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Abstract

Background. Mood disorders are characterized by great heterogeneity in clinical manifest-
ation. Uncovering such heterogeneity using neuroimaging-based individual biomarkers, clin-
ical behaviors, and genetic risks, might contribute to elucidating the etiology of these diseases
and support precision medicine.
Methods. We recruited 174 drug-naïve and drug-free patients with major depressive disorder
and bipolar disorder, as well as 404 healthy controls. T1 MRI imaging data, clinical symptoms,
and neurocognitive assessments, and genetics were obtained and analyzed. We applied
regional gray matter volumes (GMV) and quantile normative modeling to create maturation
curves, and then calculated individual deviations to identify subtypes within the patients using
hierarchical clustering. We compared the between-subtype differences in GMV deviations,
clinical behaviors, cell-specific transcriptomic associations, and polygenic risk scores. We
also validated the GMV deviations based subtyping analysis in a replication cohort.
Results. Two subtypes emerged: subtype 1, characterized by increased GMV deviations in the
frontal cortex, cognitive impairment, a higher genetic risk for Alzheimer’s disease, and tran-
scriptionally associated with Alzheimer’s disease pathways, oligodendrocytes, and endothelial
cells; and subtype 2, displaying globally decreased GMV deviations, more severe depressive
symptoms, increased genetic vulnerability to major depressive disorder and transcriptionally
related to microglia and inhibitory neurons. The distinct patterns of GMV deviations in the
frontal, cingulate, and primary motor cortices between subtypes were shown to be replicable.
Conclusions. Our current results provide vital links between MRI-derived phenotypes, spatial
transcriptome, genetic vulnerability, and clinical manifestation, and uncover the heterogeneity
of mood disorders in biological and behavioral terms.

Introduction

Patients with mood disorders, including bipolar disorder (BD) and major depressive disorder
(MDD), exhibit overlapping dominant psychopathology, particularly in the clinical presenta-
tion of depressive episodes, which poses ongoing challenges for early diagnosis and interven-
tion (Cassano et al., 2004; Kendler & Gardner, 1998; Krystal, 2014; Kupfer, Frank, & Phillips,
2012; Peralta & Cuesta, 1998). Despite decades of effort, there is still a notable absence of
definitive biomarkers for mood disorders. This is not completely surprising because studies
have mainly used nosology that differentiates mood disorders according to clinical symptoms
in the lack of any objective biomarker, although the clinical diagnostic system, Diagnostic and
Statistical Manual of Mental Disorders, has already dramatically revolutionized the psychiatry
field. While long proposed as distinguishable diagnostic categories, MDD and BD share sub-
stantial key attributes as implicated by complementary sources of evidence from neuroima-
ging, histological, and genetic studies (Brambilla, Perez, Barale, Schettini, & Soares, 2003;
O’Donovan & Owen, 2016; Sheline, 2003; Wei et al., 2020, 2023; Xia et al., 2019). This suggests
a broader continuum between MDD and BD than previously assumed. Thus, it is imperative
to comprehend the multidimensional neurobiological intermediate phenotypes underlying
psychopathology of mood disorders, transcending traditional diagnostic categories for MDD

https://doi.org/10.1017/S0033291724000886 Published online by Cambridge University Press

https://www.cambridge.org/psm
https://doi.org/10.1017/S0033291724000886
mailto:fei.wang@yale.edu
mailto:tangyanqing@cmu.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0
https://orcid.org/0000-0002-7650-6345
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0033291724000886&domain=pdf
https://doi.org/10.1017/S0033291724000886


and BD. Such understanding is essential for deciphering the
diverse pathways that contribute to the heterogeneous clinical
symptoms observed across mood disorders.

Recent advancements in characterizing distinct imaging or
genetic biotypes have shown promise in revealing biological het-
erogeneity of mental illness (Marquand, Rezek, Buitelaar, &
Beckmann, 2016; Sarrazin et al., 2018; Zhang, Sweeney, Bishop,
Gong, & Lui, 2023). Subtyping studies have been advocated as a
vital progression toward a more neurologically grounded under-
standing of heterogeneity in mood disorders (Drysdale et al.,
2017; Sun et al., 2023). Numerous investigations have employed
various clustering methods to detect neuroimaging-based bio-
types in transdiagnostic or diagnosis-specific groups (Chang
et al., 2021; Ge, Sassi, Yatham, & Frangou, 2022; Sun et al.,
2023). Recent depression studying studies mainly characterizing
the distinct emotional symptoms between subgroups (Drysdale
et al., 2017; Han et al., 2022). Ge et al., also identified brain mat-
urational subtypes using neuroimaging profiling and character-
ized the differences in psychopathology and cognition behaviors
among youth with mood and anxiety disorders (Ge et al.,
2022). Remarkably, they also delineated the biopsychosocial con-
text in which subgroup patients arise (Ge et al., 2022). Distinct
neuropathological mechanisms may underlie heterogeneity in
the presentation and progression of the clinical phenotype. As
we mentioned earlier, assessing the validity of subtyping or clus-
tering results necessitates gathering additional evidence from
multidimensional biological data sources that extend beyond clus-
tering algorithm selection and just clinical symptom differences
(Chang et al., 2021; Zhang, Wang, & Zhang, 2022).
Furthermore, the extent to which genetic heterogeneity influences
or interacts with phenotypic expression has barely been explored
and individual-level variability, including environment, genetic,
or other factors, may lead to different levels of disease liability.

