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1 Some
Highlights

This chapter surveys a few of the highlights to be encountered in this book, mainly,
Chapters 2, 3, 4, 5, 15, and 16. Several of the topics in the book do not appear at all here
since they are not as suitable to a quick overview. Also, we concentrate in this overview on
trees, since it is easiest to use them to illustrate many of our themes.

1.1 Graph Terminology

For later reference, we introduce in this section the basic notation and terminology for
graphs. A graph is a pair G = (𝖵, 𝖤), where 𝖵 is a set of vertices and 𝖤 is a symmetric
irreflexive subset of 𝖵 × 𝖵, called the edge set. Irreflexive means that 𝖤 contains no element
of the form (x, x). The word symmetric means that (x, y) ∈ 𝖤 iff (y, x) ∈ 𝖤; here, x and y are
called the endpoints of (x, y). The symmetry assumption is usually phrased by saying that
the graph is undirected or that its edges are unoriented. Without this symmetry assumption,
the graph is called directed. If we need to distinguish the two, we write an unoriented edge
as [x, y], whereas an oriented edge is written as ⟨x, y⟩. An unoriented edge can be thought
of as the pair of oriented edges with the same endpoints. If (x, y) ∈ 𝖤, then we call x and
y adjacent or neighbors, and we write x ∼ y. The degree of a vertex is the number of its
neighbors. If this is finite for each vertex, we call the graph locally finite. If the degree of
every vertex is the same number d, then the graph is called regular or d-regular. If x is
an endpoint of an edge e, then we also say that x and e are incident, whereas if two edges
share an endpoint, then we call those edges adjacent. If we have more than one graph under
consideration, we distinguish the vertex and edge sets by writing 𝖵(G) and 𝖤(G). A subgraph
of a graph G is a graph whose vertex set is a subset of 𝖵(G) and whose edge set is a subset of
𝖤(G). One can define the product of two graphs Gi = (𝖵i, 𝖤i) (i = 1, 2) in various ways. The
one we use almost exclusively is the Cartesian product G = (𝖵, 𝖤) with 𝖵 := 𝖵1 × 𝖵2 and

𝖤 :=
{((x1, x2), (y1, y2)

)
;

(
x1 = y1, (x2, y2) ∈ 𝖤2

)
or

((x1, y1) ∈ 𝖤1, x2 = y2
)}

;

this product graph is denoted G = G1 □ G2.
A path* in a graph is a sequence of vertices where each successive pair of vertices is an

edge in the graph; it is said to join its first and last vertices. When a path does not pass

* In graph theory, a path is necessarily self-avoiding. What we call a path is called in graph theory a walk.
However, to avoid confusion with random walks, we do not adopt that terminology.
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2 Chap. 1: Some Highlights

through any vertex (resp., edge) more than once, we will call it vertex simple (resp., edge
simple). We’ll just say simple also to mean vertex simple, which implies edge simple. A
finite path with at least one edge and whose first and last vertices are the same is called a
cycle. A cycle is called simple if no pair of vertices are the same except for its first and last
ones. A graph is connected if, for each pair x ̸= y of its vertices, there is a path joining x to
y. The distance between x and y is the minimum number of edges among all paths joining
x and y, denoted either d(x, y) or dist(x, y). A graph with no cycles is called a forest; a
connected forest is a tree.
If there are numbers (weights) c(e) assigned to the edges e of a graph, the resulting object is

called a network. Given a network G = (𝖵, 𝖤) with weights c(•) and a subset K of its vertices,
the induced subnetwork G↾K is the subnetwork with vertex set K , edge set (K ×K)∩𝖤, and
weights c↾

�(K × K) ∩ 𝖤
�
.

Sometimes we work with objects more general than graphs, called multigraphs. A
multigraph is a pair of sets, 𝖵 and 𝖤, together with a pair of maps 𝖤→ 𝖵, denoted e 7→ e−

and e 7→ e+. The images of e are called the endpoints of e, the former being its tail and the
latter its head. If e− = e+ = x, then e is a loop at x. Edges with the same set of endpoints
are called parallel or multiple. If the multigraph is undirected, then for every edge e ∈ 𝖤,
there is an edge −e ∈ 𝖤 such that (−e)− = e+ and (−e)+ = e−. For a vertex x of an undirected
multigraph, its degree is |{e ; e− = x}|. Sometimes we use paths of edges rather than of
vertices; in this case, the head of each edge must equal the tail of the next edge. Given a
subset K ⊆ 𝖵, the multigraph G/K obtained by identifying K to a single vertex z /∈ 𝖵 is
the multigraph whose vertex set is (𝖵 \ K) ∪ {z} and whose edge set is obtained from 𝖤 by
replacing the tail and head maps so that every tail or head that took a value in K now takes the
value z. A similar operation is contraction of an edge e, which is the result of first deleting e
and then identifying e− and e+; we denote this graph by G/e. A multigraph that is a graph is
called a simple graph.
Let G1 = (𝖵1, 𝖤1) and G2 = (𝖵2, 𝖤2) be two (multi)graphs. A homomorphism of G1 to G2

is a map ϕ:G1 → G2 such that whenever x and e are incident in G1, then so are ϕ(x) and
ϕ(e) in G2. When the graph is directed, then ϕ must also preserve orientation of edges, that
is, if the head and tail of e are x and y, respectively, then the head and tail of ϕ(e) must be
ϕ(x) and ϕ(y), respectively. If in addition, these graphs come with weight functions c1 and
c2, so that they are networks, then a network homomorphism is a graph homomorphism ϕ

that satisfies c1(e) = c2(ϕ(e)) for all edges e ∈ 𝖤1. If ϕ induces bijections of 𝖵1 to 𝖵2 and
of 𝖤1 to 𝖤2, then ϕ is called an isomorphism. When G1 = G2, an isomorphism is called an
automorphism. A homomorphism ϕ:G1 → G2 extends to map each subset A of G1 to a
subset ϕ(A) of G2 by mapping all elements of A by ϕ. We also extend ϕ to collections A of
subsets of G1 by applying ϕ to all elements of A.

