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1
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The concept of randomness as applied to number sequences i s important
to the study of the relationship between the foundations of mathematics
and physics. A reason i s that while randomness i s often defined in
mathematical-logical terms, the only way one has to generate random
number sequences is by means of repetitive physical processes. This
paper will examine the question: What definition of randomness i s
correct in the sense of being the weakest allowable? Why this question
is so important will become clear during the course of the discussion.

The main body of this paper is divided into three sections. Section
1. discusses the use of probability theory to describe various
statist ical processes and some of the alternative def ini t ions of
randomness that have been proposed.

In Section 2. a criterion which a definition of randomness should
satisfy is proposed. Roughly, the criterion says that with respect to a
theory T and the set of processes which are in i t s domain of
explanation, a definition of randomness should be such that no random
outcome sequence which can be generated by a process which theory T
explains can be used to derive a contradiction within theory T.
Following discussion of this criterion i t is suggested that the weakest
definition which is contradiction-free in the above sense be taken as
the correct definition of randomness. Some aspects of this definition
of correctness are discussed. In particular i t s dependence on T is
discussed and reasons are given why this T-dependence i s not a
disadvantage.

Finally, in Section 3 . the importance of determining which
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definition is correct in the above sense of being the weakest allowable
is shown by considering the use of models of Zermelo-Frankel (ZF) set
theory as carriers for the mathematics of quantum mechanics. I t i s
seen that if the correct definition of randomness i s sufficiently
strong, then there exist models of ZF set theory which do not contain
random sequences and thus cannot serve as carriers for the mathematics
of quantum mechanics. In this case, contrary to intuit ion, physics
would have something to say about the foundations of quantum
mechanics.

1. Probability Theory, Statistical Processes, and Randomness

In order to see why the problem of determining a correct definition
of randomness arises, let us consider the use of probability theory to
describe various s ta t i s t ica l processes. Probability theory i s a
mathematical theory about measures defined on a a - f i e lds (Z) of
subsets of some set Z. It also includes the theory of random variables
as measureable functions on Z and, as such, touches many aspects of
modern analysis.

However, for all i t s beauty and power, probability theory says
nothing whatsoever about any properties which an element of Z may or
may not have. The most one can prove in probability theory is that a
given Borel subset B of Z is a set of measure 1 with respect to some
measure. To conclude from this that an element J of Z l i e s in B, or
equivalently, has the property corresponding to B, requires some extra
assumptions. These are usually implied in the use of probability
theory to explain s tochast ic processes, and form part of the
interpretative rules between a theory which assigns measures to various
stochastic processes and the outcome sequences which the processes
generate.

Let us give a specific example. Let Z = {0,1} , the set of all
infinite 0-1 sequences andB({0,1} ) be the set of all Borel subsets
of {0,1} . Let M be a set of stochastic processes each of which
generate elements of {0,1} by emitting O's or 1's in successive
steps. Thus carrying out n steps of a process generates a sequence of
n O's and 1's which, as n ->• » , becomes a sequence in {0,1} .

A theory for M generates a map P from M into the set of a l l
probability measures on B({0,1J ) . Thus, given any process Q in M,
the theory assigns a probability measure P to the process Q. For
instance, discrete, step quantum stochastic processes which output 0 or
1 can be so described. Examples of this are sequences of successive
measurements of projection operators on the same sample where the time
interval between the nth and n+1st step, and choice of projection
operator for the n+1st step may depend on n and the previous outcomes.
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To each such process and in i t i a l state preparing procedure, denoted
here by Q, quantum mechanics associates a probability measure P .

Another type of example includes the i n f i n i t e r epe t i t i ons of
preparing a system in some state p, measuring a question valued
observable A on the system so prepared, and discarding the system. In
this case the measure assigned to each infinite repetition is a product
measure P = (x) p tn where p in i s computed from A and p in
standard fashion.

So far i t is seen that a theory for a collection M of processes
assigns probability measure P to each process Q in M. However,
the condition that the theory i s cor rec t , or agrees with the
experiment, is s t i l l lacking. To reduce this to essentials and avoid
inessential complications, assume the theory is . such that for each Q,
P is a computable function on the cylinder subsets of {0,1} ,
i . e . , all f ini te unions of sets of the form {a.} x {a } x . . . x
{an> x { 0 , 1 } where a , a . , . . . a x { 0 , 1 } .

