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Abstract

Background. The structure of psychopathology can be organized hierarchically into a set of
transdiagnostic dimensional phenotypes. No studies have examined whether these phenotypes
are associated with brain structure or dementia in older adults.
Methods.Datawere drawn from a longitudinal study of older adults aged 70–90 years at baseline
(N = 1072; 44.8% male). Confirmatory factor models were fit to baseline psychiatric symptoms,
with model fit assessed via traditional fit indices, model-based reliability estimates, and evalu-
ation of model parameters. Bayesian plausible values were generated from the best-fitting model
for use in subsequent analyses. Linear mixed models examined intraindividual change in global
and regional gray matter volume (GMV) and cortical thickness over 6 years. Logistic regression
examined whether symptom dimensions predicted incident dementia over 12 years.
Results.Ahigher-ordermodel showed a good fit to the data (BIC = 28,691.85; ssaBIC = 28,396.47;
CFI = 0.926; TLI = 0.92; RMSEA = 0.047), including a general factor and lower-order dimensions
of internalizing, disinhibited externalizing, and substance use. Baseline symptom dimensions did
not predict change over time in total cortical and subcortical GMV or average cortical thickness;
regional GMV or cortical thickness in the frontal, parietal, temporal, or occipital lobes; or regional
GMV in the hippocampus and cerebellum (all p-values >0.5). Finally, baseline symptom dimen-
sions did not predict incident dementia across follow-ups (all p-values >0.5).
Conclusions.Wefoundnoevidence that transdiagnosticdimensionsareassociatedwithgraymatter
structure or dementia in older adults. Future research should examine these relationships using
psychiatric indicators capturing past history of chronicmental illness rather than current symptoms.

Introduction

As the number and proportion of older adults continue to expand globally (World Health
Organization, 2022), it is increasingly important to understand the mechanisms and processes
that impact healthy aging in this population. In particular, novel approaches are needed to
identify potential targets for the prevention of neurodegeneration and dementia in later life. An
extensive body of research indicates that psychiatric disorders are associated with alterations in
brain structure and function across the lifespan, including accelerated brain aging (Cole et al.,
2019; Wrigglesworth et al., 2021). Several psychiatric disorders are also associated with a greater
likelihood of dementia diagnoses in later life (Richmond-Rakerd et al., 2022) and genomic
research indicates shared biological mechanisms between psychiatric and neurodegenerative
diseases (including dementia; Wingo et al., 2022). These associations appear to cut across
traditional diagnostic categories, with a range of putatively distinct psychiatric disorders being
nonspecifically associated with both neurodegeneration and dementia risk. This raises the
possibility that transdiagnostic models may hold more utility than traditional diagnostic
categories in research aiming to disentangle the relationships between psychopathology, neuro-
degeneration, and dementia in later life.

Transdiagnostic dimensional models of psychopathology

Transdiagnostic dimensional models of psychopathology have recently gained popularity as an
alternative approach to the classification of mental illness (Kotov et al., 2017, 2020; Kotov et al.,
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2021; Krueger et al., 2021; Watson et al., 2022). In these models,
psychiatric symptoms and traits are placed at the lowest level of a
structural hierarchy and grouped together into higher-order
dimensions (e.g., internalizing, externalizing) based on their pat-
terns of covariance (Kotov et al., 2017, 2021). For example, the
internalizing dimension captures covariation among emotional
indicators of psychopathology (e.g., anxiety, depression), while
externalizing captures more behaviorally focused indicators (e.g.,
disinhibition, aggression, substance use; Krueger et al., 2021; Wat-
son et al., 2022). These phenotypes also tend to exhibit positive
correlations with one another, suggesting the presence of a single
superordinate dimension of psychopathology (i.e., general psycho-
pathology; Kotov et al., 2021) This general dimension is argued to
reflect a general underlying liability toward the full spectrum of
mental illness (Caspi et al., 2014; Caspi & Moffitt, 2018a).

Transdiagnostic dimensional models of psychopathology in
neuroscientific research

The underlying neurobiology of mental illness is closely aligned
with the structure of psychopathology identified through pheno-
typic research. For example, the neural correlates of specific psy-
chiatric disorders are associated with subclinical symptom
expression in general population samples, supporting the dimen-
sionality of mental illness (Besteher et al., 2020). Meta-analytic
evidence further indicates that abnormalities in both brain struc-
ture and function are largely shared across putatively distinct
diagnostic categories (Goodkind et al., 2015; McTeague et al.,
2017; Sha et al., 2019), consistent with the correlational structure
of psychopathology identified through latent variable modeling.
These findings indicate that the neural architecture underlying
mental illness is poorly aligned with the discrete categorical bound-
aries of traditional classification systems. In contrast, transdiagnos-
tic models directly estimate the observed dimensionality and
correlational structure of psychopathology (e.g., comorbidity).
The phenotypes derived from these models show greater validity
and reliability than discrete (e.g., categorical) phenotypes, with the
resulting increase in power substantially decreasing the need for
larger sample sizes (Markon et al., 2011). The hierarchical structure
of these models also allows researchers to investigate the neural
correlates of psychopathology at different levels of specificity
(i.e., the correlates of general and specific/lower-order symptom
dimensions; Latzman & DeYoung, 2020; Zald & Lahey, 2017). An
important advantage of this approach is that it allows for disentan-
gling shared from unique associations, which would be otherwise
obscured in case–control studies of individual psychiatric dis-
orders. Given these advantages, the use of transdiagnostic dimen-
sional models may facilitate discoveries with respect to the
relationship between psychopathology and brain health in older
adulthood.

