excessive particle speeds, the 
available memory on the camera (particularly an issue with ultrafast cameras), pho-
tobleaching of fluorescent labels and phototoxicity that damages the cells.

Once a movie of the cells has been made, the next challenge is to segment the images 
of cells using image analysis software. Gaussian trackers can be used to locate the 
positions of compact symmetrical bacterial cells that may be reasonably approxi-
mated by Gaussian functions, but more complicated cellular shapes need more sophis-
ticated forms of segmentation, such as neural networks (NNs) or snakes algorithms9 
(Figures  1.2 and 1.4). Tracks are then made by connecting the centres of the seg-
mented cells together in consecutive frames to form a linked list. Software searches 
for the closest positions of cells in consecutive images to link the cell centres together. 

Detector

Objective lens

Sample

Condenser lens

Light source

2 μm

Bacterium

Flagellum

	 Figure 1.1	 A simple inverted optical microscope in a 4f configuration (f is the focal length of both the condenser and the objective 
lenses).2 An E. coli cell is shown, and the flagella would be invisible without a dedicated contrast mechanism 
(fluorescence or phase contrast is needed).
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1.1  How to Track Cells5

If particles move substantial distances between consecutive images or the particle con-
centrations are too high, it can be an impossible task to unambiguously identify which 
particle contributes to which track. Particle positions can typically be measured with 
subdiffraction-limit resolution (often an order of magnitude improvement is possible 
on the diffraction limit) and sub-camera pixel resolution, because the weighted mean 

a) b)

	 Figure 1.2	 (a) A Gaussian tracker segments objects7 in a human epithelial cell.7 Endosomes (red, ~100 nm in size) are identified 
within a frame from a bright-field microscope (inset). (b) A convolutional neural network (CNN) segments Bacillus 
subtilis cells (red circles) immersed in a suspension of Brownian particles (red dots).8

a)

b) c)

d)

	 Figure 1.3	 (a) An image of an early-stage Staphylococcus aureus biofilm from bright-field optical microscopy.13,14 (b) Zoomed 
in region where single bacterial cells (1 2� �m in size) can be observed. (c) A track of a single S. aureus cell made 
using Gaussian tracker software (Figure 1.2a). (d) Mean square displacements (MSD) as a function of time interval of 
hundreds of single S. aureus cells in the biofilm calculated from the tracks. S. aureus is immotile, so the cells’ motions 
are due to thermal forces modulated by the viscoelasticity of the biofilm.
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How to Track Cells and Molecules6

of measurements of the optical centre of mass of a particle is used i.e. averages over 
many pixels are calculated. Thus cell positions can be routinely tracked with ~10 nm 
resolution at ~104 frames per second using standard optical microscopes combined 
with fast complementary metal oxide semiconductor cameras (Figure 1.3).10 Higher 
resolutions have been achieved with quantum metrology using squeezed light.11,12

1.2  How to Track Single Molecules

Single molecules can now be routinely tracked both in vitro and in vivo inside single cells, 
although it was seen as a dramatic advance when single molecules were first imaged in 
condensed phases (Nobel Prize 2014).15,16 Many people were surprised that it was pos-
sible to discriminate single molecules in condensed phases against backgrounds con-
taining vast numbers of molecules of the order of Avogadro’s number (6 × 1023) with a 
sufficient signal-to-noise ratio (SNR). Single-molecule imaging techniques are primar-
ily based on fluorescence microscopy, and this requires specific labelling of the mole-
cules of interest with fluorophores. An emission filter based on the wavelength shift of 
emitted photons from a fluorophore compared with the wavelength of the excitation 
light source (the Stokes shift) can be used to discriminate single fluorescent molecules 
against the background of a huge number of non-fluorescent molecules.

Large catalogues are available for commercial fluorophores that can label biomole-
cules with varying degrees of specificity, such as proteins, nucleic acids, carbohydrates 
and lipids. The specificity of the labels needs to be determined in a biological exper-
iment to be certain of what is labelled using careful control experiments due to the 
large number of factors that affect fluorophore binding. An elegant solution for label-
ling proteins is to genetically modify them to add an extra fluorescent protein domain 
to their structure. This can be very effective for in vivo studies, but green fluorescent 
proteins (GFPs) can suffer from fast photobleaching (synthetic fluorophores often 
are much more photostable), bulky GFPs can perturb protein functionality (control 
experiments are needed), and there are time lags introduced by the GFP transcription 
that can limit studies of fast intracellular dynamics.

