RESEARCH ARTICLE

Glasgow Mathematical **Iournal**

A note on the splittings of finitely presented Bestvina–Brady groups

Yu-Chan Chang

Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT, USA Email: yuchanchang74321@gmail.com

Received: 11 August 2024; **Revised:** 25 October 2024; **Accepted:** 30 October 2024 **Keywords:** Bestvina–Brady groups; splittings

2020 Mathematics Subject Classification: *Primary* - 20F65; *Secondary* - 20E06, 20E08

Abstract

We show that when a finitely presented Bestvina–Brady group splits as an amalgamated product over a subgroup *H*, its defining graph contains an induced separating subgraph whose associated Bestvina–Brady group is contained in a conjugate of *H*.

1. Introduction

Let Γ be a finite simplicial graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. The associated *right-angled Artin group (RAAG)*, denoted by A_{Γ} , is generated by $V(\Gamma)$, and two generators *v* and *w* commute whenever they are connected by an edge. A common question in group theory is: when does a group split as an amalgamated product or an HNN extension over a subgroup? For RAAGs, the splittings over infinite cyclic subgroups and abelian subgroups were characterized by Clay [\[3\]](#page-3-0) and by Groves and Hull [\[6\]](#page-3-1), respectively. Recently, Hull [\[7\]](#page-3-2) generalized the splittings of RAAGs over abelian subgroups to non-abelian subgroups.

Let $\phi: A_{\Gamma} \to \mathbb{Z}$ be a homomorphism that sends all the generators to 1. The kernel of ϕ is called the *Bestvina–Brady group* and is denoted by BB_Γ . We only focus on finitely presented Bestvina–Brady groups, which is equivalent to saying that the flag complexes on the defining graphs are simply connected [\[1\]](#page-3-3). The author in [\[2\]](#page-3-4) characterized the splittings of finitely presented Bestvina–Brady groups over abelian subgroups. In this note, we prove a result for the splittings of finitely presented Bestvina–Brady groups over non-abelian subgroups.

Theorem 1.1. Let Γ be a finite simplicial graph with no cut vertices and whose associated flag complex is simply connected. Suppose that BB_Γ splits as an amalgamated product over a subgroup H. Then Γ i *contains an induced subgraph* Λ *that separates* Γ *and* BB_Λ *is contained in a conjugate of H.*

In other words, Theorem [1.1](#page-0-0) says that if BB_Γ acts on a tree which is not a line, then there is an induced subgraph Λ of Γ such that Λ separates Γ and BB_{Λ} fixes an edge of T .

If Γ contains an induced subgraph Λ such that $\Gamma \setminus \Lambda$ has more than one connected component, then A_{Γ} splits over A_{Λ} and BB_{Γ} splits over BB_{Λ} . In the language of Bass–Serre Theory, all the vertex groups and edge groups of this splitting for A_Γ are finitely presented, but this is not always the case for the corresponding splitting for BB_Γ ; see Example [3.3.](#page-3-5) We remark that Γ contains a cut vertex if and only if BB_{Γ} splits as a free product.

The proof of Theorem [1.1](#page-0-0) uses basic facts about groups acting on trees, and the idea of the proof is similar to those in $[6]$, $[2]$, and $[7]$.

^C The Author(s), 2024. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust.

Figure 1. A directed triangle.

2. Preliminaries

2.1. Bestvina–Brady groups

Let Γ be a finite simplicial graph. The main result in [\[1\]](#page-3-3) states that Γ is connected if and only if BB_{Γ} is finitely generated, and that the flag complex on Γ is simply connected if and only if BB_Γ is finitely presented. In the latter situation, Dicks and Leary found an explicit presentation:

Theorem 2.1. ([\[5,](#page-3-6) Corollary 3]) Let Γ be a finite simplicial directed graph. If the flag complex on Γ is s imply connected, then $\rm BB_\Gamma$ is generated by all the directed edges of Γ , and the relators are of the form *ee*[−]¹ *, where e*[−]¹ *denotes the edge e with the opposite orientation, and ef* = *g* = *fe, where e, f , and g form a directed triangle; see Figure [1.](#page-1-0)*

2.2. Group acting on trees

Let *G* be a group acting on a tree *T* without inversions. We always assume that actions are minimal and nontrivial. An element $g \in G$ is called *elliptic* if it fixes a point in *T*; otherwise, it is called *hyperbolic*. When $g \in G$ is elliptic, the set of points fixed by *g* is a subtree of *T* and is denoted by Fix(*g*). When $g \in G$ is hyperbolic, it fixes a line in *T* on which it acts by translation. This line is called the *axis* of *g* and is denoted by Axis(*g*).

