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SUMMARY

We examined the spatiotemporal distribution of laboratory-confirmed multidrug-resistant

tuberculosis (MDR TB) cases and that of other TB cases in Lima, Peru with the aim of

identifying mechanisms responsible for the rise of MDR TB in an urban setting. All incident

cases of TB in two districts of Lima, Peru during 2005–2007 were included. The spatiotemporal

distributions of MDR cases and other TB cases were compared with Ripley’s K statistic. Of

11 711 notified cases, 1187 received drug susceptibility testing and 376 were found to be MDR.

Spatial aggregation of patients with confirmed MDR disease appeared similar to that of other

patients in 2005 and 2006; however, in 2007, cases with confirmed MDR disease were found to be

more tightly grouped. Subgroup analysis suggests the appearance of resistance may be driven by

increased transmission. Interventions should aim to reduce the infectious duration for those with

drug-resistant disease and improve infection control.

Key words: Geographic information systems, multidrug-resistant tuberculosis (MDR TB), Peru,

tuberculosis, spatial analysis.

INTRODUCTION

Mycobacterium tuberculosis remains a leading infec-

tious cause of morbidity and mortality despite the

availability of inexpensive and effective antibiotic

treatment. The most recent global estimates indicate

that 9.3 million new cases of disease and 1.8 million

deaths are attributable to tuberculosis (TB) each year

[1]. The widespread emergence of multidrug-resistant

tuberculosis (MDR TB; resistance to at least iso-

niazid and rifampin, the two most important anti-

biotics used against TB) is an additional challenge

for global TB control efforts. The World Health

Organization estimated there were 489 000 incident
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cases (4.8% of all incident cases) of MDR TB in 2006

[2], increasing from 424000 (4.3% of all incident

cases) in 2004 [3]. While coordinated surveillance

activities have resulted in a more comprehensive as-

sessment of the global burden of drug-resistant TB [2],

the dynamics of the appearance and spread of MDR

TB in high-burden communities are not well char-

acterized.

Over the last decade, tools for the collection and

analysis of geospatial data have become increasingly

accessible, affordable, and easy to use [4]. Spatial

scan statistics have been used to identify hot spots

of TB incidence [5–10] and one recent study used

geographic data to investigate the spatial patterns of

drug-resistant TB in a small group of refugees in

Thailand [11]. These studies demonstrate that geo-

graphic information can improve our understanding

of the spatial and temporal spread of TB and can help

to document outbreaks of MDR disease.

The collection of geographic data also permits new

approaches for investigating the mechanisms that

lead to the appearance and spread of drug resistance

in communities. In particular, we hypothesize that the

pattern of spatial aggregation differs between TB

cases with MDR and non-MDR phenotypes. To test

this hypothesis, we analysed the clinical, micro-

biological, and spatial data from over 11 000 cases of

incident TB in Lima, Peru between 2005 and 2007.

METHODS

Study population and data collection

Our study population included all TB cases registered

in the Peruvian National Tuberculosis Programme

from two of Lima’s four health districts, Lima Ciudad

and contiguous health centre catchment areas of Lima

Este between 1 January 2005 and 31 December 2007.

We collected clinical information from TB regis-

tration records that are maintained in each health

centre and laboratory information from a web-based

laboratory information system (e-Chasqui) [12]. The

TB registration records provided patient-level infor-

mation including basic demographics and history

of anti-TB treatment. Laboratory records included

the results of each sputum smear and culture and

the drug-resistance profile if drug susceptibility test

(DST) was performed. Based on the home addresses,

study nurses identified the precise location of homes

on high-resolution Google Earth maps generated

for each health centre catchment area (for additional

details see online Supplementary material). IRB ap-

proval was obtained from the National Institute of

Health in Peru and the Partners HealthCare System in

the USA.

Information on drug-resistant status

In Peru, only a subset of TB cases receive sputum

culture and DST. Peruvian guidelines indicate that

sputum culture and DST should be performed for

patients at increased risk of MDR TB (e.g. history of

anti-TB treatment and known household contact with

MDR cases) or when first-line treatment fails [13].

DSTs were performed in the district reference labora-

tories of Lima Ciudad and Lima Este and in the

national reference laboratory (Instituto Nacional de

Salud). The district laboratories performed DST for

first-line drugs using the direct Griess method for

smear-positive samples from patients at high risk of

MDRTB [14, 15], and the indirect proportion method

on Löwenstein–Jensen media for all other samples.

