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Abstract. We systematically study several versions of the disjunction and the existence
properties in modal arithmetic. First, we newly introduce three classes B, Δ(B), and Σ(B)
of formulas of modal arithmetic and study basic properties of them. Then, we prove several
implications between the properties. In particular, among other things, we prove that for any
consistent recursively enumerable extension T of PA(K) with T � �⊥, the Σ(B)-disjunction
property, the Σ(B)-existence property, and the B-existence property are pairwise equivalent.
Moreover, we introduce the notion of the Σ(B)-soundness of theories and prove that for
any consistent recursively enumerable extension of PA(K4), the modal disjunction property
is equivalent to the Σ(B)-soundness.

§1. Introduction. A theory or a logic T is said to have the disjunction property
(DP) if for any sentences ϕ and � in the language of T, if T � ϕ ∨ �, then T � ϕ or
T � �. This is a property that may be considered to represent the constructivity of
intuitionistic logic. Gödel [8] noted that the intuitionistic propositional logic has DP.
Gentzen [7] and Kleene [14] proved that the intuitionistic quantified logic and Heyting
arithmetic HA have DP, respectively. A property in arithmetic that is related to DP
is the (numerical) existence property. We say that a theory T of arithmetic has the
existence property (EP) if for any formula ϕ(x) that has no free variables except x, if
T � ∃xϕ(x), then T � ϕ(n) for some natural number n. Here n is the numeral for n.
Kleene [14] also proved that HA has EP. Moreover, Friedman [5] proved that for any
recursively enumerable (r.e.) extension T of HA, T has DP if and only if T has EP.

A similar situation has been shown to be true for modal arithmetic. Modal arithmetic
is a framework of arithmetic equipped with the unary modal operator �. Let LA and
LA(�) be the languages of arithmetic and modal arithmetic, respectively. A prominent
LA(�)-theory of modal arithmetic is EA (epistemic arithmetic) which is obtained by
adding S4 into Peano arithmetic PA. The theory EA was independently introduced
by Shapiro [21] and Reinhardt [19, 20]. In this framework, � is intended to represent
knowability or informal provability, and the language LA(�) has the expressive power
to make analyses about these concepts. Moreover, it was shown that HA is faithfully
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embeddable into EA via Gödel’s translation (cf. [4, 9, 21]). This result verifies Shapiro’s
suggestion that EA is a system about both classical and intuitionistic mathematics.
From his suggestion, EA may possess some constructive properties. A theory or a logic
T is said to have the modal disjunction property (MDP) if for any LA(�)-sentences
ϕ and �, if T � �ϕ ∨ ��, then T � ϕ or T � �. Also, T is said to have the modal
existence property (MEP) if for any LA(�)-formula ϕ(x) that has no free variables
except x, if T � ∃x�ϕ(x), then T � ϕ(n) for some natural number n. Then, Shapiro
[21] proved that EA has both MDP and MEP. Moreover, Friedman and Sheard [6]
proved that for any r.e. LA(�)-theory T extending EA, T has MDP if and only if T
has MEP.1

In the case of classical logic, DP is related to the completeness of theories. Indeed,
it is easy to see that a consistent theory T based on classical logic has DP if and only
if T is complete. Hence, Gödel–Rosser’s first incompleteness theorem is restated as
follows: For any consistent r.e. extension T of PA, T does not have DP. In this context,
Gödel–Rosser’s first incompleteness theorem can be strengthened. For a class Γ of
formulas, we say that a theory T has the Γ-disjunction property (Γ-DP) if for any Γ
sentences ϕ and �, if T � ϕ ∨ �, then T � ϕ or T � �. Also, T is said to have the
Γ-existence property (Γ-EP) if for any Γ formula ϕ(x) that has no free variables
except x, if T � ∃xϕ(x), then T � ϕ(n) for some natural number n. Then, it is shown
that for any consistent r.e. extension T of PA, T does not have Π1-DP (see [13]).
On the other hand, for extensions of PA, a similar situation to that of DP and EP in
intuitionistic logic has been shown to hold. That is, it is known that PA has both Σ1-DP
and Σ1-EP. Moreover, Guaspari [10] proved that Σ1-DP, Σ1-EP, and the Σ1-soundness
are pairwise equivalent for any consistent r.e. extension of PA.

In the usual proof of the incompleteness theorems, a provability predicate PrT (x),
that is, a Σ1 formula weakly representing the provability relation of a theory T plays
an important role. Besides the context in which � is intended as informal provability,
a modal logical study of the notion of formalized provability has been developed
by interpreting � in terms of PrT (x). One of the important results of this study is
Solovay’s arithmetical completeness theorem which states that if T is Σ1-sound, then
the propositional modal logic GL is exactly the logic of all T-verifiable principles [22].
In this framework, MDP also makes sense. It is known that GL enjoys MDP. Rather
than corresponding to some constructive property, this fact corresponds to the fact
that if T is Σ1-sound, then T � PrT (�ϕ�) ∨ PrT (���) implies T � ϕ or T � �.

Our motivation for the research in the present paper is to provide a unified viewpoint
on MDP and Γ-DP, which have been discussed in different contexts and frameworks.
In particular, we would like to unify the arguments on � as an informal provability
and � as a provability predicate. For this purpose, instead of fixing a modal logic such
as S4 or GL, we discuss the theory PA(L) obtained by adding an arbitrary normal
modal logic L to PA. In particular, K4 is a common sublogic of S4 and GL, and thus an
investigation for extensions of PA(K4) would be applicable to both of the two different
interpretations of �. For example, we prove that for any r.e. LA(�)-theory T extending
PA(K4), T has MDP if and only if T has MEP. This is a strengthening of the above
mentioned form of Friedman and Sheard’s result.

1 Actually, Friedman and Sheard proved this theorem for a wider class of LA(�)-theories.
This will be discussed in Remark 5.41.
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Fig. 1. Implications for consistent r.e. extensions T of PA(K4) with T � �⊥.

We would also like to analyze the possibility of applying existing methods for
studying properties such as Γ-DP to modal arithmetic. In particular, as suggested
by Guaspari’s result, MDP and MEP may be characterized by soundness with respect
to some class of LA(�)-formulas. For this reason, in the present paper, we introduce
three new classes B, Δ(B), and Σ(B) of LA(�)-formulas. Then, we prove that for any
consistent r.e. LA(�)-theory T extending PA(K4), T has MDP if and only if T is
Σ(B)-sound. We also provide a systematic analysis of the disjunction and the existence
properties in modal arithmetic, including investigations of DP and EP concerning these
new classes of formulas.

The present paper is organized as follows. In Section 2, we introduce several theories
of modal arithmetic and show that each of them is a conservative extension of PA.
In Section 3, we introduce three new classes B, Δ(B), and Σ(B) of LA(�)-formulas
and show some basic properties of these classes. Section 4 is devoted to the study of
B-DP, Δ(B)-DP, and related properties. In Section 5, we study Σ(B)-DP and related
properties. In particular, we prove that for any r.e. extension T of the theory PA(K), if
T � �⊥, then Σ(B)-DP, Σ(B)-EP, and B-EP are pairwise equivalent. From this result,
the equivalence of MDP and MEP for any consistent r.e. LA(�)-theory extending
PA(K4) is obtained. In Section 6, as generalizations of the notions of the soundness
and the Σ1-soundness ofLA-theories, we introduce the notions of theLA(�)-soundness
and the Σ(B)-soundness of LA(�)-theories. We study these notions precisely, and then,
we prove that for any consistent r.e. extension T of PA(K4), T has MDP if and only T
is Σ(B)-sound. This is a modal arithmetical analogue of Guaspari’s theorem. Figure 1
summarizes our results obtained in Sections 4–6. We also show some non-implications
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between the properties: Σ1-soundness does not imply (B,Σ1)-DP (Proposition 4.28),
Σ(B)-EP does not imply MDP (Proposition 6.65), and Σ(B)-DC does not imply B-DP
(Proposition 6.66). Finally, in the last section, we list several unsolved problems.

§2. Theories of modal arithmetic. We work within the framework of modal
arithmetic. The language LA(�) of modal arithmetic consists of logical connectives
⊥,∧,∨,→,¬, quantifiers ∀,∃, elements of the language LA = {0, S,+,×,≤,=} of
first-order arithmetic, and modal operator �. The formulas ϕ ↔ � and �ϕ are
abbreviations for (ϕ → �) ∧ (� → ϕ) and ¬�¬ϕ, respectively. A set of sentences
is called a theory. In the present paper, we always assume that the inference rules of
every LA(�)-theory are modus ponens (MP)

ϕ → � ϕ

�
, generalization (Gen)

ϕ

∀xϕ ,

and necessitation (Nec)
ϕ

�ϕ
. Since we will study modal arithmetic from a broader

perspective than just EA, we also deal with LA(�)-theories obtained by adding normal
modal propositional logics other than S4 into PA. Let PA� be the LA(�)-theory
obtained by adding the logical axioms of first-order logic for LA(�)-formulas and the
induction axioms for LA(�)-formulas into PA. Notice that the value of each LA-term
t(�x) can be effectively computed from the input �x, and thus universal instantiation
∀xϕ(x) → ϕ(t) (where t is an LA-term substitutable for x in ϕ), which is problematic
in modal predicate logic, is not a problem in our framework. As in [3, 6, 19, 21], we
adopt universal instantiation as an axiom scheme of PA�. Of course, this is not the
case in general framework (see [21, sec. 7]).

For each normal modal propositional logic L, let PA(L) denote the LA(�)-theory
obtained by adding universal closures of formulas corresponding to modal axioms of
L into PA�. We deal with the following LA(�)-theories.

• PA(K) = PA� + {∀�x(�(ϕ → �) → (�ϕ → ��)) | ϕ,� areLA(�)-formulas};
• PA(K4) = PA(K) + {∀�x(�ϕ → ��ϕ) | ϕ is an LA(�)-formula};
• PA(KT) = PA(K) + {∀�x(�ϕ → ϕ) | ϕ is an LA(�)-formula};
• PA(S4) = EA = PA(KT) + {∀�x(�ϕ → ��ϕ) | ϕ is an LA(�)-formula};
• PA(S5) = PA(S4) + {∀�x(�ϕ → ��ϕ) | ϕ is an LA(�)-formula};
• PA(Triv) = PA(K) + {∀�x(�ϕ ↔ ϕ) | ϕ is an LA(�)-formula};
• PA(GL) = PA(K4) + {∀�x(�(�ϕ → ϕ) → �ϕ) | ϕ is an LA(�)-formula};
• PA(Verum) = PA(K) + {�⊥}.

Interestingly, Došen [3, Lemma 7] proved that PA(S5) and PA(Triv) are deductively
equivalent.

Here we discuss the principle x = y → (ϕ(x) → ϕ(y)) of identity. Our system has
this principle only for atomic formulas ϕ(x) as identity axioms as in the case of
classical first-order logic. On the other hand, this principle for all LA(�)-formulas is
not generally valid in our framework because our language has the symbol �. Shapiro
[21] states that the following proposition holds for PA(S4).

Proposition 2.1.

1. PA(K) � x = y → �x = y.
2. For any LA(�)-formula ϕ(x), PA(K) � x = y → (ϕ(x) → ϕ(y)).

Proof. 1. Let ϕ(x, y) be the formula x = y → �x = y. Firstly, we prove PA� �
∀yϕ(0, y). Since PA � 0 = 0, we have PA� � �0 = 0, and hence PA� � ϕ(0, 0).
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Since PA � 0 �= S(y), we also have PA� � ϕ(0, S(y)), and thus PA� � ∀y(ϕ(0, y) →
ϕ(0, S(y))). By the induction axiom for ϕ(0, y), we obtain PA� � ∀yϕ(0, y).

