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Abstract
We study the locations of complex zeroes of independence polynomials of bounded-degree hypergraphs.
For graphs, this is a long-studied subject with applications to statistical physics, algorithms, and combina-
torics. Results on zero-free regions for bounded-degree graphs include Shearer’s result on the optimal
zero-free disc, along with several recent results on other zero-free regions. Much less is known for
hypergraphs. We make some steps towards an understanding of zero-free regions for bounded-degree
hypergaphs by proving that all hypergraphs of maximum degree � have a zero-free disc almost as large
as the optimal disc for graphs of maximum degree � established by Shearer (of radius ∼ 1/(e�)). Up to
logarithmic factors in � this is optimal, even for hypergraphs with all edge sizes strictly greater than 2.
We conjecture that for k≥ 3, k-uniform linear hypergraphs have a much larger zero-free disc of radius
�(�− 1

k−1 ). We establish this in the case of linear hypertrees.
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1. Introduction
A hypergraph G= (V , E) is a set of vertices V along with a set of edges E each of which is a subset
of V of size at least 2. A hypergraph is k-uniform if all edges are of size k. A 2-uniform hypergraph
is a graph. The degree of a vertex v ∈V is the number of edges it appears in; in a hypergraph
of maximum degree �, each vertex appears in at most � edges. An independent set in G is a
subset I ⊆V that contains no edge e ∈ E. Let I(G) denote the set of all independent sets of G. The
independence polynomial of the hypergraph G is

ZG(λ)=
∑

I∈I(G)
λ|I| . (1.1)

Independence polynomials for graphs arise in numerous contexts in mathematics, physics, and
computer science, including in the study of the Lovász Local Lemma in probabilistic combina-
torics [57, 58], in the study of the hard-core lattice gas in statistical physics [5, 27, 61], and in
algorithmic problems of approximate counting and sampling [59, 62].

In all of these settings, knowledge of the complex zeroes of ZG(λ), or more precisely, knowledge
of regions of C uniformly free from zeroes of ZG for some class of graphs, is crucial in under-
standing the phenomena of interest. For instance, as Shearer shows [58] (and Scott and Sokal
expand upon [57]), the largest negative zero of ZG(λ) provides the optimal bound for the Lovász
Local Lemma for a set of events with a given dependency graph G; the Yang–Lee theory of phase
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transitions states that phase transitions can only occur where complex zeroes condense on the
real axis [64]; and regions free of complex zeros for bounded-degree graphs may determine the
computational complexity of the associated approximate counting problem [13, 32, 49].

For the class of graphs of maximum degree�, much is known about optimal zero-free regions.
The optimal zero-free disc around 0 has radius

λs(�):= (� − 1)�−1

��
; (1.2)

that is, for any such G and any λ ∈C with |λ| < λs(�), ZG(λ) �= 0 [58]. Moreover, this result is
tight: for any ε > 0 there is a graph of maximum degree � with a zero of ZG(λ) of magnitude at
most λs(�)+ ε. In fact, this graph can be taken to be a tree, and even more specifically, a finite-
depth truncation of the infinite �-regular tree. There are also known zero-free regions that are
not discs; for instance, those that extend beyond the optimal zero-free disc in the direction of the
positive real axis [8, 10, 17, 49].

In this paper we turn to the case of bounded-degree hypergraphs with hyperedges of size greater
than 2. Our motivation is threefold.

(i) Statistical physics. In the language of statistical physics, the hard-core model on a graph
is a model with pair interactions, while the hard-core model on a hypergraph with edges
of size > 2 hasmulti-body interactions. Multi-body interactions are relevant for a range of
physical phenomena, but they are also often more difficult to analyse on both a rigorous
and non-rigorous level. There is a vast body of literature on the convergence properties of
the cluster expansion in models with pair interactions [24, 25, 29, 46, 48, 51, 56], including
bounds, like Shearer’s, that are optimal or near-optimal. The understanding of the con-
vergence of the cluster expansion in models with multi-body interactions is much more
limited, and bounds are typically non-effective (with respect to, say, graph degree), exclude
interactions with a multi-body hard-core, or require a pairwise hard-core interaction in
addition to a multi-body interaction [20, 28, 44, 50, 53, 54]. See the discussion in [16, 36]
on obstacles to proving convergence of the multi-body cluster expansion.

(ii) Algorithms. Zero-free regions of independence polynomials (and graph polynomials and
partition functions more generally) are closely linked to the computational complexity of
approximate counting and sampling. Barvinok [2] developed an approach to approximate
counting and sampling based on truncating the Taylor series (or cluster expansion) for
log Z; the accuracy of this truncation relies on the existence of a zero-free region for Z.
Refinements and applications of this method appear in, e.g., [3, 4, 11, 31, 33, 42, 47, 55].
On the other hand, computational complexity results for approximate counting can be
proved using the existence of complex zeroes of Z [13, 14, 18, 22, 26].

(iii) Combinatorics. Beyond its application to the Lovász Local Lemma, the cluster expan-
sion has been used recently as a tool in asymptotic enumeration, e.g., [1, 21, 38–40]. The
high-level idea in many of these applications is to interpret defects from an extremal con-
figuration (or a simple set of configurations) in a combinatorial problem as a statistical
physics model with a pair interaction and then use the cluster expansion to estimate the
partition function of this newmodel. This approach is effective when typical configurations
are very ‘ordered’, with structure that resembles a well understood extremal example with
sparse defects. On the other hand, a powerful approach to asymptotic enumeration in the
opposite regime, when typical configurations are unstructured, is that of Janson’s inequal-
ity and its extensions [37, 45, 60, 63]. In its most commonly applied form, this approach
estimates the partition function of a hypergraph hard-core model: the scaled probability
that a p-random subset of a ground set does not contain any of a specified family of subsets
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(the ground set is the vertex set and the family of subsets are the hyperedges of a hyper-
graph). The estimate for this general problem in [45] takes the form of an exponential
of a sum of terms defined in much the same way the terms of the cluster expansion are
defined. That result, however, does not show convergence of the infinite series defined by
the cluster expansion. If one could prove convergence, one could extend the results of
[45, 60] and deduce additional consequences through control of certain moment gen-
erating functions (as in, e.g., [19, 39] in the case of the graph cluster expansion). This
application is perhaps our primary motivation for understanding zeroes of hypergraph
independence polynomials, and it is the results of [45] that suggest Conjecture 3.