However, a recent systematic review found that not a single
study has investigated associations between brain structure and
transdiagnostic symptom dimensions specifically in older adults
(i.e., 60 years or older; Hoy et al., 2023). In younger samples,
transdiagnostic symptom dimensions were consistently associated
with pervasive alterations in gray matter structure across several
studies (Hoy et al., 2023). For example, general and specific/lower-
order dimensions (e.g., internalizing, externalizing) were associated
with lower global measures of gray matter volume (GMV) and
surface area in multiple studies spanning childhood to young
adulthood (Kaczkurkin et al., 2018; Mewton et al., 2022; Parkes
et al., 2021; Romer et al., 2023). These findings highlight the utility

of dimensional models in psychiatric neuroscience, which has
historically aimed to identify disorder-specific correlates within
relatively discrete brain regions. Further research is needed to
examine whether these phenotypes are also associated with reduced
gray matter structure in older adulthood and to determine whether
there is evidence of age-specific differences in the nature of these
associations. In particular, establishing that these phenotypes can
be used to predict change in graymatter structure over time in older
adults would provide novel targets for the promotion of brain
health in this population.

Dimensional models of psychopathology as a novel framework
for investigating the relationship between mental illness and
dementia

An extensive body of evidence indicates that psychiatric illness is
associated with cognitive decline and dementia risk in older adult-
hood. Several systematic reviews and meta-analyses have demon-
strated a link between individual psychiatric disorders and
dementia risk (Becker et al., 2018; Cai & Huang, 2018; Velosa
et al., 2020). A recent population-based study of 1.7 million people
also found that those with any mental disorder were significantly
more likely to develop a dementia diagnosis in older adulthood
(Richmond-Rakerd et al., 2022). This research suggests that psy-
chopathology is nonspecifically associated with dementia risk;
however, no studies have directly examined whether transdiagnos-
tic dimensional phenotypes can be used to predict diagnoses of
dementia in older adults. Determining whether these phenotypes
can be used to predict diagnoses of dementia will provide important
insights into the relationship between mental illness and one of the
leading causes of burden of disease in older adulthood. Moreover,
establishing the predictive utility of these phenotypes would facili-
tate the development of novel preventative strategies that target
dimensional psychopathology while simultaneously reducing the
risk of dementia in older adulthood.

The current study

The current study aimed to determine whether transdiagnostic
symptom dimensions can be used to predict intraindividual change
in gray matter structure over 6 years of follow-up and incident
dementia over 12 years of follow-up in older adults. The aims,
research questions, and analytic plan were preregistered on Open
Science Framework (OSF; https://rb.gy/1nz92g). For the primary
analyses, it was hypothesized that higher severity of general and/or
specific symptom dimensions at baseline would predict a greater
decline in global cortical GMV, subcortical GMV, and cortical
thickness across time. For secondary analyses, it was hypothesized
that higher severity of general and/or specific symptom dimensions
at baseline would predict a greater decline in regional GMV and
cortical thickness across time. Finally, it was hypothesized that
greater general and/or specific symptom dimensions would predict
a greater likelihood of a dementia diagnosis at any wave.

Methods

Sample and study design

Data were drawn from the Sydney Memory and Ageing Study
(MAS; Sachdev et al., 2010), a longitudinal study of community-
dwelling older adults in Sydney, Australia. Participants were 1037
older adults aged between 70–90 years old (M = 78.84; SD = 4.82;
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44.8%male) at baseline (Table 1). Participants were followed across
seven waves of data collection, with assessments occurring every
2 years (alongside brief phone interviews in intervening years).
Informants were recruited for the majority of participants (93.9%),
provided that they had contact with the participant for at least 1 hour
per week and could answer questions regarding their cognitive ability
and daily functioning. Recruitment and study enrollment took place
between September 2005 and November 2007. Inclusion criteria
included the following: (1) aged between 70–90 years old; (2) living
in the community; (3) able to speak/write inEnglish; and (4) ability to
consent. Exclusion criteria included the following: (1) previous
dementia diagnosis or diagnosis of dementia after comprehensive
in-study assessment at baseline; (2) psychotic symptoms, schizo-
phrenia diagnoses, or bipolar diagnoses; (3) diagnosis of multiple
sclerosis, motor neuron disease, developmental disability, or pro-
gressive malignancy; (4) medical or psychological conditions that
prevent participation; or (5) a Mini-Mental State Examination
(Folstein et al., 1975) score of <24 (adjusted for age, education, and
non-English speaking background). The MAS sample and study
design are described in detail elsewhere (Sachdev et al., 2010) and
outlined in the Supplementary Material (Appendix A).