For molecular imaging, the choice of segmentation algorithm is determined in 
part by the geometry of the molecule. Extended molecules with extensive labelling 
(e.g.  a  large DNA molecule in which all the base pairs are fluorescently labelled) 
require snakes algorithms (Figure 1.4), whereas molecules with point-like labelling 
often use Gaussian trackers (Figure 1.2a).9 AI techniques (e.g. convolutional neural 
networks [CNNs]) can be more flexible in the types of molecular geometry they can 
analyse19 but will suffer from poor SNRs if they are not properly constrained (Figure 
1.2b). Often it is best to constrain artificial intelligence (AI) algorithms using simple 
physical models e.g. the probabilities of particle displacements can be constrained on 
the basis that particles will not teleport between different locations, which is a Bayes-
ian approach. Current AI techniques often require extensive data sets to perform the 
training procedure i.e. they involve supervised learning (Chapter 14).
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1.3  The Statistics of Structures7

The choice of algorithm to link the positions of segmented particles together into 
a track also has a variety of options20 e.g. nearest neighbour linking or multi-track 
optimisation are possible. Particular care is required when particles closely approach 
one another (they can easily switch labels), and tracks can become fragmented due to 
low SNRs (they can be stitched together, but often with limited success). Our experi-
ence is that the segmentation algorithm plays a more important role than the linking 
algorithm in the quality of the final tracks, but both are important.

Bayesian tracking techniques (Chapter 14) can be very useful to remove the noise 
on tracks e.g. Kalman filtering,21,22 and the methodology has been extensively devel-
oped with satellite imaging. However, care must be taken that this noise is random 
and Markovian (independent noise fluctuations occur with no memory), since it is 
an assumption used in Kalman filtering. It is particularly an issue when consider-
ing non-Markovian processes e.g. the motility of microorganisms or the intracellular 
motion of molecules are frequently non-Markovian.23

1.3  The Statistics of Structures

The static images of molecules and cells from microscopy experiments can provide 
a range of useful information e.g. calculating their sizes, conformations and rela-
tive organisation. Standard freeware software allows the segmentation of bacte-
ria in microscopy images and can provide quantitative descriptors of cell shape.24 
Sophisticated software has also been developed to segment bacterial biofilms and 
quantify their structures in three dimensions.25

Different statistical tools are needed to quantify the relative positions of bacteria or 
the molecules associated with them. The Ripley K function ( ( ))K r  quantifies the intu-
itive notion of whether particles have been placed at random across a surface or they 

a) b) c)

	 Figure 1.4	 Snakes algorithms allow tracking of extended objects, such as the endoplasmic reticulum (ER) in human cells3 
or a peptide fibre in a gel.17 (a) Time dependence of the tracked contours of the ER tubules from fluorescence 
microscopy. (b) Mean position of the ER tubule, where the variances of the transverse motions are highlighted. 
The tracked contours of ER tubules indicate active motion due to motor proteins. (c) Peptide fibre positions in a gel 
from fluorescence microscopy.17,18
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How to Track Cells and Molecules8

are clustered together or dispersed.27 It is defined so that K r( ) is the expected number 
of additional points within a distance r of a given point. This is a useful tool to under-
stand the distributions of bacteria as they adsorb to surfaces. An alternative measure 
is given by the pair correlation function ( ( ))g r , which is widely used in condensed 
matter physics, particularly liquid-state theory and models of colloidal matter.28 g r( ) 
is defined as

	 g r
r

K r
r

( )
( )

,�
1

2�
d

d
	 (1.1)

where r is again the distance from a test point (Figure 1.5). With a stationary Poisson 
distribution of points, g r( ) =1 i.e. a complete random arrangement with no corre-
lations. g r( ) <1 indicates an anti-correlation between points (dispersion), whereas 
g r( ) >1 indicates clustering.27 g r( ) can be related to the interparticle potential if 
Boltzmann statistics are assumed for systems in thermal equilibrium28,29 and has been 

a)

b) c)