Let D be a countably infinite subset of fl ({0,1} ) . One says
that the theory D-explain3 the processes in M or D-agrees with
experiment ( m . T Si r Ffil ) if, for each Q in M and each B in D, i f
P_B=1 thenf _ £B where ¥_ i s an outcome sequence a s soc i a t ed
with the actual carrying out of Q.

Equivalently, one says that the theory, which assigns the map P over
M, D-agrees with experiment i f for each Q in M, P. i s "D-correct"
for ¥- . That i s , f. has every property in D which i s possessed
by PQ-almost-every sequence ([3] , [ 5 ] , [ 6 ] ) . (One associates a
property to each Borel set B where B is the set of sequences which have
the property.) From now on, for ease in presentation, the discussion
will be restricted to processes Q for which P. i s a product measure
PQ= (X) p . where p . i s a p r o b a b i l i t y measure on the four
element set of all subsets of {0,1}. Then the theory D-agrees with
experiment on M if for each Q so restr icted, the outcome sequence ¥
is D-random for P ( i . e . , for all BeD, P B=1-s-y eB).

The question of exactly which properties are to be included in D
immediately ar ises . Some properties are such that one has strong
intuitive feelings that every random sequence should have them—these
properties should clearly be included. For other properties one's
intuition is much weaker. Finally, there are many properties for which
there is no common agreement whether or not they should be possessed by
random sequences. This i s quite apparent from the history of many
attempts to give a good definition of randomness.

As a review of the development of definitions of randomness for
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inf in i te outcome sequences shows, many definit ions of randomness i
require that a random sequence be such that the limit mean exists and be j
invariant under each subsequent selection procedure in a countable set j
E. Definitions of this type, which differ in how E i s defined, have !
been given by Von Mises [ 1 7 ] , Church [ 7 ] , Wald [ 1 8 ] , Loveland I
([11],[12]) and Kruse [10].

These definitions were shown by Ville [16] to be deficient in that
for any countable set E of subsequent select ion procedures, there
existed a sequence which passed the tests in E and for which the mean •
of the first n elements i s greater than the limit mean for each n. j

j
Definitions of randomness which avoid this problem are Riven in j

terms of set D of properties (or Borel subsets of {0 ,1} ) . For j
definiteness, l e t P=(x)p where p{O} = p{1}=l/2. Then a sequence ¥ i s I
D-random for P i f for each property B in D which i s true P almost j
everywhere i s possessed by f. In Martin-LSf's definition [13] D i s the i
set of complements of all Borel sets of P measure zero which are defined I
in terms of recursively enumerable sequential t e s t s . In other |
definitions, D i s the set of all hyperarithmetic Borel sets [14] , the
set of all Borel sets with a code in the minimal standard transit ive
model of ZF set theory [15], the set of Borel sets which are nameable in
a set theory [10] or definable in ZF set theory [41.

These definitions can be generalized to apply to any probability
measure P by relativizing the definition of D to P ([3] , [4] , [5] f [ 6 ] ) .
For example, D can be the set of complements of Borel sets defined from
P sequential tests which are recursively enumerable in P, the set of
Borel sets which are hyperarithmetio in P, or have codes in M [P]
(the Cohen extension by P of the minimal model of ZF set theory), or
the set of Borel sets which are definable from P in the language of ZF
set theory. Other definit ions as well as def init ions applicable to
finite sequences are discussed by Fine [9 ] .

From this brief sketch and further examination of the l i t era ture ,
one sees that many definitions of randomness have been proposed. Each
definition i s of different strength and for each, one can give rough
philosophical arguments why i t i s to be preferred over the others.
However, there do not seem to be any compelling reasons why one
definition i s to be preferred over another. Intuition does not seem to
be of any help either.

It would clearly be desirable to have a precise criterion to use to
decide which properties belong to D.
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2. A Possible Criterion for Randomness

It is proposed here that a valid definition of randomness should
satisfy the criterion that a sequence accepted as random cannot be used
to derive a contradiction within the conjunction of the theory and the
interpretative rules which explain any process which can generate the
sequence. In more detail, le t T be a theory with domain of explanation
H. Then the set D of properties (or Borel sets) must be such that for
each product probability measure P=(x)p, which T assigns to a process in
M, i t must not be possible to use any outcome sequence ¥ which i s
D-random for P to derive a contradiction within T.