1.2 Branching Number
Our trees will usually be rooted, meaning that some vertex is designated as the root,

denoted o. We imagine the tree as growing (upward) away from its root. Each vertex then
has branches leading to its children, which are its neighbors that are farther from the root.
For the purposes of this chapter, we do not allow the possibility of leaves, that is, vertices
without children.
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§2. Branching Number 3

How do we assign an average branch-

Figure 1.1. The binary tree.

ing number to an arbitrary infinite locally
finite tree? If the tree is a binary tree, as
in Figure 1.1, then clearly the answer will
be 2. But in the general case, since the
tree is infinite, no straight average is avail-
able. We must take some kind of limit or
use some other procedure, but we will be
amply rewarded for our efforts.
One simple idea is as follows. Let Tn be the set of vertices at distance n from the root, o,

called the nth level of T . Define the lower (exponential) growth rate of the tree to be

gr T := lim inf
n→∞

|Tn |1/n .

This certainly will give the number 2 to the binary tree. One can also define the upper
(exponential) growth rate

gr T := lim sup
n→∞

|Tn |1/n

and the (exponential) growth rate

gr T := lim
n→∞

|Tn |1/n

when the limit exists. However, notice that these notions of growth barely account for the
structure of the tree: only |Tn | matters, not how the vertices at different levels are connected to
each other. Of course, if T is spherically symmetric, meaning that for each n, every vertex at
distance n from the root has the same number of children (which may depend on n), then there
is really no more information in the tree than that contained in the sequence


|Tn | ; n ≥ 0
�
.

For more general trees, however, we will use a different approach.
Consider the tree as a network of pipes and imagine water entering the network at the root.

However much water enters a pipe leaves at the other end and splits up among the outgoing
pipes (edges). Formally, this means that we consider a nonnegative function θ on the edges of
T , called a flow, with the property that for every vertex x other than the root, if x has parent z
and children y1, . . . , yd, then θ((z, x)) = ∑d

i=1 θ((x, yi)). We say that θ(e) is the amount of
water flowing along e and that the total amount of water flowing from the root to infinity is∑k

j=1 θ((o, x j)), where the children of the root o are x1, . . . , xk .
Consider the following sort of restriction on a flow: given 𝜆 ≥ 1, suppose that the amount

of water that can flow through an edge at distance n from o is only 𝜆−n. In other words, if
x ∈ Tn has parent z, then the restriction is that θ((z, x)) ≤ 𝜆−n. If 𝜆 is too big, then perhaps
no positive amount of water can flow from the root to infinity. Indeed, consider the binary
tree. Then the equally splitting flow that sends an amount 2−n through each edge at distance
n from the root will satisfy the restriction imposed when 𝜆 ≤ 2 but not for any 𝜆 > 2. In fact,
it is intuitively clear that there is no way to get any water to flow when 𝜆 > 2. Obviously,
this critical value of 2 for 𝜆 is the same as the branching number of the binary tree – if the
tree were ternary, then the critical value would be 3. So let us make a general definition: the
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4 Chap. 1: Some Highlights

branching number of a tree T is the supremum of those 𝜆 that admit a positive total amount
of water to flow through T ; denote this critical value of 𝜆 by br T .
Let’s spend some time on this new concept. For a vertex x other than the root, let e(x)

denote the edge that joins x to its parent. The total amount of water flowing is, by definition,∑
x∈T1

θ(e(x)). If we apply the flow condition to each x in T1, then we see that this sum
also equals

∑
x∈T2

θ(e(x)). Induction shows, in fact, that it equals
∑

x∈Tn
θ(e(x)) for every

n ≥ 1. When the flow is constrained in the way we have specified, then this sum is at most∑
x∈Tn

𝜆−n = |Tn |𝜆−n. Now if we choose 𝜆 > gr T , then lim infn→∞ |Tn |𝜆−n = 0, whence for
such 𝜆, no water can flow. Conclusion:

br T ≤ gr T . (1.1)
Often, as in the case of the binary tree, equality holds here. However, there are many examples
of strict inequality.
Before we give an example of strict inequality, here is another example where equality

holds in (1.1).

Example 1.1. If T is a tree such that vertices at even distances from o have two children
whereas the rest have three children, then br T = gr T =

√
6. Why? It is easy to see that

gr T =
√

6, whence by (1.1), it remains to show that br T ≥
√

6. In other words, it remains to
show that, given 𝜆 <

√
6, a positive amount of water can flow to infinity under the constraints

described. Indeed, we can use the water flow with amount 6−n/2 flowing on those edges at
distance n from the root when n is even and with amount 6−(n−1)/2/3 flowing on those edges
at distance n from the root when n is odd.

More generally, one can show (Exercise 1.2) that equality holds in (1.1) whenever T is
spherically symmetric.

Now we give an example where strict inequality holds in (1.1).