1.1. Zero-freeness for hypergraph independence polynomials
Our first main result is that all hypergraphs satisfy a bound close to the Shearer bound for graphs.

Theorem 1. Let G be a hypergraph of maximum degree �. Suppose

|λ| ≤ ��

(� + 1)�+1 = λs(� + 1) .

Then ZG(λ) �= 0.

In Theorem 10 in Section 2 we will prove a stronger statement: in the multivariate setting in
which each vertex v receives its own activity λv, ZG �= 0 when |λv| < λs(� + 1) for all v.

The best previous bound on zero-free discs for hypergraph independence polynomials is due
to Bencs, Csikvári, and Regts [9, Corollary 6] who proved zero-freeness for |λ| ≤ 2−�.

The bound in Theorem 1 is nearly tight apart from the possible improvement of substituting�

for � + 1 in the bound (see Remark 11 below on one obstacle to this improvement). The exam-
ples that show this near tightness are graphs (the family of trees that prove tightness of Shearer’s
result), and so one might hope that in a k-uniform hypergraph with k> 2 an improvement is pos-
sible. Thanks to an example (provided to us by Wojciech Samotij), we know that in general no
polynomial improvement in � is possible.

Proposition 2. For each k≥ 3, there is a family of k-uniform hypergraphs of maximum degree �

with smallest root λ satisfying

|λ| =Ok

(
log�

�

)
.

In Sections 4.1 and 4.2, we give the details of this construction.
Still one might hope that with additional conditions on the hypergraph a significant improve-

ment might be obtained.
A hypergraph is linear if each pair of edges intersect in at most one vertex (a graph by definition

must be linear). We conjecture that k-uniform, linear hypergraphs of bounded degree have much
larger zero-free discs.

Conjecture 3. For each k≥ 2, there exists a constant Ck > 0, so that the following is true. If G is a
k-uniform, linear hypergraph of maximum degree � and if

|λ| ≤ Ck�
− 1

k−1 ,

then ZG(λ) �= 0.

The case k= 2 is proved by Shearer’s theorem; for larger k the conjecture posits a polynomial
improvement to the bound of Theorem 1.
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We can prove Conjecture 3 in a special case. A linear hypertree is a connected, linear hyper-
graph with a unique path between any pair of vertices. We next show that linear hypertrees satisfy
the bound of Conjecture 3.

Theorem 4. For each k≥ 2 the following is true. If G is a k-uniform, linear hypertree of maximum
degree � and if

|λ| ≤
(

� − 1
�

)�−1 (
1− �

− 1
k−1
)

�
− 1

k−1 (1.3)

then ZG(λ) �= 0. In particular,

|λ| ≤ log 2
2k

�
− 1

k−1 , (1.4)

implies ZG(λ) �= 0.

The following example shows that one cannot hope for a polynomial improvement in� to this
bound (or to the bound conjectured in Conjecture 3).

Proposition 5. For each even k≥ 4 there is a family of k-uniform hypergraphs of maximum degree
� with smallest root λ satisfying

|λ| =O

((
log�

�

) 1
k−1
)

.

This lower bound is achieved by the k-uniform star with � edges. The details are in Section 4.3.
Finally we make a conjecture about the zero-free locus of independence polynomials of

bounded-degree hypergraphs. Using the notation from, e.g., [7, 17, 22], let U� denote the maximal
simply connected open set in C containing 0 that is zero-free for independence polynomials of all
graphs of maximum degree �. Extending this notation, let U�,k be the same for k-uniform hyper-
graphs (so U� = U�,2); and U�,≥k the same for hypergraphs with edge size at least k. In particular,
Theorem 1 shows that U�,≥2 contains a disc of radius λs(� + 1).

Conjecture 6. The zero-free locus of hypergraphs of maximum degree � is identical to the zero-free
locus of graphs of maximum degree �; that is, U�,≥2 = U�.

Conjecture 6 in particular implies that one can replace λs(� + 1) by λs(�) in Theorem 1. The next
question asks if in fact increasing k strictly enlarges the zero-free locus.

Question 7. Is it true that for any � ≥ 2, k≥ 2, we have the strict containment
U�,k ⊂ U�,k+1 ?

Remark 8. Since the appearance of a preprint of this paper, Zhang [65] has disproved Conjecture
3, constructing, for each k≥ 3, a family of k-uniform, linear hypergraphs of maximum degree
� with smallest root O

(
log�

�

)
. Reconciling this counterexample with the results of [45] is an

interesting direction for future research. Moreover, Bencs and Buys [6] have disproved Conjecture
6, though they have confirmed it in an asymptotic sense as � → ∞ and proved that one can
replace the bound of λs(� + 1) in Theorem 1 with λs(�), which is optimal.

1.2 Algorithms
To describe the algorithmic consequences of Theorem 1, we recall some basics of approximate
counting and sampling. A complex number Ẑ is an ε-relative approximation to a complex number
Z if ∣∣∣Ẑ − Z

∣∣∣≤ ε|Z| . (1.5)
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An FPTAS (fully polynomial time approximation scheme) for a complex-valued graph polynomial
ZG is an algorithm that, givenG and ε, outputs an ε-relative approximation to ZG and runs in time
polynomial in |V(G)| and 1/ε.

Theorem 9. For the class of hypergraphs G of maximum degree � and maximum edge size k, there
is an FPTAS for ZG(λ) when |λ| < λs(� + 1).

The algorithm proceeds by truncating the cluster expansion (the Taylor series for log ZG(λ)
around 0); that is, using Barvinok’s polynomial interpolation method. The fact that the exponen-
tial of the truncation provides a good approximation to ZG follows from the zero-freeness result
of Theorem 1 and Barvinok’s approximation lemma [2, Lemma 2.2.1]. The only additional ingre-
dient is to show that the coefficients of the cluster expansion can be computed efficiently: we
need to compute the coefficient of λr in time exp (O(r)) where the implied constant in the O( · )
may depend on �, k, and λ, since we treat these as constants. For graphs, Patel and Regts [47]
showed how to compute these coefficients efficiently; the extension to hypergraphs was done by
Liu, Sinclair, Srivastava [42]. We give the details of the algorithm in Section 5. Note that there is
no dependence on k in the bound on λ; the running time of the algorithm, however, grows like
nO( log k+log�) and so is only polynomial-time when k and � are constants.