Secondly, we prove PA(K) � ∀yϕ(x, y) → ∀yϕ(S(x), y). Since PA � S(x) �= 0,
we have PA� � ϕ(S(x), 0). It follows from PA � S(x) = S(y) → x = y that
PA� � ϕ(x, y) ∧ S(x) = S(y) → �x = y. Since PA � x = y → S(x) = S(y), we
have PA(K) � �x = y → �S(x) = S(y). Thus, we get

PA(K) � ϕ(x, y) ∧ S(x) = S(y) → �S(x) = S(y).

This means PA(K) � ϕ(x, y) → ϕ(S(x), S(y)). By the universal instantiation, we have
PA(K) � ∀yϕ(x, y) → ϕ(S(x), S(y)), and hence

PA(K) � ∀yϕ(x, y) → ∀y(ϕ(S(x), y) → ϕ(S(x), S(y))).

From this with PA� � ϕ(S(x), 0), we obtain PA(K) � ∀yϕ(x, y) → ∀yϕ(S(x), y) by
the induction axiom for ϕ(S(x), y).

Finally, by the induction axiom for ∀yϕ(x, y), we conclude PA(K) � ∀x∀yϕ(x, y).
2. This is proved by induction on the construction of ϕ(x). We only prove

the case that ϕ(x) is of the form ��(x) and the statement holds for �(x). By
the induction hypothesis, PA(K) � x = y → (�(x) → �(y)). Then, PA(K) proves
�x = y → (��(x) → ��(y)). By combining this with Clause 1, we conclude PA(K) �
x = y → (��(x) → ��(y)).

We say that a theory T is a subtheory of a theory U, U � T , if every axiom of T
is provable in U. Makinson’s theorem [17] states that every consistent normal modal
propositional logic L is a sublogic of Triv or Verum (see also [12]). Hence, every LA(�)-
theory of the form PA(L) for some consistent normal propositional modal logic L is a
subtheory of PA(Triv) or PA(Verum). We prove that every such logic is a conservative
extension of PA.

First, we prove that PA(Triv) is a conservative extension of PA. In order to prove
this, we introduce a translation α of LA(�)-formulas into LA-formulas.

Definition 2.2 (α-translation). We define a translation α of LA(�)-formulas into LA-
formulas inductively as follows:

1. If ϕ is an LA-formula, then α(ϕ) :≡ ϕ.
2. α preserves logical connectives and quantifiers.
3. α(�ϕ) :≡ α(ϕ).

It is obvious that for any LA(�)-formula ϕ, PA(Triv) � ϕ ↔ α(ϕ). Moreover:

Proposition 2.3. For any LA(�)-formula ϕ, if PA(Triv) � ϕ, then PA � α(ϕ).

Proof. We prove the proposition by induction on the length of proofs of ϕ in
PA(Triv).

• If ϕ is an axiom of PA, then α(ϕ) ≡ ϕ and PA � α(ϕ).
• If ϕ is a logical axiom, then so is α(ϕ), and it is PA-provable.
• Ifϕ is an induction axiom in the languageLA(�), thenα(ϕ) is also an induction

axiom in LA, and so PA � α(ϕ).
• If ϕ is ∀�x(�(� → �) → (�� → ��)), then α(ϕ) is the PA-provable sentence

∀�x((α(�) → α(�)) → (α(�) → α(�))
)
.

• If ϕ is ∀�x(� ↔ ��), then α(ϕ) is ∀�x(α(�) ↔ α(�)). This is provable in PA.
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• If ϕ is derived from � and � → ϕ by MP, then by the induction hypothesis,
PA � α(�) and PA � α(�) → α(ϕ), and hence PA � α(ϕ).

• If ϕ is derived from �(x) by Gen, then ϕ ≡ ∀x�(x). By the induction
hypothesis, PA � α(�(x)) and hence PA � ∀xα(�(x)). Therefore, PA � α(ϕ).

• If ϕ is derived from � by Nec, then ϕ ≡ ��. By the induction hypothesis,
PA � α(�). Since α(ϕ) ≡ α(�), we have PA � α(ϕ).

Let N be the standard model of arithmetic in the language LA. We say that an
LA(�)-theory T is LA-sound if for any LA-sentence ϕ, N |= ϕ whenever T � ϕ.

Corollary 2.4. PA(Triv) is a conservative extension of PA. In particular, PA(Triv) is
LA-sound.

Proof. Let ϕ be any LA-sentence such that PA(Triv) � ϕ. By Proposition 2.3, PA �
α(ϕ). Since α(ϕ) ≡ ϕ, PA � ϕ. Furthermore, by the LA-soundness of PA, PA(Triv) is
also LA-sound.

Next, we prove that PA(Verum) is a conservative extension of PA. We also introduce
another translation � .

Definition 2.5 (�-translation). We define a translation � of LA(�)-formulas into LA-
formulas inductively as follows:

1. If ϕ is an LA-formula, then �(ϕ) :≡ ϕ.
2. � preserves logical connectives and quantifiers.
3. �(�ϕ) :≡ 0 = 0.

As in the case of α, for any LA(�)-formula ϕ, PA(Verum) � ϕ ↔ �(ϕ). Moreover:

Proposition 2.6. For any LA(�)-formula ϕ, if PA(Verum) � ϕ, then PA � �(ϕ).

Proof. As in the proof of Proposition 2.3, this proposition is proved by induction
on the length of proofs of ϕ in PA(Verum). We only give proofs of the following three
cases:

• If ϕ is ∀�x(�(� → �) → (�� → ��)), then �(ϕ) is the PA-provable sentence
∀�x(0 = 0 → (0 = 0 → 0 = 0)).

• If ϕ is �⊥, then �(ϕ) is the PA-provable sentence 0 = 0.
• If ϕ is derived from � by Nec, then ϕ ≡ ��. Since �(ϕ) ≡ 0 = 0, this is

PA-provable.

Corollary 2.7. PA(Verum) is a conservative extension of PA. In particular,
PA(Verum) is LA-sound.

We close this section by showing that the notion of Σ1 formulas has a high affinity
with modal arithmetic. The following theorem is proved by applying a schematic proof
of formalized Σ1-completeness theorem (see [2, 16, 18]). This is also implicitly stated
in [6].

Theorem 2.8 (Formalized Σ1-completeness theorem). For any Σ1 formula ϕ, we have
PA(K) � ϕ → �ϕ.

Proof. Before proving the theorem, we show that for any Σ1 formula �, there exists
a Σ1 formula �′ such that PA � � ↔ �′, �′ does not contain the connectives ¬ and
→, and every atomic formula contained in �′ is of the form t1 = t2 for some LA-terms
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t1 and t2. First, we easily find a Σ1 formula �0 without the connective → such that �0

is logically equivalent to � and every negation symbol ¬ in �0 is applied to an atomic
formula. Then, by replacing every negated atomic formula ¬(t1 = t2) or ¬(t1 < t2)
of �0 by t1 < t2 ∨ t2 < t1 or t1 = t2 ∨ t2 < t1 respectively, we obtain a PA-equivalent
Σ1 formula �1 without having ¬. Finally, by replacing every atomic formula t1 < t2
of �1 by ∃y(t1 + S(y) = t2), we obtain a required equivalent Σ1 formula �′. Since
PA(K) � �� ↔ ��′, to prove the theorem, it suffices to show that PA(K) � ϕ → �ϕ
for any Σ1 formula ϕ such that it does not contain the connectives ¬ and →, and
that every atomic formula contained in ϕ is of the form t1 = t2 for some LA-terms
t1 and t2.

This theorem is proved by induction on the construction of ϕ. If ϕ is t1 = t2, then
PA(K) � t1 = t2 → �t1 = t2 follows from PA(K) � x = y → �x = y (Proposition
2.1) by substituting t1 and t2 into x and y, respectively. The cases for ∧, ∨, ∀x < t
and ∃ are proved as in the proof of Theorem 3.13.

§3. Classes of LA(�)-formulas. In first-order arithmetic, it is important to classify
LA-formulas according to the arithmetic hierarchy. In this section, we introduce
three classes B, Δ(B), and Σ(B) of LA(�)-formulas, and investigate basic properties
of formulas in these classes. Our classes Δ(B) and Σ(B) are modal arithmetical
counterparts of Δ0 and Σ1, respectively.

Definition 3.9 (B, Δ(B), and Σ(B)).

• Let B be the class of all LA(�)-formulas of the form �ϕ.
• Let Δ(B) be the smallest class of LA(�)-formulas satisfying the following

conditions:
1. Δ0 ∪ B ⊆ Δ(B).
2. If ϕ and � are in Δ(B), then so are ϕ ∧ �, ϕ ∨ �, ∀x < t ϕ and ∃x < t ϕ,

where t is an LA-term in which x does not occur.
• Let Σ(B) be the smallest class of LA(�)-formulas satisfying the following

conditions:
1. Σ1 ∪ B ⊆ Σ(B).
2. If ϕ and � are in Σ(B), then so are ϕ ∧ �, ϕ ∨ �, ∃xϕ and ∀x < t ϕ,

where t is an LA-term in which x does not occur.

We emphasize here that in some sense the class Σ(B) is a natural extension of the
class Σ1. For each r.e. theory T, let PrT (x) be a fixed Σ1 provability predicate of T.
In the context of interpreting � by PrT (x), each LA(�)-formula of the form �ϕ is
interpreted by a Σ1 formula, and hence every Σ(B) formula is also recognized as a Σ1

formula. From this perspective, we will attempt to extend the properties possessed by Σ1

formulas in first-order arithmetic to Σ(B) formulas in modal arithmetic. Note, however,
that Δ(B), unlike Δ0, is not closed under taking negation and implication. For example,
it can be shown that there is no Δ(B) sentence ϕ such that PA(K) � ¬�⊥ ↔ ϕ (see
Corollary 3.12).

The following proposition states that the relationship between Σ(B) and Δ(B) is
similar to the relationship between Σ1 and Δ0.

Proposition 3.10. For any Σ(B) formulaϕ, there exist a variable v and a Δ(B) formula
� such that PA� � ϕ ↔ ∃v�.
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Proof. We prove the proposition by induction on the construction of ϕ.

• If ϕ is Σ1, then there exists a Δ0 formula � such that PA � ϕ ↔ ∃v�.
• If ϕ is of the form �ϕ0, then ϕ ∈ Δ(B) and PA� � ϕ ↔ ∃vϕ for a variable v

not contained in ϕ.
• Let ◦ ∈ {∧,∨}. If ϕ is of the form ϕ0 ◦ ϕ1, then by the induction hypothesis,

there exist distinct variables v0 and v1 and Δ(B) formulas �0 and �1 such that
PA� proves ϕ0 ↔ ∃v0�0 and ϕ1 ↔ ∃v1�1. Let v be any variable that does
not occur in �0 or �1, and is not v0 or v1. Then, PA� proves the equivalence
ϕ ↔ ∃v ∃v0 < v ∃v1 < v (�0 ◦ �1).

• If ϕ is of the form ∃xϕ0, then by the induction hypothesis, there exist a variable
v0 and a Δ(B) formula �0 such that PA � ϕ0 ↔ ∃v0�0. Let v be any variable
not contained in �0 and is not v0 or x. Then, PA� proves the equivalence
ϕ ↔ ∃v ∃x < v ∃v0 < v �0.