Neuroimaging has yielded a profusion of potential biomarkers
for mood disorders (Sheline, 2003). Magnetic resonance imaging
studies have revealed the shared and distinct gray matter volume
(GMV) reductions in bilateral anterior cingulate and medial
frontal cortices, insula in MDD and BD (Drevets, 2000; Jiang
et al., 2021). A potential explanation for the intricate findings is
the presence of distinct underlying pathophysiology, which
resulted in varied patterns of gray matter volume (GMV) abnor-
malities among different subtypes of patients with mood disor-
ders. Notably, case–control designs, which are supremely
prevailing in psychiatry research, yet overlook inter-individual
variances that play a critical role in mapping the heterogeneous
disease phenotype (Lv et al., 2021). Studies benchmarked each
individual scan in the context of normative age-related GMV
trends and computed brain charts using individualized centile
scores or deviations of neuroanatomical maps (Bethlehem et al.,
2022; Chen, Holmes, Zuo, & Dong, 2021). Individual deviations
from normative ranges in brain mappings have effectively
revealed subgroups of patients with major psychiatric disorders
in recent studies (Jiang et al., 2023; Sun et al., 2023). However,
the brain morphometric heterogeneity characterized by individual
deviations was supposed to have distinct associations with cell-
type specific functions and genetic susceptibility in mental illness
(Di Biase et al., 2022; Wen et al., 2022), which remain elusive in
mood disorders.

Our current study intended to quantify the brain morpho-
logical heterogeneity in mood disorders by mapping region-level
changes of gray matter volume (GMV) at the level of individual
patients. We chart individual GMV deviations utilizing a

normative modeling method that maps inter-individual variances
in reference to the healthy control range (Marquand et al., 2019),
and use unsupervised clustering method to identify subtypes in
patients with MDD and BD. The resulting subtypes were then
characterized by using clinical behaviors, cell-specific transcrip-
tomic profiles, and polygenic risk scores (PRS). To minimize
the potential influence of medication confounders, we initially
conducted our study in a discovery cohort comprising
drug-naïve and drug-free patients and then validated the
imaging-based subtyping in a replication cohort (Voineskos
et al., 2020). It was hypothesized that neuroimaging-based indi-
vidual deviation biomarkers coupling with multi-dimensional dis-
tinct features including clinical behaviors, and genetic risks, can
comprehensively describe the underlying heterogeneity in mood
disorders.

Methods and materials

Participants

We recruited 114 MDD patients, 60 BD patients and 404 healthy
controls (HC). All the patients were recruited from the inpatient
department of the Shenyang Mental Health Center and the out-
patient clinic of the Department of Psychiatry of the First
Affiliated Hospital of China Medical University, Shenyang,
China. All the patients were diagnosed by two experienced psy-
chiatrists using the Structured Clinical Interview for the
Diagnostic and Statistical Manual of Mental Disorders, 4th
Edition, Text Revision (DSM-IV-TR) in patients aged 18 years
and older and the Schedule for Affective Disorders and
Schizophrenia for School-Age Children-present and Lifetime
Version (K-SADS-PL) in those patients under the age of 18
years. The patients were either drug-naïve or had been drug-free
for more than two months from oral psychotropic medications
before enrollment. The severity of depressive, anxious, and psy-
chopathological symptoms was respectively assessed by using
the 17-item Hamilton Depression Rating Scale (HAMD),
14-item the Hamilton Anxiety Rating Scale (HAMA), and Brief
Psychiatric Rating Scale (BPRS). We also evaluated participants’
cognitive function performance by using Wisconsin Card
Sorting Test (WCST). Patients and HC were excluded if they
had any major medical condition, neurological disorder, and
MRI contraindications (see online Supplementary Material). HC
participants were recruited from the local community through
advertisement. The participants over 18 years old signed a written
consent form themselves. If the participants age were <18 years,
their parental/legal guardian provided written informed consent.
This study was approved by the Ethics Committee of the First
affiliated Hospital of China Medical University (Shenyang,
China; Approved number: 2015-27-2). To validate the imaging
phenotypes, we involved 268 patients who received medication
treatment as the replication cohort. These patients were also
recruited and scanned at the First Affiliated Hospital of China
Medical University. The details of patients in the replication
cohort are described in the online Supplementary Material.

