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Abstract. Quasigeodesic behavior of flow lines is a very useful property in the study of
Anosov flows. Not every Anosov flow in dimension three is quasigeodesic. In fact, until
recently, up to orbit equivalence, the only previously known examples of quasigeodesic
Anosov flows were suspension flows. In a recent article, the second author proved that an
Anosov flow on a hyperbolic 3-manifold is quasigeodesic if and only if it is non-R-covered,
and this result completes the classification of quasigeodesic Anosov flows on hyperbolic
3-manifolds. In this article, we prove that a new class of examples of Anosov flows are
quasigeodesic. These are the first examples of quasigeodesic Anosov flows on 3-manifolds
that are neither Seifert, nor solvable, nor hyperbolic. In general, it is very hard to show that
a given flow is quasigeodesic and, in this article, we provide a new method to prove that an
Anosov flow is quasigeodesic.

Key words: Anosov flows, quasigeodesics, geometric properties of flow lines, large-scale
properties of flows
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1. Introduction
A flow on a manifold is called quasigeodesic if its orbits are uniformly efficient up
to a bounded multiplicative and additive error in measuring distances when lifted to
the universal cover. Quasigeodesics are extremely important for example in hyperbolic
manifolds. This is because the Morse lemma says that on a hyperbolic space, any
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quasigeodesic is within a bounded distance from a length minimizing geodesic (when
lifted to the universal cover) [Gro87, Thu82]. The distance depends on the quasigeodesic
constants.

From the dynamical systems point of view, there are several important reasons to study
hyperbolic flows, and in 3-manifolds, these are Anosov and pseudo-Anosov flows [Ano69,
KH95, Mos92b]. The question as to whether an Anosov or a pseudo-Anosov flow in a
closed hyperbolic 3-manifold is quasigeodesic has been intensively studied [Fen94, Fen95,
Fen16, Fen22, FM01, Mos92a]. Now the quasigeodesic Anosov flows on hyperbolic
3-manifolds are fully classified by the second author [Fen94, Fen22]: an Anosov flow on a
hyperbolic 3-manifold is quasigeodesic if and only if it is not R-covered. Here, R-covered
means that the weak-stable leaf space (or equivalently, the weak-unstable leaf space) of the
lifted flow in the universal cover is homeomorphic to R. In addition, it is known (and very
easy to show) that any suspension flow is a quasigeodesic flow, in any manifold [Zeg93].

The question of quasigeodesic behavior for Anosov flows on non-hyperbolic
3-manifolds, which are not orbit equivalent to suspensions, has not been studied at all.
The goal of this article is to start the study of the quasigeodesic property for Anosov flows
in more general 3-manifolds.

First, we analyze Anosov flows in Seifert fibered 3-manifolds and prove the following.

THEOREM 1.1. Let � be an Anosov flow in a closed, Seifert fibered 3-manifold. Then, �
is a quasigeodesic flow.

To prove this theorem, we first show that, under an appropriate natural metric, flow
lines of the geodesic flow on the unit tangent bundle of a hyperbolic surface are globally
length minimizing (in the universal cover). An Anosov flow on a Seifert fibered manifold
is orbitally equivalent to a finite lift of the geodesic flow on the unit tangent bundle of
a hyperbolic surface. By using the orbit equivalence, we show that the flow lines of the
Anosov flow on a Seifert fibered manifold are length minimizing up to finite bounds when
lifted to the universal cover.

Notice that every Anosov flow on a solv manifold is also quasigeodesic. This is because
Plante [Pl] proved that every Anosov flow in such a manifold is orbitally equivalent to a
suspension Anosov flow.

We remark that not every Anosov flow is quasigeodesic: in [Fen94], the second author
proved that there exist infinitely many examples of Anosov flows on three-dimensional
hyperbolic manifolds which are not quasigeodesic. In addition, for a flow on a general
manifold M, there might exist a Riemannian metric such that all the flow lines are geodesic
(a differential geometric condition), but that does not guarantee that the flow lines are
quasigeodesic.

The main result of this article proves the quasigeodesic property for Anosov flows in
new classes of 3-manifolds. These manifolds have non-trivial JSJ decomposition [Hem76].
First, recall that the DA operation [Wil70] transforms a hyperbolic periodic orbit into either
an attracting or repelling periodic orbit. Franks and Williams [FW80] used this operation
to produce the first examples of non-transitive Anosov flows in dimension three as follows:
they did a DA operation on a closed orbit of a suspension, producing a repelling orbit and
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an attractor. They removed a solid torus neighborhood of the periodic orbit to produce a
flow in a manifold with boundary so that the flow is incoming along the boundary. They
carefully glued this with a copy having a time-reversed flow. Under certain homotopy
types of gluings, the resulting flow is Anosov. These examples revolutionized the study
of Anosov flows in dimension three.

In modern terminology, the manifold with boundary, equipped with the incoming flow,
is called a hyperbolic plug [BBY17]. In their article, Beguin, Bonatti, and Yu prove that
under very general conditions, gluing hyperbolic plugs produces Anosov flows. In this
article, we consider Anosov flows which we call generalized Franks–Williams flows. They
are obtained as gluings of hyperbolic plugs as follows: start with a suspension Anosov flow
and do a DA operation on finitely many periodic orbits. The operations are done so that
either they all produce attracting orbits or they all produce repelling orbits. Then, remove
a solid torus neighborhood from each DA orbit. Each plug contains either an attractor or a
repeller. Glue finitely many of these plugs using the techniques of [BBY17]. The resulting
flow is an Anosov flow [BBY17].

The main result of this article is the following.

THEOREM 1.2. Let � be a generalized Franks–Williams Anosov flow in a closed
3-manifold M. Then, � is a uniform quasigeodesic flow.

Remark 1.3. This result is new in the sense that the manifolds in question are neither
Seifert, nor hyperbolic, nor solvable. The JSJ decomposition is not trivial. It is easy to
prove that the supporting manifolds of the hyperbolic plugs in question are atoroidal. In
addition, by a result of Leeb [Lee95], a Haken manifold with at least one atoroidal piece
in the JSJ decomposition can be given a Riemannian metric with non-positive sectional
curvature, and hence the universal cover is CAT(0)with respect to the induced path metric.
Therefore, the manifolds considered in Theorem 1.2 admit CAT(0) metrics.

1.1. Some ideas on the proof of Theorem 1.2. First, we mention a big difference from
the case where the manifold is hyperbolic. As we remarked previously, much study has
been done on the quasigeodesic property for Anosov flows in hyperbolic 3-manifolds. In
these manifolds, a quasigeodesic satisfies that in the universal cover, it is at a bounded
Hausdorff distance from a geodesic. On hyperbolic manifolds, geodesics are globally
length minimizing curves in the universal cover. The bounded distance property is strongly
connected with the quasigeodesic property, and in certain situations, it is an intermediate
step in proving quasigeodesic behavior.

The manifolds in this article are not hyperbolic. In particular, a quasigeodesic in the
universal cover may not be at a bounded Hausdorff distance from a minimal geodesic.
This happens for example in Euclidean space. In the examples we study, there might exist
quasi-flats in the universal cover—possible examples are lifts of the gluing tori and they
behave like the Euclidean plane.

In this article, we analyze the flow in each individual block and then analyze how the
blocks are assembled together. In each block, the flow is obtained from a blow up of a
suspension Anosov flow, and hence it satisfies the quasigeodesic property when restricted
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to the block. The much more complicated property is to analyze orbits that cross the tori
gluing different blocks. This turns out to be very intricate. We produced our flows so that
we glue a collection of repellers to a collection of attractors. It follows that an orbit not
contained in a plug intersects one (and only one) of the gluing tori, and goes from being
near a repeller to being near an attractor. One potential problem is the following: it could
happen that the segments of an orbit on either side of the gluing torus may track the torus
for a long time and go in opposite directions. Lifting to the universal cover, one produces
a big length along an orbit, but the distance between two points on the orbit may not be
large enough compared with the length of orbit segment connecting them. In fact, if one
considers arbitrary gluings on the gluing tori (and not just those generating Anosov flows
as in [BBY17]), then this problem can occur and the flow is not quasigeodesic.

We do a very careful analysis to show that when the resulting flow is Anosov, then the
flow lines are quasigeodesic. One crucial step is related to the potential problem above:
we show that if a flow line intersects certain regions of a gluing tori, then the forward
half-orbit ‘moves away efficiently’ from the lift of the torus when lifted to the universal
cover. In other words, in the manifold, the forward orbit cannot keep tracking close to the
torus for a long time. This result is Proposition 6.3 and it is the key component of the main
result. Of course, this good behavior is not true for all orbits intersecting the torus and
there is a bad region as well. To prove the quasigeodesic behavior, we have to consider
both forward and backward half-orbits from points in the gluing tori, and how they are
pierced together.