Example 1.2. (The 1–3 Tree) We will con-
struct a tree T embedded in the upper half-
plane with o at the origin. We’ll have |Tn | = 2n,

o
Figure 1.2. A tree with branch-
ing number 1 and growth rate 2.

but we’ll connect them in a funny way. List
Tn in clockwise order as ⟨xn

1 , . . . , xn
2n ⟩. Let

xn
k
have one child if k ≤ 2n−1 and three chil-

dren otherwise; see Figure 1.2. Define a ray
in a tree to be an infinite path from the root
that doesn’t backtrack. If x is a vertex of T
that does not have the form xn

2n , then there are
only finitely many rays that pass through x.
This means that water cannot flow to infinity
through such a vertex x when 𝜆 > 1. That
leaves only the possibility of water flowing
along the single ray consisting of the vertices
xn

2n , but that’s impossible too. Hence br T = 1,
yet gr T = 2.
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§3. Electric Current 5

Example 1.3. If T (1) and T (2) are trees, form a
new tree T (1) ∨T (2) from disjoint copies of T (1)
and T (2) by joining their roots to a new point
taken as the root of T (1) ∨ T (2) (Figure 1.3).
Then

br
(
T (1) ∨ T (2)) = br T (1) ∨ br T (2)

since water can flow in the join T (1) ∨ T (2) iff
water can flow in one of the trees. Here, as

T (1) T (2)

o

Figure 1.3. Joining two trees.usual in probability, we use a ∨ b to mean
max{a, b} when a and b are real numbers.

Although gr T is easy to compute, br T may not be. Nevertheless, it is the branching
number that is much more important. Theorems to be described shortly will bear out this
assertion. We will develop tools to compute br T in many common situations.

1.3 Electric Current

We can ask another flow question on trees, this one concerning electrical current. All
electrical terms are given precise mathematical definitions in Chapter 2, but for now, we give
some bare definitions to sketch the arc of some of the fascinating and surprising connections
that we develop later. If positive numbers c(e) are assigned to the edges e of a tree, we
may call these numbers conductances, and in that case, the energy of a flow θ is defined to
be

∑
e θ(e)2/c(e). We say that electrical current flows from the root to infinity if there is a

nonzero flow with finite energy.
Here’s our new flow question: if 𝜆−n is the conductance of edges at distance n from the

root of T , will current flow?

Example 1.4. Consider the binary tree. The equally splitting flow has finite energy for every
𝜆 < 2, so in those cases, electrical current does flow. One can show that when 𝜆 ≥ 2, not
only does the equally splitting flow have infinite energy, but so does every nonzero flow
(Exercise 1.4). Thus, current flows in the infinite binary tree iff 𝜆 < 2. Note the slight
difference to water flow: when 𝜆 = 2, water can still flow on the binary tree.

In general, there will be a critical value of 𝜆 below which current flows and above which it
does not. In the example of the binary tree that we just analyzed, this critical value was the
same as that for water flow. Is this equality special to nice trees, or does it hold for all trees?
We have seen an example of a strange tree (another is in Exercise 1.3), so we might doubt its
generality. However, it is indeed a general fact (Lyons, 1990):

Theorem 1.5.* If 𝜆 < br T , then electrical current flows, but if 𝜆 > br T , then it does not.

* This will follow from Theorem 3.5 and the discussion in Section 2.2.
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6 Chap. 1: Some Highlights

1.4 Random Walks

There is a striking, but easily established, correspondence between electrical networks
and random walks on graphs (or on networks). Namely, given a finite connected graph G
with conductances (that is, positive numbers) assigned to the edges, we consider the random
walk that can go from a vertex only to an adjacent vertex and whose transition probabilities
from a vertex are proportional to the conductances along the edges to be taken. That is, if x
is a vertex with neighbors y1, . . . , yd and the conductance of the edge (x, yi) is ci , then the
transition probability from x to yj is p(x, yj) := cj

/∑d
i=1 ci . Now consider two fixed vertices

a0 and a1 of G. A voltage function on the vertices is then a function v such that v(ai) = i for
i = 0, 1 and for every other vertex x ̸= a0, a1, the equation v(x)∑d

i=1 ci =
∑d

i=1 civ(yi) holds,
where the neighbors of x are y1, . . . , yd. In other words, v(x) is a weighted average of the
values at the neighbors of x. We will see in Section 2.1 that voltage functions exist and are
unique. The following proposition provides the basic connection between random walks and
electrical networks:

Proposition 1.6. (Voltage as Probability) For every vertex x, the voltage at x equals the
probability that when the corresponding random walk starts at x, it will visit a1 before it
visits a0.

The proof of this proposition will be simple: In outline, there is a discrete Laplacian (a
difference operator) that will define a notion of harmonic function. Both the voltage and the
probability mentioned are harmonic functions of x. The two functions clearly have the same
values at ai (the “boundary” points), and the uniqueness principle holds for this Laplacian,
whence the functions agree at all vertices x. This is developed in detail in Section 2.1.

a1

Figure 1.4. Identifying a level to a vertex, a1.