Image acquisition and MRI processing

Structural MRI scanning was conducted on a Signa HDx 3.0 T
superconductive MRI system (GE Healthcare, Little Chalfont,
UK) at the First Affiliated Hospital, China Medical University.
The details of MRI scanning parameters are presented in online

2 Junjie Zheng et al.

https://doi.org/10.1017/S0033291724000886 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291724000886


Supplementary Material. T1-weighted images were preprocessed
by using the Computation Anatomy Toolbox (CAT) implemented
in Statistical Parametric Mapping (SPM 12) for voxel-based
morphometry (VBM) calculation (http://www.neuro.uni-jena.de/
cat/) (Gaser & Dahnke, 2016). The quality of images was assessed
by using the automated weighted average image quality rating
(IQR). We applied the cut-off (> = 80%, > = grad B) to ensure
high-quality images for analysis as low-quality images can lead
to GM underestimations in preprocessing. Voxel wised gray mat-
ter density was calculated and obtained applying CAT12 default
parameters. The detailed preprocessing information is presented
in online Supplementary Material. The Desikan–Killiany (DK)
parcellation atlas partitioned the cortex into 68 cortical regions
was used as the regions of interest (ROI) template. ROI-wise
gray matter density for each brain region was used for investigat-
ing between-group differences.

GMV normative deviation calculation and subtypes clustering

Quantile regression was used to obtain a normative range of
regional GMV variation as a function of age and sex descripted
in a previous study (Lv et al., 2021). We positioned individuals
with MDD and BD on the normative percentile charts based on
HC and expressed three kinds of continuous measurement of

deviation from the generated normative range including the 5th
percentile (z5) quantile regression predictor, the 50th percentile
(z50) quantile regression predictor and the 95th percentile (z95)
quantile regression predictor, as individual deviation z-scores
for each brain region, representing the difference from normative
GMV calculated across all HC individuals. We then obtained
individual-specific profiles of regional GMV deviations (z50
maps) to perform subtyping analysis for all patients. Ward’s link-
age measurement and hierarchical clustering algorithm were used
to identify clusters of patients based on the GMV deviations maps
(Fig. 1). We assessed the stability of clustering based on scores of
the adjusted rand index (ARI) for 2–5 clusters which were divided
by using the hierarchical cutoffs (Hubert & Arabie, 1985). We
then chose the clustering solution with the highest averaged
ARI following 10-fold cross-validation with 1000 times permuta-
tions, as the optimal clustering results. In this study, the 174 drug-
free patients constitute the discovery dataset (dataset 1), while the
268 medicated patients comprise the validated dataset (dataset 2).
We validate the distinct GMV deviations between subtypes in
dataset 1 and assess the correlations of regional deviation findings
between dataset 1 and dataset 2.

To further analyze the significantly altered GMV deviations in
patients, for each cortical region, we categorized patients as either:
(1) within the HC’s normative range of variation, labeled as

Figure 1. Schematic overview of the workflow in this study. (a) The neuroimaging data were from 174 drug-naïve and drug-free patients with MDD/BD and 404
participants as HC; we used quantile regression model and created normative curves with age based on GMV in HC group and calculated individual deviations
for each region; patients were clustered in two subtypes using hierarchical clustering; we then validated the subtyping stability using ARI scores and examined
GMV deviations reproducibility in a replication cohort; (b) we compared clinical symptoms and cognitive symptoms differences between subtypes; we also created
symptoms network using HAMD, HAMA and BPRS factors and compared global and nodal network properties between subtype groups; (c) we then utilized AHBA
brain-wide gene expression data to selected GMV deviations related genes, and identified their biological process and cell type components; and (d) we use PRS-AD
and PRS-MD scores to compare AD genetic risk and MDD genetic risk between subtype groups.
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normal; (2) significantly exceeding the HC’s normative range,
labeled as supra-normal; or (3) significantly below the HC’s nor-
mative range, labeled as infra-normal. We used z scores to quan-
tify individual GMV deviation from the 5% and 95%, which was
then utilized to guide the above mutually exclusive classification.
We acquired the standard deviations for z scores from the boot-
strapped confidence intervals (CI). We defined the supra-normal
as any individual exceeding the 95% CI for the 95th percentile
(z95 > 1.96), and infra-normal as any individual below the 5%
CI for the 5th percentile (z5 <− 1.96). Each patient was repre-
sented with a GMV deviation encoding map in which brain
areas were numerically encoded with either −1 (infra-normal),
0 (normal), or +1 (supra-normal), and a GMV deviation z map
with matched z5 or z95 values.

The average of the above encoded number across all patients in
each subtype group produced a whole-brain summary measure-
ment defined as the average abnormality rate, which quantified
the overall percentage of GMV deviation. The average of the
GMV deviation z map across all patients in each subtype group
defined as the average abnormality extent (mean values of z95
or z5), which quantified the overall extent of GMV deviation.

Clinical information validation in subtype groups

We used two-sample t test to compare the between-subtype dif-
ferences of clinical measures including total scores of HAMD,
HAMA, and BPRS. We also computed the between-group differ-
ences in WCST performance among groups. We included five
indices of WCST, i.e., correct response (CR), completed categories
(CC), total errors (TE), perseverative errors (PE), and non-
perseverative errors (NPE). The significant level was set as
pFDR < 0.05, false discovery rate (FDR) correction – was used for
controlling the false positive rate.