2. Preliminaries
A map f : (X1, d1) → (X2, d2) between two metric spaces (X1, d1) and (X2, d2) is a
quasi-isometric embedding if there exist two constants C > 1 and c > 0 such that, for any
points p1, p2 ∈ X1,

1
C
d1(p1, p2)− c ≤ d2(f (p1), f (p2)) ≤ Cd1(p1, p2)+ c.

A quasigeodesic in (X1, d1) is a quasi-isometric embedding of an interval in R (with the
standard metric) in (X1, d1); the interval can be any of the forms [a, b], [a, b), (a, b], or
(a, b) ⊂ R, where a, b ∈ R ∪ {+∞, −∞}. If a or b is contained in the interval, then we
assume it is not either of +∞, −∞.

Suppose N is a closed Riemannian manifold with a Riemannian metric g and let the
path metric induced by g be denoted by dg( , ). A flow �t on N with C1-orbits is called
quasigeodesic if each flow line γ of the lifted flow �̃t in the universal cover Ñ is a
quasi-isometric embedding of R for some constants C > 1 and c > 0. The metric in R

is the path distance along the flow line. It is immediate that the quasigeodesic property of
a flow line γ in Ñ is equivalent to the following: there exists C > 1 and c > 0 such that
for any two points a, b ∈ γ ,

lengthg̃(γ[a,b]) ≤ Cdg̃(a, b)+ c,

where γ[a,b] is the flow segment connecting a, b ∈ γ , g̃ is the lift of the Riemannian metric
g on Ñ , and dg̃ is the path metric on Ñ induced from g̃.
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The definition is independent of the metric as the quasigeodesic property is preserved
under quasi-isometric embeddings and, as our underlying manifold is compact, any two
metrics in Ñ which are lifts from metrics in N are quasi-isometric to each other. However,
the quasi-isometry constants may change.

If the same quasi-isometry constants C > 1 and c > 0 work for all the flow lines, then
we say that the flow is uniformly quasigeodesic. It is not true that every quasigeodesic flow
is uniform. Notice however that in closed hyperbolic manifolds, Calegari proved in [Cal06]
that every quasigeodesic flow is uniformly quasigeodesic.

The focus of this article is to study the quasigeodesic behavior of Anosov flows in
3-manifolds. The 3-manifolds are always assumed to be closed.

Definition 2.1. A C1-flow �t : M → M on a Riemannian manifold M is Anosov if the
tangent bundle TM splits into three D�t -invariant sub-bundles TM = Es ⊕ E0 ⊕ Eu

and there exists two constants B, b > 0 such that:
• E0 is generated by the non-zero vector field defined by the flow �t ;
• for any v ∈ Es and t > 0,

‖D�t(v)‖ ≤ Be−bt‖v‖;

• for any w ∈ Eu and t > 0,

‖D�t(w)‖ ≥ Bebt‖w‖.

The definition is independent of the choice of the Riemannian metric ‖.‖ as the
underlying manifold M is compact.

For a point p ∈ M, we will denote the flow line through p by γp, that is,
γp = {�t(p)|t ∈ R}. The collection of all flow lines of a flow defines a one-dimensional
foliation on M. For an Anosov flow, there are several flow invariant foliations associated
to the flow and these foliations play a key role in the study of Anosov flows.

Property 2.2. [Ano69] For an Anosov flow�t on M, the distributions Eu, Es , E0 ⊕ Eu,
and E0 ⊕ Es are uniquely integrable. The associated foliations are denoted by Fu, F s ,
Fwu, and Fws , respectively, and they are called the strong unstable, strong stable, weak
unstable, and weak stable foliation on M.

We conclude this section by introducing the notion of orbit equivalence between two
flows �1

t and �2
t .

Definition 2.3. Two flows�1
t : M → M and�2

t : N → N are said to be orbit equivalent
if there exists a homeomorphism h : M → N such that there exists a continuous map
τ : N × R → R such that h ◦�1

t ◦ h−1(x) = �2
τ(x,t)(x) for all x ∈ N . In addition, we

require that τ preserves orientation in the R coordinate.

An orbit equivalence maps orbits to orbits with a possible time change. The requirement
that h is a homeomorphism implies that τ restricted to p × R is a homeomorphism for each
p in M. The last condition means that this homeomorphism is orientation preserving for
each p in M.
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2.1. Organization of the article. In §3, we prove that geodesic flow on the unit tangent
bundle of a hyperbolic surface is quasigeodesic. Moreover, Anosov flows on Seifert fibered
3-manifolds are quasigeodesic.

In §4, we describe the construction of generalized Franks–Williams flows and in §5, we
describe the Riemannian metric we are going to work with in this article.

Section 6 contains the proof of Theorem 1.2; §6.1 proves the key proposition for the
proof and §6.2 completes the proof.

3. Anosov flows in Seifert manifolds and quasigeodesic behavior
Suppose � is a hyperbolic surface and T� denotes its tangent bundle, that is,
T� = {(p, v)|p ∈ �, v ∈ Tp�}. The universal cover of � is the hyperbolic plane and
we will consider the Poincaré upper-half-plane model H in this article, that is,

H = {(x, y) ∈ R2|y > 0} with the Riemannian metric ds2 = dx2 + dy2

y2 .

On the tangent bundle T�, we can define the geodesic vector field with respect to the
metric ds; this is a classical construction, in this article, we follow the notation and the
detailed description as in [doC92, Ch. 3].

Definition 3.1. The geodesic field is defined to be the unique vector field G on T� whose
trajectories are of the form (γ (t), γ ′(t)), where γ is a geodesic on � with respect to ds.

The flow Gt of the geodesic field is called the geodesic flow on T�.

Suppose G̃t is the lift of the geodesic flow on the universal cover T̃ � = TH = H × R2.
We show that if (γ (t), γ ′(t)) is a flow line of G̃t on TH = H × R2, then it is a
quasigeodesic in TH.

First, we choose an appropriate metric on T̃ � which projects down to T�. Consider
the projection map π : TH → H. We can define a metric on TH using the projection π
and the metric ds on H as described in [doC92, Ch. 3, Exercise 2], the following is the
detailed description.

Suppose (p, v)∈TH, and consider α1 : t→ (p1(t), v1(t)) and α2 : t→ (p2(t), v2(t)),
where p1(0) = p2(0) = p ∈ H and v1(0) = v2(0) = v ∈ Tp(H). Let V1 = α′

1(0) and
V2 = α′

2(0). Then define the inner product as

〈V1, V2〉(p,v) = 〈dπ(V1), dπ(V2)〉p +
〈
Dv1

dt
(0),

Dv2

dt
(0)

〉
p

,

where 〈, 〉p is given by the metric ds on H and D/dt denotes the covariant derivative as
defined in [doC92, Proposition 2.2].

Clearly, the metric on TH as defined above projects down to T� as the metric ds on H

projects down to �. Abusing the notation, we denote metric on T� by ds.
Next, we prove that Gt on T� is a quasigeodesic flow. Suppose (γ (t), γ ′(t)) is a flow

line of G̃t on TH, and let (p, v) and (q, w) be two points on (γ , γ ′). Consider a curve

https://doi.org/10.1017/etds.2024.89 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.89


New classes of quasigeodesic Anosov flows in 3-manifolds 7

ζ : t → (ζ1(t), ζ2(t)) ∈ TH on t ∈ [0, 1] such that ζ(0) = (p, v) and ζ(1) = (q, w), and
ζ2(t) ∈ Tζ1(t)H for all t ∈ [0, 1]. Then,

length(ζ ) =
∫ 1

0
‖ζ ′(t)‖ dt

=
∫ 1

0

√
‖ζ ′

1(t)‖2 +
∥∥∥∥Dζ2(t)

dt

∥∥∥∥2

dt

≥
∫ 1

0

√
‖ζ ′

1(t)‖2 dt = length(ζ1). (3.1)

Note that ζ1 is a curve on H connecting p, q ∈ H. However, γ is a geodesic on H and
geodesics on H are globally length minimizing on H, which means

length(ζ1) ≥ length(γ ) between p, q ∈ H.

As γ is a geodesic, the covariant derivative of γ vanishes by definition, that is,
Dγ ′/dt = 0. Using the fact that Dγ ′/dt = 0 and the Riemannian metric on TH, it is
easy to verify that

length(γ , γ ′) = length(γ ) between p, q ∈ H.

Replacing in equation (3.1), we conclude that between (p, v), (q, w) ∈ TH,

length(ζ ) ≥ length(ζ1) ≥ length(γ ) = length(γ , γ ′).

As the choice of (γ , γ ′) and ζ was arbitrary, the above inequality implies that the
flow lines of G̃t are globally length minimizing in TH, a stronger property than being
a quasigeodesic. In other words, we proved the following.

THEOREM 3.2. The flow lines of the geodesic flow G̃t on TH are globally length
minimizing. In particular, if � is a hyperbolic surface, then the geodesic flow on T�
is a quasigeodesic flow.