	 Figure 1.5	 (a) The radial distribution function g( )r  for a random lattice of points26 (blue). The red curve is from a naïve numerical 
calculation. (b) Segmented positions of S. aureus bacteria in a biofilm (coloured with a measure of the linear 
viscoelasticity via the creep compliance, J t( ), Chapter 10) and (c) the Ripley K function of the S. aureus bacteria in the 

biofilm13 shown in (b) (r  is the distance from a test point, K r( ) is the Ripley K function and L r
K r

( )
( )

�
�

 is the black 
line). It shows considerable clumping of the S. aureus.
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1.4  How to Analyse Particle Tracking Data9

extensively developed in liquid-state theory. In anisotropic systems, g r( ) needs to be 
generalised26 e.g. correlations along separate lattice directions should be averaged 
separately to maintain the additional information needed to quantify the degree of 
anisotropy, such as with liquid crystalline materials.

1.4  How to Analyse Particle Tracking Data

Statistical tools for handling tracking data can be very powerful. They play a 
central role in modern biological physics, since microscopy methods can provide 
high-resolution time series of images of living cells, biofilms and single molecules. 
Robust statistics are needed to test hypotheses on the behaviour of particles e.g. how 
they move, react, sense and oscillate. Furthermore, the analysis of particle tracking 
data can be conveniently extended to include tools from machine learning, since they 
have a common statistical basis, greatly increasing the possibilities for pattern recog-
nition and large-scale automation22 (Chapter 14).

Tracks of individual bacteria provide a rich source of information on their behav-
iour e.g. their motility, chemosensing and interactions. Statistical tools need to be 
applied to the tracks to make sense of them. A wide variety of ad hoc bespoke sta-
tistical parameters could be defined e.g. a bacterium is motile if its average velocity 
over 1 s is 1 1�m s� , but they are often unsatisfactory. To choose between alternative 
possible statistical parameters, standard mathematically elegant methods are prefer-
able, since they provide better prospects for quantitative comparison with both ana-
lytical models and simulations. They can also be more robust to varying experimental 
conditions and thus generalise more easily.

The transport of bacterial cells and molecules in the cells is often anomalous e.g. the 
central limit theorem breaks down and the probability density functions of their dis-
placements are non-Gaussian. Mathematical models have been developed to describe 
anomalous transport (Chapter 2), although the relative merits of competing models 
are still debated.30 A recent innovation is to train NNs on anomalous transport mod-
els since NNs can then provide the dynamic segmentation of tracks (Chapter 14).31 
Particle tracks represent a special case of time series analysis, which find wide-ranging 
applications inside and outside biology e.g. forecasting the stock market or diagnos-
ing heart disease based on electrocardiograms.32 There is thus a huge literature, and a 
wide range of mathematical tools have been developed.

A central tool for quantifying stochastic motion of particles is the mean square 
displacement (MSD, Chapter 2). For a random walk, the MSD �r2� � has a sim-
ple scaling dependence on time, ∆r t2 1~  e.g. during Brownian motion (Figure 1.6). 
Furthermore, scaling of the MSDs is used to define anomalous transport, �r t2 ~ � , 
where � � 0 1 2, , , and this is the type of stochastic motion most commonly observed for 
cellular motility and the motion of larger molecules inside cells.23,33 Average displace-
ments �r� � of particles are often not a useful measure of stochastic transport, since 
for symmetric stochastic processes, they average to zero, �r � 0. Higher moments 
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How to Track Cells and Molecules10

of the displacement probability distribution based on the third and fourth moments 
� �r r3 4and� � are useful for quantifying the skew and the degree of peakedness 

(the kurtosis), respectively. Moments of probability distributions of the displacements 
can provide average quantities to describe stochastic motility, which are reasonably 
robust to noise, but probability distribution functions (pdfs) contain additional infor-
mation. Mathematically, the moment distribution is insufficient to unambiguously 
determine a pdf.34

For stationary statistical processes,35 often MSDs are averaged over time, and the 
MSD is then considered as a function of time interval ( ( ))TAMSD τ  i.e.