The national reference laboratory used the indirect

proportion method on MB7H10 agar plates [16].

Smear-negative and paucibacillary sputa from high-

risk patients, including healthcare workers, HIV-

positive patients, and children, were sent directly to

the national reference laboratory for culture and in-

direct DSTusing BACTEC460TB (Becton-Dickinson,

USA) [17]. Those who did not receive DST or were not

MDR after DST were classified as non-MDR for the

baseline analysis. This classification approach under-

estimates resistance (since many of the non-tested

cases may actually have had MDR); in our sensitivity

analysis we address potential biases associated with

incomplete and non-random testing (for additional

details see online Supplementary material).

Data analysis

Main analysis

In the exploratory data analysis, kernel smoothing

was first used to map the spatial point pattern for all

TB cases and then for the subset of cases with detected

MDR TB. The quartic kernel function was used, with

the kernel width parameter selected to minimize the

mean square error for each smoothed surface [18, 19].

To compare the spatial distribution of patients with

and without MDR TB, we adopted a two-step ap-

proach. First, we used Ripley’s spatial K function to

estimate the degree of aggregation in cases of MDR
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and non-MDR TB at different spatial scales [20].

Second, we computed the spatial D function by sub-

tracting the K function of non-MDR TB cases from

that of MDR TB cases to measure the difference in

spatial aggregation between cases of MDR TB and

cases of non-MDR TB. To explore the temporal

change of spatial aggregation between MDR and

non-MDR cases, we divided our cases into 6-month

intervals and computed the spatial K statistic and

D statistic within each period. To maximize the

statistical power, we also pooled across the period-

specific K function (i.e. weighted average of all period-

specific K function with the weights determined by

the number of cases in each period) to obtain an ag-

gregated K function of MDR and non-MDR cases

and, correspondingly, an aggregated D function. We

estimated the spatiotemporal K function and D func-

tion using a similar approach that incorporated both

the space and time dimensions across a range of dif-

ferent space–time scales. The statistical uncertainty of

K function and D function was characterized using

repeated simulations to generate the 95% simulation

envelope (for additional details see online Sup-

plementary material).

Subgroup analysis

We separately compared the spatial distribution

of MDR and non-MDR cases in subgroups without

previous anti-TB treatment. Assuming that MDR TB

patients without a recorded history of previous treat-

ment actually represented cases of primary drug re-

sistance, the analysis from these patients allowed us to

investigate differences in the transmission of MDR

and non-MDR TB.

Sensitivity analysis

Since only 1187 of the total 11 711 TB cases (10.1%)

received DST, it is possible that any observed differ-

ences in MDR and non-MDR aggregation may have

resulted from geographic variation in the use of DST

rather than as a result of true differences in the spa-

tiotemporal distribution of MDR and non-MDR

disease. To probe for the presence of such bias, we

estimated the probability of receiving DST con-

ditional on TB and that of MDR conditional on DST

at the health-centre level. If the prevalence of MDR is

similar throughout the study region and differential

utilization of DST is responsible for differences in

observed patterns of MDR and non-MDR disease,

health centres with overtesting (i.e. those with higher

estimated probability of DST conditional on TB) will

appear to have a lower prevalence of MDR in tested

cases. Similarly, we mapped and compared the spatial

density of DST conditional on TB and that of MDR

conditional on DST to see if peaks in the map of DST

conditional on TB (locations with relatively high

probabilities of testing) correspond to troughs in that

of MDR conditional on DST (locations of relative

overtesting). To assess the potential impact of geo-

graphically differential DST and underestimation of

MDR, we reassigned (imputed) a proportion of the

‘non-MDR’ patients that had not received a DST to

the ‘MDR’ category based on the inverse probability

of receiving DST at a given location and repeated the

analysis. The reconstructed datasets used in this sen-

sitivity analysis were designed to have a total fraction

of MDR cases similar to that in a drug-resistance

survey conducted in this setting during this time

period (for additional details see online Supplemen-

tary material).

Data analysis was conducted in R 2.8.1 (R Project

for Statistical Computing, http://cran.r-project.org).