3.1. Geodesic flows on the unit tangent bundle. We note that the flow lines of the
geodesic flow on T� are of the form (γ , γ ′). As γ is a geodesic on �, we get
d/dt〈γ ′(t), γ ′(t)〉 = 0, that is, ‖γ ′(t)‖ =constant. This property allows us to restrict the
flow Gt on T� to the unit tangent bundle S�, where

S� = {(p, v)|p ∈ �, v ∈ Tp�, ‖v‖ = 1}.
Similarly, we can restrict the flow G̃t on SH, the unit tangent bundle on H. It is immediate
by Theorem 3.2 that the flow lines of the geodesic flow on SH are globally length
minimizing.

It is clear that SH is a cover of S�, though it is not the universal cover. As the flow
lines of the geodesic flow on SH are globally length minimizing and SH is complete, lifts
of the flow lines of the geodesic flow in the universal cover S̃H = H × R are also globally
length minimizing, a stronger property than being quasigeodesic.

So far, we have considered the metric ds2 = (dx2 + dy2)/y2 on H, and the geodesics
and geodesic flow on a surface completely depend on the choice of Riemannian metric.

https://doi.org/10.1017/etds.2024.89 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.89


8 A. Chanda and S. R. Fenley

However, geodesic flows associated with any two negatively curved metrics on a surface
are orbit equivalent [Ghy84]. More precisely, there is a homeomorphism between the
unit tangent bundles of the respective Riemannian metrics which takes orbits to orbits
as described in Definition 2.3. It is easy to check that any homeomorphism between two
compact manifolds gives a quasi-isometry when lifted to the universal covers. In particular,
as unit tangent bundles of negatively curved closed surfaces are compact, the orbit
equivalence maps are quasi-isometries between the universal covers; and quasi-isometries
preserve quasigeodesics. This implies geodesic flow with respect to any negatively curved
metric on a closed surface is quasigeodesic. We conclude the following theorem.

THEOREM 3.3. If � is a hyperbolic surface, the geodesic flows in the unit tangent bundle
S� is quasigeodesic. More precisely, the flow lines in the universal cover are globally
length minimizing with respect to the metric ds.

3.2. Anosov flows in Seifert manifolds. Now, we prove that any Anosov flow on a Seifert
fibered 3-manifold is quasigeodesic. The following theorem relates Anosov flows on Seifert
fibered 3-manifolds with geodesic flows.

THEOREM 3.4. [Bar96] Any Anosov flow on a closed Seifert fibered space is orbit
equivalent to a finite lift of a geodesic flow on a hyperbolic surface.

We combine Theorems 3.3 and 3.4 to get the following.

THEOREM 3.5. If �t is an Anosov flow on a Seifert fibered 3-manifold N , then �t is
quasigeodesic.

Proof. By Theorem 3.4, �t is orbit equivalent to a finite lift of the geodesic flow Gt on
the unit tangent bundle S� of a hyperbolic surface �. We denote the finite lift of S� by
Ŝ� and the finite lift of the geodesic flow by Ĝt .

Fix a Riemannian metric g on N . Let d̂s be the metric on Ŝ�, d̂s which is the lift of the
metric ds as constructed before using the upper-half-plane H. This is the metric for which
Theorem 3.4 holds. We denote the path metrics induced by the lifts of the metrics g̃ and
d̃s on Ñ and S̃� respectively by d1 and d2.

Fix an orbit equivalence h : N → Ŝ� and let h̃ : Ñ → S̃� be a lift of h to the universal
covers. By the compactness of N and Ŝ�, we can fix η1, η2>0 such that for any x, y ∈ Ñ
lying on the same flow line γ ,

if lengthg̃(γ[x,y]) ≥ η1 then lengthd̃s (̃h(γ[x,y])) ≥ η2. (3.2)

Consider any two points a1, a2 ∈ Ñ such that they are on the same flow line of γ of �̃t . It
is an easy exercise to prove the following using equation (3.2) and by Theorem 3.3:

lengthg̃(γ[a1,a2]) ≤ η1

η2
lengthd̃s (̃h(γ[̃h(a1),̃h(a2)]))+ η1

= η1

η2
d2(̃h(a1), h̃(a2))+ η1 by Theorem 3.3. (3.3)
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Finally, as h : N → Ŝ� is a homeomorphism between compact manifolds, the lifts
to the universal covers induce quasi-isometries between the universal covers. Hence,
there exists η3 > 1 and η4 > 0 such that the map h̃−1 : (S̃�, dd̃s) → (Ñ , dg̃) is an
(η3, η4)-quasi-isometry.

Applying the quasi-isometry h̃ on (3.3), we get

lengthg̃(γ[a1,a2])) ≤ η1

η2
d2(̃h(a1), h̃(a2))+ η1 ≤ η1

η2
(η3d1(a1, a2)+ η4)+ η1.

Finally, let A0 = η1η3/η2 and A1 = (η1η4/η2)+ η1. It follows that every flow line of
�̃t is an (A0, A1)-quasigeodesic.

4. Construction of generalized Franks–Williams flows
A common way to construct Anosov flows is to assemble building blocks. In general,
a building block is a compact 3-manifold with boundary equipped with a non-singular
vector field transverse to the boundary. In their article [BBY17], Bégui et al have combined
many known ‘assembling building blocks’ techniques under a broad general criteria. The
building blocks of these types of examples are called hyperbolic plugs (defined below). The
first example of a non-transitive Anosov flow, that is, the Franks–Williams flow [FW80],
is a classical example of this type of construction.

A plug is a pair (M, V ), where M is a compact 3-manifold with boundary and V is
a non-singular C1-vector field on M transverse to the boundary of M. The vector field
induces a flow, denoted by Vt , on M. If M has non-empty boundary, the flow is not
complete, that is, every orbit is defined on a closed time interval of R, but not every flow
line is defined on the whole R. We consider the maximal invariant set 
 of Vt , defined as

 := ⋂

t∈R Vt (M). In other words, 
 is the collection of all orbits which are defined for
the whole R, equivalently these orbits do not intersect ∂M. If 
 is a hyperbolic set, we
say (M, V ) is a hyperbolic plug. Here is the precise definition.

Definition 4.1. A hyperbolic plug (M, V ) is a plug whose maximal invariant set 

is hyperbolic, which means, for every x ∈ 
, TxM splits into three one-dimensional
sub-bundles

TxM = Es(x)⊕ RV (x)⊕ Eu(x).

The bundle Es(x) (respectively Eu(x)) is called the stable (respectively unstable) bundle
and there exists a Riemannian metric such that the differential of the time-one map of the
flow uniformly contracts (respectively uniformly expands) the vectors of the stable bundle
(respectively unstable bundle). The splitting varies continuously on x ∈ 
 and is invariant
under the derivative of the flow Vt .

The study of hyperbolic dynamics is an enormous area of study; here, we recall few of
the preliminary properties (as in [BBY17]) required for this article, we refer to [KH95] for
details:
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• for every x ∈ M, the strong stable manifold Wss(x) is defined as follows:

Wss(x) = {y ∈ M| d(Vt (x), Vt (y)) → 0 as t → +∞)}.
The strong unstable manifold is defined as the strong stable of the reversed flow −Vt ;

• the weak stable manifold Ws(respectively weak unstable manifold Wu) of a point
x ∈ M is defined as the union of the strong stable manifolds (respectively strong
unstable manifolds) of all points on the orbit of x;

• there exists two 2-laminations, denoted by Ws(
) and Wu(
), whose leaves are the
weak stable and weak unstable manifolds, respectively, of the points of 
. The leaves
of the laminations are C1-immersed manifolds tangent to continuous plane fields
Es ⊕ RV (x) and Eu ⊕ RV (x).

The boundary of M is partitioned into two disjoint subsets, namely the exit boundary
∂out and the entrance boundary ∂in, where Vt points outwards on ∂out and inwards on ∂in.
If ∂out = ∅, then (M, V ) is an attracting plug and similarly ∂in = ∅ implies a repelling
plug.
• If both ∂in �= ∅ and ∂out �= ∅, then 
 is a ‘saddle’. In that case, the weak stable

laminationWs(
) intersects ∂in transversally and forms a one-dimensional lamination
LsV = ∂in ∩Ws on ∂in. Similarly, the weak unstable lamination Wwu(
) intersects
∂out in a one-dimensional lamination LuV = ∂out ∩Wu.

• For an attracting plug, 
 is an attractor. In this case, the weak-stable lamination
Ws(
) intersects ∂in in a one-dimensional lamination LsV = ∂in ∩Ws .

• For a repelling plug,
 is a repeller. In this case, the weak-unstable laminationWu(
)

intersects ∂out in a one-dimensional lamination LuV = ∂out ∩Wu.