• The case that ϕ is of the form ∃x < t ϕ0, where t is an LA-term in which x does
not occur is proved as in the proof of the case of ∃.

• Suppose ϕ is of the form ∀x < t ϕ0, where t is an LA-term in which x does
not occur. By the induction hypothesis, there exists a variable v0 and a Δ(B)
formula�0 such that PA� � ϕ0 ↔ ∃v0�0. Then, PA� � ϕ ↔ ∀x < t ∃v0�0. By
the collection principle for LA(�)-formulas derived from the induction axioms
for LA(�)-formulas, we obtain

PA� � ϕ ↔ ∃v ∀x < t ∃v0 < v �0

for some appropriate variable v.

Proposition 3.11. For any Δ(B) sentence ϕ, there exist a natural number k and
sentences �0, ... , �k–1 such that PA(K) � ϕ ↔

∨
i<k ��i . Here

∨
i<0 ��i denotes ⊥.

Proof. We prove the proposition by induction on the construction of ϕ.

• If ϕ is a Δ0 sentence, then either PA � ϕ or PA � ¬ϕ. Thus, PA(K) � ϕ ↔
�0 = 0 or PA(K) � ϕ ↔ ⊥.

• If ϕ is of the form ��, then the statement is trivial.
• If ϕ is of the form� ∧ �, then there exist sentences �0, ... , �k–1, �0, ... , �l–1 such

that PA(K) � � ↔
∨
i<k ��i and PA(K) � � ↔

∨
j<l ��j . Then, PA(K) �

ϕ ↔
∨
i<k

∨
j<l �(�i ∧ �j).

• If ϕ is of the form � ∨ �, then the statement is obvious by the induction
hypothesis.

• If ϕ is of the form ∃y < t �(y) for some LA-term t, then t is a closed term
because ϕ is a sentence. Let m be the value of t, then PA(K) � ϕ ↔

∨
i<m �(i).

Then, the statement holds by the induction hypothesis.
• If ϕ is of the form ∀y < t �(y) for some closed LA-term t, then for the value

m of the term t, PA(K) � ϕ ↔
∧
i<m �(i). We can prove the statement by the

induction hypothesis as in the proof of the case ∧.

Corollary 3.12. Let T be a theory extending PA(K) such thatT � �⊥ andT � ¬�⊥.
Then, there is no Δ(B) sentence ϕ such that T � ¬�⊥ ↔ ϕ.

Proof. Suppose, towards a contradiction, that ϕ is a Δ(B) sentence such that T �
¬�⊥ ↔ ϕ. By Proposition 3.11, there exist k and �0, ... , �k–1 such that PA(K) �
ϕ ↔

∨
i<k ��i . Then, T � ¬�⊥ ↔

∨
i<k ��i . Since T � �⊥, we get k > 0. Then,
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T � ��0 → ¬�⊥. On the other hand, T � ¬��0 → ¬�⊥ because T is an extension
of PA(K). Therefore, we obtain T � ¬�⊥. This is a contradiction.

We naturally extend Theorem 2.8 into the framework of modal arithmetic.

Theorem 3.13 (Formalized Σ(B)-completeness theorem). For anyϕ ∈ Σ(B), PA(K4) �
ϕ → �ϕ.

Proof. We prove the theorem by induction on the construction of ϕ.

• If ϕ is a Σ1 formula, then PA(K) � ϕ → �ϕ by Theorem 2.8.
• If ϕ is of the form ��, then PA(K4) � ϕ → �ϕ.
• If ϕ is � ∧ �, then by the induction hypothesis, PA(K4) � ϕ → �� ∧ ��. We

have PA(K4) � ϕ → �ϕ.
• If ϕ is � ∨ �, then by the induction hypothesis, PA(K4) proves � → �(� ∨ �)

and � → �(� ∨ �). Hence, PA(K4) � ϕ → �ϕ.
• Suppose that ϕ is ∃x�. Since PA(K) � � → ∃x�, we have PA(K) � �� →

�∃x�. By the induction hypothesis, PA(K4) � � → ��. Thus, PA(K4) � � →
�∃x�. Then, we obtain PA(K4) � ϕ → �ϕ.

• Before proving the case that ϕ is of the form ∀x < t �(x) generally, we prove
the restricted case that t is some variable y not occurring in �. Suppose that
ϕ(y) is of the form ∀x < y �(x) for some variable y not occurring in �(x).
Let �(y) be the formula ϕ(y) → �ϕ(y), and then we prove PA(K) � ∀y�(y)
by using the induction axiom.

For the base step, since trivially PA(K) � ∀x < 0�(x), we have PA(K) �
�ϕ(0) and hence PA(K) � �(0).

For the induction step, since

PA(K) � [∀x < S(y)�(x)] ↔ [(∀x < y �(x)) ∧ �(y)],

we have

PA(K) � ϕ(S(y)) ↔ [ϕ(y) ∧ �(y)]. (1)

By the induction hypothesis, PA(K4) � �(y) → ��(y). By combining this with
(1) and the definition of �(y),

PA(K4) � �(y) ∧ ϕ(S(y)) → �ϕ(y) ∧ ��(y).

Then, by (1) again,

PA(K4) � �(y) ∧ ϕ(S(y)) → �ϕ(S(y)).

Equivalently, PA(K4) � �(y) → �(S(y)).
Therefore, by the induction axiom, we conclude PA(K4) � ∀y�(y).
Finally, suppose that ϕ is of the form ∀x < t � for some LA-term t. We have

already proved that PA(K4) proves ∀x < y � → �∀x < y � for some variable y
not occurring in �. By substituting t for y in this formula, we obtain PA(K4) �
ϕ → �ϕ.

Corollary 3.14 (Σ(B)-deduction theorem). Let T be any extension of PA(K4) and
let X be any set of Σ(B) sentences. Then, for any LA(�)-formula ϕ, if T + X � ϕ, then
there exist �0, ... , �k–1 ∈ X such that T � �0 ∧ ··· ∧ �k–1 → ϕ.
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Proof. This is proved by induction on the length of a proof of ϕ in T + X . We only
give a proof of the case that ϕ is derived from� by the rule Nec. Then, ϕ is of the form
��. By the induction hypothesis, T � �0 ∧ ··· ∧ �k–1 → � for some �0, ... , �k–1 ∈ X .
Then, T � ��0 ∧ ··· ∧ ��k–1 → ��. By Theorem 3.13, T � �0 ∧ ··· ∧ �k–1 → ��.

§4. B-DP, Δ(B)-DP and related properties. We introduce several versions of the
partial disjunction property.

Definition 4.15. Let T be a theory and let Γ and Θ be classes of formulas.

• T is said to have the modal disjunction property (MDP) if for any sentences ϕ
and �, if T � �ϕ ∨ ��, then T � ϕ or T � �.

• T is said to have the modal existence property (MEP) if for any formulaϕ(x) that
has no free variables except x, if T � ∃x�ϕ(x), then for some natural number n,
T � ϕ(n).

• T is said to have the Γ-disjunction property (Γ-DP) if for any Γ sentences ϕ and
�, if T � ϕ ∨ �, then T � ϕ or T � �.

• T is said to have the Γ-existence property (Γ-EP) if for any Γ formula ϕ(x) that
has no free variables except x, if T � ∃xϕ(x), then for some natural number n,
T � ϕ(n).

• T is said to have the (Γ,Θ)-disjunction property ((Γ,Θ)-DP) if for any Γ sentence
ϕ and any Θ sentence �, if T � ϕ ∨ �, then T � ϕ or T � �.

• For n ≥ 2, T is said to have the n-fold B-disjunction property (Bn-DP) if for
any LA(�)-sentences ϕ1, ... , ϕn, if T � �ϕ1 ∨ ··· ∨ �ϕn, then T � �ϕi for some
i (1 ≤ i ≤ n).

• If T is r.e., then T is said to be Γ-disjunctively correct (Γ-DC) if for any Γ
sentence ϕ, if T � ϕ ∨ PrT (�ϕ�), then T � ϕ.

• We say that T is closed under the box elimination rule if for any sentence ϕ, if
T � �ϕ, then T � ϕ.

Here PrT (x) is a fixed natural Σ1 provability predicate of T. We also fix a primitive
recursive proof predicate PrfT (x, y) of T saying that y encodes a T-proof of x, whose
existence is guaranteed by Craig’s trick.

Of course, (Γ,Γ)-DP and B2-DP are exactly Γ-DP and B-DP, respectively. The
notion of Γ-DC was introduced in [15]. It is known that for any consistent r.e. extension
T of PA, T is Σ1-DC if and only if T is Σ1-sound (cf. [15]).

Proposition 4.16. Let T be any extension of PA(K).

1. For any n ≥ 2, if T has Bn+1-DP, then T also has Bn-DP.
2. T has Bn-DP for all n ≥ 2 if and only if T has Δ(B)-DP.

Proof. 1. Let ϕ1, ... , ϕn be any sentences such that T � �ϕ1 ∨ ··· ∨ �ϕn. Then, T �
�ϕ1 ∨ ··· ∨ �ϕn ∨ �ϕn. By Bn+1-DP, for some i (1 ≤ i ≤ n), we have T � �ϕi .

2. (⇒): Letϕ and� be any Δ(B) sentences such thatT � ϕ ∨ �. By Proposition 3.11,
there exist sentences ϕ0, ... , ϕk–1 and �0, ... , �l–1 such that T � ϕ ↔

∨
i<k �ϕi and

T � � ↔
∨
j<l ��j . Then, T �

∨
i<k �ϕi ∨

∨
j<l ��j . If k = 0 or l = 0, then we

easily obtain T � ϕ or T � �. Thus, we may assume both k and l are larger than 0.
Then, k + l ≥ 2. By Bk+l -DP, there exists i < k or j < l such that T � �ϕi or
T � ��j . Then, we obtain that T � ϕ or T � �.
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(⇐): We prove this implication by induction on n ≥ 2. Since B ⊆ Δ(B), T has B2-
DP. Suppose that T has Bn-DP and we would like to prove that T also has Bn+1-DP.
Let ϕ1, ... , ϕn, ϕn+1 be any sentences such that T � �ϕ1 ∨ ··· ∨ �ϕn ∨ �ϕn+1. Since
both �ϕ1 ∨ ··· ∨ �ϕn and �ϕn+1 are Δ(B) sentences, we have T � �ϕ1 ∨ ··· ∨ �ϕn or
T � �ϕn+1 by Δ(B)-DP. In the former case, we obtain T � �ϕi for some i (1 ≤ i ≤ n)
by the induction hypothesis. We have proved that T has Bn+1-DP.

The following proposition is immediate from the definitions.

Proposition 4.17. Let T be any LA(�)-theory.

1. T has MDP if and only if T has B-DP and is closed under the box elimination rule.
2. T has MEP if and only if T has B-EP and is closed under the box elimination rule.

We show that each existence property yields the corresponding disjunction property.

Proposition 4.18. Let T be any LA(�)-theory.

1. If T is an extension of PA(K) and T has MEP (resp. B-EP), then T has MDP
(resp. B-DP).

2. If T has Δ(B)-EP (resp. Σ(B)-EP), then T has Δ(B)-DP (resp. Σ(B)-DP).

Proof. We only give a proof of Clause 1 for MEP and MDP. Let ϕ and � be any
sentences such that T � �ϕ ∨ ��. Then, T � ∃x�

(
(x = 0 ∧ ϕ) ∨ (x �= 0 ∧ �)

)
. By

MEP, there exists a natural number n such that T � (n = 0 ∧ ϕ) ∨ (n �= 0 ∧ �). If
n = 0, T � ϕ; if n �= 0, T � �. Therefore, T has MDP.