Previous algorithmic work on hypergraph independent sets has primarily focused on the case
λ = 1; that is, approximately counting the number of independent sets in a hypergraph (and sam-
pling approximately uniformly). The algorithmic results here generally fall into two categories:
randomised approximation algorithms (yielding an FPRAS) based onMarkov chain Monte Carlo
and deterministic approximation algorithms (yielding an FPTAS) based on the method of cor-
relation decay pioneered by Weitz [62]. Examples of the first type of result include [15, 34, 52];
while the second set of results include [12, 41]. In [41], Liu and Lu show that there is an FPTAS
for counting independent sets in hypergraphs of maximum degree 5, matching the bound for
independent sets in graphs due to Weitz [62] (like Theorem 1, this says things are no worse for
hypergraphs that they are for graphs). In [12], Bezáková, Galanis, Goldberg, and Štefankovič study
the case when λ = 1 and k≥ 3; in this case they can surpass the graph bound; e.g., giving an FPTAS
for k-uniform hypergraphs when � ≤ 6 (as opposed to � ≤ 5 for graphs). Moreover they give an
FPTAS when � ≤ k, a large improvement over the graph bound when k is large. Finally, there has
been significant recent interest in a generalisation of this counting problem, that of approximately
counting the number of solutions to k-CNF formulas. The case of independent sets in k-uniform
hypergraphs is the special case of counting solutions to monotone k-CNF formulas. Work on this
problem includes [23, 30, 35, 43]. It is an interesting direction to explore the connections between
these results and the results and questions in the current paper.

2. Zero-free regions for bounded-degree hypergraphs
We begin by generalising the independence polynomial to the multivariate case. Let λ =
(λv : v ∈V) be a collection of (possibly complex) activities on the vertices of G. The multivariate
independence polynomial of G at e is

ZG(λ)=
∑

I∈I(G)

∏
v∈I

λv

where I(G) is the set of all independent sets of G. If all λv have the same value, λ say, then ZG(λ)
is the independence polynomial defined in Section 1.

The main goal of this section is to prove the following zero-freeness result for the mulitivariate
independence polynomial of bounded-degree hypergraph.

https://doi.org/10.1017/S0963548323000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000330


70 D. Galvin et al.

Theorem 10. Let G be a hypergraph of maximum degree �. If |λv| ≤ ��

(�+1)�+1 for all v ∈V, then

|ZG(λ)| ≥
(
1− 1

� + 1

)|V|
> 0.

Note that ��/(� + 1)(�+1) ∼ 1/e� as � → ∞. As discussed above, this theorem is tight apart
from the possible substitution of � for � + 1 in the bound.

The proof of Theorem 10 follows the broad outline of the proof of Shearer’s theorem in
[57, 58]. While the proof for graphs involves the operation of removing vertices from a graph,
the extension to hypergraphs is more involved: the operations we perform include removing ver-
tices from a hypergraph as well as shrinking edges. To keep track of these operations and to be
explicit about edge and vertex sets, we will use the notation ZV ,E(λ) for ZG(λ) where G= (V , E).

For A⊂V with A �= ∅, we define the following operations on the edge set E, whose utility will
become apparent when we present (2.1) and (2.2), the basic deletion/contraction identities for
ZV ,E(λ):

Deletion E−A is the set of edges that avoid A, that is,
E−A= {e ∈ E : e∩A= ∅}.

For v ∈V we write E− v for E− {v}.
Contraction E/A is the set of edges of size at least 2 that are created by deleting the elements of

A from all the edges in E, that is,
E/A= (E−A)∪ {e \A : e∩A �= ∅, |e \A| ≥ 2}.

For v ∈V we write E/v for E/{v}.
Closure C(A) is the set of vertices outside A that, together with some non-empty subset

of A, form an edge in E; in other words, each of which forms an edge with any
(nonempty) subset of A. In other words, it is the set of edges of size 1 that are
created by deleting the elements of A from all the edges in E. Formally,

C(A)= {v : there is e ∈ E with e \A= {v}}.
For v ∈V we write C(v) for C({v}).

Edge addition E+A is obtained from E by including also A as an edge, i.e., E+A= E∪ {A}.
We will use two fundamental identities relating the independence polynomial of a hypergraph

to that of some smaller hypergraphs. Note that here (and throughout) we abuse notation some-
what: if λ is a set of weights indexed by a set W, and W′ ⊆W, then we write ZW′,E′(λ) when we
actually mean ZW′,E′(λ′), with λ′ the restriction of the vector λ to the index setW′.

Firstly we have that for any v ∈V ,
ZV ,E(λ)= ZV\{v},E−v(λ)+wvZV\({v}∪C(v)),E/v(λ) . (2.1)

The identity follows by first considering those independent sets in G that do not contain v and
then those that do.

Secondly, for all A⊆V such that there is no e ∈ E with e⊆A we have

ZV ,E+A(λ)= ZV ,E(λ)− ZV\(A∪C(A)),E/A(λ)
∏
x∈A

λx. (2.2)

This identity follow by observing that all independent sets in (V , E) are independent sets in
(V , E+A), except those that contain all of A; and the extensions of A to an independent set in
(V , E) are precisely the independent sets in V \ (A∪ C(A)), E/A. Note that if there is an e ∈ E with
e⊆A then (2.2) becomes the simpler
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ZV ,E+A(λ)= ZV ,E(λ).
For brevity, in what follows we will write

• G− v for the hypergraph (V \ {v}, E− v), and G−A for (V \A, E−A)
• G/v for (V \ ({v} ∪ C(v), E/v),
• G+A for (V , E+A) and
• G/A for (V \ (A∪ C(A)), E/A).

With this notation, (2.1) and (2.2) become
ZG(λ)= ZG−v(λ)+ λvZG/v(λ) (2.3)

and
ZG(λ)= ZG+A(λ)+ ZG/A(λ)

∏
x∈A

λx. (2.4)

We define a collection of admissible subhypergraphs of G= (V , E) as follows: G itself is
admissible, and ifM = (VM , EM) is some admissible subhypergraph of G, then so are each of

• M − v andM/v for any v ∈VM ,
• M +A andM/A where A⊆VM is any proper subset of an e ∈ EG \ EM .

We are now ready to present the proof of Theorem 10.

