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Abstract
We show that when a finitely presented Bestvina–Brady group splits as an amalgamated product over a subgroup H,
its defining graph contains an induced separating subgraph whose associated Bestvina–Brady group is contained
in a conjugate of H.

1. Introduction

Let � be a finite simplicial graph with vertex set V(�) and edge set E(�). The associated right-angled
Artin group (RAAG), denoted by A�, is generated by V(�), and two generators v and w commute when-
ever they are connected by an edge. A common question in group theory is: when does a group split
as an amalgamated product or an HNN extension over a subgroup? For RAAGs, the splittings over
infinite cyclic subgroups and abelian subgroups were characterized by Clay [3] and by Groves and
Hull [6], respectively. Recently, Hull [7] generalized the splittings of RAAGs over abelian subgroups to
non-abelian subgroups.

Let φ : A� →Z be a homomorphism that sends all the generators to 1. The kernel of φ is called
the Bestvina–Brady group and is denoted by BB�. We only focus on finitely presented Bestvina–Brady
groups, which is equivalent to saying that the flag complexes on the defining graphs are simply connected
[1]. The author in [2] characterized the splittings of finitely presented Bestvina–Brady groups over
abelian subgroups. In this note, we prove a result for the splittings of finitely presented Bestvina–Brady
groups over non-abelian subgroups.

Theorem 1.1. Let � be a finite simplicial graph with no cut vertices and whose associated flag complex
is simply connected. Suppose that BB� splits as an amalgamated product over a subgroup H. Then �

contains an induced subgraph � that separates � and BB� is contained in a conjugate of H.

In other words, Theorem 1.1 says that if BB� acts on a tree which is not a line, then there is an induced
subgraph � of � such that � separates � and BB� fixes an edge of T .

If � contains an induced subgraph � such that � \ � has more than one connected component, then
A� splits over A� and BB� splits over BB�. In the language of Bass–Serre Theory, all the vertex groups
and edge groups of this splitting for A� are finitely presented, but this is not always the case for the
corresponding splitting for BB�; see Example 3.3. We remark that � contains a cut vertex if and only if
BB� splits as a free product.

The proof of Theorem 1.1 uses basic facts about groups acting on trees, and the idea of the proof is
similar to those in [6], [2], and [7].
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Figure 1. A directed triangle.

2. Preliminaries
2.1. Bestvina–Brady groups

Let � be a finite simplicial graph. The main result in [1] states that � is connected if and only if BB�

is finitely generated, and that the flag complex on � is simply connected if and only if BB� is finitely
presented. In the latter situation, Dicks and Leary found an explicit presentation:

Theorem 2.1. ([5, Corollary 3]) Let � be a finite simplicial directed graph. If the flag complex on � is
simply connected, then BB� is generated by all the directed edges of �, and the relators are of the form
ee−1, where e−1 denotes the edge e with the opposite orientation, and ef = g = fe, where e, f , and g form
a directed triangle; see Figure 1.

2.2. Group acting on trees

Let G be a group acting on a tree T without inversions. We always assume that actions are minimal and
nontrivial. An element g ∈ G is called elliptic if it fixes a point in T; otherwise, it is called hyperbolic.
When g ∈ G is elliptic, the set of points fixed by g is a subtree of T and is denoted by Fix(g). When g ∈ G
is hyperbolic, it fixes a line in T on which it acts by translation. This line is called the axis of g and is
denoted by Axis(g).

Lemma 2.2. ([4, Lemma 1.1, Corollary 1.5], [6, Lemma 1.1]) Let G be a group acting on a tree, and
let g and h be commuting elements in G.

(1) If h is hyperbolic, then Axis(h) ⊆ Fix(g).
(2) If both g and h are hyperbolic, then Axis(g) = Axis(h).
(3) If both g and h are elliptic, then Fix(g) ∩ Fix(h) �= ∅.

3. Proof of Theorem 1.1

Throughout this section, we identify edges of a graph with elements in the associated Bestvina–Brady
group.

Definition 3.1. Let � be a finite simplicial graph. A triangle path P� between two distinct edges e and
f in � is a sequence of triangles �1, . . . , �n such that

• the edges e and f are contained in �1 and �n, respectively;
• the triangles �i and �i+1 share a unique edge for each i = 1, . . . , n − 1;
• the triangles �i and �j do not share a common edge if j �= i − 1 or j �= i + 1.

The edge shared by �i and �i+1 is called an intermediate edge.
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Figure 2. Two triangle paths and their intermediate edges (red edges). The graph on the right illustrates
that all the triangles in a triangle path share a common vertex.

Two examples of triangle paths and their intermediate edges are given in Figure 2. Notice that triangle
paths between two edges may not be unique, and all the triangles in a triangle path can share a common
vertex.

Recall that a subgraph � of � separates two vertices (or two edges) if these two vertices (or edges)
lie in different connected components of � \ �.