What does this say about our trees? Given N , identify all the vertices of level N , that is, TN ,
to one vertex, a1 (see Figure 1.4). Use the root as a0. Then, according to Proposition 1.6, the
voltage at x is the probability that the random walk visits level N before it visits the root when
it starts from x. When N → ∞, the limiting voltages are all 0 iff the limiting probabilities are
all 0, which is the same thing as saying that on the infinite tree, the probability of visiting the
root from any vertex is 1, in other words, the random walk is recurrent. Although we have
not yet defined “current,” we’ll see that no current flows across edges whose endpoints have
the same voltage. This will imply, then, that no electrical current flows iff the random walk is
recurrent. Contrapositively, electrical current flows iff the random walk is transient. In this
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§5. Percolation 7

way, electrical networks will be a powerful tool to help us decide whether a random walk is
recurrent or transient. These ideas are detailed in Section 2.2.
Earlier we considered conductances 𝜆−n on

edges at distance n from the root. In this case,

𝜆

1

1

1

Figure 1.5. The relative weights at a
vertex. The tree is growing upwards.

the conductances decrease by a factor of 𝜆 as the
distance increases by 1, so the relative weights
at a vertex other than the root are as shown in
Figure 1.5. That is, the edge leading back toward
the root is 𝜆 times as likely to be taken as each
edge leading away from the root. Denoting the
dependence of the random walk on the parameter
𝜆 by 𝖱𝖶𝜆, we may translate Theorem 1.5 into a
probabilistic form (Lyons, 1990):

Theorem 1.7.* If 𝜆 < br T , then 𝖱𝖶𝜆 is transient, whereas if 𝜆 > br T , then 𝖱𝖶𝜆 is recurrent.

Is this form intuitive? Consider a vertex other than the root with, say, d children. If we
consider only the distance from o, which increases or decreases at each step of the random
walk, a balance at this vertex between increasing and decreasing occurs when 𝜆 = d. If d is
constant, then the distance from the root undergoes a random walk with a constant bias (for
a fixed 𝜆), so it is easy to see that indeed d is the critical value separating transience from
recurrence. What Theorem 1.7 says is that this same heuristic can be used in the general case,
provided we substitute the “average” br T for d.
We will also see how to use electrical networks to prove Pólya’s wonderful, seminal

theorem that simple random walk on the hypercubic lattice �d is recurrent for d ≤ 2 and
transient for d ≥ 3.

1.5 Percolation

Suppose that we remove edges at random from a tree, T . To be specific, we keep each edge
with some fixed probability p and make these decisions independently for different edges.
This random process is called percolation. As we’ll see, by Kolmogorov’s zero-one law, the
probability that an infinite connected component remains in the tree is either 0 or 1. On the
other hand, we’ll see that this probability is monotonic in p, whence there is a critical value
pc(T) where it changes from 0 to 1. It is also intuitively clear that the “bigger” the tree, the
more likely it is that there will be an infinite component for a given p. That is, the “bigger”
the tree, the smaller is the critical value pc. Thus, pc is vaguely inversely related to a notion
of average size or maybe average branching number. Surprisingly, this vague heuristic is
precise and general (Lyons, 1990):

* This will be proved as Theorem 3.5.
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8 Chap. 1: Some Highlights

Theorem 1.8.* For any tree, pc(T) = 1/br T .

What is this telling us? If a vertex x has d children, then the expected number of children
remaining after percolation is dp. If dp is “usually” less than 1, then one would not expect
that an infinite component would remain, whereas if dp is “usually” greater than 1, then
one might guess that an infinite component would be present somewhere. Theorem 1.8 says
that this intuition becomes correct when one replaces the “usual” d by br T . Both Theorems
1.5 and 1.8 say that the branching number of a tree is a single number that captures enough
of the complexity of a general tree to give the critical value for a stochastic process on the
tree. There are other examples as well of this striking phenomenon. Altogether, they make a
convincing case that the branching number is indeed the most important single number to
attach to an infinite tree.

1.6 Branching Processes

In the preceding section, we looked at existence of infinite components after percolation
on a tree. Although this event has probability 0 or 1, if we restrict attention to the connected
component of the root, its probability of being infinite is between 0 and 1. These are
equivalent ways to approach the issue, since, as we’ll see, there is an infinite component
somewhere with probability 1 iff the component of the root is infinite with positive probability.
But looking at the component of the root also suggests a different stochastic process.
Percolation on a fixed tree produces random trees by random pruning, but there is a way

to grow trees randomly that was invented by Bienaymé in 1845. Given probabilities pk
adding to 1 (k = 0, 1, 2, . . .), we begin with one individual, and let it reproduce according
to these probabilities, that is, it has k children with probability pk . Each of these children
(if there are any) then reproduce independently with the same law, and so on forever or
until some generation goes extinct. The family trees produced by such a process are called
(Bienaymé-)Galton-Watson trees. A fundamental theorem in the subject (Proposition 5.4)
is that extinction is a.s. iff m ≤ 1 and p1 < 1, where m :=

∑
k kpk is the mean number of

offspring per individual. This provides further justification for our intuitive understanding
of Theorem 1.8. It also raises a natural question: Given that a Galton-Watson family tree is
nonextinct (infinite), what is its branching number? All the intuition suggests that it is m
a.s., and indeed it is. This was first proved by Hawkes (1981). But here is the idea of a very
simple proof (Lyons, 1990).
According to Theorem 1.8, to determine br T , we may determine pc(T). Thus, let T grow

according to a Galton-Watson process, then perform percolation on T , that is, keep edges
with probability p. Focus on the component of the root. Looked at as a random tree in
itself, this component appears simply as some other Galton-Watson tree; its mean is mp by
independence of the growing and the “pruning” (percolation). Hence, the component of
the root is infinite with positive probability iff mp > 1. This implies that pc = 1/m a.s. on
nonextinction, thus br T = m a.s. on nonextinction. We’ll flesh out the details when we prove
Proposition 5.9.