Proof of Theorem 10. The overall plan is to show that as long as the hypothesised condition on
λ holds, we have that ifM is any non-empty admissible subhypergraph of G and v is any vertex in
VM then ∣∣∣∣ ZM(λ)

ZM−v(λ)

∣∣∣∣≥ 1− s

where s< 1 may be chosen to be independent M and v. Iterating this over an ordering
v1, v2, . . . , v|V(G)| of the vertices of G then yields, via a telescoping product,

|ZM(λ)| =
|V(G)|∏
i=1

∣∣∣∣ZG−{v1,...,vi−1}(λ)
ZG−{v1,...,vi}(λ)

∣∣∣∣≥ (1− s)|V(G)| > 0. (2.5)

To do this, we will need to control how the independence polynomial changes in going from M
to M − v. It will turn out that in tandem with this we will also need to control how it changes in
going fromM toM +A. To achieve both of these tasks, we will carry out a parallel induction.

To state the induction hypothesis precisely, we introduce some notation. For an admissible
subhypergraphM = (VM , EM), and a non-empty subset A⊆VM with |A| = a, we define, for each
positive integer b, the quantity

nab = #
(

S⊆VM , S∩A= ∅, |S| = b such that
S∪ T ∈ EM for some non-empty T ⊆A

)
when a= 1 or a> 1 and b> 1. Note that if A= {v} (so a= 1) then nab is simply the number of
edges inM of size b+ 1 that include v.

For b= 1 and a> 1, we slightly modify this to

na1 = #
(

S⊆VM , S∩A= ∅, |S| = 1 such that
S∪ T ∈ EM for some non-empty T ⊆A

)
+ |A|,

i.e., na1 = #
(
2-edges incident to A

)+ |A|.
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In the notation we suppress the dependence of nab onM and A.
We are now ready to state the main result of this section precisely. Let R> 0 and sj ∈ (0, 1),

j= 1, 2, . . . be constants that satisfy the following conditions for every admissible subhypergraph
M = (VM , EM) of G:

• For every A⊆VM with |A| = 1 (i.e., every v ∈VM) we have

R≤ s1
∏
i≥1

(1− si)n1i , (2.6)

• and for every A⊆M with |A| = j≥ 2 such thatM +A is admissible we have

Rj ≤ sj
∏
i≥1

(1− si)nji . (2.7)

Here, finally, is the statement that we will prove. Let λ be such that |wx| ≤ R for all x ∈V . Let
M = (VM , EM) be an admissible subhypergraph of G. For v ∈VM we have

|ZM(λ)| ≥ (1− s1)|ZM−v(λ)|(vertex deletion identity) (2.8)
while for A⊆M with |A| = j≥ 2 such thatM +A is admissible we have

|ZM(λ)| ≥ (1− sj)|ZM+A(λ)|(edge addition identity). (2.9)
Before proving (2.8) and (2.9), we show that it is enough to complete the proof of Theorem 10.

The key observations are that for any admissibleM and v ∈VM we have∑
b≥1

n1b = degM(v)≤ �

and for any admissibleM and A⊆M with |A| = a≥ 2 such thatM +A is admissible we have∑
b≥1

nab ≤ a�.

Indeed, consider x ∈A. This is in at most � − 1 edges of M, since M +A is admissible which
means x has degree at most � in M +A. Thus there are at most � − 1 S’s disjoint from A such
that S∪ T ∈ EM with T ⊆A and x ∈ T. Since |A| = a, it follows that there are at most a(� − 1)
S’s disjoint from A such that S∪ T ∈ EM with T ⊆A and T �= ∅. We now add the a vertices of |A|
deleted to get a� as a bound.

It follows that if we let all si’s have a common value, s say, then (2.6) and (2.7) are implied by:

Rj ≤ s(1− s)j� or R≤ s1/j(1− s)�

for j= 1, 2, . . . . Since s ∈ (0, 1), all of these are implied by R≤ s(1− s)�. We may now take s=
1/(� + 1), leading to R= ��/(� + 1)(�+1). Theorem 10 now follows via the telescoping product
(2.5).

Now, to prove (2.8) and (2.9), we will proceed by induction on |VM|, showing firstly that an
|M| = n+ 1 instance of (2.8) can be deduced from (2.8) and (2.9) for |M| ≤ n, and secondly that
an |M| = n+ 1 instance of (2.9) can be deduced from (2.8) for |M| ≤ n+ 1 and (2.9) for |M| ≤ n.

As a base case we takeM =∅, where both (2.8) and (2.9) are vacuously true.
For the first of the induction steps, assume that (2.8) and (2.9) both hold for all admissibleM′

with |VM′ | ≤ n, and let M = (VM , EM) be an admissible subhypergraph of G with |VM| = n+ 1
vertices. Let v be any vertex ofM. To show that (2.8) holds, we begin by applying identity (2.3):

ZM(λ)= ZM−v(λ)+ λvZM/v(λ).
Via the reverse triangle inequality and the assumption |λv| ≤ R, this gives

|ZM(λ)| ≥ |ZM−v(λ)| − R|ZM/v(λ)|. (2.10)
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To extract our desired lower bound on |ZM(λ)| we will use the induction hypotheses (for admis-
sible subhypergraphs with at most n vertices) to bound |ZM/v(λ)| in terms of |ZM−v(λ)|. Observe
that M/v may be obtained from M − v by a sequence of at most � many vertex deletions and
edge additions, and that at each step, we obtain an admissible subhypergraph of G (allowing us to
repeatedly apply the induction hypotheses). More explicitly, beginning withM − v, we first delete
all 2-neighbours of v (i.e., vertices u such that {u, v} ∈ EM−v) to obtainM − ({v} ∪ C(v)), a total of
|C(v)|(= n11) many applications of vertex deletion. By (2.8), this gives

|ZM−v| ≥ (1− s1)n11 · |ZM−({v}∪C(v))|. (2.11)

Then, to obtainM/v fromM − ({v} ∪ C(v)), we add a j-edge A for each {v} ∪A ∈ EM for all j≥ 2.
(Since v is not a vertex in M − ({v} ∪ C(v)), each of these edge additions produces an admissible
subhypergraph ofG). The number of j-edge additions performed at this step is at most the number
of (j+ 1)-edges inM that include v, which recall we have denoted n1j. By (2.9), this gives

|ZM−({v}∪C(v))| ≥
∏
i≥2

(1− si)n1i · |ZM/v|. (2.12)

So combining (2.11) and (2.12), we obtain the following relationship between |ZM/v(λ)| and
|ZM−v(λ)|:

|ZM−v| ≥
∏
i≥1

(1− si)n1i · |ZM/v|. (2.13)

And combining (2.13) with (2.10), we see that

|ZM(λ)| ≥ |ZM−v(λ)|
(
1− R∏

i≥1 (1− si)n1i

)
. (2.14)