We created clinical symptoms network by using correlations
between symptoms factors in each subtype and compared the net-
work topological properties based on graph theory (Rydin et al.,
2023; Ye et al., 2021). Previous studies suggested psychotic symp-
toms are considered as the distinct subtype of affective disorders
and frequently occur accordingly with depressive and anxious
symptoms in all stages of illness (Tonna, De Panfilis, & Marchesi,
2012). In this study, the overall nodes of the symptom network
included 17 items of HAMD, 14 items of HAMA, and 5 factors
of BPRS (Chang et al., 2021). We conducted paired t tests to exam-
ine differences in network strength ranges between subtypes. The
details are presented in online Supplementary Materials.

Imaging transcriptomics and virtual histology analysis in
subtype groups

Transcriptional data were acquired from the open access Allen
Human Brain Atlas (AHBA) database (https://human.brain-
map.org/). The AHBA dataset was preprocessed according to pre-
vious practical guide proposed by Arnatkevic et al.
(Arnatkeviciute, Fulcher, & Fornito, 2019). The five steps of
data preprocessing are shown in online Supplementary
Materials. Then, we calculated a mean of all tissue samples in a
brain area and obtained the matrix (34 regions × 10 027 genes)
of gene expression values. We conducted the multivariate regres-
sion approach of partial least squares (PLS) to investigate the
transcriptome-imaging associations (Li et al., 2021; Morgan
et al., 2019; Romero-Garcia et al., 2020). The details of GMV
deviations related to gene expression analysis are presented in

online Supplementary Materials. Then we obtained two PLS1
gene lists respectively for subtype 1 (PLS1-subtype 1) and subtype
2 (PLS1-subtype 2). Finally, we separately performed biological
process enrichment for PLS1-subtype 1 and PLS1-subtype 2
using Metascape (https://metascape.org/) with false discovery
rates correction (pFDR < 0.05) (Zhou et al., 2019).

Following the procedure of Seidlitz et al. (2020), we obtained
corresponding gene sets of seven canonical cell classes (Habib
et al., 2017; Lake et al., 2018; Li et al., 2018), including excitatory
(Neuro.ex), and inhibitory neurons (Neuro.in), astrocytes (Astro),
microglia (Micro), endothelial cells (Endo), oligodendrocyte pre-
cursors (OPC), oligodendrocytes (Oligo), and performed virtual
histology analysis (Li et al., 2021; Zong et al., 2023). The details
of cell-type-specific gene lists selection are presented in online
Supplementary Materials. We separately overlapped the gene
lists of the seven cell types with the PLS1-subtype 1 and
PLS1-subtype 2. First, we tested whether genes of PLS1-subtype
1 and PLS1-subtype 2 significantly overlapped with these cell-type
specific genes. The p value of the ratio of overlapped gene number
to the cell type gene number was calculated by a permutation test
(with pFDR < 0.05) (Li et al., 2021). Second, we compared between-
subtype differences in the number of overlapped genes of seven
cell types with the PLS1-subtype 1 and PLS1-subtype 2, using
chi-squared test. The significant level was set as false discovery
rates correction pFDR < 0.05.

Polygenic risk scores analysis

Details about genotyping and quality control, imputation, and
calculation of polygenic risk scores are shown in the online
Supplementary Materials. Associations of polygenic risk scores
(PRS) including PRS for MDD (PRS-MDD) and PRS for
Alzheimer’s disease (PRS-AD) were analyzed respectively using
logistic regression in both subtype 1 and subtype 2. We calculated
Nagelkerke’s pseudo-R2 as a measurement to represent the vari-
ance explained by the logistic regression model. We estimated
PRS-MDD and PRS-AD at six different levels of p-value thresh-
olds (ranging from 1.0e−06 to 0.1) in both subtypes 1 and 2
(Euesden, Lewis, & O’reilly, 2015). The significance level of poly-
genic risks logistic regression model was set as pFDR < 0.05.

Results

Clinical and demographic data in the two identified subtypes

The clinical, demographic, and cognitive profiles based on clinical
diagnosis of the dataset 1 are shown in online Supplementary
Table S1. We used GMV deviations (z50 maps) and hierarchical
clustering method and identified two subtypes in the MDD and
BD samples (n = 174), subtype 1 (74 MDD and 38 BD patients),
and subtype 2 (40 MDD and 22 BD patients) (online
Supplementary Table S2). The clustering stability analysis showed
that two clustered subtypes had the highest ARI score among k =
2–5 clusters (online Supplementary Figure S3). The distribution
of clinical diagnosis (MDD and BD) did not vary between subtype
1 and subtype 2 (x2 = 0.04, p = 0.83, online Supplementary
Table S2). There were no differences in age, gender, or education
between subtypes 1 and 2 (online Supplementary Table S2), indi-
cating that the subtype discrimination was not by demographic
characteristics. The detailed demographic information of subtypes
1 and 2 identified in the validation cohort are presented in online
Supplementary Table S12.
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GMV deviations differences between the two subtypes