* This will be proved as Theorem 5.15.
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Now let’s consider another way to measure the size of Galton-Watson trees. Let Zn be the
size of the nth generation in a Galton-Watson process. How quickly does Zn grow? It will be
easy to calculate that E[Zn] = mn. Moreover, a martingale argument will show that the limit
W := limn→∞ Zn/mn always exists (and is finite). When 1 < m < ∞, do we have that W > 0
a.s. on the event of nonextinction? When W > 0, the growth rate of the tree is asymptotically
W mn; this implies the cruder asymptotic gr T = m. It turns out that indeed W > 0 a.s. on the
event of nonextinction, under a very mild hypothesis:

The Kesten-Stigum Theorem (1966). When 1 < m < ∞, the following are equivalent:
(i) W > 0 a.s. on the event of nonextinction;

(ii)
∑∞

k=1 pk k log k < ∞.

This will be shown in Section 12.2. Although condition (ii) appears technical and suggests
some possibly unpleasant analysis, we will enjoy a conceptual proof of the theorem that uses
only extremely simple estimates.

1.7 Random Spanning Trees

The fertile and fascinating field
of random spanning trees is one of

Figure 1.6. A spanning tree in a graph, where
the edges of the graph not in the tree are dashed.

the oldest areas to be studied in this
book but one of the newest to be ex-
plored in depth. A spanning tree of
a (connected) graph is a subgraph
that is connected, contains every ver-
tex of the whole graph, and contains
no cycle: see Figure 1.6 for an ex-
ample. These trees are usually not
rooted. The subject of random span-
ning trees of a graph goes back to
Kirchhoff (1847), who showed its
surprising relation to electrical networks. (Actually, Kirch-
hoff did not think probabilistically; rather, he considered
quotients of the number of spanning trees with a certain
property divided by the total number of spanning trees.
See Kirchhoff’s effective resistance formula in Section 4.2
and Exercise 4.30.) One of Kirchhoff’s results expresses
the probability that a uniformly chosen spanning tree will
contain a given edge in terms of electrical current in the
graph.

To get our feet wet, let’s begin with a very simple finite
graph. Namely, consider the ladder graph of Figure 1.7. 1

2

3

n − 2

n − 1

n

Figure 1.7. A ladder graph.
Among all spanning trees of this graph, what proportion
contain the bottom rung (edge)? In other words, if we were
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10 Chap. 1: Some Highlights

to choose uniformly at random a spanning tree, what is the chance that it would contain the
bottom rung? We have illustrated in Figure 1.8 the entire probability spaces for the smallest
ladder graphs.

1/1

3/4

11/15

Figure 1.8. The ladder graphs of heights 0, 1, and 2, together with their spanning trees.

As shown, the probabilities in these cases are 1/1, 3/4, and 11/15. The next one is 41/56.
Do you see any pattern? One thing that is fairly evident is that these numbers are decreasing
but hardly changing. Amusingly, these numbers are every other term of the continued fraction
expansion of

√
3 − 1 = 0.73+ and, in particular, converge to

√
3 − 1. In the limit, then, the

probability of using the bottom rung is
√

3 − 1, and even before taking the limit, this gives an
excellent approximation to the probability. How can we easily calculate such numbers? In
this case, there is a rather easy recursion to set up and solve, but we will use this example to
illustrate the more general theorem of Kirchhoff that we mentioned earlier. In fact, Kirchhoff’s
theorem will show us why these probabilities are decreasing even before we calculate them.
For the next two paragraphs, we will assume some

e

Figure 1.9. A battery is hooked
up between the endpoints of e.

familiarity with electrical networks; those who do not
know these terms will find precise mathematical defini-
tions in Sections 2.1 and 2.2. Suppose that each edge of
our graph (any graph – say, the ladder graph) is an elec-
tric conductor of unit conductance. Hook up a battery
between the endpoints of any edge e – say, the bottom
rung (Figure 1.9). Kirchhoff (1847) showed that the
proportion of current that flows directly along e is then
equal to the probability that e belongs to a randomly
chosen spanning tree!
Now current flows in two ways: some flows directly

across e and some flows through the rest of the net-
work. It is intuitively clear (and justified by Rayleigh’s
monotonicity principle in Section 2.4) that the higher the ladder, the greater the effective
conductance of the ladder minus the bottom rung, hence the less current proportionally will
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flow along e, whence by Kirchhoff’s theorem, the less the chance that a random spanning tree
contains the bottom rung. This confirms our observations.

It turns out that generating spanning trees at random according to the uniform measure is
of interest to computer scientists, who have developed various algorithms over the years for
random generation of spanning trees. In particular, this is closely connected to generating a
random state from any Markov chain. See Propp and Wilson (1998) for more on this issue.
Early algorithms for generating a random spanning tree used the matrix-tree theorem,

which counts the number of spanning trees in a graph via a determinant (Section 4.4). A
better algorithm than these early ones, especially for probabilists, was introduced by Aldous
(1990) and Broder (1989). It says that if you start a simple random walk at any vertex of a
finite (connected) graph G and draw every edge it traverses except when it would complete
a cycle (that is, except when it arrives at a previously visited vertex), then when no more
edges can be added without creating a cycle, what will be drawn – amazingly – is a uniformly
chosen spanning tree of G. (To be precise: if Xn (n ≥ 0) is the path of the random walk, then
the associated spanning tree is the set of edges