Thus, our induction hypothesis (2.8) is satisfied forM (and v) as long as the inequality(
1− R∏

i≥1 (1− si)n1i

)
≥ (1− s1) (2.15)

is satisfied, but this is equivalent to (2.6).
Now let us turn to the second part of the induction step, verifying (2.9). Again, let M be any

admissible subhypergraph ofGwith n+ 1 vertices and consider any edge {v1, . . . , v�−j, x1, . . . , xj}
in G with x1, . . . , xj ∈VM and v1, . . . , v�−j �∈VM . (So here we are taking A= {x1, . . . , xj}; this will
be convenient as we will be dealing with the elements of A one after another.) First we dispense
with a somewhat trivial case: if {x1, . . . , xj} contains a hyperedge of M then (2.9) is automati-
cally satisfied, since ZM(λ)= ZM+{x1,...,xj}(λ), and so |ZM(λ)| ≥ (1− sj) |ZM+{x1,...,xj}(λ)| for any
sj ∈ (0, 1). So from here on we may assume that no e ∈ EM is contained in {x1, . . . , xj}.

We begin by applying identity (2.4) to get

ZM(λ)= ZM+{x1,...,xj}(λ)+ λx1 . . . λxjZM/{x1,...,xj}(λ).
As before, using the reverse triangle inequality and noting that |λxi | ≤ R for all i, we obtain

|ZM(λ)| ≥ |ZM+{x1,...,xj}(λ)| − Rj|ZM/{x1,...,xj}(λ)|. (2.16)

To obtain a lower bound on |ZM(λ)|, we will apply our induction hypotheses to bound
|ZM/{x1,...,xj}(λ)| in terms of |ZM+{x1,...,xj}(λ)|. Notice that M/{x1, . . . , xj} may be obtained from
M + {x1, . . . , xj} by the following sequence of steps: Starting from M + {x1, . . . , xj}, we perform
the vertex deletion operation j+ |C({x1, . . . , xj})|(= nj1) many times. Then we add (as edges)
all the i-sets {a1, . . . , ai} such that a1, . . . , ai ∈VM and {xk1 , . . . , xkt , a1, . . . , ai} ∈ EM for some
indices k1, . . . , kt ; note that there are nji such i-sets for each possible i.
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Now by (2.8) and (2.9), we have

|ZM+{x1,...,xj}| ≥
∏
i≥1

(1− si)nji · |ZM/{x1,...,xj}|. (2.17)

(Notice that the first application of (2.8) in this sequence is to delete a vertex from M +
{x1, . . . , xj}, which has n+ 1 vertices. This is a valid application, since we are assuming the n+ 1
case of (2.8) of the induction hypothesis.)

Combining (2.17) with (2.16) yields

|ZM(λ)| ≥ |ZM+{x1,...,xj}|
(
1− Rj∏

i≥1 (1− si)nji

)
.

So we obtain (2.9) forM as long as(
1− Rj∏

i≥1 (1− si)nji

)
≥ (1− sj),

which is equivalent to (2.7). This completes the induction. �
Remark 11. There is a trick that allows one to replace � + 1 by � in the graph case, achieving
the optimal bound: by starting from a vertex of degree �, every vertex edited by the subsequent
application of the deletion–contraction identity has degree strictly less than �. This is no longer
true for hypergraphs.When we start from a vertex of degree�, wemight keep creating and editing
vertices of total degree (or even worse, graph degree) �. See, however, the improvement achieved
in the recent preprint [6].

3. Linear hypertrees
In the special case of linear hypertrees, we improve the bound in Theorem 8 by using the same
inductive argument, but taking into account the special structure of the hypergraphs obtained
during the deletion/contraction operations. By choosing the vertex/edge appropriately at each
step, we will ensure that the resulting hypergraphs have at most one small (few vertices) edge in
every connected component. Since small edges are more ‘costly’ to alter, as we will see below, this
will yield the desired improvement in the final bound. The following is the multivariate extension
of Theorem 4.

Theorem 12. For each k≥ 3, the following holds. For any k-uniform, linear hypertree G= (V , E)
with maximum degree �, if

|λv| ≤
(

� − 1
�

)�−1 (
1− �

− 1
k−1
)

�
− 1

k−1 (3.1)

for all v ∈V, then

|ZG(λ)| ≥
(
1− �

− 1
k−1
)|V|

> 0.

Moreover, |λv| ≤ log 2
2k �

− 1
k−1 implies (3.1).

Proof. As in the proof of Theorem 10, we will bound |ZG(λ)| by measuring the effect that remov-
ing a single vertex can have on the independence polynomial (and iterating this procedure until
we reach the empty graph). In this proof we will carefully control which vertices are removed
and which subhypergraphs can be produced as a result. We will first give the precise statements
(3.4) and (3.5) that will be proved by induction (which bound the change in the independence
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polynomial after removing a vertex or adding an edge), before showing how the theorem follows,
and finally establishing (3.4) and (3.5).

LetM be any admissible subhypergraph of G in which every connected component has at most
one edge of size strictly less than k. Let R> 0 and s1, . . . , sk−1 ∈ (0, 1) be any constants satisfying

R≤ s1(1− sj)
(
1− sk−1

)� (3.2)

for all 2≤ j≤ k− 2, and

Rj ≤ sj(1− s1)j(1− sk−1)j(�−1) (3.3)

for all 2≤ j≤ k− 1; and let λ satisfy |λv| ≤ R for all v ∈V . We will inductively prove the following
two bounds; notice that both bounds are proved only under careful structural assumptions.

• First, let v be any vertex ofM contained in an edge of size less than k, or let v be any vertex
in a connected component ofM where all edges have size k. Then we show that

|ZM(λ)| ≥ (1− s1) |ZM−v(λ)|. (3.4)

• Second, let 2≤ j≤ k− 1, and let x1, . . . , xj be any vertices of M that are (respec-
tively) in components of M where all edges have size k, and that are in some k-edge
{v1, . . . , vk−j, x1, . . . , xj} of G with v1, . . . , vk−j �∈V(M). Then we show that

|ZM(λ)| ≥ (1− sj) |ZM+{x1,...,xj}(λ)|. (3.5)

Before proving (3.4) and (3.5), we show how an iterative application of (3.4) completes the
proof of Theorem 12. Let λ be such that |λv| ≤ R for all v ∈V , where R and s1, . . . , sk−1 are any
constants satisfying (3.2) and (3.3) above. Taking the vertices of G in any order v1, v2, . . . , v|V|, we
write a telescoping product:

|ZG(λ)| =
|V(G)|∏
i=1

∣∣∣∣ZG−{v1,...,vi−1}(λ)
ZG−{v1,...,vi}(λ)

∣∣∣∣ .
We may then apply (3.4) with M = ZG−{v1,...,vi−1} and v= vi; notice that these are indeed valid
choices respecting our structural constraints, since all edges in ZG−{v1,...,vi−1} are of size k. Thus,
we get the bound

|ZM(λ)| ≥ (1− s1)|V|.