Such a criterion for D has i t s support in the observation that i t
must be some criterion such as this which gives one an in tu i t i ve
feeling about which properties a random sequence must possess. If one
feels that every random sequence should have property B where PB=1 for
a product measure P, i t must be the case that for some theory T and
domain M, which are within his realm of experience, there is a sequence
* , which does not have B and which is random for P with respect to some

| other properties, which can be used to derive a contradiction in T. If
( a contradiction is not derivable within T for any such sequence ¥,
j then as far as T is concerned, one has no basis for his feeling that
; a random sequence must have property B. (This aspect will be referred
I to later on.)

Note that the criterion is defined relative to a theory T whereas
j one's intuitive feeling is based on common experience with many
; theories. Some properties, such as invariance under subsequence
! selection procedures, are common to many theories. That i s , by the
j above criterion i t should be possible to derive contradictions in many
I theories from sequences which do not have these properties. For these
\ properties one has strong intuitive feelings that they should be

included in D. Other properties may be more theory specific. That i s ,
they are contradiction free for some theories and not for other
theories. In this case one's intuition is much weaker, or even

. nonexistent.

The proposed criterion for randomness derives i t s use from the
[ requirement that properties which are not contradiction free for a

theory T must be included in D, as far as T is concerned. Thus the
J criterion is not very useful with respect to any theory which has a
\ small domain of explanation. In particular, this criterion would not

be of much use for a theory which explains only one process. The value
of the criterion should become evident for comprehensive theories which
explain large classes of processes. One reason is that such theories
give many relationships between various processes. As a result , there
are many more possibil i t ies for contradictions to appear. Another
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reason, which may be quite important, i s that a real ly comprehensive
theory may have processes within i t s domain which, under sui table
interpretation, talk about other processes within i t s domain. But this
is a subject for future work.

Here i s a simple example which illustrates how the criterion works.
In quantum mechanics, l e t a denote an observation procedure for a
question observable Qa (a projection operator) and l e t s denote a
preparation procedure which prepares a system in a pure state p .
Each infinite repetition of doing s followed by a i s characterized bysa
map X from N, the set of natural numbers into the set of time regions
where for each j X(j) i s the (calendar) time region occupied by the jth
repetition of doing s followed by a . Let Y^denote the outcome
sequence in {0,1} associated with the inf in i te repetit ion (X,s,ct).
Since (X,s,a) i s a process in the^domain of explanation of quantum
mechanics, one requires that f s a b e such that M ŝa e x i s t , and

MYsorPso U 1 } ) where Ps
X

a ( { 1 } ) = Trp Qa i s a p r o b a b i l i t y
measure on the four element set of subsets of {0 ,1} . HY denotes the
limit mean of f.

Let G:{0,1}N+{0,1}N be given by (GY)(j)=Y(g(J)) for each j
in N where g:N->N denotes a (sequence independent) subsequence selection
procedure which an observer can actually carry out. GY i s the sub-

y y
sequence of f selected by g. It is now asserted that MGy = M* .

V Y

To prove t h i s , assume the contrary, i . e . , that MĜ sa ^ M^.

Consider the subsequence XQ of r e p e t i t i o n s where X_( j) =X(g( j ) )
for each j . Now (X , s ,a ) i s also a sequence of r e p e t i t i o n s of
doing s followed by a and i s in the domain of explanation of quantum
mechanics. Thus the outcome sequence \ ^ a s s o c i a t e d wi th
(X G , s ,a ) i s a l so such that M ,̂G e x i s t s and e q u a l s PS£G({1})

P "where P * ^ ( ^ P " i s the measure assigned to ( X . , s , a ) . Since
Y

the range set of XQ is a subset of X one has that Gfsa is aLso
an outcome sequence associated with ( X „ , s , a ) , or G ¥ =

fsaG' B y assumption, one has then that M ^ G / M ^ which

yields psa 4 Pscp. But this implies that the r e p e t i t i o n s in
(X ,s,a) either, prepare a system in a different state or measure a
different question observable than do the repetitions in (X-XQ,s,a).
In either case this contradicts the original assumption that each
repetition of s and a in X prepares a system in a fixed pure state
P and measures a fixed observable Qa. So one has
S y Y

Mcr = wi .
sa sa '

This example shows that a correct definition of randomness must be
sufficiently strong to include a l l sequence-independent subsequence
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selection procedures which an observer can actually carry out. If th i3
notion corresponds to (sequence-independent) effect ively calculable
subsequence selection procedures then, by Church's thesis, one has some
of the recursive subsequence selection procedure. These are included
in Church's definition [7] of randomness as well as in a l l stronger
definitions.