In the literature so far, modal disjunction and existence properties in modal
arithmetic have been considered only for theories which are closed under the box
elimination rule. As shown in Proposition 4.17, if T is closed under the box elimination
rule, then MDP and B-DP are equivalent. Hence, MDP and B-DP have often been
identified in the literature. Since the present paper also deals with theories that are not
necessarily closed under the box elimination rule, we distinguish between MDP and
B-DP. In fact, as Figure 1 shows, there seems to be a large gap between the strength
of these properties.

We explore nontrivial implications between Δ(B)-DP, (Δ(B),Σ1)-DP, Δ(B)-DC,
B-DP, (B,Σ1)-DP, and B-DC.

Lemma 4.19. Let T be any r.e. extension of PA(K) having Bn+1-DP. Then, for any
LA(�)-sentencesϕ1, ... , ϕn and Σ1 sentence�, ifT � �ϕ1 ∨ ··· ∨ �ϕn ∨ �, thenT � �ϕi
for some i (1 ≤ i ≤ n) or T � �.

Proof. Suppose T � �ϕ1 ∨ ··· ∨ �ϕn ∨ � and T � �, and we would like to show
T � �ϕi for some i. We may assume that � is of the form ∃x	(x) for some Δ0 formula
	(x). Then, N |= ∀x¬	(x) because T � �. By the Fixed Point Lemma, for each i with
1 ≤ i ≤ n, let �0

i and �1
i be Σ1 sentences satisfying the following equivalences:

• PA � �0
i ↔ ∃x

((
	(x) ∨ PrfT (���1

i �, x)
)
∧ ∀y < x ¬PrfT (��(ϕi ∨ �0

i )�, y)
)

,

• PA � �1
i

↔ ∃y
(

PrfT (��(ϕi ∨ �0
i )�, y) ∧ ∀x ≤ y

(
¬	(x) ∧ ¬PrfT (���1

i �, x)
))

.

Then, for each i, we get PA � � → �0
i ∨ �1

i . Hence, we have

PA � � → �0
1 ∨ ··· ∨ �0

n ∨ (�1
1 ∧ ··· ∧ �1

n).
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By Theorem 2.8,

PA(K) � � → ��0
1 ∨ ··· ∨ ��0

n ∨ �(�1
1 ∧ ··· ∧ �1

n).

Hence,

PA(K) � � → �(ϕ1 ∨ �0
1) ∨ ··· ∨ �(ϕn ∨ �0

n) ∨ �(�1
1 ∧ ··· ∧ �1

n). (2)

On the other hand, for each i, we have PA(K) � �ϕi → �(ϕi ∨ �0
i ). From our

supposition, we obtain

T � �(ϕ1 ∨ �0
1) ∨ ··· ∨ �(ϕn ∨ �0

n) ∨ �.
By combining this with (2),

T � �(ϕ1 ∨ �0
1) ∨ ··· ∨ �(ϕn ∨ �0

n) ∨ �(�1
1 ∧ ··· ∧ �1

n).

By Bn+1-DP, we have T � �(ϕi ∨ �0
i ) for some i or T � �(�1

1 ∧ ··· ∧ �1
n). If T �

�(�1
1 ∧ ··· ∧ �1

n), then T � ��1
i for each i.

• If T � �(ϕi ∨ �0
i ) and T � ��1

i , then N |= �1
i by the choice of �1

i because
N |= ∀x¬	(x). Thus, T � �1

i by Σ1-completeness, and hence T � ��1
i . This is

a contradiction.
• If T � ��1

i and T � �(ϕi ∨ �0
i ), then N |= �0

i , and hence T � �0
i . Thus, T �

ϕi ∨ �0
i and hence T � �(ϕi ∨ �0

i ), a contradiction.

We have shown that in either case, for some i, both �(ϕi ∨ �0
i ) and ��1

i are provable
in T. Since PA � �1

i → ¬�0
i , we have T � �¬�0

i for such an i. Therefore, we conclude
T � �ϕi .

From Propositions 3.11 and 4.16 and Lemma 4.19, we obtain the following
proposition.

Proposition 4.20. Let T be any r.e. extension of PA(K).

1. If T has Δ(B)-DP, then T has (Δ(B),Σ1)-DP.
2. If T has B-DP, then T has (B,Σ1)-DP.

Proposition 4.21. Let T be any r.e. extension of PA(K) with T � �⊥. If T has
(B,Σ1)-DP, then T is Σ1-sound.

Proof. We prove the contrapositive. Suppose that T � �⊥ and T is not Σ1-sound.
Then, there exists a Δ0 formula 	(x) such that T � ∃x	(x) and N |= ∀x¬	(x). Let �0

and �1 be Σ1 sentences satisfying the following equivalences:

• PA � �0 ↔ ∃x
((
	(x) ∨ PrfT (��1�, x)

)
∧ ∀y < x ¬PrfT (���0�, y)

)
.

• PA � �1 ↔ ∃y
(

PrfT (���0�, y) ∧ ∀x ≤ y
(
¬	(x) ∧ ¬PrfT (��1�, x)

))
.

Since T � ∃x	(x), we have T � �0 ∨ �1. Therefore, T � (��0) ∨ �1 by Theorem 2.8.
Suppose, towards a contradiction, that T � ��0 or T � �1. Let p be the smallest T-

proof of ��0 or �1. If p is a proof of ��0, thenN |= �1 by the choice of �1. Hence,T � �1

and thus T � ��1. Since T � �0 ∧ �1 → ⊥, we have T � �⊥ because T � ��0 ∧ ��1.
This is a contradiction. If p is a proof of �1, then it is shown T � �0. This contradicts
the consistency of T. Thus, we have shown that T � ��0 and T � �1. This means that
T does not have (B,Σ1)-DP.
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Proposition 4.22. Let T be any consistent r.e. extension of PA(K) with T � �⊥ and
let Γ be a class of formulas with B ⊆ Γ. If T has (Γ,Σ1)-DP, then T is Γ-DC.

Proof. Suppose that T has (Γ,Σ1)-DP. Let ϕ be any Γ sentence such that T � ϕ ∨
PrT (�ϕ�). By (Γ,Σ1)-DP, T � ϕ or T � PrT (�ϕ�). Since B ⊆ Γ, by Proposition 4.21,
T is Σ1-sound. Thus, in either case, we obtain T � ϕ.

The converse implication also holds when Γ is B or Δ(B). In order to prove this,
we generalize the Fixed Point Lemma to modal arithmetic. It is proved by repeating a
well-known proof, and so we omit it (see [1]).

Lemma 4.23 (The Fixed Point Lemma). For any LA(�)-formulas ϕ0(x0, ... , xk–1),
..., ϕk–1(x0, ... , xk–1) with only the free variables x0, ... , xk–1, we can effectively find
LA(�)-sentences �0, ... , �k–1 such that for each i < k,

PA� � �i ↔ ϕi(��0�, ... , ��k–1�).

Moreover, for each i < k, if ϕi(x0, ... , xk–1) is a Σ(B) formula, then such a �i can be
found as a Σ(B) sentence.

Proposition 4.24. Let T be any r.e. extension of PA(K).

1. If T is Δ(B)-DC, then T has (Δ(B),Σ1)-DP.
2. If T is B-DC, then T has (B,Σ1)-DP.

Proof. We prove only Clause 1. Clause 2 is proved similarly. Suppose that T is
Δ(B)-DC. Let ϕ be any Δ(B) sentence and let 	(x) be any Δ0 formula such that
T � ϕ ∨ ∃x	(x) and T � ∃x	(x). We would like to show T � ϕ. In this case, N |=
∀x¬	(x). By Proposition 3.11, we may assume that ϕ is of the form ��0 ∨ ··· ∨ ��k–1.
By the Fixed Point Lemma, let �0, ... , �k–1 be LA(�)-sentences satisfying the following
equivalences for all i < k:

PA� � �i ↔
[
�i ∨ ∃x

(
	(x) ∧ ∀y < x ¬PrfT (���0 ∨ ··· ∨ ��k–1�, y)

)]
.

Since PA� � �i → �i , we have PA(K) � ��i → ��i . Also,

PA(K) � ∃x	(x)∧¬PrT (���0 ∨ ··· ∨ ��k–1�)

→ ∃x
(
	(x) ∧ ∀y < x ¬PrfT (���0 ∨ ··· ∨ ��k–1�, y)

)
,

→ PrT
(
�∃x

(
	(x) ∧ ∀y < x ¬PrfT (���0 ∨ ··· ∨ ��k–1�, y)

)
�
)
,

→ PrT (��i�).

Since PA(K) � PrT (��i�) → PrT (���i�) because PA can prove that the consequences
of T are closed under the rule Nec, we obtain PA(K) � PrT (��i�) → PrT (���0 ∨ ··· ∨
��k–1�). Thus, we have

PA(K) �
[
∃x	(x) ∧ ¬PrT (���0 ∨ ··· ∨ ��k–1�)

]
→ PrT (���0 ∨ ··· ∨ ��k–1�),

and hence

PA(K) � ∃x	(x) → PrT (���0 ∨ ··· ∨ ��k–1�).

Then, by combining this with our assumption that T � ��0 ∨ ··· ∨ ��k–1 ∨ ∃x	(x),
we obtain

T � ��0 ∨ ··· ∨ ��k–1 ∨ PrT (���0 ∨ ··· ∨ ��k–1�).
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By Δ(B)-DC, we have

T � ��0 ∨ ··· ∨ ��k–1. (3)

Since

N |= ∃y
(
PrfT (���0 ∨ ··· ∨ ��k–1�, y) ∧ ∀x ≤ y ¬	(x)

)
,

this sentence is provable in PA(K). Thus,

PA(K) � ¬∃x
(
	(x) ∧ ∀y < x ¬PrfT (���0 ∨ ··· ∨ ��k–1�, y)

)
.

Then, by the choice of �i , PA(K) � �i → �i for each i. From (3), we conclude T �
��0 ∨ ··· ∨ ��k–1 and hence T � ϕ.

In the statements of Propositions 4.21 and 4.22, the condition “T � �⊥” is assumed.
On the other hand, for consistent theories T with T � �⊥, the situation changes.
Indeed, every B formula is provable in such a theory T. Thus, T does not have MDP
and MEP. Also, every Δ(B) formula is T-provably equivalent to some Δ0 formula.
Moreover, every Δ(B) sentence ϕ is either provable or refutable in T. Therefore, we
obtain the following proposition.

Proposition 4.25. Let T be any extension of PA(Verum). Then, T has Δ(B)-DP,
(Δ(B),Σ1)-DP, and B-EP. Also, T is B-DC.

From Propositions 4.22, 4.24, and 4.25, we have:

Corollary 4.26. Let T be any consistent r.e. extension of PA(K).

1. If T � �⊥, then T has (Δ(B),Σ1)-DP if and only if T is Δ(B)-DC.
2. T has (B,Σ1)-DP if and only if T is B-DC.

For consistent r.e. extensions of PA(Verum), Δ(B)-DC is strictly weaker than Σ1-
soundness.