RESULTS

Of the total 12 222 registered TB cases during

the study period, 511 (4.2%) were excluded due to

incomplete information on home location, leaving a

final sample size of 11 711 cases. The number of

registered TB cases per health centre ranged from

two (Hospital Nacional Dos De Mayo and Centro

de Salud Mirones Bajo) to 749 (Centro de Salud

San Cosme). Of the 11 711 cases 1187 (10.1%) re-

ceived DST with the following results : 519 (4.4% of

all cases, 43.7% of tested cases) were resistant to iso-

niazid, 433 (3.7% of all cases, 36.5% of tested cases)

were resistant to rifampin, and 376 (3.2% of all cases,

31.7% of tested cases) were resistant to both drugs

and classified as MDR. Of these cases 31.2% had

previously been treated for TB. The proportion of

confirmed MDR TB was 1.5% and 6.9% in those

without and with a history of anti-TB treatment. Of

those who received DST, the proportion of MDR was

21.4% and 40.2% in those without and with previous

anti-TB treatment, respectively. Compared to cases

without MDR, those with MDR were more likely

to be male, to have positive sputum smear, to have

history of TB treatment, and to have had known

household contacts with MDR cases (Table 1). The

spatial point distribution and smoothed maps of

all TB and MDR cases are presented in Figure 1.

During the study period, the annual number of TB
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cases decreased slightly and the proportion of cases

with the MDR phenotype increased (Table 2) ;

this pattern is consistent with the trend in Peru as a

whole [21].

The K function of both MDR and non-MDR cases

showed a significant pattern of spatial aggregation in

each of the 3 years of the study (Fig. S1, Supplemen-

tary material). Because the spatial aggregation of TB

Table 1. Baseline characteristics of detected multidrug-resistant tuberculosis (MDR TB) cases and those

without detected MDR TB registered during 2005–2007 in Lima Ciudad and Lima Este, Peru

Detected MDR

TB (n=376)

Non-MDR TB*

(n=11 335)

Total

(n=11 711) P value

Age, years, median (IQR) 27 (22–35) 26 (19–38) 26 (19–38) 0.12
Male 67.3 59.2 59.4 0.0016
Sputum smear positive 82.2 70.9 71.3 <0.0001

History of TB treatment 67.9 30.0 31.2 <0.0001
Known household contact with
MDR cases

53.1 43.3 43.6 0.0002

HIV infection 4.1 4.0 4.0 0.91

Values represent percentages unless otherwise noted.
IQR, Interquartile range.
* Non-MDR TB includes : (1) TB cases receiving drug susceptibility test that did not have rifampin and isoniazid resistance ;

(2) TB cases that did not have drug sensitivity testing.
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Fig. 1. Spatial point pattern and smoothed maps of all and multidrug-resistant tuberculosis (MDR TB) cases in the study

region (highlighted area). (a) Spatial point pattern of all TB cases ; (b) kernel smoothed map of all TB cases ; (c) spatial point
pattern of MDR TB cases ; (d) kernel smoothed map of MDR TB cases. (A small random error was added to the spatial
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cases is, at least in part, due to the heterogeneity of

the underlying population density in the study areas,

the spatial aggregation of MDR and non-MDR cases

was compared using the D statistic. The two groups

of TB patients did not show significant difference in

spatial aggregation until the second half of 2007 when

increased spatial aggregation was observed for MDR

cases at a distance>4 km (Fig. 2a). When the period-

specific D statistics were aggregated over time, the

spatial aggregation between the two groups did not

differ significantly (Fig. 2b).

When we inspected the D statistics for cases with-

out previous TB treatment (Fig. 3) and for cases with

previous anti-TB treatment (Fig. 4) and compared

them with the D statistics for all cases (Fig. 2), we

found that the increased spatial aggregation of MDR

observed in the entire study population was probably

attributable to those without previous TB treatment.

Similarly, in the period-specific analysis increased

spatial aggregation of MDR in the second half of

2007 was also observed in cases without previous anti-

TB treatment but not in those with previous treat-

ment. In the spatiotemporal analysis we did not find

significant difference in the spatiotemporalD function

comparing MDR and non-MDR cases.

We found that the probability of receiving

DST conditional on TB was weakly and positively

correlated with that of MDR conditional on DST

at the health-centre level (Fig. 5a), inconsistent with

differential use of DST. We also mapped the spatial

density of DST conditional on all TB with that of

MDR conditional on DST (Fig. 5b, c). Although

there was substantial spatial heterogeneity in use of

DST, the contrast between these two maps does not

indicate that differential utilization of DST can alone

explain the different aggregation patterns of MDR

and non-MDR cases. In a conservative sensitivity

analysis (where a fraction of the patients without

DST were reassigned as MDR based on the inverse

probability of receiving DST), MDR cases were less

likely to aggregate spatially than non-MDR cases

(Fig. S2, Supplementary material).