In subtype 1, patients showed supra-normal deviations in frontal
cortex (orbitofrontal and rostral middle frontal regions, cingulated
cortex, and paracentral cortex) and infra-normal deviations in
temporoparietal joint area, compared to HC (z95 > 1.96, z5 <
−1.96, p < 0.05). In subtype 2, patients showed widespread infra-
norm deviations in frontal, temporal, parietal, cingulate cortex,
and supra-norm deviation in occipital cortex, compared to HC
(z95 > 1.96, z5 < −1.96, p < 0.05) (Fig. 2A). In subtype 1, there
were more patients labeled as supra-normal in more than half
(57.4%) of the brain regions, particularly in prefrontal, cingulate,
and paracentral cortex. In contrast, there were more patients
labeled as infra-normal in subtype 2 in 90% of the cortical regions
(Fig. 2B and 2C). The group averaged regional GMV deviations
values (z50 maps) were mapped and found to show significantly
correlations between datasets 1 and 2 in both subtypes 1 (r = 0.29,
p < 0.05) and 2 (r = 0.45, p < 0.0001) (online Supplementary
Fig. S4). The top 10 regions with supra-normal deviations in
frontal cortex in subtype 1 and regions with infra-normal devia-
tions in frontal cortex and cingulated cortex in subtype 2 were
found consistent in both datasets 1 and 2 (online
Supplementary Table S9, Table S10).

Clinical and demographic profiles in the two subtypes

Of the two neuroimaging subtypes we identified, subtype 2 had
significantly higher total scores of HAMD than that of subtype
1 (t = 2.67, pFDR = 0.025, Fig. 3A), while there were no significant
between-subtype differences in the total scores of HAMA, BPRS,
or illness duration ( p > 0.05, online Supplementary Table S2). We
further explored between-subtype differences in scores for each
HAMD item and found that subtype 2 had more prominent
guilt (t = 2.16, p = 0.032), early insomnia (t = 2.369, p = 0.019),
insight (t = 2.16, p = 0.032), and general somatic symptoms (t =
2.219, p = 0.028) compared with that of subtype 1 (online
Supplementary Fig. S6).

In contrast, as to the between-group comparisons of cognitive
function, subtype 1 had poorer performance in the WCST-PE
(t = 4.00, pFDR = 0.001), WCST-NPE (t = 2.19, pFDR = 0.08),
WCST-CR (t = −3.65, pFDR = 0.001), WCST-CC (t = −3.63,
pFDR = 0.001), and WCST-TE (t = 3.61, pFDR = 0.001) compared
with that of HC, while the WCST performance of subtype 2
did not differ from that of HC (Fig. 3B).

Furthermore, based on graph theory, we created symptom net-
works for subtypes 1 and 2 using all the items of HAMD, HAMA,
BPRS-five factors, and found the global network density and

Figure 2. Regions had significant GMV deviations and subject percentages with supra/infra norm regional deviations in subtypes 1 and 2. (a) regions with group
mean GMV deviations values z95 > 1.96 or z5 <−1.96 were presented in both subtypes 1 and subtype 2; (b) we presented the supra and infra GMV deviations indi-
vidual percentages for each region in both subtypes 1 and 2; (c) the details of supra and infra GMV deviations individual percentages in all regions were presented
both subtypes 1 and 2; the red color: supra deviations; the blue color: infra deviations; the color bar: individual percentage.
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strength were higher in subtype 2 (density = 0.51, strength = 6.76)
comparing to that in subtype 1 (density = 0.42, strength = 5.24)
(Fig. 3C). Compared with subtype 1, subtype 2 also had higher
global network strength under the same network density thresh-
old (t = 10.17, p = 1.0e−06, Fig. 3D) and nodal network strength
and degree (online Supplementary Fig. S5).

Transcriptomics signatures differences between subtype
groups

We utilized a multivariate PLS regression approach to clarify the
transcriptional characteristics associated with changes in GMV
deviations in subtypes 1 and 2. The PLS1-subtype 1 explained
26.38% of the covariance of GMV deviations across the whole
cortex. The PLS1-subtype 1 demonstrated similar spatial gene
expression patterns with the deviations map of subtype 1, with
positive scores in the frontal, cingulate, precentral cortex, and
negative scores in the temporal and occipital cortex (Fig. 4A).
Moreover, we detected a significantly positive association between
the PLS1-subtype 1 scores and changes of GMV deviations across
the whole cortex (PLS1-subtype 1: r = 0.52, p = 0.0017). The
PLS1-subtype 1 was enriched in genes involved in Alzheimer’s
disease, cell or blood morphogenesis, and cellular component
pathways (pFDR < 0.05; Fig. 4c, online Supplementary
Table S11). The intersection of endothelial cell-related genes
with the PLS1-subtype 1 gene list was significantly larger than
the intersection of endothelial cell-related genes with the
PLS1-subtype 2 gene list. The intersection of oligodendrocytes-
related genes with the PLS1-subtype 1 gene list was significantly
larger than the intersection of oligodendrocytes-related

genes with the PLS1-subtype 2 gene list. (Fig. 4e, online
Supplementary Table S3, S4).