PROPOSITION 4.2. [BBY17] Consider a finite collection of hyperbolic plugs, denoted
by (M1, V1), (M2, V2), . . . , (Mn, Vn). Assume that each of these plugs is either an
attracting or a repelling plug. Let Dout = �n1∂out(Mi ) and Din = �n1∂in(Mi ). Suppose
that the laminations LsMi

, LuMj
(if they are non-empty) are filling laminations in the

respective boundary components. Suppose there exists a diffeomorphism � : Dout →
Din such that �∗(LsMi

) is transversal to LuMj
on each appropriate component. Then

the quotient vector field V1 � V2 � · · · � Vn/� is Anosov on the quotient manifold
M1 � M2 � · · · � Mn/�.

Since the plugs are either attractors or repellers, the laminations in the boundary are
actually foliations and the glued Anosov flow is non-transitive. The result above is then
[BBY17, Proposition 1.1].

In this article, we consider a special type of attracting and repelling plug, which we call
a Franks–Williams-type hyperbolic plug. This type of of construction was first introduced
by Franks and Williams in [FW80]. We construct our plugs using DA bifurcations of
hyperbolic automorphisms on a 2-torus T2. Details of the construction are described below.

4.1. Construction of the Franks–Williams-type hyperbolic plugs. Consider a hyperbolic
linear automorphism A on the 2-torus T2, which is induced by a linear map Ã : R2 → R

such that Ã has two eigenvalues λ > 1 and (1/λ) < 1. On T2, we have a pair of
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one-dimensional foliations, namely the stable Ls and unstable Lu foliations of the
hyperbolic map A as described below.
• Unstable foliation Lu : R2 has a foliation L̃u by the slope-λ lines and this foliation is

Ã-invariant. Hence, L̃u on R2 projects down to a foliation on T2 and it is the unstable
foliation Lu of A on T2.

• Stable foliation Ls : similarly, the foliation on R2 induced by the slope-1/λ lines
projects down to the stable foliation Ls of A on T2.

These two foliations are everywhere transversal to each other on T2. Hence, they define
a two-frame {X , Y } on the tangent bundle TT2, where X (p) is a vector in TpT2 tangent
to the stable direction and similarly, Y (p) is a vector tangent to the unstable direction in
TpT

2. In fact, we can define a new coordinate system {x, y} on R2.
A new coordinate system {x, y}: fix a basis {v1/λ, vλ} on R2, where the basis vectors are

eigenvectors of the two distinct eigenvalues λ and 1/λ. Then, the new coordinate system
on R2 with respect to {v1/λ, vλ} is denoted by {x, y}. In this coordinate, Ã can be written
as Ã(x, y) = ((1/λ)x, λy). We use this coordinate system extensively in the rest of the
article.

The fixed point (0, 0) of Ã on R2 projects to a fixed point of A, denoted by o, on T2.
We can change it to a point source or a point sink using the ‘Derived from Anosov(DA)’
bifurcation on a neighborhood of o. Here, we give a quick description of the technique, a
detailed description can be found in [KH95, §17.2] or in [Wil70].

Consider two closed disks D1 and D2 on T2 centered at o such that o ∈ D1 ⊂ D̊2. On
D2, we consider the local coordinate system {x, y} around o projected from the coordinates
{x, y} on R2 around (0, 0). With respect to those coordinates onD2, the fixed point o ∈ T2

is represented by (0, 0). Then we ‘blow-up’ the fixed point o using a smooth map φ as
described as follows:

φ(x, y) = (θ(x, y)x, y) on D2

φ = Id on T2 \D2.

In the above description, θ(x, y) : T2 → [1, ∞) is a smooth map such that, on T2 \D2,
we have θ(x, y) = 1 and near the point o, the map θ(x, y) is large enough to counteract the
contraction along the x-lines. Then, � = A ◦ φ is a map with a point source at o. Notice
that the coordinates (x, y) make sense in a neighborhood of o, but clearly one cannot have
global coordinates in T2. Still the equations above make sense.

Property 4.3. [Sma67, Wil70] The new map satisfies the following properties:
(1) � = A ◦ φ is homotopic to A;
(2) the maximal invariant set of � consists of a point source and a one-dimensional

hyperbolic attractor, denoted by 
;
(3) A ◦ φ preserves the stable foliation Ls of A. More precisely, the attractor of � on

T2 is an attracting hyperbolic set, denoted by 
. This induces a stable foliation in
T2 − o, denoted by Ls(
). The construction is done so that the leaves of Ls(
) are
contained in leaves of Ls . Only the stable leaf of o is split into two stable leaves of
Ls(
). All the other leaves are the same.
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12 A. Chanda and S. R. Fenley

Remark 4.4. The usual form of blow-up is to first apply the hyperbolic map A and then
the blow-up φ. It is equivalent to what we do here: the inverse �−1 = φ−1 ◦ A−1 and
the contraction under φ−1 in a neighborhood of o is stronger than the expansion of A−1.
Hence, o is an attractor for �−1 and there is a one-dimensional repeller 
 for �−1. Here,

 is the attractor for �. We do it in this form, since it is easier then to prove later on some
invariance properties of a metric in which we will be interested.

Remark 4.5. We have described above the DA bifurcation to get a point source. Similarly,
we can change the fixed point o to a sink. In that case, the maximal invariant set will
consist of a point sink and a one-dimensional repeller and the map A ◦ φ would preserve
the foliation Lu.

Next, consider the suspension manifold

M = T2 × R

(q, t) ∼ (�(q), t − 1)
for all q ∈ T2 and t ∈ R.

The universal cover of M, denoted by M̃ , is R2 × R equipped with the coordinate system
{x, y, t}, where the x-axis and y-axis are as described above and the t-axis is in the vertical
direction. The vertical lines induce a natural flow ψt on M so that its lift ψ̃t to the universal
cover M̃ is defined by ψt([q, s]) = [q, t + s], q ∈ R2. Note that we have a periodic orbit
C of ψt homeomorphic to the circle inside M through the fixed point o ∈ T2.

To construct a hyperbolic plug, we cut out an open solid torus neighborhood N(C) of
the periodic orbit C, the new manifold M1 = M \N(C) is a manifold with boundary and
we denote the boundary by T1 = ∂M1, the boundary is homeomorphic to a 2-torus. We
choose N(C) in such a way that the boundary of N(C) is a smooth torus embedded in
M and the flow lines of ψt transversally intersect the boundary of N(C). We will have a
further condition on T1 described later. Finally, we can restrict the flow ψt on M1, and the
restricted semiflow on M1 will be denoted by ψ1

t .
It is clear from the construction that (M1, ψ1

t ) is an attracting hyperbolic plug as the
flow φt is the suspension flow of a ‘DA’ map with an attractor in the maximal invariant
set. To ensure that when another plug is attached to M1 along ∂M1, the semiflows are
matched smoothly along the boundary, we attach a collar neighborhood homeomorphic
to T1 × [0, 1] along ∂M1 = T1 such that ∂M1 is glued with T1 × {0}. We call the new
manifold M1, and the boundary component of M1 is denoted by T1 = ∂M1. Now
propagateψ1

t in T1 × [0, 1] via an isotopy such that the extension of the flow on T1 × [0, 1]
is a product flow topologically. We denote the extended flow on M1 by �1

t . In the next
proposition, we sum up the description of the above construction.

PROPOSITION 4.6. The pair (M1, �1
t ) as constructed above is a hyperbolic plug where

∂M1 = ∂inM1 and its maximal invariant set in M1 is a hyperbolic attractor. In fact, we
can make the blow-up operation on finitely many periodic orbits to obtain an attracting
hyperbolic plug with a finite number of boundary components. The stable foliation of the
hyperbolic attractor inside M1 intersects each component of ∂M1 in a one-dimensional
foliation with two Reeb annuli.
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If we consider a repelling ‘DA’ map in the previous construction, we would get a
repelling hyperbolic plug where the unstable foliation of the repelling set inside M1

intersects each component of ∂M1 in a one foliation with Reeb components.

Definition 4.7. Any attracting or repelling plug with finite number of boundary compo-
nents as constructed in Proposition 4.2 is called a Franks–Williams-type hyperbolic plug
in this article.