To establish Theorem 12, it remains only to optimise the choice of R. It would perhaps be
difficult to precisely optimise the choices of s1, . . . , sk−1 to make the bounds (3.2) and (3.3) on R
as large as possible. But if we take s1 = · · · = sk−2 = �−1/(k−1) and sk−1 = 1/�, we will be able to
choose R= (

�−1
�

)�−1 (1− �
− 1

k−1
)

�
− 1

k−1 and ensure that (3.2) and (3.3) are satisfied. Indeed,
the constraints are now

R≤ �
− 1

k−1 ·
(
1− �

− 1
k−1
)

·
(

� − 1
�

)�

and

R≤ s1/jj · �1/(k−1) − 1
�1/(k−1) ·

(
� − 1

�

)�−1
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for all 2≤ j≤ k− 1. Note that for 2≤ j≤ k− 2 we have s1/jj < �
− 1

k−1 , and thus the strongest of
these constraints is for j= k− 1, i.e.,

R≤ �
− 1

k−1 · �
1

k−1 − 1

�
1

k−1
·
(

� − 1
�

)�−1

=
(

� − 1
�

)�−1 (
1− �

− 1
k−1
)

�
− 1

k−1 .

It is now easy to see that the above bound is lower than the one in (3.2), so we may chose R to be
equal to this value. Thus if |λv| ≤ R= (

�−1
�

)�−1 (1− �
− 1

k−1
)

�
− 1

k−1 for all v ∈V , then

|ZM(λ)| ≥ (1− s1)|V| =
(
1− �

− 1
k−1
)|V|

,

finishing the proof of Theorem 12. Note also that the factor
(

�−1
�

)�−1 (1− �
− 1

k−1
)
is increasing

in � and
(

�−1
�

)�−1 (1− �
− 1

k−1
)

· k is decreasing in k, so to obtain the conclusion it suffices that

|λv| ≤ log 2
2k �

− 1
k−1 , since limk→∞ k(1− 2−1/(k−1))= log 2.

We now return to the vertex and edge deletion bounds (3.4) and (3.5), which we will prove by
induction. The base case isM =∅, where both (3.4) and (3.5) are vacuously true.

For the induction step, assume that (3.4) and (3.5) hold for allM with |V(M)| ≤ n, and consider
any admissible subhypergraph � of G with n+ 1 vertices, where � satisfies the assumption that
every connected component has at most one edge of size strictly less than k.

We first establish (3.4) for �. To that end, let v be any vertex of � satisfying the hypotheses
of (3.4). To bound |Z�(λ)|, we begin by applying identity (2.3):

Z�(λ)= Z�−v(λ)+ λvZ�/v(λ).
And using the reverse triangle inequality and noting that |λv| ≤ R by assumption, this gives

|Z�(λ)| ≥ |Z�−v(λ)| − R|Z�/v(λ)|. (3.6)

To extract the desired lower bound on |Z�(λ)|, we will use our induction hypotheses to bound
|Z�/v(λ)| in terms of |Z�−v(λ)|. Observe that �/vmay be obtained from � − v by a sequence of
at most�many vertex deletions and j-edge additions (for 2≤ j≤ k− 1). But we must take care to
verify that at each step, all the necessary conditions are satisfied to apply the induction hypotheses.

First, if v is contained in a 2-edge {v, x} of�, then starting from� − v, we delete x. (Notice that
by assumption, v is contained in at most one such edge.) And we can indeed apply hypothesis (3.4)
(withM = � − v), as� − v has at most one edge of size less than k in each connected component,
and x is in a component of � − v where all edges have size k (the edge {v, x} is excluded from
� − v). So applying (3.4), this gives

|Z�−v| ≥ (1− s1) · |Z�−v−x| (3.7)

if v has a graph neighbour x.
Then, regardless of whether v is contained in a 2-edge, to obtain �/v from � − v−N2(v), we

add a j-edge {x1, . . . , xj} for each {v, x1, . . . , xj} ∈ E(�), for all 2≤ j≤ k− 1.
The number of j-edge additions performed at this step is at most the number of (j+ 1)-edges

in � adjacent to v, which we will denote n1j. Note that most of the numbers n1j will be zero, as v
is adjacent to at most one edge of size less than k.

And we may indeed apply induction hypothesis (3.5) for these edge additions: regardless of
the order in which we add these edges, at each step, the corresponding x1, . . . , xj are in different
components from any edges of size less than k added at previous steps, since the vertex v is no
longer present. And at each step, the hypergraph produced has at most one edge of size less than k
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in each connected component. So we may repeatedly apply our second induction hypothesis (3.5)
to obtain

|Z�−v−N2(v)| ≥
∏
i≥2

(1− si)n1i · |Z�/v|. (3.8)

Then combining (3.7) and (3.8), we obtain the following relationship between |Z�/v(λ)| and
|Z�−v(λ)|:

|Z�−v| ≥
∏
i≥1

(1− si)n1i · |Z�/v|

(where n1i is the number of graph neighbours of v, which is either 0 or 1). And notice that, since v
is contained in at most one edge of size less than k, and at most � edges total, this bound may be
simplified substantially:

|Z�−v| ≥ (1− sj) · (1− sk−1)� · |Z�/v| (3.9)

for some 1≤ j≤ k− 2. (Note: we may very slightly improve this bound by considering whether
or not v is contained in an edge of size less than k, but this will not substantially change our final
answer. Also, we cannot control which j is used; we must simply take the worst case.)