Indicators of psychopathology

Indicators of psychopathology were derived frommultiple self- and
informant-report measures administered at baseline. The 15-item
Geriatric Depression Scale (GDS) was designed to measure
depressive symptoms over the past week in older adults

(Yesavage et al., 1982). The Goldberg Anxiety Scale (GAS) is a
9-itemmeasure of anxiety symptoms over the pastmonth (Goldberg
et al., 1988). The Kessler 10 (K10) is a 10-item measure of psycho-
logical distress over the past 30 days (Kessler, 1994). The Neuro-
psychiatric Inventory (NPI) assesses a range of psychiatric symptoms
in people with dementia (Cummings et al., 1994), administered to
informants of nondemented participants at baseline. The current
study only included NPI items relating to agitation/aggression, irrit-
ability/lability, and disinhibition. Finally, substance use was meas-
ured via a combination of self-report items relating to alcohol and
nicotine use. Items from thesemeasures were included in subsequent
latent variable models as indicators of latent internalizing (i.e., GDS,
GAS, and K10 items), disinhibited externalizing (i.e., NPI screening
items for agitation/aggression, disinhibition, and irritability/lability),
and substance use (i.e., alcohol and nicotine use items). Further
details of symptom-level indicators are included in all latent
variable models and are provided in Appendix B and
Supplementary Table S1. Tetrachoric correlations among those indi-
cators are provided in Supplementary Table S2.

Brain structural outcome measures

Details of the neuroimaging protocol are described in detail else-
where (Sachdev et al., 2010) and outlined in the Supplementary
Material (Appendix C). Briefly, all participants were invited to
complete brain magnetic resonance imaging (MRI), and consent-
ing participants were further screened for contraindications
(i.e., pacemaker, metallic implant or foreign bodies, cochlear
implants, ferromagnetic homeostatic clips, claustrophobia).
Approximately half of the sample (50.75%) agreed to complete
MRI scanning at baseline (n = 544). Following quality control
procedures (Jiang et al., 2014) and exclusions due to medical issues
that emerged after consenting to MRI scans (e.g., back problems),
the final analytic sample size at baseline was n = 532. Follow-up
MRI scans were also completed at Wave 2 (n = 417) and Wave
4 (n = 262). We conducted paired samples t-tests and chi-square
tests to examine differences in covariates (i.e., age, sex, education,
total GMV, average cortical thickness) between those with com-
plete and incomplete MRI follow-up data (Table S3). Those with
complete MRI data were significantly younger at baseline and had
larger total GMV at baseline, compared to those with incomplete
MRI data. The present study used preprocessed structural neuroi-
maging data (i.e., cortical and subcortical volume, cortical thick-
ness). GMV and cortical thickness within 68 cortical regions and
GMV within 19 subcortical regions (including the brain stem) were
used to construct brain structural variables for primary and second-
ary outcomes. Primary outcomes included global measures of brain
structure, that is, total cortical GMV, total subcortical GMV, and
average cortical thickness. Secondary outcomes included 10 region-
of-interest (ROI) measures, that is, total GMV and average cortical
thickness in the frontal, parietal, temporal, and occipital lobes, as well
as total GMV in the bilateral hippocampus and cerebellum. All brain
structural variables were winsorized to be within ±3 standard devi-
ations (SD) of the mean (M).

Dementia status outcome

All participants were free of dementia at baseline. Dementia status
was determined via consensus diagnosis from a multidisciplinary
panel of experts at each wave of data collection, on the basis of
available clinical, neuropsychological, laboratory, and neuroima-
ging data. Further details of the diagnostic procedures are described

Table 1. Baseline sample characteristics for the full sample and the MRI
subsample

Full sample
(N = 1037)

MRI subsample
(n = 532)a

Categorical covariates N % N %

Sex (male) 465 44.8 242 45.5%

Continuous covariates Mean SD Mean SD

Age (years/continuous) 78.84 4.82 78.41 4.68

Education (years/continuous) 11.60 3.47 11.80 3.60

Total GMV (mm3) - - 552,914.1 52,540.02

Average cortical thickness
(mm)

- - 2.43 0.11

Other characteristics N % N %

Race/ethnicity

Caucasian 1016 98.4 517 97.2

Asian 10 1.0 9 1.7

Mixed 3 0.3 2 0.4

Other 4 0.4 2 0.4

Dementia Status N % N %

Dementia diagnosisb 269 25.9 - -

Note. This table outlines the baseline characteristics for the full sample of participants from
the Sydney Memory and Ageing Study (MAS) and the subsample of participants who
completed MRI scanning at baseline.
aFollow-up MRI data were collected at Wave 2 (n = 417) and Wave 4 (n = 262).
bDementia diagnosis data indicate the number of participants who received a diagnosis of
dementia at any follow-up wave. Participants who received a diagnosis at one wave but not at
subsequent waves were removed from the analysis (n = 7).
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in detail elsewhere (Sachdev et al., 2010) and outlined in the
Supplementary Material (Appendix D). For the current study, a
single binary variable was used to indicate whether participants
were diagnosed with dementia at any follow-up wave (across
12 years of follow-up). Participants coded as having dementia at
one wave and no dementia at subsequent waves (n = 7) were
removed from the analysis.