This example also shows the usefulness of the c r i t e r i o n for a
comprehensive theory. Suppose for example a theory T explained
measurement repetitions for only one sequence X of time regions and a l l
other repetitions were outside the domain of explanation of T. Then
the r epe t i t ion (X_,s, a ) would not be in the domain of T so the

X
theory would say nothing about the value of Mf G.

So far, the criterion has been applied here to random sequences and
processes to which product measures P = © P are assigned. However, the
discussion of Section 1 . shows that the c r i t e r i o n can be e a s i l y
extended to cover all stochastic processes in the domain of a theory,
not just those which are independent and iden t i ca l ly d i s t r ibu ted . In
this case the notion defined in Section 1 . , of a measure P being
D-correct for an outcome sequence ¥, replaces the concept of ¥ being
D-random for P. Details of the extension will be le f t to the reader.

This criterion of nonderivabil i ty of a contradict ion as a theory
dependent condition on the set D has the property that i t places no
limits on how strong a definition of randomness can be. Suppose D i s
contradiction free for some theory T in the sense t h a t for every
product measure P which i s assignable by T to some process in T's
domain of explanation, no sequence which i s D-random for. P can be used
to derive a contradict ion within T. Then any set D where D i s a
proper subset of D i s also contradiction free for T.

However, the criterion does place a l imi t on how weak a def ini t ion
of randomness can be. If D i s too small then, with respect to a given
theory T plus interpretative r u l e s , for some product measure P which
is assignable by T, there may exist sequences which are D-random for P
and which can be used to derive a contradiction within T.

This suggests that i t may be appropriate to consider the correct
defini t ion of randomness to be the weakest d e f i n i t i o n which i s
contradiction-free in the above sense. Such a consideration finds
support in the fact that, with respect to some theory T, D should not
contain superfluous se ts . As was noted before, on an i n t u i t i v e bas is ,
if for some property B, a contradiction i s not derivable within T for
any sequence which does not have B, but i s D-{B} random for some product
measure P, then as far as T i s concerned, one rea l ly has no basis for
his feeling that a random sequence must have property B.

One can give a more precise def ini t ion of the notion of a correct
definition as follows: Let T be a theory with domain of explanation M
(For simplicity i t i s assumed that each Q in M generates a 0-1 outcome
sequence). Let P = (x)p be a fixed product probabi l i ty measure such
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that T assigns P to some process in. M. Let Dp be a countably
infinite set of Borel subsets of {0,1} which is contradiction free
for T in the sense described. (That i s , for no sequence v which is
Dp random for P can one derive from f a contradiction in the
conjunction of T and the interpretative rules which explain the
processes in M.)

For each Borel set B in Dp for which PB=1, l e t Dp = DR-
{B} the set of a l l sets in Dp except. B. B i s P-nontrivial If
fi{E:E Dp and PB=1}-B is not empty. One says that Dp-randomness
for D i s the weakest allowable definit ion for T if for each
P-nontrivial B in Dp, there exists a sequence f not in B which i s
Dprandom for P, and which can be used to obtain a contradiction in
the theory T plus interpretative rules which explain the processes in M.

The above definition is incomplete in that the explicit dependence
on the measure P must be removed. Taking a cue from the fact that for
usual definitions of D-randomness, D contains se ts of the form
{<f:M y =r} for many real numbers r between 0 and 1, D is defined by
D=U{Dp:P is a product measure and T assigns P to some process in M}.

It is suggested that D-randomness with D as defined above is the
correct definition of randomness for T. I t is correct in the sense
described above of being the weakest allowable which is contradiction
free.

Several comments about this definition are in order. First , the
res t r i c t ion of B to the P-nontrivial sets in Dp i s necessary
because if B is not P-nontrivial then there are no V not in B which are
Dp random for P. Also, the above restriction to product measures
can easily be relaxed. As was noted earlier, the notion of a measure P
being D-correct for an outcome sequence is not limited to product
measures. Thus in the definition of D one can extend the union to
cover all measures assigned by T to processes in M and thus include all
sequences generated by all processes in M. '

This definition for correctness for D-randomness has the property
that i t depends strongly on the theory T under consideration. Clearly
a definition of randomness which is correct in the sense given for one
theory may not be correct for another theory. This may seem to be a
defect of the definition, but, in the author's opinion, i t is not.