	TAMSD
T t

x t x y t y z t zi i i i i i( )� � � � � � ��
�

�� � � � �� � � �� � � � �� � � �� � �1 2 2 �� �� �� �
�

�
2

0

T t

dt

� (1.2)

where T  is the duration of the track and t is the time. xi, yi and zi  are the Cartesian 
coordinates of the particle i . The calculation of time-averaged MSDs (TAMSDs) can 
provide a major improvement in the SNR at short time intervals in experiments. If 
there are n steps in a track, the error bars scale as n �� ��1 1 2/  for the shortest time inter-
val of the TAMSD, n �� ��2 1 2/  for the next shortest time interval and so on. Ensemble 
averaging of MSDs (EMSDs) over different particles is also possible to improve the 
SNR i.e. the MSDs are averaged over i  in Equation (1.2).

There is a general theorem by Birkhoff from dynamical systems theory36,37 that 
states TAMSD EMSD=  for an ergodic process, and it can be used as a diagnostic for 
ergodicity breaking e.g. whether glassy behaviour occurs in the tracks. MSDs can be 
calculated in one, two and three dimensions, and their analysis conveniently general-
ises to different dimensionalities e.g. to describe the motion of a motor along a DNA 
chain (one-dimensional [1D]), a particle in the plane of focus of a conventional opti-
cal microscope (two-dimensional [2D]) or a particle in a confocal microscope (3D). 

Brownian diffusion

MSD

Time interval

Subdiffusion

Super-diffusion

Ballistic

Super-ballistic

	 Figure 1.6	 MSD as a function of time interval showing sub-diffusive, diffusive (Brownian), super-diffusive, ballistic and super-
ballistic scaling behaviours. Note that super-ballistic scaling is rarely observed in low Reynolds number systems 
(they are overdamped), although it is possible in turbulent flows.
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1.4  How to Analyse Particle Tracking Data11

Stochastic aging (SA) is a separate issue to ergodicity and is often observed in biology 
e.g. stochastic processes are not stationary and evolve with time during the growth 
of a cell.37 SA can be diagnosed by delaying tracks by different aging times (i.e. chop 
off the start of the data corresponding to the aging time) and then comparing the 
resultant MSDs. Aging and glassy phenomena have direct implications in medicine 
e.g. scarring during wound healing that involves non-ergodic glassy fibrous compos-
ites of collagen.

Velocities need to be handled carefully with stochastic processes, since with 
random walks they depend on the time scale at which they are measured.38 Often 

instantaneous velocities are defined in experiments as 
∆
∆

r
t

 (∆r is the displacement 

of a particle over a time interval, ∆t), but this quantity is sensitive to the choice 
of ∆t  e.g. a smaller choice of ∆t  can correspond to higher values of velocity for 
sub-ballistic processes. Lots of values of motor protein velocities in the literature 
are mishandled due to such issues and when faster cameras are manufactured, the 
quoted motor protein velocities often also increase. More robust methods to quan-
tify velocities are to consider velocity autocorrelation functions ( )VACF  or veloc-
ities calculated via first passage probabilities39 (see later). VACFs (Figure 1.7) can 
be defined as

	 VACF t
v t t v t

T t
dt

T t

( )
( ) ( )

,�
�
� �

� �

�
� �

�
�

�

0

	 (1.3)

	 v
r t r t

�
�� � � � ��
�

,	 (1.4)

where v is the velocity at time t, d  is the time interval, T  is the duration of the experi-
ment and r is the displacement.

The use of probability distributions of survival times has its origins in medicine 
(Figure 1.8a).40 Histograms of the number of patients in a medical trial can be plotted 

VACF

Lag time
0

1

Positive correlation

Negative correlation

	 Figure 1.7	 Velocity autocorrelation function (VACF) as a function of lag time for a particle moving inside a cell. The negative 
values of the VACF are due to anti-correlation.
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How to Track Cells and Molecules12

as a function of time. If the death rate occurs at a constant value per unit time, the 
survival distribution has an exponential decay (�( )� , a Poisson process). Decays due 
to more complex processes can be non-exponential, and hazard rates H �� �� � can be 
introduced to make it easier to visualise them i.e. a constant hazard rate as a function 
of time is equivalent to a single exponential decay for the survival time (Figure 1.8b). 
The hazard rate is the rate of death of a subject of age t.