Remark 4.8. The explicit description of the blow-up is done for the orbit which is the
suspension of the point (0, 0). Later, computations and results will be done relative to
this orbit. Note that the period of the orbit through (0, 0) is one, in particular, the orbit
intersects every T2-fiber in M only once. Given a different periodic orbit, one can choose a
sufficiently large cover to assume that the periodic orbit is of period one. As there are only
finitely many orbits which we want to blow-up, we can perform the whole calculation in
some n-cover where all the chosen periodic orbits to blow-up are of period one. Working
in a finite cover does not affect the proof of the main result because the blow-up maps act
locally and at the end, we have to observe it in the universal cover. Hence, the arguments in
this article work for any collection of blow-ups as described above. The reason we can find
a finite cover that works for all orbits is because the resulting manifold fibers over the circle:
we remove finitely many tori neighborhoods of periodic orbits, so the resulting manifold
with boundary fibers over the circle. Each of the individual gluings preserves the curve
that bounds a fiber on each side; therefore, the resulting manifold fibers over the circle. In
the resulting manifold, one can then take a finite cover, so that in the corresponding finite
covers in each of the pieces, the fibers cut each of the the associated finitely periodic orbits
only once. Notice that the resulting manifold fibers over the circle (as is the case of the
Franks and Williams example), but the flow we construct is definitely not a suspension. It
is easy to see it is not a suspension because we glue with a time reversal: in the simplest
example of Franks and Williams, there are two manifolds, in one of them, the flow is
essentially ‘going up’, and in the other one, it is essentially ‘going down’, which implies
the flow is not a suspension. In general, the flow is said to be ‘going up’ in the attractors
and ‘going down’ in the repellers.

4.2. Construction of the example manifolds and the flows on them. We consider a finite
collection of Franks–Williams-type plugs, say

{(M1, �1
t ); (M2, �2

t ); · · · ; (Mn, �nt )}

along with a diffeomorphism � from the collection of exit boundaries Dout = �n1∂out
i

to the collection of entrance boundaries Din = �n1∂ini . In this notation, for any plug
(Mi , �it ), either ∂out

i or ∂ini is empty, and the other one is non-empty. If ∂ini is non-empty,
then it may have more than one component, each homeomorphic to a 2-torus, and the
weak-stable foliation Lws(
i) of the semiflow �it intersects each component of ∂ini in a
union of two Reeb annuli. Similarly, if ∂out

i �= ∅, each component of ∂out
i intersects the

weak-unstable foliation Lwu(
i) in a one-dimensional foliation with two Reeb annuli.
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Using the diffeomorphism �, we can construct the manifold

N = M1 � M2 � · · · � Mn

�(q) ∼ q

and the semiflows {�1
t , �2

t , . . . , �nt } match to produce a flow �t on M. If we consider
a diffeomorphism � : Dout → Din that transversally maps the one-foliation on each
component of ∂out

i to the one-foliation on the respective component of Din, then by
Proposition 4.2, the flow �t on N is Anosov.

Definition 4.9. An Anosov flow constructed in the way described above from
Franks–Williams-type plugs will be called generalized Franks–Williams (GFW) flow
in this article.

The original construction by Franks and Williams was to construct a hyperbolic plug
(M1, �1

t ) from a DA map and with one exit boundary component, and attach it with
(M1, �1−t ) (that is, the same manifold equipped with the reversed flow) along the
boundaries with a π/2-rotation.

5. Riemannian metric on the plugs and the whole manifold
To analyze quasigeodesic behavior of the flow lines, we will first define a suitable
Riemannian metric on our manifold. As N is a compact manifold, for any two Riemannian
metrics g̃1 and g̃2 on the universal cover Ñ (which project down on N ), the identity map on
Ñ is a quasi-isometry with respect to the induced path metrics. As quasigeodesic behavior
is a property that is invariant under quasi-isometries, it is enough to work with one fixed
metric.

We construct a Riemannian metric Gi on the hyperbolic plugs Mi for each i, and then
attach them along the boundary components of the Mi using the map � to construct the
metric G on the whole manifold M. We describe the details of the construction of the
Riemannian metric G1 on M1 and the same process works for all other plugs Mi .

5.1. Construction of a Riemannian metric G1 on M1. Consider the attracting DA map
� : T2 → T2 and the manifold M = T2 × [0, 1]/ ∼ as described in the previous section.
The universal cover of M, M̃ = R2 × R, is equipped with the coordinate system {x, y, t}.
The lift of the flow ψt to the universal cover M̃ = R2 × R will be henceforth denoted
by ψ̂t (we explain thênotation later). We can also define a three-frame {X , Y , T } on
the tangent bundle T (R2 × R), where the vector fields X , Y , and T are parallel to the
x-direction, y-direction, and t-direction, respectively. In addition, we define the vector field
T as T = (d/dt)ψ̂t .

Remark 5.1. The y-direction on R2 is parallel to the strong unstable foliation of Ã on R2,
but the blow-up does not preserve the unstable direction. Hence, the y-direction does not
represent the unstable leaves of the attractor of the DA-map Ã ◦ φ̃, though the x-direction
is parallel to the stable leaves of the attractor.

We first construct a metric on M and then restrict it toM1 = M \N(C). Our convention
is that M1 is the complement of the interior of N(C) in M, so M1 is compact and with
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boundary. We will use an intermediate cover ofM1 which will be denoted by M̂1. Consider
the repelling periodic orbit C of ψt in M and N(C) a solid torus neighborhood of C as
described in §3.1. Let N̂(C) be the collection of lifts ofN(C) in M̃ = R2 × R. Then define
M̂1 = (R2 × R) \ N̂(C), again the convention is that we are removing the interior of the
sets. In other words, M̂1 is the pullback ofM1 under the cover M̃ → M . This is an infinite
cover of M1 = M \N(C), but it is not the universal cover of M1. Later in this article, we
do much of the analysis in M1 and M̂1 instead of M̃ . For this reason, we will denote the
metrics using the hat notation.

If Ĝ1 is a Riemannian metric on M̃ which projects down to M, then the deck
transformations on M̃ = R2 × R have to be isometries with respect to Ĝ1. The deck
transformation group on M̃ is generated by the following diffeomorphisms:
(1) � : R2 × R → R2 × R,

�(x, y, t) = (�̃(x, y), t − 1),

where �̃(x, y) is the lift of the map � = A ◦ φ from T2 to R2 so that �̃(0, 0) =
(0, 0);

(2) translations by one unit in two horizontal directions with respect to the Euclidean
coordinate system on R2 × R, that is:
(a) E1(e1, e2, t) = (e1 + 1, e2, t);
(b) E2(e1, e2, t) = (e1, e2 + 1, t),
where e1 and e2 are given with respect to the Euclidean co-ordinates on R2 × R.

It is enough to construct the metric Ĝ1 on R2 × [0, 1] such that the maps

� : R2 × {1} → R2 × {0}, �(x, y, 1) = (�̃(x, y), 0) = (Ã ◦ φ̃(x, y), 0)

and the translations E1 and E2 restricted on R2 × [0, 1] are isometries. Notice that the first
map is between two-dimensional sets, and the other two are between three-dimensional
sets.

As before, we consider the coordinate system {x, y, t} on R2 × [0, 1]. The idea to define
the metric on R2 × [0, 1] is as follows. We will pick a suitable metric g0 on the level t = 0
and consider a family hs of maps, smoothly varying with s ∈ [0, 1], where h0 = Id and
h1 = �̃. Then we will pull-back the metric g0 from the level {t = 0} to the level {t = s}
via the map hs .

First, we define a family of maps on R2. Consider the neighborhood D2 with the
local co-ordinate system {x, y} as defined in the description of the DA map in the
previous section. Let θ̃ be the lift to R2 of θ : T2 → R. Now define the family of maps
η̃s : R2 → R2 for s ∈ [0, 1] as follows. First define

Bs(x, y) = (λ−sx, λsy).

Notice that B1 = Ã. Also define

νs(x, y) = ((θ(x, y))sx, y) on D2

= (x, y) on T2 \D2.
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Again notice that ν1 = φ. Let ν̃s : R2 → R2 be the lift of νs so that ν̃s (0, 0) = (0, 0). Then
define

η̃s(x, y) = Bs ◦ ν̃s (x, y).

Now we are ready to define the family of maps hs : R2 × {s} → R2 × {0}:

hs(x, y, s) = (η̃s(x, y), 0) for s ∈ [0, 1].

In general, it is not easy to find the exact formula of the lifts η̃s , except near the point
(0, 0), where it is easy to get an explicit formula.

For each s, the map hs takes the level R2 × {s} to R2 × {0}. We start with the metric
g2

0 = dx2 + dy2 on the level R2 × {0} where dx (respectively dy) measures the length
along x-directions (respectively y-directions).

Using the family hs , 0 ≤ s ≤ 1, we can pull-back the metric g2
0 = dx2 + dy2 from

R2 × {0} to each level R2 × {s}. Hence, on R2 × {t}, we define the pull-back metric
gt = (ht )

∗(g0), where t ∈ [0, 1].
With the induced differentiable structure in R × [0, 1] from inclusion in R2 × R, it

is easy to see that the the metrics on R × {t} vary smoothly with t ∈ [0, 1] because of
the smoothness of family hs , 0 ≤ s ≤ 1. We now define a metric not only on horizontal
vectors, but on all vectors. At the point q = (q1, t) ∈ R2 × [0, 1], the metric is defined as
follows:

Ĝ1(X , Y ) = gt (X , Y ) on the level R2 × {t} for t ∈ [0, 1];

Ĝ1(T , aX + bY ) = 0 for all a, b ∈ R;

Ĝ1(T , T ) = 1. (5.4)

Observation 5.2. Then metric Ĝ1 on R2 × [0, 1] as defined above in §5.1 is invariant
under the maps �, E1, and E2 as follows:
(1) clearly the map � : R2 × {1} → R2 × {0} defined by �(x, y, 1) = (Ã ◦ φ̃(x, y), 0)

is an isometry as

Ĝ1|R2×{1} = (Ã ◦ φ̃)∗(Ĝ1|R2×{0});

(2) on the level R2 × {0}, the metric g2
0 = dx2 + dy2 is invariant under the translations.