�[Xn, Xn+1] ; Xn+1 /∈ {X0, X1, . . . , Xn}	.)
This beautiful algorithm is quite efficient and useful for theoretical analysis, yet as a graduate
student, Wilson (1996) found an even better one that we’ll describe in Section 4.1.
Return for a moment to the ladder graphs. We saw that as the height of the ladder tends to

infinity, there is a limiting probability that the bottom rung of the ladder graph belongs to a
uniform spanning tree. What about uniform spanning trees in other sequences of growing
finite graphs? Suppose that G is an infinite graph. Let Gn be finite (connected) subgraphs
with G1 ⊂ G2 ⊂ G3 ⊂ · · · and

∪
Gn = G. Take the uniform spanning tree probability

measure on each Gn. This gives a sequence of probability measures on subsets of edges
of G. Does this sequence converge in a reasonable sense? Lyons conjectured that it does,
and Pemantle (1991) verified that the weak limit exists. (In other words, if µn denotes
the uniform spanning tree measure on Gn and B, B′ are finite sets of edges in G, then
limn µn[B ⊂ Tn, B′ ∩ Tn = ∅] exists, where Tn denotes a random spanning tree in Gn.)
This limit is now called the free uniform spanning forest* on G, denoted 𝖥𝖴𝖲𝖥 or just 𝖥𝖲𝖥.
Considerations of electrical networks play the dominant role in Pemantle’s proof. Pemantle
(1991) discovered the astounding fact that on �d, the uniform spanning forest is a single
tree a.s. if d ≤ 4, but when d ≥ 5, there are infinitely many trees a.s.! We’ll prove this as
Theorem 10.30.

* In graph theory, “spanning forest” usually means a maximal subgraph without cycles, that is, a spanning tree in
each connected component. We mean, instead, a subgraph without cycles that contains every vertex.
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1.8 Hausdorff Dimension

We’ve used water flow on trees to define the branching number, where the amount of water
that can flow through an edge at distance n from the root of a tree is constrained to be at most
𝜆−n. There is a useful way to reformulate this via what’s known as the max-flow min-cut
theorem, proved in Section 3.1. Namely, consider a set Π of edges whose removal leaves the
root o in a finite component. We call such a set a cutset (separating o from infinity). If θ is a
flow from o to infinity, then all the water must flow through Π, so one expects that an upper
bound on the total that can flow is

∑
e(x)∈Π 𝜆−|x |, where e(x) denotes the edge that joins x to

its parent, as before, and |x | denotes the distance of a vertex x to the root. This expectation
turns out to be correct, so that the most that can flow is

inf
{ ∑
e(x)∈Π

𝜆−|x | ; Π is a cutset
}
. (1.2)

Remarkably, this upper bound is always achievable, that is, there is a flow with this amount in
total flowing from the root to infinity; this is the content (in a special case) of the max-flow
min-cut theorem. We are going to use this now to understand Hausdorff dimension, but a
much more detailed and varied motivation of Hausdorff dimension is given in Chapter 15.
A vertex of degree 1 in a tree is called a leaf . By analogy with the leaves of a finite tree,

we call the set of rays of T the boundary (at infinity) of T , denoted ∂T . (Recall that a ray is
an infinite simple path from the root, so ∂T does not include any leaves of T .) Now there is a
natural metric on ∂T : if ξ, η ∈ ∂T have exactly n edges in common, define their distance to
be d(ξ, η) := e−n. Thus, if x ∈ T has more than one child with infinitely many descendants,
then the set of rays going through x,

Bx := {ξ ∈ ∂T ; ξ|x | = x} , (1.3)
has diameter diam Bx = e−|x |. We call a collection C of subsets of ∂T a cover if∪

B∈C
B = ∂T .

▷ Exercise 1.1.
Let T be an infinite locally finite tree.

(a) (Kőnig’s Lemma) Show that ∂T ̸= ∅.
(b) Show that ∂T is compact.

Note that

Π is a cutset (separating o from∞) iff {Bx ; e(x) ∈ Π} is a cover. (1.4)
The Hausdorff dimension of ∂T is defined to be

dim ∂T := sup
{
α ; inf

C a countable cover

∑
B∈C

(diam B)α > 0
}
.
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This number is just a disguised version of the branching number.* Indeed,

br T = sup
{
𝜆 ; water can flow through pipe capacities 𝜆−|x |

}
.

Now use the condition (1.2) to write this as

sup
{
𝜆 ; inf

Π a cutset

∑
e(x)∈Π

𝜆−|x | > 0
}
.

Replace 𝜆 by eα to rewrite it as

exp sup
{
α ; inf

Π a cutset

∑
e(x)∈Π

e−α|x | > 0
}
,

and then use the correspondence (1.4) between cutsets and covers to write this as

exp sup
{
α ; inf

C a cover

∑
B∈C

(diam B)α > 0
}
.

Now we see the disguise revealed as

br T = exp dim ∂T .

Soon we’ll see how this helps us to analyze Hausdorff dimension in Euclidean space.

1.9 Capacity

In Section 1.3, we made the definition

electrical current flows from the root of an infinite tree
⇐⇒ (1.5)

there is a flow with finite energy.