Lemma 2.2. ([\[4,](#page-3-7) Lemma 1.1, Corollary 1.5], [\[6,](#page-3-1) Lemma 1.1]) *Let G be a group acting on a tree, and let g and h be commuting elements in G.*

- *(1) If h is hyperbolic, then* $Axi(s) ⊂ Fix(g)$ *.*
- *(2) If both g and h are hyperbolic, then* $Axis(g) = Axis(h)$ *.*
- *(3) If both g and h are elliptic, then* $Fix(g) \cap Fix(h) \neq \emptyset$ *.*

3. Proof of Theorem [1.1](#page-0-0)

Throughout this section, we identify edges of a graph with elements in the associated Bestvina–Brady group.

Definition 3.1. Let Γ be a finite simplicial graph. A **triangle path** P_{Δ} between two distinct edges e and *f* in Γ is a sequence of triangles $\Delta_1, \ldots, \Delta_n$ such that

- *the edges e and f are contained in* Δ_1 *and* Δ_n *, respectively;*
- *the triangles* Δ_i *and* Δ_{i+1} *share a unique edge for each* $i = 1, \ldots, n 1$ *;*
- *the triangles* Δ_i *and* Δ_j *do not share a common edge if* $j \neq i 1$ *or* $j \neq i + 1$ *.*

The edge shared by Δ_i *and* Δ_{i+1} *is called an intermediate edge.*

Figure 2. Two triangle paths and their intermediate edges (red edges). The graph on the right illustrates that all the triangles in a triangle path share a common vertex.

Two examples of triangle paths and their intermediate edges are given in Figure [2.](#page-2-0) Notice that triangle paths between two edges may not be unique, and all the triangles in a triangle path can share a common vertex.

Recall that a subgraph Λ of Γ separates two vertices (or two edges) if these two vertices (or edges) lie in different connected components of $\Gamma \setminus \Lambda$.

Lemma 3.2. Let Γ be a finite simplicial graph without cut vertices and whose associated flag complex *is simply connected. Let* Λ *be an induced subgraph of* Γ *. If every triangle path between* e_1 *and* e_2 *in* $E(\Gamma)$ has an intermediate edge in $E(\Lambda)$, then Λ separates e_1 from e_2 .

Proof. Since Γ has no cut vertices and the associated flag complex is simply connected, every edge of Γ is contained in a triangle, and there is a triangle path between any two edges in Γ . Let $e_1 = (u_1, v_1)$ and $e_2 = (u_2, v_2)$. Suppose that Λ does not separate e_1 from e_2 . Then, without loss of generality, there is an edge path *p* between the vertices u_1 and u_2 . This edge path *p* is contained in some triangle path P_Δ between e_1 and e_2 , and therefore, every vertex of p , possibly except for the two end vertices, is a vertex of an intermediate edge of P_{Δ} . Since Λ contains an intermediate edge of P_{Δ} , removing Λ will disconnect the path *p*. Thus, the path *p* cannot exist. Hence, the subgraph Λ separates e_1 from e_2 . \Box

We now prove the main theorem.

Proof of Theorem [1.1](#page-0-0). Let BB_Γ act on a tree *T*, and let $e_h \in E(\Gamma)$ be hyperbolic. Since BB_Γ splits as an amalgamated product, the tree T is not a path. Let Λ be the induced subgraph of Γ such that $E(\Lambda)$ consists of all the elliptic edges of Γ that fix Axis(e_h) pointwise. Let *e* be an edge of Axis(e_h). Then BB_A fixes *e* and is contained in a conjugate of *H*.

We now show that Λ separates Γ . We claim that there is an edge $f \in E(\Gamma) \setminus E(\Lambda)$ such that every triangle path between e_h and f has an intermediate edge in $E(\Lambda)$. Suppose to the contrary that for every edge *f'* in $E(\Gamma) \setminus E(\Lambda)$, there is a triangle path $P_{\Delta} = {\Delta_1, \ldots, \Delta_n}$ between e_h and *f'* such that none of its intermediate edges is in E(Λ). Denote by $\{f_1, \ldots, f_{n-1}\}$ the set of intermediate edges of P_{Δ} , where f_i is the edge shared by Δ_i and Δ_{i+1} . Since e_h and f_1 are contained in Δ_1 , they are commuting elements. Since e_h is hyperbolic, the element f_1 is also hyperbolic. Otherwise, it follows from Lemma [2.2](#page-1-1) (1) that $f_1 \in E(\Lambda)$. Therefore, Lemma [2.2](#page-1-1) (2) implies $Axis(e_h) = Axis(f_1)$. Similarly, since f_1 is hyperbolic and commuting with f_2 , the element f_2 is also hyperbolic and has the axis $\text{Axis}(f_2) = \text{Axis}(f_1)$. Continuing with the same argument, we have that the edges $e_h, f_1, \ldots, f_{n-1}, f'$ are all hyperbolic with the same axis Axis(e_h). Now, every edge in $E(\Gamma) \setminus E(\Lambda)$ is hyperbolic and has the axis Axis(e_h), which is fixed by $E(\Lambda)$ pointwise. Thus, the set $E(\Gamma)$ fixes $Axis(e_h)$, contradicting the fact that *T* is not a path. This proves the claim. Therefore, the subgraph Λ separates e_h from *f* by Lemma [3.2.](#page-2-1)