Model estimation and assessment of model fit

The latent structure of psychopathology was examined using con-
firmatory factor analysis (CFA) of symptom-level categorical indi-
cators of mental illness in the full sample at baseline. Four CFA
models that are most commonly used to measure the latent struc-
ture of psychopathology were fit to the data (i.e., a one-factor
model, a correlated-factors model, a bi-factor model, and a higher-
order factor model). The use of confirmatory factor analytic models
and allocation of indicators to specific/lower-order factors was
based on extensive research detailing the latent structure of psy-
chopathology (Caspi et al., 2014; Caspi & Moffitt, 2018b; Kotov
et al., 2017, 2021; Krueger et al., 2021; Watson et al., 2022). The
best-fitting factor model was selected for inclusion in subsequent
analyses based on traditional fit indices, model-based estimates of
reliability, and evaluation of model parameters (e.g., the signifi-
cance, direction, and standard errors of the factor loadings). Details
of model estimation and assessment of model fit are presented in
the SupplementaryMaterial (Appendices E–G) and examples of the
Mplus code for each latent variable model are provided on OSF
(https://osf.io/uhds9/).

Bayesian plausible values

Bayesian plausible values (BPVs)were generated for each participant
and each latent symptom dimension. BPVs are a set of factor scores
derived from multiple imputations that provide more reliable esti-
mates and address biases inmeasurement (Muthen&Asparouhov&
Muthen, 2010). Calculating BPVs involves taking multiple random
draws (i.e., imputations) from the posterior distribution of factor
score estimates for each participant, providing a range of plausible
values for a given factor score. For each participant, 100 plausible
values were estimated for each latent factor (i.e., 100 imputed factor
scores from the posterior distributionwere estimated for general and
specific/lower-order factors). BPV estimation was conducted in
Mplus Version 8.10 (Muthén & Muthén, 2017). The 100 data sets
were then analyzed simultaneously in R version 4.3.2 using
(generalized) linear regression and (generalized) linear mixed
models within a multiple imputation framework (mitml R package;
Bates et al., 2015). Factor scores derived from CFAmodels provide a
single-point estimate of psychopathology for a given symptom
dimension. The distributions of these scores are highly skewed when
relying on categorical indicators, as in the current study. These scores
are also likely to contain substantial random error (i.e., factor inde-
terminacy; Wu, 2005); however, we were unable to directly calculate
factor determinacy in the current study due to the inclusion of
multiple dichotomous indicators (Beauducel & Hilger, 2017; Fer-
rando & Lorenzo-Seva, 2018; Forbes et al., 2021). In contrast, BPVs
offer a less biased estimation of the populationmean and variance of
psychopathology by accounting for the uncertainty around factor
scores throughmultiple imputations. An alternative approach would
be to estimate associations simultaneously within a structural equa-
tionmodeling framework; however, this was unable to be done in the
current study due to model complexity.

Analysis plan

Our primary analyses examined whether baseline general and spe-
cific/lower-order symptom dimensions predict intraindividual
change in total cortical GMV, total subcortical GMV, and average
cortical thickness across follow-up waves. Baseline BPVs for general
and specific/lower-order symptom dimensions were entered as pre-
dictors in a series of linear mixed models with brain structural
measures included as the outcome variable. All linear mixed models
examined associations between one set of BPVs (e.g., for general
psychopathology) and one brain structural variable (e.g., total
GMV). Nesting of longitudinal measurements in participants was
handled via the use of random intercepts and wave was represented
as a categorical variable. All linear mixed models included sex, age,
education, and MRI scanner as covariates. The primary estimate of
interest was the wave by dimension interaction (e.g., wave by general
psychopathology), which indicates whether there was an association
between baseline symptomdimensions and change in outcomes over
time. The following equation provides an example of the linear
mixed models used to estimate wave x dimension interactions:

TotalGMV= general psychopathologyþwaveþ sexþ age

þeducationþ scannerþwave∗general
 psychopathologyþ 1jIDð Þ:

Secondary analyses examined whether baseline general and spe-
cific/lower-order symptom dimensions predict intraindividual
change in regional measures of GMV and cortical thickness across
follow-up waves. Specific outcome measures included: total GMV
and average cortical thickness in the frontal, parietal, temporal, and
occipital lobes, as well as total GMV in the bilateral hippocampus
and cerebellum. These analyses followed the same methodology as
for primary outcomes. All linear mixed models included sex, age,
education, MRI scanner, and either total GMV or average cortical
thickness as covariates. Additional secondary analyses examined
whether baseline general and specific/lower-order symptom
dimensions predict dementia status across 12 years of follow-up.
Baseline BPVs were entered separately as predictors in a series of
logistic regression models, with dementia status at any wave
included as a binary outcome variable. All analyses were run over
100 imputations and the results were pooled into a final set of
estimates within a multiple imputation framework. Missing data
were handled via Full InformationMaximum Likelihood (FIML) in
Mplus. Benjamini–Hochberg false discovery rate (FDR) correction
was used to correct for multiple testing, with an FDR threshold of
5% (α = 0.05; Appendix H). Examples of the R code used to conduct
these analyses are provided on OSF (https://osf.io/uhds9/). There
were two minor deviations from the preregistered analysis, which
are outlined in Appendix I.