Lemma 3.2. Let � be a finite simplicial graph without cut vertices and whose associated flag complex
is simply connected. Let � be an induced subgraph of �. If every triangle path between e1 and e2 in
E(�) has an intermediate edge in E(�), then � separates e1 from e2.

Proof. Since � has no cut vertices and the associated flag complex is simply connected, every edge
of � is contained in a triangle, and there is a triangle path between any two edges in �. Let e1 = (u1, v1)
and e2 = (u2, v2). Suppose that � does not separate e1 from e2. Then, without loss of generality, there is
an edge path p between the vertices u1 and u2. This edge path p is contained in some triangle path P�

between e1 and e2, and therefore, every vertex of p, possibly except for the two end vertices, is a vertex of
an intermediate edge of P�. Since � contains an intermediate edge of P�, removing � will disconnect
the path p. Thus, the path p cannot exist. Hence, the subgraph � separates e1 from e2.

We now prove the main theorem.

Proof of Theorem 1.1. Let BB� act on a tree T , and let eh ∈ E(�) be hyperbolic. Since BB� splits as
an amalgamated product, the tree T is not a path. Let � be the induced subgraph of � such that E(�)
consists of all the elliptic edges of � that fix Axis(eh) pointwise. Let e be an edge of Axis(eh). Then BB�

fixes e and is contained in a conjugate of H.
We now show that � separates �. We claim that there is an edge f ∈ E(�) \ E(�) such that every

triangle path between eh and f has an intermediate edge in E(�). Suppose to the contrary that for every
edge f ′ in E(�) \ E(�), there is a triangle path P� = {�1, . . . , �n} between eh and f ′ such that none of
its intermediate edges is in E(�). Denote by {f1, . . . , fn−1} the set of intermediate edges of P�, where fi

is the edge shared by �i and �i+1. Since eh and f1 are contained in �1, they are commuting elements.
Since eh is hyperbolic, the element f1 is also hyperbolic. Otherwise, it follows from Lemma 2.2 (1) that
f1 ∈ E(�). Therefore, Lemma 2.2 (2) implies Axis(eh) = Axis(f1). Similarly, since f1 is hyperbolic and
commuting with f2, the element f2 is also hyperbolic and has the axis Axis(f2) = Axis(f1). Continuing
with the same argument, we have that the edges eh, f1, . . . , fn−1, f ′ are all hyperbolic with the same axis
Axis(eh). Now, every edge in E(�) \ E(�) is hyperbolic and has the axis Axis(eh), which is fixed by E(�)
pointwise. Thus, the set E(�) fixes Axis(eh), contradicting the fact that T is not a path. This proves the
claim. Therefore, the subgraph � separates eh from f by Lemma 3.2.

Next, suppose that every edge of � is elliptic. Since the action of BB� on T has no global fixed points,
it follows from [8, p.64, Corollary 2] that there are two edges eα and eβ in E(�) such that the intersection
Fix(eα) ∩ Fix(eβ) is empty. Let L be the geodesic in T between Fix(eα) and Fix(eβ), and let e be an edge
of L. Let � be an induced subgraph of � such that every edge of � fixes e. Then, BB� fixes e and is
contained in a conjugate of H. We now show that � separates �. Let P� = {�1, . . . , �n} be a triangle
path between eα and eβ . Denote by {f1, . . . , fn−1} the set of intermediate edges of P�, where fi is the edge
shared by �i and �i+1. For convenience, we write f0 = eα and fn = eβ . Since fi and fi+1 are contained in the
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Figure 3. A splitting of a finitely presented Bestvina–Brady group over a finitely generated but not
finitely presented subgroup.

triangle �i+1, they are commuting elliptic elements. It follows from Lemma 2.2 (3) that the intersection
Fix(fi) ∩ Fix(fi+1) is nonempty for i = 0, . . . , n − 1. Thus, there is a path L′ in T from Fix(f0) = Fix(eα)
to Fix(fn) = Fix(eβ) lying entirely in

⋃n
i=0 Fix(fi). Since T is a tree, we have L′ = L. Then the edge e

belongs to Fix(fi) for some i. That is, there is an intermediate edge fi of P� that belongs to E(�). Since
the choice of the triangle path P� between eα and eβ is arbitrary, the subgraph � separates eα from eβ

by Lemma 3.2.

We end this section with one example.

Example 3.3. Let � be the graph shown in Figure 3. Let W be the set of vertices that are adjacent to
either u or v but different from u and v. Let �, �1, and �2 be the induced graphs on W, V(�) \ {u, v}, and
W ∪ {u, v}, respectively. Then � is an induced separating subgraph of � and BB�

∼= BB�1 ∗BB�
BB�2 .

However, the groups BB� and BB�2 are finitely presented, while BB�1 and BB� are finitely generated
but not finitely presented.
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