On each level R2 × {t}, the metric (ht )∗(g0) can be written as

(Bt ◦ ν̃t )∗(g0) = (ν̃t )
∗((Bt )∗(g0)).

Notice first that Bt does not leave invariant the integer lattice. However, (Bt )∗ leaves
invariant the metric—-it is the Solv metric in this setting. It is clear that ν̃t leaves
invariant the metric under integer translations, since it came from a map in T2. The
B∗
t invariance of g0 was the reason for choosing � = A ◦ φ, rather than φ ◦ A.
It follows that the translations E1 and E2 are isometries with respect to the

pull-back metrics on each level R2 × {t}.
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Definition 5.3. The description of the metric Ĝ1 on R2 × [0, 1] as in §5.1 together with
Observation 5.2 defines a metric on M. We denote this metric on M by G1.

Restrict the metric G1 on M1 = M \N(C).
Before describing the metric on the whole manifold N , we prove the following lemma,

whose proof is simple but crucial, derived from the above defined Riemannian metric on
(M1, G1).

Remark 5.4. We start with the flow ψ1 in M1 or M. In the following proof and in the
other situations in this article, we analyze flow lines in the lift M̂1. This is contained in the
universal cover M̃ . Some arguments are done in M̃ . For simplicity of notation, we denote
the lift of ψt to M̂1 and the lift of ψt to M̃ by the same notation ψ̂t .

LEMMA 5.5. If γ is a flow line or flow ray of ψt contained in M1, then the lift of γ in the
universal cover M̃1 is a globally length minimizing geodesic.

Proof. Consider the universal cover M̃ = R2 × R with the metric Ĝ1 and the subset M̂1

contained in it. It is enough to prove that the flow lines or flow rays in M̂1 are length
minimizing in M̂1 with respect to Ĝ1. This is because any rectifiable curve γ in M̃1 joining
two points in a flow line or flow ray in M̃1 projects to a curve in M̂1 joining two points in
a flow line or flow ray.

What we prove is that the flow lines in M̃ are globally length minimizing. This implies
that that the flow lines or flow rays contained in M̂1 are length minimizing in M̂1. Notice
also that we denote the flows in M̃ or M̂1 by ψ̂t , see previous remark.

We note that the flow lines of the suspension flow ψ̂t in M̃ = R2 × R are the
vertical lines {∗} × R in R2 × R. These lines are the integral curves of the vector field
T = (d/dt)ψ̂t in R2 × R. As the vectors in the t-directions are orthogonal to the vectors
in the span of {X , Y } (that is, in the horizontal levels R2 × {t}), the integral curves of
the vector field T = (d/dt)ψ̂t are globally length minimizing. More precisely, consider a
vertical line {a} × R and take two points p1 and p2 on it. Suppose σ is a curve connecting
p1 and p2, then

length(σ ) =
∫

domain(σ )

∥∥∥∥ ddt γ (t)
∥∥∥∥ dt

=
∫

domain(σ )

(∥∥∥∥ ddt γ (t)|T (γ (t))

∥∥∥∥2

+
∥∥∥∥ ddt γ (t)|X ,Y (γ (t))

∥∥∥∥2)1/2

dt

≥
∫

domain(σ )

∥∥∥∥ ddt γ (t)|T (γ (t))

∥∥∥∥ dt ,
where (d/dt)γ (t)|T (γ (t)) and (d/dt)γ (t)|X ,Y (γ (t)) denote the components of γ ′(t) =
(d/dt)γ (t) along the t-direction and in the span of {X , Y }, respectively. Hence, it is
clear that the integral curves of the vector field T = (d/dt)ψ̂t , that is, the flow lines of ψ̂t
in R2 × R, are globally length minimizing geodesic in M̂ = R2 × R with respect to the
metric Ĝ1.

As the flow lines of ψ̂t in M̃ are length minimizing geodesic, so is the flow lines or
flow rays of the restricted flow ψ̂t |M̂1

on M̂1 inside M̃.
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Note that M̂1 is not the universal cover of M1, but an infinite subcover of M1. As the
flow rays are globally length minimizing geodesic in a subcover, the same has to be true in
the universal cover M̃1. This completes the proof.

We end this subsection with a crucial remark which will be used later.

Remark 5.6. The construction of our metric G1 is motivated by the Solv metric
dS2 = λ−2s dx2 + λ2s dy2 + ds2 on R2 × R. We observe that there is another way to
see the metric Ĝ1 on M1, we can find a map H such that the family of map hs can be
written as hs = Bs ◦ H, where Bs(x, y, s) = (λ−sx, λsy, 0). To see that such an H exists,
it is enough to determine the map near the t-axis and it is easy to check that the map
H(x, y, s) = ((θ̃ (x, y))sx, y, s) near {(0, 0, t)|t ∈ R} serves the purpose. We can extend
it to all of M̃ using the definition of θ in T2. Hence, the pull-back metric on the level
R2 × {s} is the same with H∗(B∗

s (g0)).
If we consider the family of pull-back metrics B

∗
s (g0) where g2

0 = dx2 + dy2 on the
level R2 × {0}, it is easy to check that we get the Solv metric dS on M̃ = R2 × R,

dS2 = λ−2s dx2 + λ2s dy2 + dt2 for s ∈ [0, 1].

Hence, the metric we defined, Ĝ1 = H∗(dS), is a bounded perturbation of the Solv metric
on each level R2 × {s}.

5.2. Defining the metric on the whole manifold. As before, we consider a collection of
attracting and repelling Franks–Williams-type hyperbolic plugs

{(M1, �1
t ); (M2, �2

t ); (M3, �3
t ); · · · ; (Mn, �nt }.

By our construction, we have a metric Gi on Mi ⊂ Mi for each i. The (possibly
disconnected) surface ∂M1 is smooth in the metric in M and hence inherits a Riemannian
metric. Now, we smoothly extend the metrics Gi on the union collar neighborhoods⋃
i ∂Mi × [0, 1] to get a Riemannian metric G̃ on the whole manifold Ñ , in particular,

G̃|Mi
= Gi for all i. Note that there are only finitely many collar neighborhoods in⋃

i ∂Mi × [0, 1]. Any flowline which enters in a collar neighborhood exits it after a finite
time. Hence, the length of any flow segment contained in a collar neighborhood is bounded
above by a global upper bound. For this reason, the choices of metrics on the collar
neighborhoods do not affect the quasigeodesic behavior.

Remark 5.7. The manifolds Mi have boundary which is π1-injective in N for any i,
because each boundary component of each Mi is π1-injective in Mi . It follows that any
lift of Mi to the universal cover Ñ is itself a universal cover of Mi . So we can think of
these lifts as copies M̃i of the universal cover of Mi which are contained in Ñ .

The restriction of G̃ to a lift M̃i of a single hyperbolic plug is denoted by G̃i , and the
path metric induced by G̃i on M̃i is denoted by dG̃i .
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Notation:
• for any Mi , G|Mi

= Gi ;
• for any two points p1 and p2 in M̃i ,

dG̃i (p, q) = minimum{lengthG̃i (σ )|σ is a curve contained in M̃i connecting p1, p2}.

We finish this section showing that the flow lines or flow rays contained in the lift M̃i

of a single hyperbolic plug in the universal cover Ñ is a quasigeodesic with respect to the
restricted metric dG̃i .

LEMMA 5.8. There is an ε ≥ 1 and ε′ ≥ 0 such that if γ is a flow ray or flow line fully
contained in some M̃i , and p1, p2 are two points on γ ⊂ M̃i , then

lengthG̃i (γ[p1,p2]) ≤ εdG̃i (p1, p2)+ ε′.

Proof. Without loss of generality, we prove the lemma in M̃1. As both M1 and M1 are
compact and the metricG1 is the restriction of the metric G1 onM1, it is easy to check that
(M̃1, dG̃1

) is quasi-isometric to (M̃1, dG̃1
). Hence, there exists ε1 ≥ 1 and ε2 ≥ 0 such that

for any p1, p2 ∈ M̃1,

lengthG̃1
(γ[p1,p2]) = lengthG̃1

(γ[p1,p2]) as G̃1 = G̃1|M̃1

= dG̃1
(γ[p1,p2]) by Lemma 5.5

≤ ε1dG̃1
(p1, p2)+ ε2 as (M̃1, dG̃1

) is quasi-isometric to(M̃1, dG̃1
).