First of all, some peculiar theory plus interpretative rules might
require a very strange definition of randomness in order that the
theory plus interpretative rules be contradiction free over i t s domain
of explanation. The definition given here of a correct definition of
randomness will satisfy his requirement whereas a definition which is
theory independent may not.

Also, i t is quite possible that a definition like the one given which
is theory dependent may appear to be theory independent. To see this ,
consider again, how one arrives at an intuitive feeling that random
sequences must have a property B. Suppose B is a property which a
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I
; sequence Y, generated by a process in the domain of explanation of some
i theory T, must have in order t ha t T be c o n t r a d i c t i o n f r e e .
I Furthermore, suppose our accumulated experience i s such that th i s i s
| true for B for many sequences, processes, and theories. Then one feels
] strongly that B is a property that random sequences should have.. This
\ suggests that one might remove the theory dependence by def ining
j D-randomness by quantifying over all theories which explain any process
, which yields the sequence in question. However, th is i s a dubious
J procedure since i t i s not clear what i s meant by a l l theories plus
I rules of interpretation which explain any process which generates ¥ .

Also, there may exis t properties B which are required by sequences
| generated by processes in the domain of explanation of only some, but
j not a l l , theories.

A better procedure i s to consider a succession of theories whose
domains of explanation are successively larger or more comprehensive.
As a theory becomes more comprehensive the possibilities for deriving a
contradiction from a sequence generated by a process in the domain of
the theory become greater. So the definition of D randomness which i s
correct in the sense defined becomes stronger as the relevant theory

\ becomes more comprehensive.

j ' In par t icu la r , i f a theory has a domain of explanat ion which
j includes many smaller domains with each explained by some other weaker
1 theory, a .def ini t ion of randomness which i s correct in the sense,
j defined for the comprehensive theory will include a l l those properties
I which are common to the correct defini t ions of randomness for the
j weaker theories which expla in subdomains of the domain of the
| comprehensive theory. I t i s in th i s sense;that the defini t ion of
i randomness which is correct for a comprehensive theory, may appear to
} be theory independent with respect to those properties which are common
i to the correct defini t ions for many weak and seemingly unre la ted
j theories. Furthermore, i t i s just those properties about which one has
! strong intuitive feelings that every random sequence should possess
i t h e m . • • . . . • • . • •

I I t is to be emphasized that most of the discussion of th i s section,
! including that of the criterion that a definition must sat isfy as well
I as that of the correct definition, i s heuristic and imprecise. To make
i i t precise one has to define exactly what i s meant by saying that "one
I can derive from a sequence Y which can be generated by a process in M,
1 a contradiction in a theory which explains the processes in M." Also
| i t is necessary to assign a well ordering to the properties (or Borel
| subsets) of sequences in {0,1} . Such a well order ing may be
I necessary to prove that a unique set D ex is t s which i s correct in the
i sense given.

I .The fu r the r d e t a i l e d formulat ion and working out of t h e s e
i definitions will require much more work. In the rest of the paper, the
i importance of finding out which definition of randomness i s correct in
j the above sense will be given further support. This will be done by
[ considering the use of different models of ZF set theory as ca r r ie r s
I for the mathematics of physics.
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i|. ZF Models as Carriers for the Mathematics of Physics

In order to understand what i t means to use a model of Zermelo
Frankel set theory as a carrier for the mathematics of physics, one
first notes that all the mathematics used so far by physics and most
of mathematics itself can be described in intuitive set theory. Open
most any comprehensive treatise on mathematics and you will find an
initial chapter on the rudiments of set theory. Furthermore, such
treatises are full of statements such as "A Hilbert space is a set such
that...", "a C* algebra is a set such tha t . . . " , "The set of complex
numbers...", etc.

There are many ways to axiomatize the intuitive concept of set . By
far the most extensively developed and studied is ZF set theory. This
theory which axiomatizes much of the intuitive concept of set i s
powerful enough to include most of the mathematics done to date and to
include all the mathematics used so far by physics. What this means i s
that all the mathematical theorems and results used so far by physics,
can be recast as theorems and results about se ts . For example, any
n-ary operation with certain properties can be described as a set of
ordered n+1-tuples with certain properties. For example, in the theory
of Hilbert spaces, the operation "*" of multiplication of vectors
by scalars as a map from C x H to H, becomes a part of ordered tr iples
of elements of C x H x H whose properties are given by the Hilbert space
axioms transcribed to corresponding properties about se ts . By the use
'of such a defining axiom for n " n as well as similar defining axioms
for the other Hilbert space operations, and the axioms of ZF set
theory, one proves theorems about Hilbert spaces as corresponding
theorems about sets.