Post-hoc analyses

Most research investigating the neural correlates of transdiagnostic
symptom dimensions has been conducted cross-sectionally in sam-
ples of youth. As such, post-hoc analyses examined whether general
and specific/lower-order dimensions predict baseline measures of
gray matter structure in older adulthood. Baseline BPVs for general
and specific/lower-order symptom dimensions were entered sep-
arately as predictors in a series of linear regression models, with
baseline measures of GMV and cortical thickness included as the
outcome variables. These analyses examined associations with the
same brain structural measures (i.e., global and regional) included
in primary and secondary analyses. All analyses included sex, age,
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education, and MRI scanner as covariates. Analyses of regional
brain structure included additional controls for either total GMVor
average cortical thickness. All analyses (i.e., primary, secondary,
and post-hoc) of regional gray matter structure were also re-run
without controlling for total GMV or average cortical thickness in
order to examine both absolute and relative effects. Finally, we ran a
series of unconditional linearmixedmodels (i.e., without predictors
included) to examine the trajectories of each brain structural out-
come measure over time (Appendix J). For all post-hoc analyses,
Benjamini–Hochberg FDR correction was used to correct for mul-
tiple comparisons, with an FDR threshold of 5% (α = 0.05).

Results

Structural validity of latent variable models

Traditional model fit statistics for the four CFAmodels are provided
in Table S4 and model-based estimates of reliability are provided in
Table S5. The best-fitting model based on traditional fit statistics
(i.e., BIC, ssaBIC, CFI, TLI, and RMSEA values) was the bi-factor
model. However, bi-factormodels have a tendency to provide a better
fit than competing models when relying solely on traditional fit
statistics and there is growing interest in the use of alternative
approaches to model selection (Forbes et al., 2021; Watts et al.,
2019). The higher-order model was superior in terms of model-
based estimates of reliability (i.e., ECV, PUC, Omega H/HS values)
and evaluation of model parameters. The higher-order model
(Figure 1) was selected for inclusion in subsequent analyses, based
on: (1) evaluation of standardized factor loadings (i.e., all positive in
direction and significant for the higher-order model); (2) lower
standard errors of the factor loadings (i.e., more precise estimates of

these parameters); (3) evidence of multidimensionality yet poor
reliability of general and specific factors of the bi-factor model based
onmodel-based reliability coefficients (i.e., ECV, PUC, Omega H/HS
values); and (4) evidence of greater construct reliability and replic-
ability of specific factors (i.e., greater H values). For the higher-order
model estimated usingWLSMV, the disinhibited-externalizing factor
loaded most strongly on the general factor (0.574), followed by
internalizing (0.368), and substance use (0.322). These factor loadings
are consistent with those of the higher-order model estimated
using MLR (disinhibited externalizing = 0.55; internalizing = 0.375;
substance use = 0.356). Model selection procedures are detailed
extensively in the SupplementaryMaterial (Appendices E–G). Stand-
ardized factor loadings and standard errors for all latent variable
models (run using MLR and WLSMV estimation) are presented in
Supplementary Tables S6–S13. Given inconsistent conclusions
depending on approaches to model selection (e.g., model fit statistics
v. model-based estimates of reliability), additional sensitivity analyses
were conducted by re-running all models (from primary, secondary,
and post-hoc analyses) using the bi-factor model to generate BPVs.

Primary outcomes

Table 2 presents the results of analyses examining whether latent
dimensions of baseline psychopathology derived from a higher-
order factor model predict variations in global measures of brain
structure across time. There was little evidence that general and
lower-order dimensions of psychopathology at baseline were asso-
ciated with a change in total cortical GMV, total subcortical GMV,
or average cortical thickness across subsequent waves. Standardized
results for analyses of global brain structure are presented in
Supplementary Table S14.

Figure 1. Figure representing the hierarchical structure of psychopathology in the Sydney MAS sample.
Note. Sydney MAS, Memory and Ageing Study. This figure outlines the higher-order confirmatory factor model that was derived from symptom-level indicators of psychopathology
at baseline and subsequently included in all primary, secondary, and post-hoc analyses. In this model, observable indicators are specified to load onto one of three specific factors
(labeled internalizing, disinhibited externalizing, and substance use), and these factors are specified to load onto a single higher-order general dimension of psychopathology.
Latent symptom dimensions are depicted using circles and observable indicators of psychopathology are depicted using squares.
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Secondary outcomes

The results for all secondary outcome measures are presented in
Tables S15–S18. Pooled estimates of the BPVs for general and
lower-order dimensions were not associated with a change in
GMV across time in any cortical or subcortical ROI (Tables S15
and S17). Substance use was associated with increased cortical
thickness over time within the parietal lobe at Wave 2
(β = 0.006; SE = 0.003; p = 0.049); however, this association
did not survive FDR correction (Table S16). No other symptom
dimensions were associated with regional cortical thickness
over time. BPVs for general and lower-order factors were also
not significantly associated with dementia status across waves
(Table S18).