A unit flow on a tree T from the root to infinity is a flow where a total of 1 unit flows from the
root. By identifying vertices x with edges e(x), we may identify a unit flow with a function θ
on the vertices of T that is 1 at the root and that has the property that for all vertices x,

θ(x) =
∑
i

θ(yi) ,

where yi are the children of x. The energy of a flow for the conductances that we’ve been
using as our basic example is then ∑

x∈T
θ(x)2𝜆|x | ,

* Historically, the branching number was defined by Lyons (1990) only after Furstenberg (1970) considered the
Hausdorff dimension of the boundaries of trees, which served as the former’s inspiration.
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whence we may write Theorem 1.5 as

br T = sup
{
𝜆 ; there exists a unit flow θ

∑
x∈T

θ(x)2𝜆|x | < ∞
}
. (1.6)

We can also identify unit flows θ on T with Borel probability measures µ on ∂T via

µ(Bx) = θ(x)
(see Section 15.4). A bit of algebra (Proposition 16.1) will show that (1.6) is equivalent to

br T = exp sup
{
α ; ∃ a probability measure µ on ∂T

∫∫
dµ(ξ) dµ(η)

d(ξ, η)α < ∞
}
.

For α > 0, define the α-capacity of ∂T to be the reciprocal of the minimum energy of a
unit flow for 𝜆 = eα. When we express this purely in terms of probability measures on the
boundary, this will turn out to be the same as the following definition:

capα(∂T)−1 := inf
{∫∫

dµ(ξ) dµ(η)
d(ξ, η)α ; µ a probability measure on ∂T

}
.

Then statement (1.5) says that for α > 0,

random walk with parameter 𝜆 = eα is transient ⇐⇒ capα(∂T) > 0 . (1.7)
It follows from Theorem 1.7 that

the critical value of α for positivity of capα(∂T) is dim ∂T . (1.8)
Theorem 1.8 told us that these same critical values for random walk, electrical networks,

Hausdorff dimension, or capacity are also critical for percolation. But it did not tell us what
happens at the critical value, unlike, say, (1.7) does for random walk. This is more subtle to
analyze for percolation but is also known (Lyons, 1992):

Theorem 1.9.* (Tree Percolation and Capacity) For α > 0, percolation with parameter
p = e−α yields an infinite component a.s. iff capα(∂T) > 0. Moreover,

capα(∂T) ≤ P[the component of the root is infinite] ≤ 2 capα(∂T) .
Although this appears rather abstract, it is very useful. First of all, when T is spherically

symmetric and p = e−α, we can calculate the capacities easily (Exercise 16.1):

capα(∂T) = *,1 + (1 − p)
∞∑
n=1

1
pn |Tn |

+-
−1

.

Second, one can use this theorem in combination with (1.7); this allows us to translate
problems freely between the domains of random walks and percolation (Lyons, 1992). Third,
we describe how it can be used to analyze Brownian motion in the next section.

* This will be proved as Theorem 16.3. The case of the first part of this theorem where all the degrees are
uniformly bounded was shown earlier by Fan (1989, 1990).
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§10. Embedding Trees into Euclidean Space 15

1.10 Embedding Trees into Euclidean Space

The results described previously, especially those concerning percolation, can be translated
to give interesting results on closed sets in Euclidean space. We describe only the simplest
such correspondence here.*
Let b ≥ 2 be an integer. An interval of the form [k/bn, (k + 1)/bn] for integers k and n is

called b-adic of order n. For a closed nonempty set E ⊆ [0, 1], consider the system of b-adic
subintervals of [0, 1]. We’ll associate a tree to E as follows: Those intervals whose inter-
section with E is nonempty will form the vertices
of the tree. Two such intervals are connected by an
edge iff one contains the other and the ratio of their
lengths is b. The root of this tree is [0, 1]. Denote
this tree by T[b](E). An example is illustrated in
Figure 1.10 with b = 4. Were it not for the fact that
certain numbers have two representations in base
b, we could identify ∂T[b](E) with E. Because of
this multiplicity of representation, there are other
trees whose boundary we could identify with E.
That is, given a tree T , suppose that we associate
to each x ∈ Tn a b-adic interval Ix ⊆ [0, 1] of order
n in such a way that |Ix ∩ Iy | ≤ 1 for |x | = |y |,
x ̸= y, and that Ix is contained in Iz when z is the
parent of x. Then the tree T codes the closed set

0 1

Figure 1.10. Coding by trees.
E :=

∩
n≥0

∪
x∈Tn

Ix . The difference between ∂T
and ∂T[b](E) is at most countable. As we will see, this implies, for example, that these two
boundaries have the same Hausdorff dimension.
Hausdorff dimension is defined for subsets of [0, 1] just as we defined it for ∂T : A cover

of E is a collection C of sets whose union contains E, and

dim E := sup
{
α ; inf

C a cover of E

∑
B∈C

(diam B)α > 0
}
,

where diam B denotes the (Euclidean) diameter of E. When T codes E, covers of ∂T by sets
of the form Bx (as in (1.3)) correspond to covers of E by b-adic intervals, but of diameter
b−|x |, rather than e−|x |. One can show that restricting to covers of E by b-adic intervals does
not change the computation of Hausdorff dimension, whence we may conclude (compare the
calculation at the end of Section 1.8) that

dim E =
dim ∂T
log b

= logb(br T) . (1.9)

Example 1.10. Let E be the Cantor middle-thirds set. If b = 3, then the binary tree codes E
(when the obvious 3-adic intervals are associated to the binary tree), whence (1.9) tells us

* This correspondence was part of Furstenberg’s motivation in 1970 for looking at the dimension of the boundary
of a tree.
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that the Hausdorff dimension of E is log3 2 = log 2/log 3. If we use a different base, b, to
code E by a tree T , we will have br T = blog3 2.