The axioms and formulas of ZF set theory, and of any other
mathematical theory for that matter, are meaningless symbol str ings.
They are given meaning by interpreting them in a model. A model for a
( f i r s t order) axiom system i s a co l lec t ion , or un ive r se , of
mathematical objects together with relations and functions and constants
as interpretations of the relation, function, and constant symbols of
the formal theory, and with variables ranging over the collection.
Under this interpretation, formulas of the formal theory are either
true or false; in particular, all axioms and theorems are true.

In mathematics generally, and specifically in the mathematics used
by physics, many different groups, algebras, Hilbert spaces, e t c . , are
considered and used. This is possible because the corresponding f i rs t
order axiom systems, have many different models.

On the other, hand, there is only one (standard) whole number set as
a model of Peano arithmetic (a f i rs t order theory), and only one
(standard) complex number set C which is a model of the axioms of an
algebraically complete field of characteristic 0 (a first order theory)
and which has 2'" e lements . (By "one" i s meant one up to
isomorphism). I t i s this set C which, in intuitive set theory, can
also be built up from the natural numbers in any one of several ways,
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and which i s referred to as the scalar field of complex numbers.

Now i t i s only in the las t fifteen years that , as a resu l t of the
work of Paul Cohen [8], the existence of many different nonisomorphic
models of ZF set theory has been proved. Nowadays, much of the modern
work in set theory is directed towards the construction of models with
different properties. These models differ by "esoter ic" mathematical
properties, such as whether the continuum hypothesis i s true or f a l se ,
or the model universe,, is GiJdel constructible or not, e t c . . However, a l l
these models are equivalent as far as the "conventional" mathematics i s
concerned. The reason i s that, as noted before, every theorem of the
system under study becomes under t ranscript ion a theorem of ZF set
theory, and all ZF theorems are true in all ZF models.

In particular, each model M contains a profusion of the mathematical
systems used so far by physics. All the usual groups, Hilbert spaces,
and C* algebras, and the sets of natural numbers, real numbers, and
complex numbers, e tc . , which are used in physics exis ts as se ts in M.
Furthermore, their properties are defined relative to M. That i s , the
universe of M is considered to be the entire mathematical universe for
al l these systems. This i s what i s meant.by a ZF model M being a
carrier for the mathematics of physios.

I t follows from the above arguments tha t , because al l models are
completely equivalent as far as the mathematics used so far by physics
is concerned, one would expect that all ZF models would be equivalent as
carr iers for the mathematics of physics. Thus, i t should make no
difference which model one used for the mathematics of physics.

This has been investigated in detai l ( [1 ] , [2 ] ) for the standard
transitive model V and any standard t ransi t ive model M (with M£V) as
carriers for the mathematics of quantum mechanics. V i s that part of
the intuitive mathematical universe which i s a model of ZF set theory.
In b r i e f , i f ff and B.,(H,,) are the r e s p e c t i v e H i l b e r t space
and algebra of bounded l inea r operators on H in M, which describe
the. physical states and observables of a system, then there exis ts a
Hilbert space H and algebra B(H) of bounded linear operators in V along
with monomorphisms U:ffM-»# and W :BM( &,) -*• B(H) which p r e s e r v e
the norms. This means that i f H i s usea as the c a r r i e r for the
mathematics of quantum mechanics, use of Hj, and Bw(Hw) in M
to describe the physical states and observables of^he physical system
gives the same s ta t is t ics as does use of H and B(fl) in V. (Of course,
this holds for only that part of H and B(H) in the respective ranges of
U and W). This result i s clearly necessary if the two models are to be
equivalent as carriers for the mathematics of quantum mechanics.

However, the point to be made here is tha t , contrary to the above,
i t may be the case that all ZF models are not equivalent as ca r r ie r s
for the mathematics of quantum mechanics. In brief the argument i s as
follows ([1],[2]): In quantum mechanics, connection between theory and
experiment i s made by the requirement that to each in f in i t e repet i t ion
of measurements of some observable on an ensemble of systems, each
prepared in the same s t a t e , there i s associated an i n f i n i t e , random
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sequence of outcomes whose l imi t mean equals the theoret ical
expectation value. (We assume that for many types of measurements the
system is not prepared in an eigen3tate of the observable.)