Post-hoc analyses

Post-hoc analyses revealed no evidence of association between gen-
eral psychopathology and total corticalGMV, total subcorticalGMV,
or average cortical thickness at baseline (Table 2). Internalizing
was negatively associated with total cortical GMV (β = �3319;
SE = 1469.747; p = 0.024) but not total subcortical GMV or average
cortical thickness at baseline; however, this association did not
survive FDR correction. Disinhibited externalizing and substance
use factors were not associated with any global measure of gray
matter structure at baseline. When controlling for global effects
(i.e., total GMV, average cortical thickness), general and lower-order
factors were not associated with baseline GMV or cortical thickness
in any ROI (Tables S15–S17). Internalizing was significantly

Table 2. Results from analyses examining whether transdiagnostic symptom dimensions derived from a higher-order factor model predict global measures of gray
matter structure

Total cortical volume Total subcortical volume Average cortical thickness

β SE 95% CI p β SE 95% CI p β SE 95% CI p

GP

BL model �1578 1823.333 �5157.59,
2002.51

0.387 �2196 787.472 �1767.02,
1327.79

0.780 �0.002 0.006 �0.01, 0.01 0.798

LMM

GP*Wave2 9187 1265.720 �2393.52,
2577.27

0.942 1093 538.220 �948.01,
1166.54

0.839 �0.001 0.004 �9082.25,
0.007

0.850

GP*Wave4 3804 1646.124 �2855.91,
3616.66

0.817 1223 658.623 �1172.12,
1416.72

0.853 �0.003 0.005 �126.51,
0.007

0.606

INT

BL model �3319 1469.747 �6200.30,
�438.25

0.024 2278 601.183 �1155.71,
1201.27

0.970 �0.005 0.005 �0.01, 0.004 0.318

LMM

INT*Wave2 �1721 985.085 �2103.10,
1758.84

0.861 �1696 412.369 �978.03,
638.75

0.681 0.001 0.003 �5333.31,
0.007

0.784

INT*Wave4 1866 1245.753 �576.79,
4308.87

0.134 9701 498.514 �880.33,
1074.35

0.846 �0.002 0.004 �9746.73,
0.005

0.587

DEXT

BL model �5992 1378.737 �3305.43,
2107.04

0.664 �1569 604.027 �1343.60,
1029.88

0.795 �0.000 0.005 �0.009,
0.009

0.990

LMM

DEXT*Wave2 5446 978.383 �1866.16,
1975.08

0.956 1988 415.050 �616.28,
1013.84

0.632 �0.000 0.003 �0.006,
0.006

0.980

DEXT*Wave4 1512 1240.205 �2285.78,
2588.09

0.903 1632 497.070 �813.25,
1139.57

0.743 �0.001 0.004 �0.008,
0.006

0.705

SUB

BL model �1974 1570.047 �5051.80,
1103.81

0.209 �4528 655.149 �1737.33,
831.79

0.490 �0.001 0.005 �0.01, 0.009 0.863

LMM

SUB*Wave2 6314 1057.530 �1441.56,
2704.38

0.550 �9505 434.037 �945.84,
755.74

0.827 �0.004 0.003 �103.33,
0.003

0.287

SUB*Wave4 4447 1264.064 �2922.62,
2033.21

0.725 �5759 526.833 �1033.39,
1032.23

0.999 �0.005 0.004 �130.81,
0.003

0.223

Note. BL, baseline; LMM, linear mixed models; GP, general psychopathology; INT, internalizing; DEXT, disinhibited externalizing; SUB, substance use. BL Model refers to linear regression models
predicting baseline GMV. LMM refers to linearmixedmodels predicting intraindividual change in GMV across waves. In allmodels, pooled estimates ofmultiply imputed general and specific factor
scores were entered as predictors. Allmodels controlled for age, sex, education, andMRI scanner. All p-values are prior to false discovery rate (FDR) correction, with bold text indicating significant
associations. No results were significant after FDR correction.
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negatively associated with baseline GMV in the bilateral frontal
lobe (β = �1332; SE = 585.206; p = 0.023) and bilateral temporal
lobe (β =�8305; SE = 375.023; p = 0.027) when not controlling for
total GMV; however, neither association survived FDR correction
(Table S15). Disinhibited externalizing and substance use factors
were not associated with baseline GMV or cortical thickness in
any ROI when controlling or not controlling for global effects
(Tables S15–S17). To examine the extent to which education
might be driving our results, all analyses for the higher-order
model were re-run without including education as a covariate.
Before FDR correction, we found a significant negative effect of
BPVs for the substance use factor on GMV within the occipital
lobe (β =�408.499; SE = 206.464; p = 0.048) when not controlling
for total GMV. All other outcomes were consistent with our initial
analyses, suggesting that education did not confound the relation-
ship between dimensions of psychopathology and gray matter
structure in the current study. Results from post-hoc analyses
using BPVs generated from a bi-factor model were consistent
with those found for the higher-order model and are outlined in
the Supplementary Material (Appendix K, Tables S19–S22). It
should be noted that the results from analyses using BPVs gener-
ated for the bi-factor model are unlikely to be informative, given
the problems evident in the factor loadings (e.g., the substantial
number of factor loadings that were nonsignificant, negative in
direction, and/or small in magnitude; Appendix G).