Proposition 4.27. Let T be any consistent r.e. extension of PA(Verum). Then, the
following are equivalent:

1. T is Δ(B)-DC.
2. T � ¬ConT .

Proof. (1 ⇒ 2): Suppose that T is Δ(B)-DC. Since T � ⊥, we obtain T �

PrT (�⊥�) ∨ ⊥. Hence, T � ¬ConT .
(2 ⇒ 1): Suppose T � ¬ConT . Let ϕ be any Δ(B) sentence with T � PrT (�ϕ�) ∨ ϕ.

If T � ¬ϕ, then ϕ is T-equivalent to ⊥. We have T � PrT (�⊥�) ∨ ⊥, and so T �
¬ConT . This is a contradiction. Therefore, T � ϕ.

There are LA-sound theories that do not have even (B,Σ1)-DP.

Proposition 4.28. 1. PA(Triv) does not have (B,Σ1)-DP.
2. Let T be any r.e. theory such that PA(Verum) � T � PA(K4) and let U := T +

{PrT (��⊥�) ∨ �⊥}. If T � �⊥, then U is LA-sound but is not B-DC.

Proof. 1. Let ϕ be a Π1 Gödel sentence of PA. Since PA � ϕ ∨ ¬ϕ, we have
PA(Triv) � �ϕ ∨ ¬ϕ. Since PA(Triv) is a conservative extension of PA (Corollary
2.4), PA(Triv) � ϕ and PA(Triv) � ¬ϕ. Then, PA(Triv) � �ϕ and PA(Triv) � ¬ϕ.
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2. Since U is a subtheory of PA(Verum), U is LA-sound by Corollary 2.7. SinceU �
PrT (��⊥�) ∨ �⊥, we haveU � PrU (��⊥�) ∨ �⊥. Suppose, towards a contradiction,
U � �⊥. Since PrT (��⊥�) ∨ �⊥ is a Σ(B) sentence, T � PrT (��⊥�) ∨ �⊥ → �⊥ by
the Σ(B)-deduction theorem (Corollary 3.14). In particular, T � PrT (��⊥�) → �⊥.
By Löb’s theorem, T � �⊥. This is a contradiction. Therefore, U � �⊥. Hence, U is
not B-DC.

§5. Σ(B)-DP and related properties. First of all, we consider the case that T
proves �⊥.

Proposition 5.29. Let T be any consistent r.e. extension of PA(Verum). Then, the
following are equivalent:

1. T is Σ1-sound.
2. T has Σ(B)-DP.
3. T has (Σ(B),Σ1)-DP.
4. T has Σ(B)-EP.
5. T has Δ(B)-EP.
6. T is Σ(B)-DC.

Proof. Since every Σ(B) (resp. Δ(B)) formula is T-provably equivalent to some
Σ1 (resp. Δ0) formula, we have (2 ⇔ 3). Also by Guaspari’s theorem [10] on the
equivalence of the Σ1-soundness and Σ1-DP, the equivalence (1 ⇔ 2) holds. Moreover,
since the implications “Σ1-sound ⇒ Σ1-EP,” “Σ1-EP ⇒ Δ0-EP,” and “Δ0-EP ⇒ Σ1-
sound” are easily verified, we obtain that Clauses 1, 4, and 5 are pairwise equivalent.
Finally, since the equivalence of the Σ1-soundness and Σ1-DC is shown in [15], we get
(1 ⇔ 6).

Corollary 5.30. PA(Verum) has Σ(B)-EP but does not have MDP.

Proof. Since PA(Verum) is Σ1-sound by Corollary 2.7, PA(Verum) has Σ(B)-EP. On
the other hand, PA(Verum) � �⊥ and PA(Verum) � ⊥, and thus PA(Verum) does not
have MDP.

We then discuss theories in which �⊥ is not necessarily provable. Unlike the cases of
Δ(B) and B (Proposition 4.20), (Σ(B),Σ1)-DP directly follows from Σ(B)-DP because
Σ1 ⊆ Σ(B). Also, as in the cases of Δ(B) and B (Proposition 4.24), we obtain the
following proposition.

Proposition 5.31. Let T be any r.e. LA(�)-theory extending PA. If T is Σ(B)-DC,
then T has (Σ(B),Σ1)-DP.

Proof. Suppose that T is Σ(B)-DC. Let ϕ be any Σ(B) sentence and let 	(x) be any
Δ0 formula such that T � ϕ ∨ ∃x	(x) and T � ∃x	(x). We would like to show T � ϕ.
In this case, N |= ∀x¬	(x). Let � be a Σ1 sentence satisfying

PA � � ↔ ∃x
(
	(x) ∧ ∀y < x ¬PrfT (�ϕ ∨ ��, y)

)
. (4)

Since T is an extension of PA and � is Σ1, we have PA � � → PrT (���), and hence
PA � � → PrT (�ϕ ∨ ��). By the equivalence (4), we obtain

PA � ∃x	(x) ∧ ¬PrfT (�ϕ ∨ ��) → �.
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It follows PA � ∃x	(x) ∧ ¬PrfT (�ϕ ∨ ��) → PrT (�ϕ ∨ ��), and hence

PA � ∃x	(x) → PrfT (�ϕ ∨ ��).

Since T � ϕ ∨ ∃x	(x), we obtain T � (ϕ ∨ �) ∨ PrT (�ϕ ∨ ��). Since ϕ ∨ � is a Σ(B)
sentence, by Σ(B)-DC, we have T � ϕ ∨ �. Since N |= ∀x¬	(x), N |= ∃y

(
PrfT (�ϕ ∨

��, y) ∧ ∀x ≤ y ¬	(x)
)

and this is provable in T. Then, T � ¬�, and thus T � ϕ.

From Propositions 4.22, 5.29, and 5.31, we obtain the following corollary.

Corollary 5.32. For any r.e. extension T of PA(K), T has (Σ(B),Σ1)-DP if and only
if T is Σ(B)-DC.

Before proving our main theorem of this section, we prepare some notations and
lemmas.

Definition 5.33. For each Σ(B) formula ϕ, we define the LA(�)-formula ϕ– inductively
as follows:

1. If ϕ is Σ1, then ϕ– :≡ ϕ.
2. If ϕ is of the form ��, then ϕ– :≡ �.
3. Otherwise ifϕ is of the form� ∧ �,� ∨ �,∃x� or∀x < t �, thenϕ– is respectively
�– ∧ �–, �– ∨ �–, ∃x�– or ∀x < t �–.

The operation (·)– removes the outermost � of nested occurrences of �’s in
the formula. For example, (��ϕ ∨ ��)– is �ϕ ∨ �. The following lemma is a
strengthening of Theorem 2.8.

Lemma 5.34. For any Σ(B) formula ϕ, PA(K) � ϕ → �(ϕ–).

Proof. This lemma is proved by induction on the construction of ϕ as in the proof
of Theorem 3.13. Notice that if ϕ is of the form ��, then ϕ– ≡ � and thus PA(K) �
ϕ → �(ϕ–) holds.

Definition 5.35. For each Δ(B) formulaϕ(�x), we define the Δ(B) formulaϕ∗(�x, �v) with
zero or more additional free variables �v which do not occur in ϕ(�x) inductively as follows:

1. If ϕ(�x) is either Δ0 or of the form ��(�x), then ϕ∗(�x) :≡ ϕ(�x).
2. Otherwise if ϕ(�x) is of the form �(�x) ∧ �(�x), then ϕ∗(�x, �u, �v) :≡ �∗(�x, �u) ∧
�∗(�x, �v) where �u and �v are pairwise disjoint.

3. Otherwise if ϕ(�x) is of the form �(�x) ∨ �(�x), then

ϕ∗(�x, �u, �v,w) :≡
[(
w = 0 ∧ �∗(�x, �u)

)
∨

(
w �= 0 ∧ �∗(�x, �v))

]
,

where �u, �v, and w are pairwise disjoint.
4. Otherwise if ϕ(�x) is of the form ∀y < t �(�x, y), then ϕ∗(�x, �v) :≡ ∀y <
t �∗(�x, y, �v).

5. Otherwise if ϕ(�x) is of the form ∃y < t �(�x, y), then ϕ∗(�x, �v,w) is the formula
∃y < t (y = w ∧ �∗(�x, y, �v)).

From the definition, we can easily prove the following lemma by induction on the
construction of ϕ(�x) ∈ Δ(B).

Lemma 5.36. For any Δ(B) formula ϕ(�x), PA� � ϕ(�x) ↔ ∃�vϕ∗(�x, �v).

The following lemma is an important feature of our two transformations – and ∗.

https://doi.org/10.1017/S1755020322000363 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000363


194 TAISHI KURAHASHI AND MOTOKI OKUDA

Lemma 5.37. Let T be any r.e. extension of PA(K) such that T � �⊥. For any Δ(B)
sentence ϕ, if there exist numbers �p such that T � �(ϕ∗)–(�p), then T � ϕ.

Proof. We prove the lemma by induction on the construction of ϕ.

• If ϕ is a Δ0 sentence, then (ϕ∗)– ≡ ϕ– ≡ ϕ. Suppose T � �(ϕ∗)–, i.e., T � �ϕ.
If N |= ¬ϕ, then T � ¬ϕ and T � �¬ϕ. We have T � �⊥, a contradiction.
Hence, N |= ϕ. We conclude T � ϕ.

• If ϕ is of the form ��, then (ϕ∗)– ≡ (��)– ≡ �. Suppose T � �(ϕ∗)–. Then,
T � ϕ.

• If ϕ is of the form � ∧ �, then (ϕ∗)–(�u, �v) ≡ (�∗)–(�u) ∧ (�∗)–(�v). Suppose
T � �(ϕ∗)–(�p, �q). Then,T � �(�∗)–(�p) andT � �(�∗)–(�q). By the induction
hypothesis, T � � and T � �. We conclude T � ϕ.

• If ϕ is of the form � ∨ �, then

(ϕ∗)–(�u, �v,w) ≡
[(
w = 0 ∧ (�∗)–(�u)

)
∨

(
w �= 0 ∧ (�∗)–(�v))

]
.

Suppose T � �(ϕ∗)–(�p, �q, r). Then,

T � �

[(
r = 0 ∧ (�∗)–(�p)

)
∨

(
r �= 0 ∧ (�∗)–(�q))

]
.

If r = 0, then T � �(�∗)–(�p). By the induction hypothesis, T � �. If r �= 0,
thenT � �(�∗)–(�q). By the induction hypothesis,T � �. In either case,T � ϕ.

• Ifϕ is of the form ∀x < t �(x) for someLA-term t, then (ϕ∗)–(�v) is the formula
∀x < t (�∗)–(�v, x). Sinceϕ is a sentence, t is a closed term. Let k be the value of
the term t and suppose T � �(ϕ∗)–(�p). Then, for all n < k, T � �(�∗)–(�p, n).
By the induction hypothesis, T � �(n). We obtain T � ϕ.

• If ϕ is of the form ∃x < t �(x) for some closed term t, then

(ϕ∗)–(�v,w) ≡ ∃x < t
(
x = w ∧ (�∗)–(�v, x)

)
.

Suppose T � �(ϕ∗)–(�p, q). Then, T � �∃x < t
(
x = q ∧ (�∗)–(�p, x)

)
. Since

T � �⊥, the value of t is larger than q. SinceT � �(�∗)–(�p, q), by the induction
hypothesis, T � �(q). Then, T � ∃x < t �(x), that is, T � ϕ.

We are ready to prove our main theorem of this section.