And combining this with (3.6), we see that

|Z�(λ)| ≥ |Z�−v(λ)|
(
1− R

(
1

1− sj

)(
1

1− sk−1

)�
)
.

for all 1≤ j≤ k− 2. Thus the induction hypothesis (3.4) is guaranteed to be satisfied for� as long
as

1− R
(

1
1− sj

)(
1

1− sk−1

)�

≥ 1− s1 (3.10)

for each 1≤ j≤ k− 2; this is equivalent to condition (3.2) above.
We now proceed with the induction step for (3.5), which deals with edge addition. Again,

we let � be any admissible subhypergraph of G with n+ 1 vertices satisfying the assumption
that every connected component has at most one edge of size strictly less than k. Let 2≤ j≤ k−
1, and consider any x1, . . . , xj in � satisfying the hypotheses of (3.5) – that is, that x1, . . . , xj
are (respectively) in components of � where all edges have size k, and they are in some k-edge
{v1, . . . , vk−j, x1, . . . , xj} of G with v1, . . . , vk−j �∈V(�). Notice that this implies � + {x1, . . . , xj}
is also an admissible subhypergraph of G, and that each component has at most one edge of size
less than k (the setting of our induction hypotheses).

To bound |Z�+{x1,...,xj}|, we begin by applying identity (2.4):
Z�(λ)= Z�+{x1,...,xj}(λ)+ λx1 . . . λxjZ�/{x1,...,xj}(λ).

Then as above, by using the reverse triangle inequality and noting that |λx1 |, . . . , |λxj | ≤ R, we
obtain

|Z�(λ)| ≥ |Z�+{x1,...,xj}(λ)| − Rj|Z�/{x1,...,xj}(λ)|. (3.11)

To obtain a lower bound on |Z�(λ)|, we will apply our induction hypotheses to bound
|Z�/{x1,...,xj}(λ)| in terms of |Z�+{x1,...,xj}(λ)|. Notice that �/{x1, . . . , xj} may be obtained from
� + {x1, . . . , xj} by a sequence of atmost j�many operations as follows: first, we delete x1, x2, . . . ,
and xj. Note that, unlike in the general case, we do not need to deleteC(x1, . . . , xj); by our assump-
tions, this set is empty. Then add each (k− 1)-edge {y1, . . . , yk−1} where {xi, y1, . . . , yk−1} is in
E(�) for some xi.

In total, starting from � + {x1, . . . , xj}, we perform the vertex deletion operation j times, and
the (k− 1)-edge addition operation at most j(� − 1) many times – once for each of the ≤ � − 1

https://doi.org/10.1017/S0963548323000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000330


78 D. Galvin et al.

edges adjacent to x1, . . . , xj in� + {x1, . . . , xj} respectively (excluding the edge {x1, . . . , xj}). And
again, we must take care to verify that at each step, all the necessary conditions to apply (3.4) and
(3.5) are satisfied.

First, notice that our initial application of (3.4) in this sequence is to delete a vertex from
� + {x1, . . . , xj}, which has n+ 1 vertices. We are allowed to do so, since we just established the
n+ 1 case of (3.4) above, and, without loss of generality, we begin by deleting the vertex x1, which
is contained in an edge of size j< k in � + {x1, . . . , xj}. We may also delete x2, . . . , xj next, as
vertices in components where all edges have size k. Furthermore, at each step, regardless of the
order in which we add the (k− 1)-edges {y1, . . . , yk−1}, the corresponding y1, . . . , yk−1 are in dif-
ferent components from any (k− 1)-edges added at previous steps, since x1, . . . , xj are no longer
present. Finally, at each step, the hypergraph produced has at most one edge of size less than k in
each connected component.

So by (3.4) and (3.5),

|Z�+{x1,...,xj}| ≥ (1− s1)j(1− sk−1)j(�−1) · |Z�/{x1,...,xj}|.
Now, combining this inequality with (3.11), we see that

|Z�(λ)| ≥ |Z�+{x1,...,xj}|
(
1− Rj

(
1

1− s1

)j ( 1
1− sk−1

)j(�−1)
)
.

So we will obtain (3.5) for � as long as

1− Rj
(

1
1− s1

)j ( 1
1− sk−1

)j(�−1)
≥ 1− sj (3.12)

for each 2≤ j≤ k− 1; this is equivalent to condition (3.3) above.
Therefore, if conditions (3.3) and (3.3) are satisfied, this completes the induction, giving the

edge and vertex deletion bounds (3.4) and (3.5), as desired. �

4. Constructions
In this section we provide the constructions that prove Propositions 2 and 5.

4.1 An odd construction (due to Wojciech Samotij)
Here we describe, for each odd k≥ 3 a k-uniform hypergraph Hk,� with maximum degree � =
(k− 1)s for all large enough positive integers s= s(k) with the following property: the univariate
independence polynomial ZHk,�(λ) of Hk,� is negative at x= −k( log�)/�. In particular, since
ZHk,�(λ)≥ 1 for λ ≥ 0, there must be some λ < 0, |λ| < k( log�)/� so that ZHk,�(λ)= 0. This
will prove Proposition 2.

The vertex set of Hk,� consists of a set {x1, . . . , xk}, together with, for each i= 1, . . . , k, a set
{yi1, . . . , yis}, where s will be chosen later to be large enough. For each i= 1, . . . , k and each j=
1, . . . , s there is an edge ({x1, . . . , xk} \ {xi})∪ yij.

In other words, we start with a set R of k vertices, and to each (k− 1)-subset R′ of Rwe associate
a cloud C(R′) of s vertices. An edge is formed by taking an R′ together with one element from its
cloud C(R′).

Each xi is in k− 1 (k− 1)-subsets of {x1, . . . , xk}, and each such subset can be extended to an
edge of Hk,� in s ways, so the degree of each xi is (k− 1)s. Each yij has degree 1. So the maximum
degree of Hk,� is �:= (k− 1)s.
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For each 0≤ � < k− 1, the total contribution to ZHk,�(λ) from independent sets that use
exactly � vertices from {x1, . . . , xk} is (

k
�

)
λ�(1+ λ)sk .

Since � < k− 1, an arbitrary subset of the yij can be added to any �-subset of {x1, . . . , x�} without
saturating an edge of Hk,�. The total contribution to ZHk,�(λ) from independent sets that use
exactly k− 1 vertices from {x1, . . . , xk} is

kλk−1(1+ λ)s(k−1) .

If xi is the one vertex from {x1, . . . , x�} not selected, then no xij can be added without saturating

an edge, but any subset of the xi
′
j for i′ �= i can be. Finally, the contribution to ZHk,�(λ) from

independent sets that use all of {x1, . . . , xk} is simply λk (no extra vertices can be added without
saturating an edge).