The PLS1-subtype 2 demonstrated similar spatial gene expres-
sion patterns with the deviations map of subtype 2, with positive
scores in the occipital cortex, and negative scores in the frontal,
cingulate, and temporal cortex (Fig. 4b). Moreover, we detected
a significantly positive association between the PLS1-subtype 2
scores and changes of GMV deviations across the whole cortex
(PLS1-subtype 2: r = 0.48, p = 0.0039). The PLS1-subtype 2 was
enriched in genes involved in ion transport, calcium signaling,
trans synaptic signaling, and response to stress biological process
(pFDR < 0.05; Fig. 4d). The PLS1-subtype 2 genes were signifi-
cantly enriched in microglia-related genes (the overlapped
genes number = 117, permutation pFDR = 0.005; Fig. 4F), while
marginally enriched in inhibitory neurons-related genes (the
overlapped genes number = 157, permutation pFDR = 0.057; online
Supplementary Table S5).

Genetic risk differences between subtype groups

Four PRS-AD scores at thresholds of p values of 1.0e−06
(NSNPs = 38), 1.0e−03 (NSNPs = 626), 1.0e−02 (NSNPs = 3007),
and 0.1 (NSNPs = 8797) indicated significant differences between
subtype 1 (n = 19) and HC (n = 160) ( pFDR < 0.05), explaining
4.2%, 5.9%, 4.1%, and 5.4%, respectively, of the variation in sub-
type 1. Compared to HC, we observed no significant difference in
PRS-AD in subtype 2 (n = 29). The PRS-MDD score at thresholds
of p values of 1.0e−03 (NSNPs = 1357) indicated significant differ-
ences between subtype 2 (n = 29) and HC (n = 160) ( pFDR < 0.05),
explaining 10.8% of the variation in subtype 2. Compared to HC,

Figure 3. Clinical profiles in the two subtypes. (a) Subtype 2 had significantly higher total scores of HAMD than that of subtype 1; (b) subtype 1 had poorer WCST
performance than that of HC; (c) we created symptom networks for subtype 1 and 2 based on graph theory; (d) subtype 2 had higher network connectivity strength
relative to that of subtype 1.
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there was no significant difference of PRS-MDD in subtype 1. The
fitted PRS-AD and PRS-MDD scores for subtypes 1 and 2 are
presented in Fig. 5.

Discussion

In this study, we first used a novel hierarchical clustering method
based on GMV deviations to identify two subtypes in mood dis-
orders, supra-normal (subtype 1) and infra-normal (subtype 2)
dominant subtypes, which differed in clinical behaviors, cell-
specific transcriptomic profiles, and PRS. The supra-normal dom-
inant subtype had significantly increased GMV deviations in
frontal, cingulate, primary motor cortex, significantly impaired
cognitive function (executive function) in the WCST perform-
ance, and significantly higher genetic risk for Alzheimer’s disease.
Furthermore, the genes of which transcriptional levels showed
spatial associations with variations of GMV deviations in the
supra-normal subtype enriched in Alzheimer’s disease pathways,
as well as biological processes such as cell, blood morphogenesis,
and cellular component. In addition, the supra-normal
subtype-related genes were significantly enriched in endothelial
cells. In contrast, infra-normal dominant subtype demonstrated
significantly decreased GMV deviations in frontal, temporal, par-
ietal, and cingulate cortex, significantly severe depressive symp-
toms, and significantly higher genetic vulnerability to MDD.
The genes from the spatial correlation and virtual histology ana-
lyses of infra-normal subtype significantly enriched in ion

transport, calcium signaling, trans synaptic signaling, and
response to stress biological process and inhibitory neurons.
Collectively, our findings indicated opposite brain developmental
patterns as a core and distinctive characteristic across the mood
disorder continuum. Furthermore, the supra-normal and infra-
normal dominant subtypes, delineated by this feature exhibited
distinct associations with clinical behaviors, cell-specific tran-
scriptomic profiles, and genetic risks. These imaging phenotypes
between subtypes replicated in an independent dataset. Our cur-
rent results provide insight into the heterogeneity of mood disor-
ders in biological and behavioral terms and indicate a potential
advancement toward categorical subtyping and, potentially, the
development of precise individualized treatment for patients
with MDD and BD.

A primary finding from this study is the identification of the
supra-normal dominant subtype that had significantly increased
GMV deviations in frontal cortex. Although the reasons for this
abnormality are currently uncertain, one potential explanation
for this phenomenon is that it may be associated with an inflam-
matory response usually occurred in the early phase of mood dis-
order (Chen et al., 2023; Gritti, Delvecchio, Ferro, Bressi, &
Brambilla, 2021; Qiu et al., 2014). In the initial stage of inflamma-
tion, it is known that endothelial cells, regulating inflammation
through the expression of adhesion molecules and the release of
cytokines and chemokines (Pober & Sessa, 2015), can activate leu-
kocytes and promote their recruitment to sites of inflammation,
which could increase cortical morphology (Kaplanski, 2018).

