A NOTE ON TENSOR PRODUCTS OF REFLEXIVE ALGEBRAS

ZHE DONG

In this short note, we obtain a concrete description of rank-one operators in $Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$. Based on this characterisation, we give a simple proof of the tensor product formula:

$$Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) = Alg \mathcal{L}_1 \otimes_w \cdots \otimes_w Alg \mathcal{L}_n$$

if $Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$ is weakly generated by rank-one operators in itself and $\mathcal{L}_i(i = 1, ..., n)$ are subspace lattices.

1. Introduction

One of the central results in the theory of tensor products of von Neumann algebras is Tomita's commutation formula:

$$\mathcal{M}' \otimes_{w} \mathcal{N}' = (\mathcal{M} \otimes_{w} \mathcal{N})',$$

where \mathcal{M} and \mathcal{N} are von Neumann algebras. It was observed in [1] that if we let \mathcal{L}_1 and \mathcal{L}_2 denote the projection lattices of \mathcal{M} and \mathcal{N} respectively, then (1) can be rewritten as

(2)
$$\operatorname{Alg} \mathcal{L}_{\Gamma} \otimes_{m} \operatorname{Alg} \mathcal{L}_{2} = \operatorname{Alg} (\mathcal{L}_{1} \otimes \mathcal{L}_{2}).$$

This version of Tomita's theorem makes sense for any pair of reflexive algebras $Alg \mathcal{L}_1$ and $Alg \mathcal{L}_2$. It remains a deep open question whether the tensor product formula (2) is valid for general reflexive algebras, or even general commutative subspace lattice algebras. However, (2) has been proved in a number of special cases ([1, 2, 3, 4]). In particular, it is known that if \mathcal{L}_1 is a commutative subspace lattice that is either completely distributive ([4]) or finite width ([2]), then (2) is valid for \mathcal{L}_1 and any subspace lattice \mathcal{L}_2 . The main purpose of this paper is to study the n-fold tensor product formula of reflexive algebras. The technique employed in this note is simple and different from the other papers about tensor products. We use rank-one operators to investigate tensor products and the technique shows its power in this note.

Let us introduce some notation and terminology. Throughout, \mathcal{H} represents a complex separable Hilbert space, $\mathcal{B}(\mathcal{H})$ the algebra of bounded operators on \mathcal{H} . A sublattice

Received 22nd November, 2001

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

 $\mathcal L$ of the projection lattice of $\mathcal B(\mathcal H)$ is said to be a subspace lattice if it contains 0 and I and is strongly closed, where we identify projections with their ranges. If the elements of $\mathcal L$ pairwise commute, $\mathcal L$ is a commutative subspace lattice. A nest is a totally ordered subspace lattice. If $\mathcal L$ is a subspace lattice, $\operatorname{Alg} \mathcal L$ denotes the set of operators in $\mathcal B(\mathcal H)$ that leave the elements of $\mathcal L$ invariant. If $\mathcal L$ is a commutative subspace lattice, $\operatorname{Alg} \mathcal L$ is said to be a commutative subspace lattice algebra. If $\mathcal L$ is a nest, $\operatorname{Alg} \mathcal L$ is said to be a nest algebra.

If \mathcal{A} is a subset of $\mathcal{B}(\mathcal{H})$ then Lat \mathcal{A} , the set of projections left invariant by each element of \mathcal{A} , is a subspace lattice. A subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{H})$ is reflexive if $\mathcal{A} = \operatorname{Alg} \operatorname{Lat} \mathcal{A}$. The reflexive algebras are precisely the algebras of the form $\operatorname{Alg} \mathcal{L}$, where \mathcal{L} is a subspace lattice. If $\mathcal{L}_i \subseteq \mathcal{B}(\mathcal{H}_i) (i=1,\ldots,n)$ are subspace lattices, $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$ is the subspace lattice in $\mathcal{B}(\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n)$ generated by $\{L_1 \otimes \cdots \otimes L_n : L_i \in \mathcal{L}_i, i=1,\ldots,n\}$. If $\mathcal{S}_i \subseteq \mathcal{B}(\mathcal{H}_i) (i=1,\ldots,n)$ are subspaces, then $\mathcal{S}_1 \otimes \cdots \otimes \mathcal{S}_n$ denotes the linear span of $\{S_1 \otimes \cdots \otimes S_n : S_i \in \mathcal{S}_i\}$; $\mathcal{S}_1 \otimes_w \cdots \otimes_w \mathcal{S}_n$ denotes the weak closure of $\mathcal{S}_1 \otimes \cdots \otimes \mathcal{S}_n$ in $\mathcal{B}(\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n)$.