Next, suppose that every edge of Γ is elliptic. Since the action of BB_Γ on T has no global fixed points, it follows from [\[8,](#page-3-8) p.64, Corollary 2] that there are two edges e_α and e_β in E(Γ) such that the intersection $Fix(e_{\alpha}) \cap Fix(e_{\beta})$ is empty. Let *L* be the geodesic in *T* between $Fix(e_{\alpha})$ and $Fix(e_{\beta})$, and let *e* be an edge of *L*. Let Λ be an induced subgraph of Γ such that every edge of Λ fixes *e*. Then, BB_{Λ} fixes *e* and is contained in a conjugate of *H*. We now show that Λ separates Γ . Let $P_{\Delta} = {\Delta_1, \ldots, \Delta_n}$ be a triangle path between e_α and e_β . Denote by $\{f_1, \ldots, f_{n-1}\}$ the set of intermediate edges of P_Δ , where f_i is the edge shared by Δ_i and Δ_{i+1} . For convenience, we write $f_0 = e_\alpha$ and $f_n = e_\beta$. Since f_i and f_{i+1} are contained in the

Figure 3. A splitting of a finitely presented Bestvina–Brady group over a finitely generated but not finitely presented subgroup.

triangle Δ_{i+1} , they are commuting elliptic elements. It follows from Lemma [2.2](#page-1-1) (3) that the intersection $Fix(f_i) \cap Fix(f_{i+1})$ is nonempty for $i = 0, \ldots, n-1$. Thus, there is a path *L*' in *T* from $Fix(f_0) = Fix(e_\alpha)$ to $Fix(f_n) = Fix(e_\beta)$ lying entirely in $\bigcup_{i=0}^n Fix(f_i)$. Since *T* is a tree, we have $L' = L$. Then the edge *e* belongs to Fix(f_i) for some *i*. That is, there is an intermediate edge f_i of P_Δ that belongs to E(Λ). Since the choice of the triangle path P_{Δ} between e_{α} and e_{β} is arbitrary, the subgraph Λ separates e_{α} from e_{β} by Lemma [3.2.](#page-2-1) П

We end this section with one example.

Example [3.](#page-3-9)3. Let Γ be the graph shown in Figure 3. Let W be the set of vertices that are adjacent to either u or v but different from u and v. Let Λ , Γ_1 , and Γ_2 be the induced graphs on W, $V(\Gamma)\setminus\{u,v\}$, and $W \cup \{u, v\}$, respectively. Then Λ is an induced separating subgraph of Γ and $BB_{\Gamma} \cong BB_{\Gamma_1} *_{BB_{\Lambda}} BB_{\Gamma_2}$. *However, the groups* BB_Γ *and* BB_{Γ_2} *are finitely presented, while* BB_{Γ_1} *and* BB_Λ *are finitely generated but not finitely presented.*

Acknowledgements. The author thanks Lorenzo Ruffoni for his encouragement and helpful discussions. The author thanks the referee for the constructive comments and suggestions.

References

- [1] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, *Invent. Math*. **129**(3) (1997), 445–470.
- [2] Y. C. Chang, Abelian splittings and JSJ-decompositions of finitely presented Bestvina–Brady groups, *J Group Theory* **26**(4) (2023), 677–692.
- [3] M. Clay, When does a right-angled Artin group split over Z? *Internat. J. Algebra Comput*. **24**(6) (2014), 815–825.
- [4] M. Culler and K. Vogtmann, A group-theoretic criterion for property FA, *Proc. Amer. Math. Soc*. **124**(3) (1996), 677–683.
- [5] W. Dicks and I. J. Leary, Presentations for subgroups of Artin groups, *Proc. Amer. Math. Soc*. **127**(2) (1999), 343–348.
- [6] D. Groves and M. Hull, Abelian splittings of right-angled Artin groups, in *Hyperbolic geometry and geometric group theory*, vol. **73**, of Adv. Stud. Pure Math. (Mathematical Society of Japan, Tokyo, 2017), 159–165. doi: [10.2969/aspm/07310159](https://doi.org/10.2969/aspm/07310159)
- [7] M. Hull, Splittings of right-angled Artin groups, *Internat. J. Algebra Comput*. **31**(7) (2021), 1429–1432.
- [8] J.-P. Serre, *Trees*, (Springer-Verlag, Berlin-New York, 1980). Translated from the French by John Stillwell.