A practical problem for calculating survival times is when patients leave trials 
before they die, which biases the data due to a form of censuring. Kaplan–Meier esti-
mators can be used to correct for these biases,

	 � �t
d
n

ti
i

i
i� � � �

�

�
�

�

�
� � ��1 1 ,	 (1.5)

where � ti� � is the survival distribution at time ti , di is the number of events that 
happen at ti  and ni  is the number of events that survive up to ti . Survival times can 
be used in the more general context of biological physics using such Kaplan–Meier 
corrections e.g. the run times of bacteria can be considered as a distribution of sur-
vival times. Biases introduced by the finite length of tracks in tracking experiments 
can be corrected using Equation (1.5). Survival times can also be used to under-
stand the residence times of bacteria on surfaces.41 Survival times (e.g. for runs, 
Figure 1.8a) can be simpler than just considering histograms (or pdfs), since they are 
monotonic decreasing functions (in contrast, the run time pdfs, P( )τ , will be peaked, 
Figure 1.8c).

The first passage probability (FPP) for particle tracks is defined as the probabil-
ity distribution for the times a particle takes to travel a specific distance for the first 
time43 (Figure 1.9a). The mean FPP MFPP,vFPP� � is the mean of the FPP distribution. 

a) b)

H( )

c)

P( )

	 Figure 1.8	 Plots of (a) the survival time distribution �( )�� �, (b) the hazard function H �� �� � and the probability density function 
P( )�� � as a function of time ( )τ  for the run times of a bacterium.
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1.4  How to Analyse Particle Tracking Data13

In numerous biological situations, the FPP is the crucial statistical quantity of interest 
e.g. times for a chemical reaction to occur or for a particle to leave a maze. MFPPs 
for particles with multiple scaling regimes as a function of time imply that the reaction 
kinetics of the particle will also exhibit multiple regimes. Furthermore, FPPs can also 
provide more robust alternatives to instantaneous velocities to quantify motility and 
can help separate up the motility of particles using the average FPP velocity vFPP� � 
as a function of transit length (L, Figure 1.9b) e.g. the question can be asked as to 
whether long-range transits happen at larger velocities, which is useful with endoso-
mal transport.

MSDs are insensitive to direction (so too are the survival times and the FPPs), and 
they just provide a measure of the amplitude of motion as a function of time. Angular 
correlations of particle displacements thus provide crucial information to understand 
particle motility44 with respect to direction. Analogous to an MSD, the average direc-
tion cosine cos� �� �� � for segments along a track can be quantified as a function 
of time interval (averaged in an analogous manner to a TAMSD, Equation (1.1), 
although three points are required to define the consecutive displacements ∆ri  and 
�ri�1), and a scalar product is used,

	 cos
.

.� �� � � �

�

� �
� �

r r

r r
i i

i i

1

1
	 (1.6)

Cosines are bounded functions; � � �1 1cos� . Negative values of the angular cor-
relation function correspond to anti-persistent motion i.e. the particle is constantly 
changing direction and tends to move back on itself. cos� � 0 corresponds to no 
average directional bias and is expected for an unbiased random walk. Positive values 
of cos� �� �  correspond to directional persistence. Such measures of directionality 
are useful for the development of models for bacteria, since bacteria act as stochastic 
swimmers, and for the motility of intracellular cargoes within bacterial cells. Some 
similar information is encoded in velocity correlation functions (Equation 1.2), but it 
is useful to have both measures.

More sophisticated statistical measures are needed to describe the correlated motion 
of particles. Two-point correlation functions are one possibility, ∆ ∆r r1 2 , where ∆r1 
and ∆r2 are the displacements for two different particles, which has been studied from 

τa)

FPP

Lb)

vFPP

	 Figure 1.9	 (a) First passage probability (FPP) of particles moving inside a cell as a function of time �� �, red < blue < navy blue 
correspond to longer transit lengths. (b) Mean first passage velocity vFPP� � of the particles as a function of transit 
length ( )L .39,42
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How to Track Cells and Molecules14

the perspective of two-particle microrheology.45 Velocity cross-correlation functions 
v v1 2� � are also useful to study the mutual motion of cells e.g. in chemotactic fields, 

and provide similar information to ∆ ∆r r1 2 .
Flocking order parameters ( )Φ  have also been introduced to describe phase 

transitions during coherent motion in motile particles46 (such as bacteria, starlings 
and ants) e.g.