Figure 4. Transcriptomics features and virtual histology of GMV deviations differences in subtypes 1 and 2. (a) Group mean GMV deviations scores in subtype 1 and
PLS1-subtype 1 scores in in left hemisphere; (b) group mean GMV deviations scores in subtype 2 and PLS1-subtype 2 scores in in left hemisphere; (c) top 17( pFDR <
0.05) GO biological process and KEGG pathways enriched using PLS1-subtype 1 genes; (d) top 17( pFDR < 0.05) GO biological process and KEGG pathways enriched
using PLS1-subtype 2 genes; (e) the number of overlapped genes between PLS1-subtype 1 genes and cell-specific genes of seven cell types; the black star: sig-
nificant different between subtypes 1 and 2 using chi-square test at pFDR < 0.05; the between-subtype differences of percentages of the overlapped genes in
Endo and Oligo; the percentages of overlapped genes mean the number of overlapped genes divide the number of PLS1 genes; the black star: significant different
between subtypes 1 and 2 using chi-square test at pFDR < 0.05; (f) the number of overlapped genes between PLS1-subtype 1 genes and cell-specific genes of seven
cell types; the red star: significant enriched in Micro using permutation test at pFDR < 0.05; the distribution of permutation of the number of overlapped genes
between random PLS1-subtype 2 genes and micro genes; red dash line present real number of overlapped genes.
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Interestingly, our current study revealed that the variations of
GMV deviations in the supra-normal subtype were spatially asso-
ciated with the transcriptional levels of genes, which were mainly
enriched in endothelial and oligodendrocytes cells as well as
Alzheimer disease pathways. There is growing evidence suggesting
that both oligodendrocytes and endothelial cells play important
roles in cognitive function and Alzheimer’s disease (Desai et al.,
2010). Oligodendrocytes are responsible for myelination of
axons, which is essential for proper neuronal communication
and plasticity (Fields, 2015; Frühbeis et al., 2013). Recent studies
have demonstrated that disruptions in oligodendrocyte function
and myelination can lead to cognitive impairments (Henn et al.,
2022). Similarly, endothelial cells play a crucial role in maintain-
ing the integrity of the blood-brain barrier (BBB), which is
important for regulating the exchange of substances between
the blood and the brain (Zlokovic, 2011). Dysfunction of the
BBB has been associated with various neurological disorders
and has been implicated in the pathogenesis of neurocognitive
disorders such as Alzheimer’s disease (Sweeney, Sagare, &
Zlokovic, 2018). More importantly, the validation findings, pre-
sented in turn, demonstrated that patients in this supra-normal
subtype had significantly higher genetic risk for Alzheimer’s dis-
ease. These findings potentially explain that depression with cog-
nitive impairment leading to a ‘pseudodementia’ presentation
may serve as risk factor of Alzheimer’s disease (Byers & Yaffe,
2011; Green et al., 2003; Kessing & Andersen, 2004).
Consistently, as to the between-group comparisons of cognitive
function, this subtype had poorer performance in the executive
cognition functions such as WCST.

In contrast, subtype 2 showed evidence of infra-normal devel-
opment pattern involving almost globally lower GMV deviations.
Our findings can be considered as potential evidence of develop-
mental abnormalities in packing density and cell size which
resonates with anomalies in cerebral maturation observed in neu-
rodevelopmental disorders (Ge et al., 2022). In addition, the
PLS1-subtype 2 genes were enriched in biological processes such
as trans-synaptic signaling and regulation of cellular response to
stress, and the genes from the virtual histology analyses of this sub-
type significantly enriched in microglia and inhibitory neurons,
the most abundant neurons in GABAergic system. Microglia are
key immune cells in the brain that play a role in regulating synaptic
pruning and neuroinflammation (Inta, Lang, Borgwardt,
Meyer-Lindenberg, & Gass, 2017). Recent studies have suggested
that dysregulation of microglial function may contribute to the
development of depressive symptoms (Calcia et al., 2016). In add-
ition, inhibitory neurons, which utilize the neurotransmitter
GABA, are crucial in modulating the excitatory activity of neural
circuits involved in mood regulation (Brambilla et al., 2003;
Croarkin, Levinson, & Daskalakis, 2011; Kalueff & Nutt, 2007).
Dysregulation of GABAergic signaling has also been implicated
in the pathophysiology of depression. Together, dysfunction of
microglia, inhibitory neurons, and GABAergic signaling may con-
tribute to the development of depressive symptoms. Consistently,
our validation of PRS analysis demonstrated that patients in this
subtype had significantly higher genetic risk for MDD. Of more
importance, this subtype had higher total scores of depression
severity than subtype 1. As to the comparison of each HAMD sub-
item, subtype 2 had more prominent guilt, early insomnia, insight,