2. Tensor products of reflexive algebras

For $x, y \in \mathcal{H}$, the operator xy^* is defined by the equation

$$(xy^*)(z) = \langle z, y \rangle x$$
, for all $z \in \mathcal{H}$.

If \mathcal{L} is a subspace lattice and $L \in \mathcal{L}$, we write L_{-} for the projection $\vee \{E \in \mathcal{L} : L \nleq E\}$. The following result of Longstaff [6] is essential.

Lemma 1. Let \mathcal{L} be a subspace lattice. Then $xy^* \in \operatorname{Alg} \mathcal{L}$ if and only if there is an element $L \in \mathcal{L}$ such that $x \in L$ and $y \in L^{\perp}$.

Let $\mathcal{L}_i \subseteq \mathcal{B}(\mathcal{H}_i) (i = 1, ..., n)$ be subspace lattices. For $1 \leq j \leq n$, let $I_1 \otimes \cdots \otimes \mathcal{L}_j \otimes \cdots \otimes I_n = \{I_1 \otimes \cdots \otimes I_j \otimes \cdots \otimes I_n : L_j \in \mathcal{L}_j\}$; certainly, it is a subspace lattice.

LEMMA 2. Let $\mathcal{L}_j \subseteq \mathcal{B}(\mathcal{H}_i) (1 \leqslant j \leqslant n)$ be subspace lattices. Suppose that $N_j \in \mathcal{L}_j$, then

$$(I_1 \otimes \cdots \otimes N_j \otimes \cdots \otimes I_n)_- = I_1 \otimes \cdots \otimes N_{j-} \otimes \cdots \otimes I_n$$

and

$$(I_1 \otimes \cdots \otimes N_j \otimes \cdots \otimes I_n)^{\perp} = I_1 \otimes \cdots \otimes N^{\perp}_{i-} \otimes \cdots \otimes I_n$$

in $I_1 \otimes \cdots \otimes \mathcal{L}_j \otimes \cdots \otimes I_n$.

PROOF: We first show that $I_1 \otimes \cdots \otimes N_j \otimes \cdots \otimes I_n \leqslant I_1 \otimes \cdots \otimes I_j \otimes \cdots \otimes I_n$ if and only if $N_j \leqslant L_j$. For the forward implication choose unit vectors $x_i \in \mathcal{H}_i (i \neq j)$. For any $x_j \in \mathcal{H}_j$,

$$0 \leqslant \left\langle (I_1 \otimes \cdots \otimes (L_j - N_j) \otimes \cdots \otimes I_n)(x_1 \otimes \cdots \otimes x_n), x_1 \otimes \cdots \otimes x_n \right\rangle$$

$$= \left\langle x_1 \otimes \cdots \otimes (L_j - N_j)x_j \otimes \cdots \otimes x_n, x_1 \otimes \cdots \otimes x_n \right\rangle$$

$$= \left\langle (L_j - N_j)x_j, x_j \right\rangle.$$

So $N_j \leqslant L_j$. The converse implication is also natural. Thus $I_1 \otimes \cdots \otimes N_j \otimes \cdots \otimes I_n \not \leqslant I_1 \otimes \cdots \otimes I_j \otimes \cdots \otimes I_n$ if and only if $N_j \not \leqslant L_j$. Hence

$$(I_{1} \otimes \cdots \otimes N_{j} \otimes \cdots \otimes I_{n})_{-}$$

$$= \vee \{I_{1} \otimes \cdots \otimes L_{j} \otimes \cdots \otimes I_{n} : I_{1} \otimes \cdots \otimes N_{j} \otimes \cdots \otimes I_{n} \nleq I_{1} \otimes \cdots \otimes L_{j} \otimes \cdots \otimes I_{n}\}$$