Theorem 5.38. Let T be any r.e. extension of PA(K) such that T � �⊥. Then, the
following are equivalent:

1. T has Δ(B)-DP and (Σ(B),Σ1)-DP.
2. T has B-EP.
3. T has Σ(B)-EP.
4. T has Σ(B)-DP.

Proof. (1 ⇒ 2): Let ϕ(x) be any LA(�)-formula with no free variables except
possibly x, such that T � ∃x�ϕ(x). By the Fixed Point Lemma, let � be a Σ(B)
sentence satisfying

PA� � � ↔ ∃x
(
�ϕ(x) ∧ ∀y < x ¬PrfT (���, y)

)
.
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Since PA� � ∃x�ϕ(x) ∧ ¬PrT (���) → �, we have T � PrT (���) ∨ �. Since T is
Σ(B)-DC by Corollary 5.32, we obtain T � �. By the choice of �,

T � ∃x
(
�ϕ(x) ∧ ∀y < x ¬PrfT (���, y)

)
. (5)

Let p be a proof of� in T, then T � PrfT (���, p) and thus T � ∃x ≤ p�ϕ(x) by (5).
Then, T � �ϕ(0) ∨ ··· ∨ �ϕ(p). Since T has Bp+1-DP by Proposition 4.16.2, there
exists k ≤ p such that T � �ϕ(k). Therefore, T has B-EP.

(2 ⇒ 3): Let ϕ(x) be any Σ(B) formula without having free variables except x such
that T � ∃xϕ(x). By Proposition 3.10, there exists a Δ(B) formula �(x, y) such that
PA� � ϕ(x) ↔ ∃y�(x, y). Also, by Lemma 5.36, PA� � �(x, y) ↔ ∃�v�∗(x, y, �v).
Then, T � ∃x∃y∃�v�∗(x, y, �v) and

T � ∃w ∃x ≤ w ∃y ≤ w ∃�v ≤ w (
w = 〈x, y, �v〉 ∧ �∗(x, y, �v)).

Here 〈x, y, �v〉 is an appropriate iteration of usual Δ0 representable bijective pairing
function 〈·, ·〉. We may assume that PA proves x≤〈x, y〉 and y≤〈x, y〉. By
Lemma 5.34,

T � ∃w �∃x ≤ w ∃y ≤ w ∃�v ≤ w (
w = 〈x, y, �v〉 ∧ (�∗)–(x, y, �v)).

By B-EP, there exists a natural number k such that

T � �∃x ≤ k ∃y ≤ k ∃�v ≤ k (
k = 〈x, y, �v〉 ∧ (�∗)–(x, y, �v)).

For the unique p, q, and �r such that k = 〈p, q, �r〉,
T � �(�∗)–(p, q, �r).

By Lemma 5.37, we obtain T � �(p, q). Then, T � ϕ(p). Therefore, T has Σ(B)-EP.
(3 ⇒ 4): By Proposition 4.18.2.
(4 ⇒ 1): This is trivial.

In order to derive the equivalence of MDP and MEP from Theorem 5.38, we prove
a proposition that connects MDP (resp. MEP) and Σ(B)-DP (resp. Σ(B)-EP).

Proposition 5.39. Let T be any r.e. extension of PA(K4).

1. If T has MDP, then T also has Σ(B)-DP.
2. If T has MEP, then T also has Σ(B)-EP.

Proof. 1. Letϕ and� be any Σ(B) sentences such thatT � ϕ ∨ �. By Theorem 3.13,
T � �ϕ ∨ ��. By MDP, we obtain T � ϕ or T � �. Therefore, T has Σ(B)-DP.

Clause 2 is proved similarly.

Corollary 5.40. For any r.e. extension T of PA(K4), T has MDP if and only if T has
MEP.

Proof. Since MEP implies MDP by Proposition 4.18.1, it suffices to show that MDP
implies MEP. We may assume that T is consistent. If T has MDP, then T has Σ(B)-DP
by Proposition 5.39. Also, T is closed under the box elimination rule by Proposition
4.17. Then, T � �⊥ by the consistency of T. By Theorem 5.38, T has B-EP. By
Proposition 4.17 again, we conclude that T has MEP.

Remark 5.41. In the introduction, we imprecisely mentioned the result of Friedman
and Sheard [6]. Firstly, Friedman and Sheard actually proved their theorem in the setting
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where the use of the rule Nec and the axiom ∀�x(�(ϕ → �) → (�ϕ → ��)) is restricted,
that is, in the non-normal setting. In our normal setting, the following result follows from
their theorem: For any r.e. extension T of PA(K4) + {∀�x�(�ϕ → ϕ) | ϕ ∈ Δ0}, if T is
closed under the box elimination rule, then T has B-DP if and only if T has B-EP. Then,
in the light of Proposition 4.17, this statement can be rewritten as follows: For any r.e.
extension T of PA(K4) + {∀�x�(�ϕ → ϕ) | ϕ ∈ Δ0}, T has MDP if and only if T has
MEP. Therefore, our Corollary 5.40 shows that the same consequence is obtained without
using the axiom scheme {∀�x�(�ϕ → ϕ) | ϕ ∈ Δ0}. Notice that by Theorem 2.8, over
PA(K), {∀�x�(�ϕ → ϕ) | ϕ ∈ Δ0} is equivalent to a single sentence �¬�⊥.

§6. Generalizations of the notions of soundness and Σ1-soundness. In this section,
we introduce several notions related to the soundness of theories of modal arithmetic
with respect to LA(�)-sentences. This section consists of three subsections. In the first
subsection, we introduce the notion of the LA(�)-soundness and prove that several
LA(�)-theories are actually LA(�)-sound. In the second subsection, we introduce the
notions of the Σ(B)-soundness and the weak Σ(B)-soundness. Then, we prove that over
appropriate theories, the Σ(B)-soundness and the weak Σ(B)-soundness characterize
MDP and Σ(B)-DP, respectively. In the last subsection, we prove two non-implications
between the properties as applications of the results we have obtained so far.

6.1. LA(�)-soundness. We formulate the notion of the LA(�)-soundness under the
interpretation that boxed formulas represent the provability of some formula in the
standard model N of arithmetic. To do so, we once translate each LA(�)-sentence
into an LA-sentence using a provability predicate, and then consider the truth of the
translated sentence in N. First, we introduce two types of translations 
T and 
′T .

Definition 6.42 (
-translations). Let T be any r.e.LA(�)-theory. We define a translation

T of LA(�)-formulas into LA-formulas inductively as follows:

1. If ϕ is an LA-formula, then 
T (ϕ) :≡ ϕ.
2. 
T preserves logical connectives and quantifiers.
3. 
T (�ϕ(�x)) :≡ PrT (�ϕ( �̇x)�).

Here �ϕ( �̇x)� is a primitive recursive term corresponding to a primitive recursive
function calculating the Gödel number of ϕ(�n) from �n. Note that �x are free variables
in the formula PrT (�ϕ( �̇x)�).

Definition 6.43 (
′-translations). Let T be any r.e. LA(�)-theory. We define a
translation 
′T of LA(�)-formulas into LA-formulas inductively as follows:

1. If ϕ is an LA-formula, then 
′T (ϕ) :≡ ϕ.
2. 
′T preserves logical connectives and quantifiers.
3. 
′T (�ϕ(�x)) :≡ PrT (�ϕ( �̇x)�) ∧ 
′T (ϕ(�x)).

The translation 
′T is a formalization of Shapiro’s slash interpretation [21],
introduced in [11] under the name �T .

Definition 6.44. Let T be any r.e. LA(�)-theory.

• T is said to be LA(�)-sound if for any LA(�)-sentence ϕ, if T � ϕ, then N |=

T (ϕ).
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• T is said to be alternatively LA(�)-sound if for any LA(�)-sentence ϕ, if T � ϕ,
then N |= 
′T (ϕ).

Actually, these two notions are equivalent.

Proposition 6.45. For any r.e. LA(�)-theory T, the following are equivalent:

1. T is LA(�)-sound.
2. T is alternatively LA(�)-sound.

Proof. (1 ⇒ 2): Suppose that T is LA(�)-sound. We prove by induction on the
construction of ϕ that for all LA(�)-sentences ϕ, N |= 
T (ϕ) ↔ 
′T (ϕ). If ϕ is
an atomic LA-sentence, then 
T (ϕ) coincides with 
′T (ϕ). The cases for Boolean
connectives are easy.

If ϕ is of the form ∀x�(x), then for any natural number n, N |= 
T (�(n)) ↔

′T (�(n)) by the induction hypothesis. Then, N |= ∀x

(

T (�(x)) ↔ 
′T (�(x)

)
and

hence N |= ∀x
T (�(x)) ↔ ∀x
′T (�(x)). This means N |= 
T (ϕ) ↔ 
′T (ϕ).
Suppose that ϕ is of the form ��. Since 
T (��) is PrT (���), by the LA(�)-

soundness of T, N |= 
T (��) if and only if N |= PrT (���) ∧ 
T (�). By the induction
hypothesis, N |= PrT (���) ∧ 
T (�) if and only if N |= PrT (���) ∧ 
′T (�). Thus, N |=

T (��) ↔ 
′T (��).

(2 ⇒ 1): Suppose that T is alternatively LA(�)-sound. Similarly, we only prove
that for all LA(�)-sentences �, N |= 
′T (��) ↔ 
T (��). N |= 
′T (��) is equivalent
to N |= PrT (���) ∧ 
′T (�). Then, by the alternative LA(�)-soundness of T, this is
equivalent to N |= PrT (���). This is exactly N |= 
T (��).

Here we show some propositions that help to prove the LA(�)-soundness of each
LA(�)-theory.

Proposition 6.46. Let T be an LA(�)-theory obtained by adding some axioms of
PA(GL) into PA�. For any LA(�)-formula ϕ, if T � ϕ, then for any r.e. extension U of
T, PA � 
U (ϕ).

Proof. Let U be any r.e. extension of T. As in the proof of Proposition 2.3, by
induction on the length of proofs of ϕ in T, we prove that for any LA(�)-formula ϕ,
if T � ϕ, then PA � 
U (ϕ). We only give proofs of the following four cases.

• If ϕ is ∀�x(�(�(�x) → �(�x)) → (��(�x) → ��(�x))
)
, then 
U (ϕ) is

∀�x(PrU (��( �̇x) → �( �̇x)�) → (PrU (��( �̇x)�) → PrU (��( �̇x)�))
)
,

and this is provable in PA.
• If ϕ is ∀�x(��(�x) → ���(�x)

)
, then 
U (ϕ) is

∀�x(PrU (��( �̇x)�) → PrU (���( �̇x)�)
)
.

Since PA proves the fact that the consequences of U are closed under the rule
Nec, this sentence is provable in PA.

• If ϕ is ∀�x(�(��(�x) → �(�x)) → ��(�x)
)
, then we reason as follows: By

invoking Nec,

PA � PrU (���( �̇x) → �( �̇x)�) → PrU (��(��( �̇x) → �( �̇x))�).

Since U is an extension of T, we have PA � PrU (�ϕ�) and hence

PA � PrU (��(��( �̇x) → �( �̇x))�) → PrU (���( �̇x)�).
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Then,

PA � PrU (���( �̇x) → �( �̇x)�) → PrU (���( �̇x)�),

and thus

PA � PrU (���( �̇x) → �( �̇x)�) → PrU (��( �̇x)�).

This means PA � 
U (ϕ).
• If ϕ(�x) is derived from �(�x) by Nec, then ϕ(�x) ≡ ��(�x). Since U � �(�x),

PA � PrU (��( �̇x)�). Thus, PA � 
U (ϕ(�x)).