Discussion

This study examined associations between latent transdiagnostic
dimensions of psychopathology, graymatter structure, and demen-
tia status in older adults. Consistent with previous research (Kotov
et al., 2017, 2021), our confirmatory factor models demonstrated
that psychopathology in older adulthood can be organized hier-
archically into a set of general and specific/lower-order transdiag-
nostic symptom dimensions. However, no associations between
these dimensions and changes in brain structure remained after
FDR correction. Specifically, we found no evidence that baseline
estimates of general and lower-order symptom dimensions pre-
dicted intraindividual change in global or regional gray matter
structure across time. Our post-hoc analyses found no evidence
of an association between transdiagnostic symptom dimensions
and baseline measures of global and regional gray matter. There
was also no evidence that general and lower-order dimensions
predicted incident dementia, across 12 years of follow-up.

Strengths and limitations

There are several strengths and limitations to the current study that
are important to consider. Firstly, our study included a large sample
size and repeated measurements of both brain structure (over
6 years of follow-up) and consensus diagnoses of dementia
(across 12 years of follow-up). That said, future research would
benefit from examining potential relationships with other neuroi-
maging measures (e.g., of white matter microstructure, functional
connectivity) and more nuanced examination of dementia (e.g.,
specific subtypes rather than a general binary outcomemeasure). In
addition, our study used a rigorous and theory-driven approach to
modeling the latent structure of psychopathology. However, our
measurement was somewhat limited by the lack of detailed psychi-
atric assessment in our data set. We were restricted to modeling
internalizing and two subdimensions of externalizing because we
did not have enough indicators to specify more commonly studied

dimensions (e.g., broad externalizing, thought disorder). In add-
ition, while there were a large number of indicators for internalizing
there were substantially fewer indicators for the other lower-order
factors. Our disinhibited-externalizing factor was defined by only
three indicators (all informant-report items from the NPI) and our
substance use factor was defined entirely by indicators of alcohol
and nicotine use (as illicit substance use is uncommon in older
adults). These limitations impact the extent to which we can
compare our results to those found in younger samples. Future
research would benefit from investigating these relationships using
dimensional models derived from a more extensive set of psychi-
atric indicators.

It is also important to consider the selection criteria of the
SydneyMASwhen interpreting our results.While participants with
mild cognitive impairment were eligible for inclusion and repre-
sented 36.7% of the sample at baseline (Tsang et al., 2013), those
diagnosed with dementia or who scored below 24 on the Mini-
Mental State Examination were excluded. This has the advantage of
reducing potentially confounding effects of dementia and signifi-
cant cognitive impairment, allowing for clearer examination of the
extent to which psychopathology contributes to these outcomes in
an otherwise healthy sample of older adults. However, these selec-
tion criteria also limit the representativeness of the Sydney MAS
sample (Sachdev et al., 2010; Tsang et al., 2013). It is possible that
these criteria selected for participants with a lower range of struc-
tural brain changes over time and a lower incidence of later onset
dementia compared to the general population of those aged 70 years
or older. The MAS sample is also relatively well educated (average
education = 11.6 years) and not racially diverse (98.4% Caucasian),
further limiting the generalizability of our results. Future research
may therefore benefit from investigating these relationships in a
more representative sample of older adults. However, few available
large-scale longitudinal studies in community-dwelling older
adults include detailed psychiatric assessment, as well as neuroima-
ging and dementia status data.