	 � � �1
Nv

vi
i

,	 (1.7)

where N  is the number of particles, v is the average velocity and vi  is the velocity 
of each particle. Care must be taken in calculating Φ  for particles that experience 
anomalous transport, since the values of vi  will depend on time for non-ballistic par-
ticle motion, and other order parameters have been suggested to make them more 
robust.47

A sophisticated modern approach to the motility of both particles inside bacte-
ria and cellular motility follows a framework of heterogeneous anomalous transport 
(HAT).48 This attempts to quantify the heterogeneity of the anomalous transport 
of particles in both space and time by considering generalised diffusion coefficients 
D r t� ( , )� � and scaling exponents ( ( , ))α r t  that vary in space and time, defined via the 

MSDs of the distributions using

	 �r nD r t r t2 2� � � � �
�

��, ,, 	 (1.8)

where n is the number of dimensions. Note that Dα  has fractional units, which pro-
vides some challenges e.g. it is not possible to plot Dα  on a single axis. Rescaling Dα  
by characteristic length and time scales solves many of these problems. Thus, values 
of both Dα  and α  are allowed to vary with time and space during the analysis, which 
corresponds to a multi-fractal model.23 There is good evidence that HAT occurs for 
the majority of cellular motility and intracellular motility of large molecules and 
aggregates.

Experiments with extended linear objects, such as single molecules, aggregates of 
cells, organelles or individual cells, lend themselves to Fourier analysis of data seg-
mented using snakes algorithms49 (Figure 1.4). The equipartition theorem can be used 
to calculate the energy of each Fourier mode assuming the fibres are in thermal equi-
librium and simple continuum models are used for the energy of the snakes e.g. all 
the energy is stored in Hookean bending modes.49 Similar analysis is also possible 
with cell membranes in two dimensions.50 Challenges occur to describe systems in 
which quenched disorder or active transport affect the conformations of the extended 
objects.3,17

Other less direct methods of calculating stochastic processes occur in the 
literature. For example, the square of the Fourier transform of the particle displace-
ment as a function of the correlation time is called the power spectral density ( ))P(ω  
and is often measured in optical tweezer experiments. The information content is 
similar to a MSD as a function of time interval, but MSDs are often simpler to 
work with.
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1.5  Scattering Alternatives

Instead of working directly with images, scattering experiments function in reciprocal 
space. Historically, scattering techniques were used in situations where imaging was 
not possible e.g. in experiments with hard X-rays or thermal neutrons where it is hard 
to construct an imaging lens, such as the Braggs’ initial work to study the structure of 
simple crystals, such as sodium chloride. Images tend to be preferred in modern-day 
biological physics experiments, since they are easier to interpret and tend to be less 
ambiguous, but scattering data can also be useful. Inelastic scattering experiments 
(e.g. dynamic light scattering, X-ray photon correlation spectroscopy or quasi-elastic 
neutron scattering) detect small energy changes in scattered radiation and often 
provide much faster dynamic information than is currently possible with imaging 
experiments e.g. point detectors can stream data much faster than pixel arrays. In bac-
terial biophysics, fluorescence correlation spectroscopy (FCS) and dynamic differential 
microscopy (DDM) are commonly used scattering techniques and can be microscope 
based to improve their spatial sensitivity.

In DDM, a movie of a biological system is made with a microscope and versions 
are possible using both coherent (e.g. bright-field contrast) and incoherent (e.g. fluo-
rescence) scattering. Software correlators can then be used with stacks of the images 
to calculate correlation functions that describe the image dynamics (Figure 1.10). 
The correlation functions allow access to identical information as inelastic scattering 
experiments, although they are at relatively slow time scales due to the update times 
of pixel arrays used on standard digital cameras in optical microscopes.