Proposition 6.47. Let T be an LA(�)-theory obtained by adding some axioms of
PA(GL) into PA�, and let U be any r.e. extension of T. If N |= 
U (ϕ) for all ϕ ∈ U \ T ,
then U is LA(�)-sound.

Proof. Suppose that N |= 
U (ϕ) for all ϕ ∈ U \ T . We prove by induction on the
length of a proof of ϕ in U that for all LA-formulas ϕ, ifU � ϕ, then N |= 
U (∀�xϕ).

• If ϕ is an axiom of T or a logical axiom, then PA � 
U (∀�xϕ) by Proposition
6.46. Thus, N |= 
U (∀�xϕ).

• If ϕ is in U \ T , then N |= 
U (ϕ) by the supposition.
• If ϕ is derived from � and � → ϕ by MP, then by the induction hypothesis,

N |= 
U (∀�x�) and N |= 
U (∀�x(� → ϕ)). Then, N |= 
U (∀�xϕ).
• If ϕ is derived from �(y) by Gen, then ϕ ≡ ∀y�(y). By the induction

hypothesis, N |= 
U (∀�x∀y�(y)). Hence, N |= 
U (∀�xϕ).
• If ϕ is derived from � by Nec, then ϕ ≡ �� and U � �. We have N |=

∀�x PrU (���), and equivalently N |= 
U (∀�xϕ).

Corollary 6.48. The theories PA�, PA(K), PA(K4), and PA(GL) are LA(�)-sound.

Here, we give some more examples of LA(�)-sound theories. Let x ∈Wy be a Σ1

formula saying that x is in the y-th r.e. set. Reinhardt’s Weak Mechanistic Thesis
(WMT) is the following schema:

• ∃y∀x
(
�ϕ(x) ↔ x ∈Wy

)
, where ϕ(x) is an LA(�)-formula having lone free

variable x.

When � is interpreted as knowledge, WMT can be thought as a formalization of
“Knowledge is mechanical.” Concerning WMT, we obtain the following corollary to
Proposition 6.47.

Corollary 6.49. Let T be an r.e. LA(�)-theory obtained by adding some axioms of
PA(GL) into PA�. Then, the theory U := T + WMT is LA(�)-sound.

Proof. Since PrU (�ϕ(ẋ)�) is a Σ1 formula, there exists a natural number e such that

N |= ∀x
(
PrU (�ϕ(ẋ)�) ↔ x ∈We

)
.

Then, we have N |= 
U
(
∃y∀x

(
�ϕ(x) ↔ x ∈Wy

))
. By Proposition 6.47, the theory

U is LA(�)-sound.

We prove an analogue of Proposition 6.46 with respect to 
′-translations.
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Proposition 6.50. Let T be an LA(�)-theory obtained by adding some axioms of
PA(S4) into PA�. For any LA(�)-formula ϕ, if T � ϕ, then for any r.e. extension U of
T, PA � 
′U (ϕ).

Proof. Let U be any r.e. extension of T. As in the proof of Proposition 2.3, we prove
by induction on the length of proofs of ϕ in T that for any LA(�)-formula ϕ, if T � ϕ,
then PA � 
′U (ϕ). We only give proofs of the following four cases.

• If ϕ is ∀�x(�(�(�x) → �(�x)) → (��(�x) → ��(�x))
)
, then 
′U (ϕ) is

∀�x
(

PrU (��( �̇x) → �( �̇x)�) ∧ 
′U (�(�x) → �(�x))

→
([

PrU (��( �̇x)�) ∧ 
′U (�(�x))
]
→

[
PrU (��( �̇x)�) ∧ 
′U (�(�x))

]))
.

This sentence is provable in PA.
• If ϕ is ∀�x(��(�x) → �(�x)), then 
′U (ϕ) is

∀�x(PrU (��( �̇x)�) ∧ 
′U (�(�x)) → 
′U (�(�x))
)
,

and this is obviously provable in PA.
• If ϕ is ∀�x(��(�x) → ���(�x)), then 
U (ϕ) is

∀�x
([

PrU (��( �̇x)�) ∧ 
′U (�(�x))
]

→
[
PrU (���( �̇x)�) ∧ PrU (��( �̇x)�) ∧ 
′U (�(�x))

])
,

and this is provable in PA.
• If ϕ(�x) is derived from �(�x) by Nec, then ϕ(�x) ≡ ��(�x). Since T � �(�x), by

the induction hypothesis, PA � 
′U (�(�x)). Also, PA � PrU (��( �̇x)�) because U
is an extension of T. Thus, PA � 
′U (ϕ(�x)).

As in the proof of Proposition 6.47, we can prove the following proposition from
Propositions 6.45 and 6.50.

Proposition 6.51 (Cf. [21, TB]). Let T be an LA(�)-theory obtained by adding some
axioms of PA(S4) into PA�, and let U be any r.e. extension of T. If N |= 
′U (ϕ) for all
ϕ ∈ U \ T , then U is LA(�)-sound.

Corollary 6.52. The theories PA(KT) and PA(S4) are LA(�)-sound.

The alternative LA(�)-soundness of PA(S4) is already proved by Shapiro [21, TB’].

Corollary 6.53. Let T be an r.e. LA(�)-theory obtained by adding some axioms of
PA(S4) + {��ϕ → ϕ | ϕ is an LA-sentence} into PA�. Then, T is LA(�)-sound.

Proof. By Proposition 6.51, it suffices to show that for anyLA-sentenceϕ, if ��ϕ →
ϕ ∈ T , then N |= 
′T (��ϕ → ϕ). Suppose that ��ϕ → ϕ ∈ T and N |= 
′T (��ϕ).
Then, T � �ϕ, and T � ��ϕ. Since T � ��ϕ → ϕ, we have T � ϕ. Since T is a
subtheory of PA(Triv), T is an conservative extension of PA by Corollary 2.4. Then,
PA � ϕ because ϕ is an LA-sentence. By the LA-soundness of PA, we have N |= ϕ and
hence N |= 
′T (ϕ). We have proved N |= 
′U (��ϕ → ϕ).

In contrast to Corollary 6.53, we have the following proposition which is a refinement
of Proposition 4.28.1.
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Proposition 6.54. Let T be a consistent r.e. LA(�)-theory extending the theory
PA(KT) + {��ϕ → ϕ | ϕ is a Σ(B)-sentence}. Then, T does not have (B,Σ1)-DP.

Proof. Let ϕ be a Σ1 sentence such that T � ϕ and T � ¬ϕ. Then, T � �¬ϕ
because T � �¬ϕ → ¬ϕ. Since T � ��ϕ → �ϕ, we have T � ��¬ϕ ∨ �ϕ. Then,
T � �(�¬ϕ ∨ ϕ) and hence T � ��(�¬ϕ ∨ ϕ). Since �¬ϕ ∨ ϕ is a Σ(B) sentence,
we obtain T � �¬ϕ ∨ ϕ because ��(�¬ϕ ∨ ϕ) → (�¬ϕ ∨ ϕ) is an axiom of T. We
have shown that T � �¬ϕ, T � ϕ, and T � �¬ϕ ∨ ϕ. This means that T does not
have (B,Σ1)-DP.

6.2. Σ(B)-soundness and weak Σ(B)-soundness. We then export the notion of the
Σ1-soundness to modal arithmetic. This is easy to do since we have already introduced
the class Σ(B) corresponding to Σ1 in modal arithmetic. Here we further introduce
another type of translation �T , which is different from 
T .

Definition 6.55 (�-translations). Let T be any r.e.LA(�)-theory. We define a translation
�T of LA(�)-formulas into LA-formulas inductively as follows:

1. If ϕ is an LA-formula, then �T (ϕ) :≡ ϕ.
2. �T preserves logical connectives and quantifiers.
3. �T (�ϕ(�x)) :≡ PrT (��ϕ( �̇x)�).

With respect to Σ(B) sentences, there is the following relationship between the
translations 
T and �T .

Proposition 6.56. Let T be any r.e. LA(�)-theory.

1. For any Σ(B)-sentence ϕ, N |= 
T (ϕ) → �T (ϕ).
2. If T is closed under the box elimination rule, then for any Σ(B)-sentence ϕ,

N |= �T (ϕ) → 
T (ϕ).

Proof. These statements are proved by induction on the construction of ϕ. We only
prove the case of ϕ ≡ ��.

1. If N |= 
T (��), then N |= PrT (���). Then, T � �. By the rule Nec, T � ��.
Then, N |= PrT (����), and hence N |= �T (��).

2. If N |= �T (��), then T � ��. By the box elimination rule, T � �. Hence, N |=

T (��).

We strengthen the usual Σ1-completeness theorem of PA as follows.

Theorem 6.57 (Σ(B)-completeness theorem). Let T be any r.e. extension of PA�. Then,
for any Σ(B) sentence ϕ, if N |= �T (ϕ), then T � ϕ.

Proof. We prove the theorem by induction on the construction of ϕ.

• If ϕ is a Σ1 sentence, then the statement immediately follows from the usual
Σ1-completeness of PA because �T (ϕ) is exactly ϕ.

• If ϕ is of the form ��, then N |= �T (��) means N |= PrT (����), and hence
T � ��.

• If ϕ is one of the forms � ∧ �, � ∨ �, ∃x�, and ∀x < t �, then the proof is
straightforward by the induction hypothesis.

In the light of Proposition 6.56 and Theorem 6.57, we introduce the following two
different types of the notion of Σ(B)-soundness.
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Definition 6.58. Let T be any r.e. LA(�)-theory.

• T is said to be Σ(B)-sound if for any Σ(B) sentence ϕ, ifT � ϕ, then N |= 
T (ϕ).
• T is said to be weakly Σ(B)-sound if for any Σ(B) sentence ϕ, if T � ϕ, then

N |= �T (ϕ).

Lemma 6.59. For any r.e. LA(�)-theory T, the following are equivalent:

1. T is Σ(B)-sound.
2. T is weakly Σ(B)-sound and T is closed under the box elimination rule.

Proof. By Proposition 6.56, it suffices to show that Σ(B)-soundness implies the box
elimination rule. Suppose that T is Σ(B)-sound. Let ϕ be any LA(�)-sentence such
that T � �ϕ. By the Σ(B)-soundness of T, N |= 
T (�ϕ) and hence N |= PrT (�ϕ�).
We obtain T � ϕ.

We are ready to prove an analogue of Guaspari’s theorem.

Theorem 6.60. Let T be an r.e. extension of PA�.

1. If T contains PA(K), T � �⊥, and T has Σ(B)-DP, then T is weakly Σ(B)-sound.
2. If T is weakly Σ(B)-sound, then T has Σ(B)-EP.

Proof. 1. We prove by induction on the construction of ϕ that for any Σ(B) sentence
ϕ, if T � ϕ, then N |= �T (ϕ).

• If ϕ is a Σ1 sentence, then �T (ϕ) ≡ ϕ. Suppose T � ϕ. Since Σ(B)-DP implies
(B,Σ1)-DP, T is Σ1-sound by Proposition 4.21. Therefore, N |= �T (ϕ).

• If ϕ is of the form ��, then �T (ϕ) ≡ PrT (����). Suppose T � ��. Then,
obviously N |= �T (ϕ).

• If ϕ is of the form � ∧ � or ∀x < t �, then the proof is straightforward from
the induction hypothesis.

• If ϕ is � ∨ �, then �T (ϕ) ≡ �T (�) ∨ �T (�). Suppose T � � ∨ �. Then, by
Σ(B)-DP, T � � or T � �. By the induction hypothesis, N |= �T (�) or N |=
�T (�). Hence, N |= �T (ϕ).