Now, we assume that p2 ∈ M̃1 \ M̃1 and p1 ∈ M̃1.
Here, M̃1 can be written as M̃1 ∪ (∂M̃1 × [0, 1]). By the compactness of ∂M1 × [0, 1],

we can consider ε3 > 0 such that for any flow ray γ ,

lengthG̃1
(γ ∩ (∂M̃1 × [0, 1])) ≤ ε3.

Now consider the flow segment γ[p1,p2], as p2 ∈ M̃1 \ M̃1, the flow segment must
intersect ∂M̃1 at a single point, say p3. Then,

lengthG̃1
(γ[p1,p2]) = lengthG̃1

(γ[p1,p3])+ lengthG̃1
(γ[p3,p2])

≤ ε1dG̃1
(γ[p1,p3])+ ε2 + lengthG̃1

(γ[p3,p2]) as p1, p3 ∈ M̃1

≤ ε1dG̃1
(p1, p3)+ ε2 + ε3

≤ ε1(dG̃1
(p1, p2)+ dG̃1

(p2, p3))+ ε2 + ε3

≤ ε1(dG̃1
(p1, p2)+ ε3)+ ε2 + ε3 as p2, p3 ∈ ∂M̃1 × [0, 1]

≤ ε1dG̃1
(p1, p2)+ ε1ε3 + ε2 + ε3.

We redefine ε1 and ε1ε3 + ε2 + ε3 as ε and ε′.
As there are only finitely many plugs, we can choose ε and ε′ big enough such that it

works for all ∂M̃i × [0, 1] and the result follows.
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6. Analysis of the flowlines
In this section, we show that every flow line of the flow �̃t on Ñ is quasigeodesic with
respect to the path metric induced by Riemannian metric G̃ as constructed in the previous
section. As before, N is made of the collection of hyperbolic plugs

{(M1, �1
t , G1); (M2, �2

t , G2); (M3, �3
t , G3); · · · ; (Mn, �nt , Gn)}.

First, we consider a single hyperbolic plug, say (M1, �1
t , G1), and analyze the properties

of the flow lines of the semi-flow �1
t .

6.1. Flowlines in the plug (M1, G1, �1
t ). Recall that M1 is made from M =

(T2 × R)/(q, t) ∼ (�(q), t − 1) as in §4.1, where � = A ◦ φ is a repelling DA map.
The universal cover M̃ can be considered as R2 × R equipped with the coordinate system
{x, y, t}, where x-directions and y-directions are parallel to the strong stable and the strong
unstable directions of the hyperbolic map Ã on R2 and t-directions are along the flow lines
of the suspension flow ψ̂1

t .
Consider the repelling periodic orbit C of ψt in M and N(C) is an open solid torus

neighborhood of C as described in §3.1. Let N̂(C) be the collection of lifts of N(C) in
R2 × R, then M̂1 = (R2 × R) \ N̂(C) is an infinite cover of M1 = M \N(C), but not the
universal cover.

Here, M1 is equipped with the Riemannian metric G1 as constructed in the previous
section, similarly, we denote the lifted metric on M̂1 by Ĝ1.

Additionally, M̂1 is a manifold with boundary, where ∂M̂1 is the lift of ∂M1 = T1.
Furthermore, ∂M̂1 is a collection of disjoint infinite cylinders in R2 × R which are
transverse to the flow lines. Suppose ∂M̂1 = ⋃

i∈N T̂i , where T̂i are the infinite cylindrical
boundary components of ∂M̂1.

There are exactly two types of flow lines of the lifted semiflow ψ̂1
t |M̂1

in M̂1; if γ is a
flow line in M̂1, then:
(1) either γ is contained in Â, the lift of the attractor A ⊂ M1;
(2) or γ intersects a lift of ∂M1 = T1. Moreover, γ intersects exactly one such lift of T1.

Remark 6.1. In the rest of this section, we will mostly deal withM1 and M1. For simplicity
of notation, we denote the restricted flows ψ1

t and �1
t by ψt and �t , respectively.

In this subsection, we show that almost all flow rays which intersect the boundary ∂M̂1

‘go away’ from the boundary component it intersects in an efficient manner as time t goes
to positive infinity. In the next subsection, we extend the result in the universal cover M̃1.
To state the precise statement, we first need to fix some notation.

Consider the repelling fixed point o of the DA map � = A ◦ φ on T2. There are also
two hyperbolic fixed points, denoted by p1 and p2, on the attractor in T2, as shown in
Figure 1(a). In the suspension manifoldM = T2 × [0, 1]/ ∼, there are two periodic orbits,
Cp1 and Cp2 , coming from p1 and p2, and these two orbits are contained in the attractor
A of ψ1

t . Now we consider the repelling orbit C and the open solid torus neighborhood
N(C) around it, as described in §3.1. The weak stable leaves of Cp1 and Cp2 intersect
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(a) (b)

FIGURE 1. (a) Two-dimensional image of the blow up of a hyperbolic point, here ‘O’ denotes the origin. (b)
Three-dimensional image of the blow-up of a hyperbolic orbit.

the boundary torus T1 = ∂N(C) = ∂M1 in two circles, denoted by C1 and C2, as shown in
Figure 1(b).

Definition 6.2. Take a point q ∈ M̂1 such that the flow line γq through q intersects ∂M̂1 at
exactly one point. The boundary component is denoted by T̂q .

Then, let:
• DĜ1

(q, T̂q) (respectively DS(q, T̂q)) denote the distance between q and T̂q with
respect to the path metric induced by Ĝ1 (respectively the Solv metric dS) on M̂1;

• �Ĝ1
(q) (respectively �S(q)) is the length of the flow line segment connecting q and T̂q

with respect to Ĝ1 (respectively dS).

Next, we fix a small number δ > 0 and consider the open δ-neighborhood Nδ(C1 ∪ C2)

on T1 and let Nδ(Ĉ1 ∪ Ĉ2) denote the lift of Nδ(C1 ∪ C2) in M̂1. Notice that Ĉ1 ∪ Ĉ2 is a
countable, infinite collection of properly embedded lines in M̂1. The following is a key
technical result used in this article.

PROPOSITION 6.3. There exists C > 1 and c > 0 satisfying the following. Let q ∈ M̂1

such that the flow ray through q intersects ∂M̂1, say at the boundary component T̂q . If γq
intersects T̂q on the region T̂q \Nδ(Ĉ1 ∪ Ĉ2), then

�Ĝ1
(q) ≤ CDĜ1

(q, T̂q)+ c.

Proof. We will prove the lemma in the manifold M̃ = R2 × R using the coordinate system
{x, y, t} on it. This is enough, because we have M̂1 ⊂ M̃ = R2 × R and the distance
between two points in M̂1 with respect to the metric dĜ1

is bigger than the distance in
R2 × R with respect to dĜ. In addition, the length of a flow segment is the same in both M̂1

and M̃ = R2 × R, as the Riemannian metric in M̂1 is the one induced from the inclusion
M̂1 ⊂ M̃ = R2 × R.
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It is enough to prove the result for one component of the boundary ∂M̂1 as we can
permute the boundary components using the translation isometries. In addition, up to
changing the coordinates (x, y), we can assume the orbit passes through (0, 0, 0). In other
words, we fix the lift of the repelling orbit C passing through (0, 0, 0) ∈ R2 × R, that is,
the line {(0, 0, t)|t ∈ R} and the lift of the ∂M1 = T1 around this line, which we denote
by T̂0.

We will first prove the result for the points q on the yt-plane {x = 0}. The reason behind
it is that the Riemannian metric on the yt-plane is almost λ2t dy2 + dt2. We make this
more precise in the following remark.

Remark 6.4.
(1) Note that the map φ̃ : R2 → R2 perturbs the y-directions only near the lifts in R2

of the repelling fixed point o, and outside of those neighborhoods, the map φ̃ is the
identity map. Hence, it is also true that that map H distorts the yt-plane boundedly in
R2 × R. By Remark 5.6, we know that Ĝ1 = H∗(dS), where dS is the Solv metric.
In particular, the Solv metric restricted on the yt-plane is λ2t dy2 + dt2, and the
x-directions are everywhere perpendicular to the yt-plane. Hence, we can assume
that the Riemannian metric on the yt-plane induced by Ĝ1 is boundedly distorted
from and very close to the Solv metric. In other words, we can find two constants
a0 > 1 and a1 > 0 such that if σ is a curve on the yt-plane, then

1
a0

lengthĜ1
(σ )− a1 ≤ lengthS(σ ) ≤ a0 lengthĜ1

(σ )+ a1,

where lengthS(σ ) and lengthĜ1
(σ ) mean the length of σ with respect to the Solv

metric dS and Ĝ1, respectively.
(2) Note that the yt-plane is the unstable leaf through (0, 0, 0) for the suspension

of the linear Anosov map Ã. Notice that the yt-plane is not invariant under the
map Ã ◦ φ̃.