The neural correlates of transdiagnostic symptomdimensions in
older adulthood

The lack of significant associations between symptom dimensions
and gray matter structure in the current study is inconsistent with
findings in younger samples. Several cross-sectional studies have
reported that general psychopathology, internalizing, and external-
izing are associated with lower global and regional measures of gray
matter structure from childhood to young adulthood (Kaczkurkin
et al., 2019; Mewton et al., 2022; Parkes et al., 2021; Romer et al.,
2023). These studies capture a critical period in which the brain
undergoes substantial structural changes, with cortical thickness
peaking in childhood and decreasing from childhood to adoles-
cence and surface area peaking in preadolescence and decreasing
slowly from adolescence to early adulthood (Tamnes et al., 2017;
Wierenga et al., 2014). The majority of psychiatric disorders also
tend to emerge between childhood and young adulthood (Solmi
et al., 2022), perhaps driven by disruptions to normative matur-
ational processes in the brain during this highly sensitive period of
neurodevelopment. In contrast, the clinical picture of psychopath-
ology in older adulthood may reflect: (1) symptoms that emerge
early in development and persist or re-occur across the lifespan;
(2) symptoms that first emerge in older adulthood; or (3) symptoms
that specifically precede or follow from the onset of cognitive
decline and dementia. Psychiatric symptoms that emerge in later
life may be driven more strongly by environmental factors and
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physical comorbidities than genetic influences, which may exert
less of an impact on brain structure. In the present study, our
measurement models predominately included indicators of current
symptom expression and may therefore be capturing late onset
psychopathology. Future research should examine whether the
relationship between transdiagnostic symptom dimensions and
brain health in older adulthood differs as a function of age at
symptom onset. Alternatively, potential associations between psy-
chopathology and brain structure may be obscured by the impacts
of age-related pathologies and neurodegeneration that emerge
specifically in older adulthood. In either case, the inconsistency in
results between our study and studies of younger samples under-
scores the importance of investigating these relationships across
different age groups and highlights the complexities of doing so
specifically in older populations. It is also important to consider
sample size limitations when interpreting the lack of significant
associations found for our longitudinal analyses of gray matter
structure. MRI data were only available in a subsample of partici-
pants at baseline (n = 532), with substantial attrition across waves
(n = 417 at Wave 2 and n = 262 at Wave 4). As such, it is possible
that our analyses were not adequately powered to detect the effects
of dimensional psychopathology on within-person changes in
brain structure over time. This limitation was unavoidable given
that our study relied upon secondary analysis of existing data and
that there are few other large-scale studies of older adults that
include the data necessary to address our research questions
(i.e., broad measurement of psychopathology, repeated MRI meas-
ures). Furthermore, there were significant differences between
those with complete versus incomplete follow-up MRI data. Spe-
cifically, those with complete MRI data were younger and had
larger total GMV at baseline. As noted, age was included as a
covariate in all analyses to control for age-related variation in
GMV and missing data on the outcome was handled using max-
imum likelihood within a mixed model framework, which is more
valid than complete case analysis (Dong & Peng, 2013). However,
the overrepresentation of participants with greater baseline GMV
in the follow-up sample may have reduced variability in GMV
change, further limiting statistical power to detect associations with
psychopathology dimensions. Additionally, since participants with
higher baseline GMV may experience a different rate of decline
than those with lower baseline GMV, our findings might not fully
capture the broader relationship between psychopathology and
intraindividual change in GMV over time in older adulthood.

Transdiagnostic symptom dimensions as predictors of incident
dementia in older adulthood

We found no evidence that general and specific/lower-order trans-
diagnostic symptom dimensions predict incident dementia. These
findings are somewhat surprising given extensive evidence that
dementia is associated with a range of psychiatric disorders (Becker
et al., 2018; Cai & Huang, 2018; Mo et al., 2023; Richmond-Rakerd
et al., 2022; Velosa et al., 2020). In the MAS sample specifically,
previous studies have shown that baseline symptoms of depression,
anxiety, apathy, and agitation are associated with mild cognitive
impairment (Brodaty et al., 2012; Shahnawaz et al., 2013). However,
the only indicators of psychopathology that have been found to predict
incident dementia at follow-up in this sample are depressive symp-
toms (Brodaty et al., 2012). It may be that the relationship between
current psychopathology and dementia risk is driven by specific
symptoms (e.g., depressive symptoms) rather than transdiagnostic
dimensions, perhaps indirectly through their association with certain

physiologicalmechanisms andprocesses (e.g., increased cortisol levels,
vascular risk factors, neuroinflammation) that are also implicated in
dementia (Bennett & Thomas, 2014). Indeed, depressive symptoms
are highly correlated with many other forms of psychopathology,
which might account for the observed associations between dementia
and a range of psychiatric disorders (Mo et al., 2023; Richmond-
Rakerd et al., 2022). That said, further research is needed to thoroughly
examinewhether transdiagnostic symptomdimensions can be used to
predict incident dementia in older adults. As noted, psychopathology
in older adulthood may reflect symptoms that emerged earlier in
development or had their onset in later life. These presentations likely
followdistinct etiological pathways andmay confer different riskswith
respect to the onset of dementia in older adulthood. For example,
transdiagnostic dimensions derived from symptoms that were present
earlier in development may bemore likely to predict incident demen-
tia due to their longer-term impacts on brain health and other related
risk factors that unfold across the lifespan. Transdiagnostic symptom
dimensions may also show greater predictive utility for specific sub-
types of dementia (e.g., those characterized by psychiatric and behav-
ioral disturbances, such as frontotemporal dementia) than for general
measures of dementia status. There may also be a threshold effect in
which dementia is transdiagnostically associated with clinically sig-
nificant psychopathology but notwith subthreshold symptomdimen-
sions derived fromgeneral population samples, as in the current study.
Finally, future research should also investigate the predictive utility
of other symptom dimensions that are commonly investigated in
younger samples (e.g., broad externalizing), whichmay show stronger
associations with dementia.

Conclusions

This is the first study to investigate the relationships between
transdiagnostic symptom dimensions, brain structure, and demen-
tia status in older adulthood. We found no evidence that transdiag-
nostic symptom dimensions are associated with gray matter
structure or dementia status in this population. However, given
that our current understanding of the neural correlates of trans-
diagnostic symptom dimensions comes almost exclusively from
studies of youth, this study represents an important first step in
determining the nature of these associations in an important and
understudied age group. Future research would benefit from inves-
tigating these relationships in older adults using dimensional
models derived from a more detailed set of psychiatric indicators.
In addition, future studies should investigate whether age of symp-
tom onset, normative brain aging, and age-related pathologies,
impact the relationship between transdiagnostic symptom dimen-
sions, brain structure, and dementia risk in later life.
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