We now specialise to λ = −k( log�)/�. Recalling� = (k− 1)s, where s is large enough so that
λ ≥ −1, and using that 0≤ 1+ t ≤ et for all t ≥ −1, we get that for � < k− 1,∣∣∣∣

(
k
�

)
λ�(1+ λ)sk

∣∣∣∣≤ c(k)
( log (k− 1)s)�

s�+
k2
k−1

and ∣∣∣kλk−1(1+ λ)s(k−1)
∣∣∣≤ c(k)

( log (k− 1)s)k−1

s2k−1 ,

where c(k) is a constant depending only on k.
On the other hand, we have

λk = −kk
( log (k− 1)s)k

sk

(note that we use here that k is odd). Because k< 2k− 1 and k< � + k2/(k− 1) for all � < k− 1,
we have that for all sufficiently large s= s(k),

kk
( log (k− 1)s)k

sk
> c(k)

⎛
⎝ ( log (k− 1)s)k−1

s2k−1 +
k−2∑
�=0

( log (k− 1)s)�

s�+
k2
k−1

⎞
⎠

and so ZHk,�(λ)< 0 at x= −k( log�)/�, as claimed.

4.2 An even construction (due to the anonymous referee)
For even k, consider a hypergraph with � edges that has k− 1 common vertices, i.e., let
x1, . . . , xk−1, y1, . . . , y� be the vertex set and

{{
x1, . . . , xk−1, yi

}
for i= 1, . . . ,�} the edge set.

Then the independence polynomial is

(1+ λ)�+k−1 + (
1− (1+ λ)�

)
λk−1.

Let λ = − (k−1) log�

�
, with � taken large enough that λ ≥ −1. Then,(

1− (k− 1) log�

�

)�+k−1
≤
(
1− (k− 1) log�

�

)�

≤ e−(k−1) log� = �−(k−1),
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and for even k we have(
1−

(
1− (k− 1) log�

�

)�
)(

− (k− 1) log�

�

)k−1
< −

(
1− �−(k−1)

) ( (k− 1) log�

�

)k−1

So we only need that
(
1− �−(k−1)

)
((k− 1) log�)k−1 ≥ 1 to conclude that the independence

polynomial has a zero of absolute value at most (k−1) log�

�
.

4.3 A hypertree construction
We now give a construction to prove Proposition 5 and show that the bound in Theorem 12
cannot be improved beyond a polylogarithmic factor in �.

Consider the k-uniform star of size �, Sk�, which consists of � edges (each of size k) that share
a single vertex, so Sk� has 1+ (k− 1)� vertices in total. The independence polynomial of Sk� is

ZSk�(λ)= (1+ λ)(k−1)� + λ((1+ λ)k−1 − λk−1)�.

Let k be even. We will prove that ZSk�

(
−C

(
log�

�

)1/(k−1)
)

< 0 for a constant C and � large

enough, and thus ZS will have a root of magnitude at most C
(
log�

�

)1/(k−1)
.

Note that the λ we choose will clearly satisfy |λ| < 1 so it is equivalent to show

1+ λ

(
1−

(
λ

1+ λ

)k−1
)�

< 0.

Let λ
1+λ

= −f (�), so that λ = − f (�)
1+f (�) . When k is even, we can rewrite the expression as

1+ λ
(
1+ f (�)k−1

)�

.

Set f (�):= ( log�/�)1/(k−1), and then the asymptotic behaviour of the above expression is

1+ λ(1+ log�/�)� ∼ 1− ( log�/�)1/(k−1)

1+ ( log�/�)1/(k−1) · � → −∞.

Note that for this f (�), we have |λ| = �
(|f (�)|)= �

((
log�

�

)1/(k−1)
)
.

5. Algorithms
Given the zero-freeness result of Theorem 1, we can obtain an FPTAS for ZG(λ) and prove
Theorem 9 following Barvinok’s method of polynomial interpolation: truncating the Taylor series
for log ZG(λ) (in fact, the cluster expansion) around 0 after a given number of terms. This
approach has been used in several recent works on approximate counting, including [8, 13, 22, 33,
47, 49] on approximating the independence polynomial of bounded-degree graphs for (possibly
complex) values of λ.

Restating Theorem 9, our goal is to prove the following.

Theorem 13. For the class of hypergraphs G of maximum degree � and maximum edge size k, and
for complex λ satisfying |λ| < λs(� + 1), there is an algorithm running in time (n/ε)Ok,�(1) that
computes an ε-relative approximation to ZG(λ).
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Figure 1. Obtaining�/v from� if v is in a 2-edge.

Figure 2. Obtaining�/v from� if v is not in a 2-edge.

Given a polynomial Z(λ) with Z(0)= 1, let Tr(λ) be the order-r truncation of the Taylor series
for log Z(λ) around 0. That is,

Tr(λ)=
r∑

j=1

λj

j!
∂ j log ZG(λ)

∂λj
.

The connection between zero-freeness and approximation is provided by the following
elementary but powerful lemma of Barvinok.

Lemma 14 (Barvinok [2]). Let Z(λ) be a polynomial of degree at most N, and suppose that Z(λ) �= 0
when |λ| ≤ B. Then for |λ| < B,

∣∣Tr(λ)− log Z(λ)
∣∣≤ N(|λ|/B)r+1

(r + 1)(1− |λ|/B) . (5.1)

We now prove Theorem 13.

Proof. Since ZG(λ) is a polynomial of degree at most n= |V(G)|, if ZG(λ) is zero-free in a disc of
radius B around 0 and |λ| ≤ (1− δ)B then exp (Tr(λ)) gives an ε-relative approximation to ZG(λ)
when r ≥ C log (n/ε), where C is a constant that depends only on δ.

Thus to prove Theorem 13 given Theorem 1 we are left with the task of computing Tr(λ) for
r = �( log (n/ε)) in time polynomial in n/ε. Generalising the approach of Patel and Regts [47] to
hypergraphs, Liu, Sinclair, and Srivastava [42] gave an algorithm to compute the first r coefficients
of the partition function of a 2-spinmodel on a bounded-degree hypergraph. Since the coefficients
of the Taylor series for log Z are related to the coefficients of Z through a triangular system of linear
equations, this yields an algorithm to compute Tr(λ). Specialising their result to the hypergraph
independence polynomial yields the following, which finishes the proof of Theorem 13.

Lemma 15 (Liu, Sinclair, Srivastava [42]). Fix k,�, and C > 0. Then there is an algorithm running
in time polynomial in n/ε that computes Tr(λ) for any hypergraph G of maximum degree � and
maximum edge size k on n vertices, where r = �C log (n/ε)�.
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Figure 3. Obtaining�/{x1, . . . , xj} from� + {x1, . . . , xj}.
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