DISCUSSION

In this retrospective study of 11 711 TB cases from

Lima, Peru, we compared the spatiotemporal distri-

bution of TB patients with different drug-resistance

phenotypes, with the aim of exploring the mechanisms

driving the appearance of MDR TB. To our knowl-

edge this is the largest spatial analysis ofMDRTB in a

high-burden urban setting. We found that spatial ag-

gregation of patients with confirmed MDR disease

was similar to that of other patients in 2005 and 2006;

towards the end of 2007 cases with confirmed MDR

disease were more tightly grouped. Our subgroup

analysis suggests that this observed increased aggre-

gation of MDR was probably due to increased aggre-

gation of MDR in TB patients without a previous

history of TB treatment ; this would be consistent with

relatively increasing transmission of MDR disease.

Previous geographic analyses of TB used spatial or

space–time scan statistics to identify clusters of TB

cases (hot spots) that could not be explained by

chance alone [5–11]. One study from a refugee camp

in Thailand examined 24 cases with MDR TB and did

not find any significant spatial clusters [11]. In con-

trast to previous spatial analyses that attempt to lo-

cate clusters of disease, our study examines the overall

pattern of spatial aggregation in cases with and with-

out MDR TB and provides estimates of the relative

degree of aggregation of these two phenotypic cat-

egories of disease. In order to address the influence of

the underlying population density, previous spatial

studies have aggregated data by administrative blocks

(e.g. census tract or ZIP code) since information on

population density is often available only at these

gross administrative levels. However, such aggregated

Table 2. Number of detected multidrug-resistant tuberculosis (MDR TB) cases and those without detected

multidrug-resistant TB in different periods throughout the study duration

2005

Jan.–June

2005

July–Dec.

2006

Jan.–June

2006

July–Dec.

2007

Jan.–June

2007

July–Dec.

Detected MDR TB 48 56 69 64 68 71
Non-MDR TB* 2004 1843 1940 1842 1923 1783
Total 2052 1899 2009 1906 1991 1854

Percent MDR 2.3% 2.9% 3.4% 3.4% 3.4% 3.8%

* Non-MDR TB includes : (1) TB cases receiving drug susceptibility test that did not have rifampin and isoniazid resistance ;
(2) TB cases that did not have drug sensitivity testing.
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analyses will result in a lower sensitivity for detecting

TB outbreaks than analyses using individual-level

data [22, 23]. Since our approach used comparisons of

MDR and non-MDR cases arising from the same

base population, our analysis is not compromised by

non-uniform population density and thus we were

able to utilize the highest possible level of resolution

(i.e. individual-level spatial information).

Throughout the study period, we found that

cases of MDR TB were at least as likely to be found

in spatial aggregation as cases without MDR TB;

furthermore, in the last year of the study, MDR

cases were more likely to aggregate than non-

MDR cases. Although the number of MDR cases

also increased throughout the study period, the in-

creased density of MDR TB cases alone could not

explain the increased spatial aggregation since

Ripley’s K function (and therefore the D function)

adjusted for the density of cases in the study region

(see Supplementary online material). We note that
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Fig. 2. The spatial D function (KDR – KNDR) and 95% simulation envelope of tuberculosis cases. (a) Period-specific
D function by 6-month interval ; (b) aggregated D function over total study period. Different locations of the observed

D function compared to the simulation envelope indicate different relative spatial aggregation of the two types of cases. When
the D function is above the simulation envelope, this is consistent with increased aggregation of multidrug-resistant (MDR)
cases (relative to non-MDR cases) ; when it is within the simulation envelope, this is consistent with similar aggregation of the

two types of cases ; when it is below the simulation envelope, this is consistent with increased aggregation of non-MDR cases.