$$= \vee \{I_{1} \otimes \cdots \otimes L_{j} \otimes \cdots \otimes I_{n} : N_{j} \nleq L_{j}\}$$

$$= I_{1} \otimes \cdots \otimes (\vee \{L_{j} : N_{j} \nleq L_{j}\}) \otimes \cdots \otimes I_{n}$$

$$= I_{1} \otimes \cdots \otimes N_{j-} \otimes \cdots \otimes I_{n},$$

(The proof of the third equality is routine). Since

$$(I_1 \otimes \cdots \otimes N_{j-}^{\perp} \otimes \cdots \otimes I_n)(I_1 \otimes \cdots \otimes N_{j-} \otimes \cdots \otimes I_n) = 0,$$

we have

$$I_1 \otimes \cdots \otimes N_{j-}^{\perp} \otimes \cdots \otimes I_n \leqslant (I_1 \otimes \cdots \otimes N_{j-} \otimes \cdots \otimes I_n)^{\perp}.$$

If $(I_1 \otimes \cdots \otimes N_{j-} \otimes \cdots \otimes I_n)^{\perp} \neq I_1 \otimes \cdots \otimes N_{j-}^{\perp} \otimes \cdots \otimes I_n$, we can choose a non-zero vector $z \in (I_1 \otimes \cdots \otimes N_{j-} \otimes \cdots \otimes I_n)^{\perp} \ominus (I_1 \otimes \cdots \otimes N_{j-} \otimes \cdots \otimes I_n)$. Thus

$$z = (I_1 \otimes \cdots \otimes I_j \otimes \cdots \otimes I_n)z$$

= $(I_1 \otimes \cdots \otimes N_{j-} \otimes \cdots \otimes I_n)z + (I_1 \otimes \cdots \otimes N_{j-}^{\perp} \otimes \cdots \otimes I_n)z$
= 0.

This is a contradiction. So

$$(I_1 \otimes \cdots \otimes N_j \otimes \cdots \otimes I_n)^{\perp}_{-} = (I_1 \otimes \cdots \otimes N_{j-} \otimes \cdots \otimes I_n)^{\perp}$$
$$= I_1 \otimes \cdots \otimes N_{j-}^{\perp} \otimes \cdots \otimes I_n.$$

LEMMA 3. Let $\mathcal{L}_i \subseteq \mathcal{B}(\mathcal{H}_i)(i=1,\ldots,n)$ be subspace lattices. Then a rank-one operator $xy^* \in \text{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$ if and only if there exist $N_i \in \mathcal{L}_i$ such that $x \in N_1 \otimes \cdots \otimes N_n$ and $y \in N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp}$.

PROOF: Set $\mathcal{F}_i = I_1 \otimes \cdots \otimes \mathcal{L}_i \otimes \cdots \otimes I_n$. Thus

$$\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n = \mathcal{F}_1 \vee \cdots \vee \mathcal{F}_n$$

and

$$Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) = (Alg \mathcal{F}_1) \cap \cdots \cap (Alg \mathcal{F}_n).$$

Now suppose that $xy^* \in \operatorname{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$. Since $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n \supseteq \mathcal{F}_i$, $\operatorname{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) \subseteq \operatorname{Alg} \mathcal{F}_i$. Thus $xy^* \in \operatorname{Alg} \mathcal{F}_i$ and, by the definition of \mathcal{F}_i and Lemma 1 and Lemma 2, there is an element $N_i \in \mathcal{L}_i$ such that $x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n$ and $y \in (I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n)^{\perp} = I_1 \otimes \cdots \otimes N_{i-}^{\perp} \otimes \cdots \otimes I_n$. This is valid for each $i = 1, \ldots, n$, whence

$$x \in N_1 \otimes \cdots \otimes N_n$$
 and $y \in N_{1-}^1 \otimes \cdots \otimes N_{n-}^1$