• If ϕ is ∃x�(x), then �T (ϕ) ≡ ∃x�T (�(x)). Suppose T � ∃x�(x). Since T �

�⊥, by Theorem 5.38, T has Σ(B)-EP. Then, there exists a natural number n
such that T � �(n). By the induction hypothesis, N |= �T (�(n)). Therefore,
N |= �T (ϕ).

2. Let ϕ(x) be any Σ(B) formula having no free variables except x such that T �
∃xϕ(x). By the weak Σ(B)-soundness of T, N |= �T (∃xϕ(x)). Then, for some natural
number n, N |= �T (ϕ(n)). By Theorem 6.57, T � ϕ(n).

Corollary 6.61. Let T be an r.e. extension of PA�.

1. If T contains PA(K4), T is consistent, and T has MDP, then T is Σ(B)-sound.
2. If T is Σ(B)-sound, then T has MEP.

Proof. 1. Since T contains PA(K4) and T has MDP, by Proposition 5.39, T has
Σ(B)-DP. Also, T is closed under the box elimination rule by Proposition 4.17. Then,
T � �⊥ by the consistency of T. By Theorem 6.60.1, T is weakly Σ(B)-sound. By
Lemma 6.59, T is Σ(B)-sound.

2. By Lemma 6.59, T is weakly Σ(B)-sound and is closed under the box elimination
rule. By Theorem 6.60.2, T has Σ(B)-EP. Therefore, by Proposition 4.17, T has
MEP.
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Since the LA(�)-soundness implies the Σ(B)-soundness, we obtain the following
corollary from Propositions 6.47 and 6.51.

Corollary 6.62. 1. Let T be an LA(�)-theory obtained by adding some axioms
of PA(GL) into PA�, and let U be any r.e. extension of T. If N |= 
U (ϕ) for all
ϕ ∈ U \ T , then U has MEP.

2. Let T be an LA(�)-theory obtained by adding some axioms of PA(S4) into PA�,
and let U be any r.e. extension of T. If N |= 
′U (ϕ) for all ϕ ∈ U \ T , then U has
MEP.

In particular, PA�, PA(K), PA(KT), PA(K4), PA(S4), and PA(GL) have MEP.

By Lemma 6.59, each Σ(B)-sound theory is also weakly Σ(B)-sound. Therefore,
PA�, PA(K), PA(KT), PA(K4), PA(S4), and PA(GL) also have Σ(B)-EP. Recall that
PA(Verum) also has Σ(B)-EP (Corollary 5.30).

Here we give another sufficient condition for a theory to have Σ(B)-EP. First, we
prove an analogue of Proposition 6.46 with respect to �-translations.

Proposition 6.63. Let T be any LA(�)-theory obtained by adding some axioms of
the form ∀�x(��0 ∧ ··· ∧ ��k–1 → ��k) into PA�. Then, for any LA(�)-formula ϕ, if
T � ϕ, then for any r.e. extension U of T, PA � �U (ϕ).

Proof. Let U be any r.e. extension of T. As in the proof of Proposition 2.3, we prove
by induction on the length of proofs of ϕ in T that for any LA(�)-formula ϕ, if T � ϕ,
then PA � �U (ϕ). We only give proofs of the following two cases.

• The case ϕ ≡ ∀�x(��0(�x) ∧ ··· ∧ ��k–1(�x) → ��k(�x)
)
: Since U is an exten-

sion of T, we have PA � ∀�x PrU (���0( �̇x) ∧ ··· ∧ ��k–1( �̇x) → ��k( �̇x)�), and
hence PA proves

∀�x(PrU (���0( �̇x)�) ∧ ··· ∧ PrU (���k–1( �̇x)�) → PrU (���k( �̇x)�)
)
.

This sentence is exactly �U (ϕ).
• If ϕ(�x) is derived from �(�x) by Nec, then ϕ(�x) ≡ ��(�x). Since T � ��(�x),
U � ��(�x), and hence PA � PrU (���( �̇x)�). Thus, PA � �U (ϕ(�x)).

Corollary 6.64. Let T be any LA(�)-theory obtained by adding some axioms of the
form ∀�x(��0 ∧ ··· ∧ ��k–1 → ��k) into PA�, and let U be any r.e. extension of T. If
N |= �U (ϕ) for all ϕ ∈ U \ T , then U has Σ(B)-EP.

Proof. Suppose that N |= �U (ϕ) for all ϕ ∈ U \ T . As in the proof of Proposi-
tion 6.47, it follows from Proposition 6.63 that U is weakly Σ(B)-sound. Then, by
Theorem 6.60, U has Σ(B)-EP.

6.3. Applications. In this subsection, as applications of our results we have obtained
so far, we show two non-implications between the properties. Corollary 5.30 shows
that in general, Σ(B)-DP does not imply MDP. The first application shows that this is
also true for theories that do not contain PA(Verum).

Proposition 6.65. 1. There exists an r.e. theory T such that PA(S4) � T �
PA(K4), T � �⊥, T has Σ(B)-EP, and T does not have MDP;

2. There exists an r.e. theory T such that PA(Verum) � T � PA(GL), T � �⊥, T
has Σ(B)-EP, and T does not have MDP.

https://doi.org/10.1017/S1755020322000363 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000363


DISJUNCTION AND EXISTENCE PROPERTIES IN MODAL ARITHMETIC 203

Proof. 1. Let T be the theory PA(K4) + {�¬�⊥}. Since T is a subtheory of
PA(Triv), we have T � �⊥. By Corollary 6.64, T has Σ(B)-EP. Suppose, towards a
contradiction, that T � ¬�⊥. Then, by the Σ(B)-deduction theorem (Corollary 3.14),
PA(K4) � �¬�⊥ → ¬�⊥. Then, PA(Verum) � �¬�⊥ → ¬�⊥. Since PA(Verum) �
�¬�⊥ ∧ �⊥, this contradicts the consistency of PA(Verum). Therefore, T � ¬�⊥.
Since T � �¬�⊥, T does not have MDP.

2. LetT := PA(GL) + {��⊥}. By Corollary 6.64, T has Σ(B)-EP. Suppose, towards
a contradiction, that T proves �⊥. By the Σ(B)-deduction theorem, PA(GL) �
��⊥ → �⊥. Then, PA(GL) � �(��⊥ → �⊥) and hence PA(GL) � ��⊥. By
MDP of PA(GL) (Corollary 6.62 and Proposition 4.18.1), PA(GL) � ⊥. This is a
contradiction. Therefore, T � �⊥. Since T � ��⊥, T does not have MDP.

Unlike the notion of the soundness of LA-theories, Proposition 6.65.1 shows that
the LA(�)-soundness is not preserved by taking a subtheory because PA(S4) is LA(�)-
sound but T is not Σ(B)-sound.

The second application shows that Σ(B)-DC does not imply B-DP in general.

Proposition 6.66. There exists a consistent r.e. extension T of PA(K4) satisfying the
following two conditions:

1. T is Σ(B)-DC.
2. T does not have B-DP.

Proof. Let ϕ be a Gödel sentence of PA. Let T := PA(K4) + {�ϕ ∨ �¬ϕ}, T0 :=
PA(K4) + {�ϕ}, and T1 := PA(K4) + {�¬ϕ}. By the Σ(B)-deduction theorem, it is
shown that for any LA(�)-formula �,

T � � if and only if both T0 � � and T1 � �. (6)

Suppose, towards a contradiction, T0 � �⊥. By the Σ(B)-deduction theorem, PA(K4)
proves �ϕ → �⊥. Since this is also provable in PA(Triv), by Proposition 2.3, we
have PA � α(�ϕ) → α(�⊥). Then, PA � ¬ϕ, a contradiction. Similarly, we can prove
T1 � �⊥.

1. Let� be any Σ(B) sentence such thatT � � ∨ PrT (���). Then, for i ∈ {0, 1},Ti �
� ∨ PrT (���) by (6). By Corollary 6.64, Ti has Σ(B)-EP, and hence has (Σ(B),Σ1)-
DP. By Corollary 5.32, Ti is Σ(B)-DC. Therefore, Ti � �. By (6), we obtain T � �.
Thus, T is also Σ(B)-DC.

2. If T � �¬ϕ or T � �ϕ, then T0 � �⊥ or T1 � �⊥ by (6). This is a contradiction.
Therefore, T � �¬ϕ and T � �ϕ. On the other hand, T � �ϕ ∨ �¬ϕ. Thus, T does
not have B-DP.

§7. Problems. In the present paper, several properties related to the modal
disjunction property in modal arithmetic are introduced, and the relationships between
them are studied. However, some of the properties have not yet been separated in some
particular situation. In this section, we list several unsolved problems for further study.

In Section 4, we introduced B-DP and Δ(B)-DP. For theories which are closed under
the box elimination rule, these properties are equivalent. However, we have not yet been
successful in clarifying whether they are equivalent or not in general. We propose the
following problem.
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Problem 7.67. 1. Does there exist an LA(�)-theory which has Δ(B)-DP but does
not have B-DP?

2. For each n ≥ 2, does there exist an LA(�)-theory which has Bn-DP but does not
have Bn+1-DP?

For any Σ1-unsound r.e. extension T of PA(Verum), T has B-DP but does not
have Σ(B)-DC (see Propositions 4.25 and 5.29). On the other hand, for consistent
r.e. extensions of PA(S4), B-DP implies Σ(B)-DC by Propositions 4.17 and 5.39 and
Corollary 5.32. We have not yet been sure whether B-DP yields Σ(B)-DC in general
when T � �⊥.

Problem 7.68. Does there exist an LA(�)-theory T such that T � �⊥, T has B-DP,
and T is not Σ(B)-DC?

In the statement of Proposition 5.39, it is assumed that T is an extension of PA(K4).
It is not settled yet whether PA(K4) can be replaced by PA(K) in the statement.

Problem 7.69. In the statements of Proposition 5.39 and Corollaries 5.40 and 6.61.1,
can PA(K4) be replaced by PA(K)?

Proposition 6.65.1 shows that there exists anLA(�)-unsound subtheory T of PA(S4).
Related to this fact, we propose the following problem.

Problem 7.70. Does there exist an LA(�)-unsound r.e. subtheory of PA(GL)?

Proposition 6.66 shows that Σ(B)-DC does not imply B-DP. We are not successful
in determining whether the theory T in the proof of Proposition 6.66 is closed in the
box elimination rule. We then propose the following problem.

Problem 7.71. Does there exist a consistent r.e. LA(�)-theory T such that T is closed
under the box elimination rule, T is Σ(B)-DC, and T does not have MDP?

Remark 7.72. Notice that if we define T to be the theory PA(K4) + {�ϕ ∨ �¬ϕ} for
a Π1 Gödel sentence ϕ of PA(K4), then T is not closed under the box elimination
rule. This is because T � �(�ϕ ∨ ¬ϕ) and T � �ϕ ∨ ¬ϕ. For, if T � �ϕ ∨ ¬ϕ,
then PA(K4) � �¬ϕ → (�ϕ ∨ ¬ϕ). By Proposition 6.46, PA � PrPA(K4)(�¬ϕ�) →
(PrPA(K4)(�ϕ�) ∨ ¬ϕ). Since PrPA(K4)(�ϕ�) is PA(K4)-equivalent to ¬ϕ, we have
PA(K4) � PrPA(K4)(�¬ϕ�) → ¬ϕ. By Löb’s theorem, PA(K4) � ¬ϕ. This contradicts
the Σ1-soundness of PA(K4).
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