Spatial analysis and tuberculosis 1789

https://doi.org/10.1017/S0950268810002797 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268810002797


differences in the spatial distribution of MDR and

non-MDR cases could have arisen through numerous

mechanisms related to either changes in (a) risk

of acquired and/or (b) primary (transmitted) drug

resistance. For example, risk factors for acquired

resistance related to individual behaviour (e.g. greater

non-adherence due to social risk factors) or program-

matic performance (e.g. more rigorous directly ob-

served therapy and/or case holding in certain health

centres) may be spatially clustered. In contrast, the

emergence of relatively transmissible, drug-resistant

strains or environmental or programmatic factors

favouring transmission of MDR strains may contri-

bute to increasing aggregation of MDR. Consistent

with this latter mechanism, our subgroup analysis of

those without previous TB treatment suggests that the

increased aggregation of MDR cases near the end of

the study period may be due to relatively increased

transmission of MDR disease compared to non-

MDR disease.
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Fig. 3. The spatial D function (KDR – KNDR) and 95% simulation envelope of tuberculosis cases without previous anti-
tuberculosis treatment. (a) Period-specific D function by 6-month interval ; (b) aggregated D function over total study period.

Different locations of the observed D function compared to the simulation envelope indicate different relative spatial
aggregation of the two types of cases. When the D function is above the simulation envelope, this is consistent with increased
aggregation of multidrug-resistant (MDR) cases (relative to non-MDR cases) ; when it is within the simulation envelope, this

is consistent with similar aggregation of the two types of cases ; when it is below the simulation envelope, this is consistent
with increased aggregation of non-MDR cases.
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We note that the spatiotemporal analysis itself

does not provide information regarding the underly-

ing mechanism responsible for the relatively increased

transmission of MDR TB in 2007. Transmitted re-

sistance has been shown to contribute substantially to

the burden of MDR and extensively drug-resistant

TB in both high and low HIV settings [24–26].

Therefore our finding should trigger further investi-

gation to verify this interpretation and to explore the

factors that may underlie our observation of relatively

increased transmission of MDR in this community.

For example, genotyping of TB isolates would allow

for investigation of whether the proportion of clus-

tered isolates increased more for MDR cases than

other TB cases in 2007, interview of MDR and non-

MDR cases may reveal changing contact patterns,

and examination of the performance of TB control

programmes for MDR and non-MDR cases may re-

veal improving relative control of non-MDR cases

near the end of the study period.
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tuberculosis treatment. (a) Period-specific D function by 6-month interval ; (b) aggregatedD function over total study period.
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aggregation of the two types of cases. When the D function is above the simulation envelope, this is consistent with increased
aggregation of multidrug-resistant (MDR) cases (relative to non-MDR cases) ; when it is within the simulation envelope, this
is consistent with similar aggregation of the two types of cases ; when it is below the simulation envelope, this is consistent

with increased aggregation of non-MDR cases.
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A minority of our study population (10.1%) re-

ceived DST; accordingly, substantial misclassification

exists in this crude dataset since a fraction of TB

cases that were never tested were actually MDR.

Although we note that Ripley’s K statistic is insensi-

tive to random thinning (sampling) of the true under-

lying spatial density [20], our results would still be

biased if (and only if) the observed spatial aggregation

of detected MDR was due to geographically differen-

tial use of DST. Fortunately, our sensitivity analysis

revealed that while there was substantial spatial het-

erogeneity in DST in our study region, this did not

simply reflect differential utilization of DST in the

presence of geographically similar prevalence of

MDR. We also used data from a local drug-resistance

survey to ‘reassign’ untested cases to MDR status

in order to generate a dataset that fit the total pro-

portion of TB cases that were MDR in the study re-

gion. In this sensitivity analysis increased relative

aggregation of non-MDR cases was found. We note

that this was a highly conservative sensitivity analysis

since by design it decreased spatial aggregation of

MDR cases and made it more difficult to observe

relatively increased spatial aggregation inMDR cases.

In summary, we used information on the time

of diagnosis and location of TB patients to compare

the spatiotemporal distribution of drug-sensitive and

drug-resistant TB cases. The results from this type of

analytical approach can provide practical insights

into the potential mechanisms responsible for the

appearance and spread of MDR TB and should

facilitate further investigation into the forces driving

such spatiotemporal evolution. The low cost of geo-

referencing instruments and freely available software

(Google Earth) make our approach particularly

appealing for resource-constrained settings in which

routine molecular typing of TB isolates is prohibi-

tively expensive. The incorporation of spatial infor-

mation into standard TB data-collection instruments

promises to enhance efforts to implement early,

targeted strategies to initiate timely treatment of

drug-resistant cases and reduce ongoing transmission

of MDR TB.

NOTE

Supplementary material accompanies this paper on

the Journal’s website (http://journals.cambridge.org/

hyg).
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