Note carefully, we do not require that one be able to carry out, by
any finite time, an infinite number of measurements - something which
is impossible. However, i t is clear that no matter how many repetitions
we have carried out, we can always do one more. Since the number of
possible repetitions is arbitrari ly large, the theory-experiment
connection must be given in terms of infinite repetitions and outcome
sequences.

It follows from the above that if a ZF model is to be a carrier for
the mathematics of quantum mechanics, i t must contain random number
sequences. In particular, i t must contain infinite 0,1 sequences which
are random ( i .e . , those which are associated with the measurement of
question observables). However, i t can be shown ([15],[1],[2]) that for
sufficiently strong definitions of randomness, there exist ZF models
which do not contain any random outcome sequences. In particular, for
randomness defined in terms of Borel sets which have codes in the
minimal standard transitive model M , or in terms of Borel se ts
which are ZF definable, M does not contain any such random
sequences.

One sees then that if a sufficiently strong definition of randomness
is correct, M cannot be a carrier for the mathematics of quantum
mechanics. However, if weaker definitions, for example, those given in
terms of recursively enumerable or hyperarithmetic Borel sets are
correct, then the above argument fails as all standard ZF models
contain sequences which are random according to these definitions.

It should be noted that the above argument i s much stronger for ZF
models as carriers for the mathematics of quantum mechanics than i t is
for classical mechanics. The reason is that in classical mechanics
randomness plays only a minor role, as s ta t i s t ica l fluctuations are a
consequence of an observer's lack of knowledge rather than something
more fundamental. In particular, for pure classical s tates, which are
the generators of all states, one single measurement of any observable
is sufficient to give a number to be compared with theory, and
repetitions need not be discussed. In quantum mechanics, randomness is
much more important. The reason is that even for pure states, for many
observables, s t a t i s t i c a l f luctuations of outcomes of repeated
measurements are present in principle and must be taken into account.

I t is thus seen that i t is important to prove rigorously which
definition of randomness is correct in the sense of being the weakest
allowable. If such a definition is sufficiently strong, some models of
ZF set theory can be excluded as carriers for the mathematics of
quantum mechanics. In this case physics would have something to say
about the foundations of mathematics at a deep level. However, if such
a definition is weaker, then one cannot exclude ZF models on the basis
of randomness and the above argument cannot be used to support a deep
relationship between the foundations of physics and mathematics.
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The above argument by which strong definitions of randomness exclude
the minimal model M can also be extended ([1],[2]) to the concept
of statistical independence of a sequence f from a sequence *. In
particular, corresponding to each definition of randomness one can give
a definition of statistical independence of one sequence from another.
One can then show that for strong definitions of statistical
independence, the Cohen extensions M [f]of M by any random
outcome sequence Y can also be excluded as carriers for the mathematics
of quantum mechanics. .

In conclusion, it should be stressed that the preceding argument is
an if-then statement. If. the correct definition of randomness is
sufficiently strong, then physics has something to say about the
foundations of mathematics. Nothing has been said about the more
important and difficult problems of showing how strong the definition,
which is correct in the sense defined in Section 2., must be.

As the discussion in Section 2. on the dependence of the strength of
the correct definition of randomness on the theory T has noted, it is
for very comprehensive theories that one has the best chance of showing
that the correct definition is sufficiently strong. It is felt that,
of the theories being used at present, only quantum mechanics, or some
extension of it, will be sufficiently comprehensive so that the
corresponding correct definition of randomness will be sufficiently
strong. However, one may have to await further development of the
theory of macroscopic systems in quantum mechanics. Then the
description of interacting systems may be sufficiently advanced to
describe systems which can be interpreted as one subsystem carrying out
repeated measurements on another type of subsystem. It may be possible
to prove that for such an extension of quantum mechanics, the
corresponding correct definition of randomness is sufficiently strong
to enable one to conclude that physics has something to say about the
foundations of mathematics. But this will have to await further
developments.
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Notes

The author wishes to thank Professors Paul Humphreys and
Geoffrey Hellman for useful and stimulating discussions on the subject
matter of thi3 paper.

2The equality Gt.̂  = 1Q3 is not needed for the proof.

It is sufficient to require that MG^ = M^G.

^The requirement that pg be pure i s not necessary. However,
i t avoids potential problems which would result from considering a
sequence of preparations of a mixed state as a mixed sequence of
preparation of different pure states.
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