	 Figure 1.10	 (a) A schematic diagram of the algorithm used to analyse DDM51 experiments. (b) An example of the difference of two 
images d r t, ,�� �� �. (c) The square of the Fourier transform of the difference of two images. (d) D q,�� � (the square 
of the Fourier transform of d r t, ,�� � averaged over t) as a function of momentum transfer, q. (e) D q,�� � as a 
function of time interval ( )�t �� . Reprinted from [Germain D., Leocmach M., Gibaud T., Differential dynamics 
microscopy to characterise Brownian motion and bacteria motility. American Journal of Physics 2016, 84, 202], with 
the permission of AIP Publishing.
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Intermediate scattering functions ISF, f q,�� �� � are a key statistical tool used in 
inelastic scattering experiments to quantify the dynamics e.g. with light, neutrons 
and X-ray.52 DDM can be used to extract the ISF from stacks of images. There 
needs to be a source of speckle on the images (which is non-necessarily due to coher-
ent scattering) and the images do not need to be particularly well resolved. DDM 
works well on images from both bright-field (with both laser and light-emitting 
diode [LED] illumination) and fluorescence microscopy (the calculations are 
slightly different in each case). Taking differences between images suppresses the 
noise due to stationary particles and detector heterogeneities53 (hence the name 
DDM), which gives

	 d r t I r t I r t, , , , .� �� � � �� � � � �0 0 	 (1.9)

Next, these image differences are Fourier transformed in space (q is the momentum 
transfer) and squared,

	 D q d q t
t

( , ) ( , , .� �� 0
2

0

	 (1.10)

The ISF f q,�� �� � is constructed by fitting A q( ) and B q( ) using

	 D q A q f q B q( , ) ( ) , ( ),� �� � � ��� �� �1 	 (1.11)

where A q( ) and B q( ) are assumed arbitrary smooth functions.
In DDM, a major advantage compared with tracks from direct imaging is that 

the dynamics can be averaged and quantified without segmentation of the images. 
The neglect of segmentation can be an advantage for complex hierarchical struc-
tures e.g. the endoplasmic reticulum in eukaryotic cells, where it can be hard to 
unambiguously locate the objects’ boundaries.3 Challenges with DDM are that 
some spatial information is lost in the averaging procedures (e.g. during the calcu-
lation of the Fourier transforms), analytic calculations are slightly harder in recip-
rocal space and it can be more challenging to determine which specific structures 
are being analysed.

Fluorescence correlation spectroscopy considers the fluctuations in fluorescent emis-
sion from a small volume that is illuminated in a sample54 (Figure 1.11). The fluctua-
tions in fluorescent emission can be related to the motion of the fluorophores through 
the calculation of correlation functions (G( )τ , where τ  is the correlation time) and 
can be performed relatively quickly (using fast point photodetectors) and thus exper-
iments can be performed with quickly photobleaching fluorophores. If only a single 
detection volume is used in the sample, it is harder to explore the length dependence 
of the dynamic processes using FCS (via q, the momentum transfer). This can make 
the exploration of anomalous transport more challenging (the spatial dependence of 
the motility is ambiguous) and a partial solution is to use a range of pin hole sizes, 
so different volumes are illuminated in the sample.55 In this case, the fluorophores 
need to be long-lived and the statistical processes must be stationary (they should not 
evolve with time).
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Suggested Reading

Höfling, F.; Franosch, T., Anomalous transport in the crowded world of biological 
cells. Reports on Progress in Physics 2013, 76, 046602. Good overview of the exper-
imental evidence for anomalous transport inside cells.

Ibe, O. C. Elements of Random Walks and Diffusion Processes. Wiley: 2013. 
Introduces anomalous transport (e.g. fractional Brownian motion) in an intelli-
gible manner for non-mathematicians. Also acts as a good primer for stochastic 
processes.
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	 Figure 1.11	 (a) Apparatus for FCS is based on a fluorescence microscope, which uses a pinhole to define the detection volume. 
(b) The intensity of light ( ( ))I t  emitted by fluorophores in the detection volume as a function of time. (c) A correlation 
function ( ( ))Gτ  of the intensity fluctuations as a function of time interval ( )τ  from (b). The correlation function can be 
used to quantify the motion of the fluorescence particles within the detection volume.
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Klafter, J.; Sokolov, I. M., First Steps in Random Walks: From Tools to Applications. 
Oxford University Press: 2011. Short and fairly mathematical introduction to some 
modern models for anomalous transport.

Waigh, T. A.; Korabel, N., Heterogeneous anomalous transport in molecular and 
cellular biology. Reports on Progress in Physics 2023, 86, 126601. Considers 
some challenges in the modelling of anomalous transport in cellular biology e.g. 
multi-fractal effects.
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