For the converse, if $x \in N_1 \otimes \cdots \otimes N_n$ and $y \in N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp}$ then, in particular, $x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n$ and $y \in I_1 \otimes \cdots \otimes N_{i-}^{\perp} \otimes \cdots \otimes I_n$. Lemma 1 and Lemma 2 imply that $xy^* \in \text{Alg } \mathcal{F}_i$, for each i. Hence

$$xy^* \in \bigcap_{i=1}^n \operatorname{Alg} \mathcal{F}_i = \operatorname{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n).$$

PROPOSITION 4. Let $\mathcal{L}_i \subseteq \mathcal{B}(\mathcal{H}_i)(i=1,\ldots,n)$ be subspace lattices. If $L \in \mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$ and $L \nleq L_-$, then

$$L = \vee \{ N_1 \otimes \cdots \otimes N_n : N_1 \otimes \cdots \otimes N_n \leqslant L \}.$$

PROOF: Suppose that $0 \neq x \in L$. Since $L \nleq L_{-}, L_{-} \neq I_{1} \otimes \cdots \otimes I_{n}$. For any $0 \neq y \in L_{-}^{\perp}$, Lemma 1 shows that the rank-one operator $xy^{*} \in \text{Alg}(\mathcal{L}_{1} \otimes \cdots \otimes \mathcal{L}_{n})$. By Lemma 3, there exist $N_{i} \in \mathcal{L}_{i}(i = 1, \ldots, n)$ such that $x \in N_{1} \otimes \cdots \otimes N_{n}$ and $y \in N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp}$. If $N_{1} \otimes \cdots \otimes N_{n} \nleq L$, it follows from the definition of $(N_{1} \otimes \cdots \otimes N_{n})_{-}$ that $L \leqslant (N_{1} \otimes \cdots \otimes N_{n})_{-}$. By virtue of Lemma 2, we then have

$$L \leqslant (N_1 \otimes \cdots \otimes N_n)_-$$

$$\leqslant (I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n)_-$$

$$= I_1 \otimes \cdots \otimes N_{i-} \otimes \cdots \otimes I_n$$

and

$$L^{\perp} \geqslant I_1 \otimes \cdots \otimes N_{i-}^{\perp} \otimes \cdots \otimes I_n$$
, for each i .

So $L^{\perp} \geqslant N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp}$ and we have shown that $y \in L^{\perp}$. Thus for any $y \in L_{-}^{\perp}$, we show that $y \in L^{\perp}$. This implies that $L^{\perp} \leqslant L^{\perp}$ and $L \leqslant L_{-}$. This contradicts our hypothesis. Hence $N_1 \otimes \cdots \otimes N_n \leqslant L$ and for any $x \in L$,

$$x \in \vee \{N_1 \otimes \cdots \otimes N_n : N_1 \otimes \cdots \otimes N_n \leqslant L\}.$$

Thus

$$L \leqslant \vee \{N_1 \otimes \cdots \otimes N_n : N_1 \otimes \cdots \otimes N_n \leqslant L\}.$$

The converse inequality is obvious and this completes the proof.

LEMMA 5. Let $x_i, y_i \in \mathcal{H}_i (i = 1, ..., n)$. Then

$$(x_1 \otimes \cdots \otimes x_n)(y_1 \otimes \cdots \otimes y_n)^* = (x_1 y_1^*) \otimes \cdots \otimes (x_n y_n^*).$$

PROOF: For any $z_i \in \mathcal{H}_i$, it follows from the definition that

$$[(x_1 \otimes \cdots \otimes x_n)(y_1 \otimes \cdots \otimes y_n)^*](z_1 \otimes \cdots \otimes z_n)$$

$$= \langle z_1 \otimes \cdots \otimes z_n, y_1 \otimes \cdots \otimes y_n \rangle (x_1 \otimes \cdots \otimes x_n)$$

$$= \langle z_1, y_1 \rangle \cdots \langle z_n, y_n \rangle (x_1 \otimes \cdots \otimes x_n)$$

$$= (\langle z_1, y_1 \rangle x_1) \otimes \cdots \otimes (\langle z_n, y_n \rangle x_n)$$

$$= [(x_1 y_1^*) z_1] \otimes \cdots \otimes [(x_n y_n^*) z_n]$$

$$= [(x_1 y_1^*) \otimes \cdots \otimes (x_n y_n^*)](z_1 \otimes \cdots \otimes z_n).$$