Capacity in Euclidean space is also defined as we defined it on the boundary of a tree:

(capαE)−1 := inf
{∫∫

dµ(x) dµ(y)
|x − y |α ; µ a probability measure on E

}
.

It was shown by Benjamini and Peres (1992) and Pemantle and Peres (1995b) (see Sec-
tion 16.3) that when T codes E,

1
2

capαE ≤ 1
1 − b−α

capα log b∂T ≤ 3b capαE . (1.10)
This means that the percolation criterion Theorem 1.9 can be used in Euclidean space. This,
and similar extensions, will allow us in Section 16.4 to analyze Brownian motion in �d by
replacing the path of Brownian motion by an “intersection-equivalent” random fractal that
is much easier to analyze, being an embedding of a Galton-Watson tree. This will allow us
to determine whether Brownian motion has double points, triple points, etc., in a very easy
fashion.

1.11 Notes
The product of two graphs, G1 and G2, with 𝖵 := 𝖵1 × 𝖵2 and the choice

𝖤 :=
��(x1, x2), (y1, y2)� ; (x1, y1) ∈ 𝖤1 and (x2, y2) ∈ 𝖤2

	
is called the tensor product, since its adjacency matrix is the tensor product of the adjacency matrices
corresponding to 𝖤1 and 𝖤2. It is denoted G = G1 × G2. The union of G1 □ G2 and G1 × G2 is denoted
G1 ⊠G2. Terminology for graph products is not universal; other terms include “sum” for what we called
the Cartesian product and “product” for the tensor product.

Other recent books that cover material related to the topics of this book include Probability on Graphs
by Geoffrey Grimmett, Reversible Markov Chains and Random Walks on Graphs by David Aldous and
Jim Fill (preliminary version online), Coarse Geometry and Randomness by Itai Benjamini,Markov
Chains and Mixing Times by David A. Levin, Yuval Peres, and Elizabeth L. Wilmer, Probability: The
Classical Limit Theorems by Henry McKean, Random Trees: An Interplay between Combinatorics
and Probability by Michael Drmota, A Course on the Web Graph by Anthony Bonato, Random Graph
Dynamics by Rick Durrett, Complex Graphs and Networks by Fan Chung and Linyuan Lu, The Random-
Cluster Model by Geoffrey Grimmett, Superfractals by Michael Fielding Barnsley, Introduction to
Mathematical Methods in Bioinformatics by Alexander Isaev, Gaussian Markov Random Fields by
Håvard Rue and Leonhard Held, Conformally Invariant Processes in the Plane by Gregory F. Lawler,
Random Networks in Communication by Massimo Franceschetti and Ronald Meester, Percolation
by Béla Bollobás and Oliver Riordan, Probability and Real Trees by Steven Evans, Random Trees,
Lévy Processes and Spatial Branching Processes by Thomas Duquesne and Jean-François Le Gall,
Combinatorial Stochastic Processes by Jim Pitman, Random Geometric Graphs by Mathew Penrose,
Random Graphs by Béla Bollobás, Random Graphs by Svante Janson, Tomasz Luczak, and Andrzej
Ruciński, Phylogenetics by Charles Semple and Mike Steel, Stochastic Networks and Queues by
Philippe Robert, Random Walks on Infinite Graphs and Groups by Wolfgang Woess, Random Walk: A
Modern Introduction by Gregory F. Lawler and Vlada Limic, Percolation by Geoffrey Grimmett, Noise
Sensitivity of Boolean Functions and Percolation by Christophe Garban and Jeffrey E. Steif, Stochastic
Interacting Systems: Contact, Voter and Exclusion Processes by Thomas M. Liggett, and Discrete
Groups, Expanding Graphs and Invariant Measures by Alexander Lubotzky.
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1.12 Collected In-Text Exercises

1.1. Let T be an infinite locally finite tree.
(a) (Kőnig’s Lemma) Show that ∂T ̸= ∅.
(b) Show that ∂T is compact.

1.13 Additional Exercises

1.2. Show that br T = gr T when T is a spherically symmetric tree.

1.3. Here we’ll look more closely at the joining construction of Example 1.3. We will put together
two spherically symmetric trees T (1) and T (2) such that br

�
T (1) ∨ T (2)� = 1, yet at the same time,

gr
�
T (1) ∨ T (2)� > 1. Let nk ↑ ∞. Let T (1) (resp., T (2)) be a tree such that x has one child (resp.,

two children) for n2k ≤ |x | ≤ n2k+1 and two (resp., one) otherwise; this is shown schematically in
Figure 1.11. If nk increases sufficiently rapidly, then br T (1) = br T (2) = 1, so br

�
T (1) ∨ T (2)� = 1. Prove

that if ⟨nk ⟩ increases sufficiently rapidly, then gr
�
T (1) ∨ T (2)� = √2. Furthermore, show that the set of

possible values of gr
�
T (1) ∨ T (2)� over all sequences ⟨nk ⟩ is

�√
2, 2

�
.

1 1

1 12 2

2 2

Figure 1.11. A schematic of a tree with branching number 1 and growth rate
√

2.

1.4. Complete Example 1.4 by showing that when 𝜆−n is the conductance of edges at distance n
from the root of a binary tree T , current does not flow for 𝜆 ≥ 2.
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