Figure 5. PRS-AD and PRS-MDD scores in subtypes 1 and 2. (a)
PRS-AD model were significantly fitted in subtype 1 at SNP
threshold p < 1.0e−06, p < 1.0e−03, p < 1.0e−02, p < 1.0e−01,
while PRS-AD model was not fitted in subtype 2; (b) PRS-MDD
model were significantly fitted in subtype 2 at SNP threshold
p < 1.0e−03, while PRS-MDD model was not fitted in subtype1;
red bar presents the PRS-AD or PRS-MDD fit model had a signifi-
cant level of pFDR < 0.05.
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and general somatic symptoms. These findings indicated that our
neuroimaging subtype delineation not only separates mildly and
severely ill patients with mood disorder, but also identifies their
subitem heterogeneity regarding guilt, early insomnia, general
somatic, and insight features, which have long been considered
in mood disorder research (Peralta & Cuesta, 1998; Peterson &
Benca, 2006; Zhao et al., 2018). In addition, the symptom network
analysis revealed that patients in subtype 2 had a higher network
connectivity strength than subtype 1. The greater symptom net-
work strength may reflect a pattern of denser symptom interac-
tions possibly owing to the globally lower GMV deviations in
the infra-normal patients. Findings in this study advance the clin-
ical conceptualization by relating them to diverse regional changes
in structural brain systems.

Mood disorders are heterogeneous diseases genetically, neuro-
biologically, and clinically, posing a considerable challenge for
treatment and management of patients. Although current develop-
ment of medication has paid attention to the complex clinical syn-
dromes, advances in psychopharmacology for mood disorders have
been restricted for decades. It may be important for nosology and
treatment development that neurobiological and genetic hetero-
geneity in these syndromes would be further elucidated to establish
targeted interventions for discrete subtypes similar to many fields
in medicine. Our findings indicate a move forward in that direc-
tion. Although there has been a growing interest in the heterogen-
eity of mood disorders in recent years, most previous work has
addressed this issue by sorting patients separately according to
their behavioral, imaging, or genetic features. This approach may
limit our ability to delineate the degree to which genetic heterogen-
eity impacts or interacts with neuroimaging and behavioral pheno-
types. Interestingly, imaging transcriptomics analysis promoted the
heuristic attempts and findings of cognitive impairment subtypes
may have a genetic risk of AD and subtypes with more severe
depressive symptoms may have genetic vulnerability to MDD.
Uniting neuroimaging with data from genetics as well as clinical
data and integrative computational strategies would enable imaging
phenotypes subtyping to traverse the knowledge gap between gen-
etic heterogeneity and clinical observations (Brennand, Landek-
Salgado, & Sawa, 2014; Krystal, 2014). Thus, establishing multi-
dimensional characteristics of biological heterogeneity may provide
a more prospective approach for subtype identification in terms of
treatment development and clinical utility.

Studies that use trans-diagnostic methods are emerging as con-
verging evidence implicated core features across mood disorders,
with an increasing focus on the neuroimaging biomarkers and gen-
etic risks from a systems perspective. Our current findings defined
two distinctive subtypes across traditional clinical diagnostic bound-
aries. In each subtype reported herein, both MDD and BD were
represented. The mismatch between clinical diagnoses and subtypes
may partially explain frequent inconsistent findings among previous
studies according to clinical diagnosis. The constraints of present
diagnostic framework are apparent (Clementz et al., 2016; Ivleva
et al., 2017; Meda et al., 2016; Pearlson, Clementz, Sweeney,
Keshavan, & Tamminga, 2016). Refining the present diagnostic sys-
tem with corresponding objective biological measures (e.g. supra-
normal and infra-normal GMV) would generate more biologically
homogeneous categories, which play a critical role in the develop-
ment of more personalized and effective treatments.

There are several limitations to this work. First, the use of gene
expression profiles from the healthy human brain in AHBA to
explain GMV deviations changes is limited to the extent that tran-
scription in patients could be different from those in healthy

brains. Additionally, the AHBA gene expression data including
the right hemisphere of the brain for only two participants,
restricts the representation of the spatial correlation between
entire brain transcriptional level and GMV deviations. Future
studies need to incorporate more extensive datasets to compre-
hensively explore imaging transcriptomic relationships. Second,
the genetic data size in our study was small. Future work with a
larger sample size of genetic data is desirable. Third, we only
used WSCT scores to test cognitive functions between subtype
groups. Some other cognitive batteries would be validated in
future work. Fourth, we did not obtain specific data about illness
severity of the first episode in medication-free patients and were
not able to detect the associations between GMV alterations
and prior depressive/anxious/psychotic symptoms.

In this study, mood disorders were characterized into two sub-
types associated with brain morphology, behavioral phenotypes,
and genetic risk profiles. Our findings provide vital links between
MRI-derived phenotypes, spatial transcriptome, and genetic vul-
nerability, illustrating the feasibility of integrating multi-omics
information across multi-dimensional biological scales. The iden-
tification and validation of the two subtypes provide a potential
framework for future studies about the underlying neuropatho-
logical mechanisms and genetic heterogeneity as well as precise
clinical care in mood disorders.
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