0

Since the linear span of simple tensors is everywhere dense in $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$, so

$$(x_1 \otimes \cdots \otimes x_n)(y_1 \otimes \cdots \otimes y_n)^* = (x_1 y_1^*) \otimes \cdots \otimes (x_n y_n^*).$$

THEOREM 6. Suppose that $\mathcal{L}_i \subseteq \mathcal{B}(\mathcal{H}_i) (i = 1, ..., n)$ are subspace lattices and $Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$ is weakly generated by rank-one operators in itself. Then

$$Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) = Alg \, \mathcal{L}_1 \otimes_w \cdots \otimes_w Alg \, \mathcal{L}_n.$$

PROOF: Each of the operators which generate Alg $\mathcal{L}_1 \otimes_w \cdots \otimes_w \text{Alg } \mathcal{L}_n$ leaves invariant each of the projections which generate $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$; therefore

$$Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) \supseteq Alg \mathcal{L}_1 \otimes_w \cdots \otimes_w Alg \mathcal{L}_n$$

It remains to show that $\operatorname{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) \subseteq \operatorname{Alg} \mathcal{L}_1 \otimes_w \cdots \otimes_w \operatorname{Alg} \mathcal{L}_n$. Since $\operatorname{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$ is weakly generated by rank-one operators in itself, it suffices to show that each rank-one operator in $\operatorname{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$ belongs to $\operatorname{Alg} \mathcal{L}_1 \otimes_w \cdots \otimes_w \operatorname{Alg} \mathcal{L}_n$. Now for any $N_i \in \mathcal{L}_i$ and $x_i, y_i \in \mathcal{H}_i$, we have that

$$(N_{1} \otimes \cdots \otimes N_{n}) [(x_{1} \otimes \cdots \otimes x_{n})(y_{1} \otimes \cdots \otimes y_{n})^{*}] (N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp})$$

$$= (N_{1} \otimes \cdots \otimes N_{n}) [(x_{1}y_{1}^{*}) \otimes \cdots \otimes (x_{n}y_{n}^{*})] (N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp})$$

$$= N_{1}(x_{1}y_{1}^{*}) N_{1-}^{\perp} \otimes \cdots \otimes N_{n}(x_{n}y_{n}^{*}) N_{n-}^{\perp}$$

$$\in \operatorname{Alg} \mathcal{L}_{1} \otimes_{w} \cdots \otimes_{w} \operatorname{Alg} \mathcal{L}_{n}.$$

For any rank-one operator $zw^* \in \operatorname{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$, it follows from Lemma 3 that there exist $N_i \in \mathcal{L}_i (i=1,\ldots,n)$ such that $z \in N_1 \otimes \cdots \otimes N_n$ and $w \in N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp}$. Since $z, w \in \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$, there exist sequences $\{z_m\}$ and $\{w_m\}$ such that

$$z_m \stackrel{\|\cdot\|}{\to} z$$
 and $w_m \stackrel{\|\cdot\|}{\to} w$,

where z_m, w_m are finite linear combinations of simple tensors. It is routine to show that

$$(N_1 \otimes \cdots \otimes N_n)(z_m w_m^*)(N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp}) \xrightarrow{\|\cdot\|} (N_1 \otimes \cdots \otimes N_n)(zw^*)(N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp}) = zw^*.$$

The preceding pragragh shows that

$$(N_1 \otimes \cdots \otimes N_n)(z_m w_m^*)(N_{1-}^{\perp} \otimes \cdots \otimes N_{n-}^{\perp}) \in \operatorname{Alg} \mathcal{L}_1 \otimes_w \cdots \otimes_w \operatorname{Alg} \mathcal{L}_n,$$

so $zw^* \in \operatorname{Alg} \mathcal{L}_1 \otimes_w \cdots \otimes_w \operatorname{Alg} \mathcal{L}_n$. This completes the proof.

COROLLARY 7. Let $\mathcal{L}_i \subseteq \mathcal{B}(\mathcal{H}_i) (i = 1, ..., n)$ be subspace lattices. If $Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_{n-1})$ is weakly generated by rank-one operators in itself, then

$$Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) = Alg \mathcal{L}_1 \otimes_m \cdots \otimes_m Alg \mathcal{L}_n$$

PROOF: It follows from [4, Proposition 1.1 and Theorem 2.1] that

$$Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) = Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_{n-1}) \otimes_w Alg \mathcal{L}_n$$

By virtue of Theorem 6, we obtain that

$$Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) = Alg \, \mathcal{L}_1 \otimes_w \cdots \otimes_w Alg \, \mathcal{L}_n.$$

The following corollary is one of the main results in [3].

COROLLARY 8. ([3, Theorem 17].) Let $\mathcal{L}_i \subseteq \mathcal{B}(\mathcal{H}_i) (i = 1, ..., n)$ be completely distributive commutative subspace lattices. Then

$$Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) = Alg \, \mathcal{L}_1 \otimes_w \cdots \otimes_w Alg \, \mathcal{L}_n.$$

PROOF: It follows from [3, Theorem 10] that $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$ is a completely distributive commutative subspace lattice. Thus, by virtue of [5, Theorem 3], $Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$ is weakly generated by the rank-one operators in itself. So the corollary follows from Theorem 6.

COROLLARY 9. ([1, Theorem 2.6].) Let $\mathcal{N}_i(i=1,\ldots,n)$ be nests. Then

$$Alg(\mathcal{N}_1 \otimes \cdots \otimes \mathcal{N}_n) = Alg \,\mathcal{N}_1 \otimes_w \cdots \otimes_w Alg \,\mathcal{N}_n.$$

If \mathcal{L} is a subspace lattice, let $\mathcal{R}(\mathcal{L})$ denote the linear span of rank-one operators in Alg \mathcal{L} and $\overline{\mathcal{R}(\mathcal{L})}$ the norm closure of $\mathcal{R}(\mathcal{L})$. If $\mathcal{S}_i \subseteq \mathcal{B}(\mathcal{H}_i) (i = 1, ..., n)$ are subspaces, $\mathcal{S}_1 \overline{\otimes} \cdots \overline{\otimes} \mathcal{S}_n$ denotes the norm closure of $\mathcal{S}_1 \otimes \cdots \otimes \mathcal{S}_n$.

PROPOSITION 10. Let $\mathcal{L}_i \subseteq \mathcal{B}(\mathcal{H}_i) (i=1,\ldots,n)$ be subspace lattices. Then

$$\overline{\mathcal{R}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)} = \mathcal{R}(\mathcal{L}_1) \overline{\otimes} \cdots \overline{\otimes} \mathcal{R}(\mathcal{L}_n).$$

PROOF: The result is essentially implied in the proof of Theorem 6.

Note that in Proposition 10 we do not need the hypothesis that $Alg(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$ is weakly generated by rank-one operators in itself.

REFERENCES

- F. Gilfeather, A. Hopenwasser and D. Larson, 'Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbation', J. Funct. Anal. 55 (1984), 176-199.
- [2] A. Hopenwasser and J. Kraus, 'Tensor products of reflexive algebras II', J. London Math. Soc. 2 28 (1983), 359-362.
- [3] A. Hopenwasser, C. Laurie and R. Moore, 'Reflexive algebras with completely distributive subspace lattices', J. Operator Theory 11 (1984), 91–108.
- [4] J. Kraus, 'Tensor products of reflexive algebras', J. London Math. Soc. 2 28 (1983), 350-358.

- [5] C. Laurie and W.E. Longstaff, 'A note on rank-one operators in reflexive algebras', Proc. Amer. Math. Soc. 89 (1983), 293-297.
- [6] W.E. Longstaff, 'Strongly reflexive lattices', J. London Math. Soc. 2 11 (1975), 491-498.

Institute of Mathematics Fudan University Shanghai 200433 People's Republic of China e-mail: dzhe8@mail.china.com