Now we can state the precise result we want to prove on the yt-plane.

LEMMA 6.5. There exists K > 1 and k > 0 such that for any q in the intersection of the
yt-plane with M̂1 for which the flow line γq intersects T̂0, we have

�Ĝ1
(q) ≤ KDĜ1

(q, T̂0)+ k.

Proof. Consider a point q on the yt-plane such that the flow ray γq passing through q
intersects T̂0.

As the manifolds are complete, every distance can be realized by a curve. Suppose
σ : [0, 1] → M̃ denotes a shortest path connecting q and T̂0 in M̂1.

CLAIM 6.6. Any shortest path σ between q and T̂0 lies on the yt-plane.

Proof. Suppose σ is parameterized as σ(t) = (σ1(t), σ2(t), σ3(t)) in R2 × R. Consider
the projection of σ on the yt-plane, �(σ(t)) = (0, σ2(t), σ3(t)). Suppose �(σ(a)) is the
first intersection point of �(σ) and T̂0. We show that

https://doi.org/10.1017/etds.2024.89 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.89


New classes of quasigeodesic Anosov flows in 3-manifolds 23

length(�(σ))|[0,a] ≤ length(σ )

and the claim follows from that.
In Remark 5.6, we have seen that the metric Ĝ1 can be expressed as the

pull-back of the Solv metric dS by the map H, that is, Ĝ1 = H∗(dS), where
dS = λ−2s dx2 + λ2s dy2 + dt2.

Consider the map H : R2 × R → R2 × R as in Remark 5.6. As Ĝ1 = H∗(dS), for any
curve ζ ,

length(ζ ) with respect to the metric Ĝ1 = length(H(ζ )) with respect to the metric dS.

As the directions x, y, and t are orthogonal to each other with respect to the Solv metric
dS, it is easy to check that for any curve ζ in R2 × R and its projection �(ζ) on yt-plane,
we have

length(�(δ)) ≤ length(σ ) with respect to the metric dS.

Moreover, the projection map � commutes with H because H does not change the
y-coordinate of a point and � is the projection on the yt-plane. This can also be easily
verified by the formulas.

Hence, we conclude

length(�(H(σ ))) ≤ length(H(σ )) with respect to the metric dS

�⇒ length(H(�(σ))) ≤ length(H(σ )) with respect to the metric dS

�⇒ length(�(σ))) ≤ length(σ ) with respect to the metric Ĝ1.

This completes the claim.

In the rest of the proof of Lemma 6.5, we will use the Solv metric on the yt-plane, that
is, the metric λ2t dy2 + dt2 for simplicity of calculations. In Remark 5.2, we have seen
that the Solv metric on the yt-plane is quasi-isometric to the metric induced by Ĝ1.

Consider the point q = (0, c, 0) with c > 0 on the T̂0 ∩ yt-plane and the forward flow
ray γq = ψ̃1

[0,∞)(p), as shown in Figure 2, γq = {(0, c, t)|t ∈ [0, ∞)}.
We prove the lemma for the flow ray γq first. Later, we explain how to derive the result

for all other flow lines in the yt plane intersecting T̂0 from this particular result on γq .
Proof for the flow line γq : suppose q ′ = (0, c, t ′) is a point on γq and let σq ′ be a length

minimizing curve on the yt-plane joining q ′ and T̂0. We define three functions as follows.
(1) Let �t(σq ′) denote the projection of σq ′ on the vertical line γq = {(0, c, t)|t ∈ R}

along y-directions—same as horizontal directions (notice that σq ′ is contained in the
yt plane).

(2) Suppose t̄ ′ is the lowest t-value attained by the curve σq ′ as shown in Figure 2(a).
Then we denote the projection of σq ′ on the line t = t̄ ′ along t-directions—same as
vertical directions—by �y(σq ′).

(3) For a point (0, c, t ′′) on γq ′ , suppose the line t = t ′′ intersects T̂0 in the positive
side of y-direction at (0, c′, t ′′) as shown in Figure 2(b). Then we define Rq(t ′′) =
|c − c′|. Note that, with respect to the Solv metric dS, the length of the segment
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(a) (b)

FIGURE 2. (a) A minimal path in the yt-plane from q ′ to the lift of the boundary torus and (b) several geometric
quantities that are used in the analysis. In particular,Rq(t

′
)λt

′
is the length in the solvable metric of the horizontal

segment depicted at height t ′.

on the line t = t ′′ connecting (0, c, t ′′) and (0, c′, t ′′) is λt
′′ |c − c′| or Rq(t ′′)λt

′′
.

Clearly, Rq is an increasing function of t on [0, ∞).
Now we are ready to state two lower estimates of DS(q ′, T̂0).

CLAIM 6.7. Suppose t̄ ′ is the lowest t-value in the projection �t(σq ′) as shown in
Figure 2(a). Then:
(1) t ′ − t̄ ′ ≤ DS(q ′, T̂0);
(2) in addition, Rq(t̄ ′)λt̄

′ ≤ DS(q ′, T̂0).

Proof. As the t-directions and y-directions are everywhere orthogonal with respect to
the metric λ2t dy2 + dt2, it is easy to check that lengthS(�t (σq ′)) ≤ lengthS(σq ′) and,
in addition, we have lengthS(�y(σq ′)) ≤ lengthS(σq ′) = DS(q ′, T̂0).
(1) As the curve �t(σq ′) connects the points q ′ = (0, c, t ′) and (0, c, t̄ ′), it is clear that

|t ′ − t̄ ′| ≤ lengthS(�t (σq ′)) ≤ DS(q ′, T̂0).
Note that t̄ ′ cannot be a negative number, because if t̄ ′ < 0, then

t ′ − t̄ ′ > t ′ = �S(q
′) ≥ DS(q ′, T̂0),

which cannot be true as we have just proved t ′ − t̄ ′ ≤ DS(q ′, T̂0).
(2) As t̄ ′ ≥ 0, we observe that the line segment {(0, y, t̄ ′)|y ∈ [c − Rq(t̄ ′), c]} is con-

tained in the curve �y(σq ′) as shown in Figure 2(b). Hence,

Rq(t̄ ′)λt̄
′ ≤ lengthS(�t (σq ′)) ≤ lengthS(σq ′) = DS(q ′, T̂0).

This proves the claim.

Consider the function Pq(t) = Rq(t/2)λt/2/t on t ∈ (0, ∞).
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As the function Rq(t/2) is increasing and λt/2/t is strictly increasing for large t values,
we can fix a value k′ > 0 such that Pq(t) > 1 when t > k′.

For the point q ′ = (0, c, t ′), if t ′ > k′, then Rq(t ′/2)λt
′/2 > t ′. However, t ′ = �S(q

′) ≥
DS(q ′, T̂0). Combining these two inequalities, we get

DS(q ′, T̂0) ≤ �S(q
′) = t ′ < Rq(t

′/2)λt ′/2. (6.5)

Hence, by Claim 6.7(2), t ′/2 cannot be smaller than the lowest t-value attained by the
curve �t(σq ′), that is, t ′/2 > t̄ ′. Otherwise, we get

Rq(t
′/2)λt ′/2 ≤ Rq(t̄ ′)λt̄

′ ≤ DS(q ′, T̂0),

which contradicts equation (6.5).
Finally, as t ′/2 > t̄ ′, applying Claim 6.7(1), we deduce

t ′ − t ′/2 ≤ t ′ − t̄ ′ ≤ DS(q ′, T̂0)

�⇒ t ′/2 ≤ DS(q ′, T̂0)

�⇒ t ′ ≤ 2DS(q ′, T̂0)

�⇒ �S(q
′) ≤ 2DS(q ′, T̂0) when q ′ = (0, c, t ′) and t ′ > k′. (6.6)

If t ′ ≤ k′, then for a point q ′ = (0, c, t ′), we get

�S(q
′) ≤ k′ ≤ k′ + 2DS(q ′, T̂0). (6.7)

Combining equations (6.6) and (6.7), we conclude

�S(q
′) ≤ 2DS(q ′, T̂0)+ k′ for all q ′ ∈ γq = {(0, c, t)|t ∈ [0, ∞)}. (6.8)

Finally, by using Remark 6.4, we can deduce DS(q ′, T̂0) ≤ a0DĜ(q ′, T̂0)+ a1 and
replacing it in the previous equation,

�S(q
′) ≤ 2DS(q ′, T̂0)+ k′

≤ 2a0DĜ1
(q ′, T̂0)+ 2a1 + k′ for all q ′ ∈ γq = {(0, c, t)|t ∈ [0, ∞)}.

By renaming 2a0 = K and 2a1 + k′ = k, and replacing �S(q ′) = �Ĝ1
(q ′),

�Ĝ1
(q ′) ≤ KDĜ1

(q ′, T̂0)+ k for all q ′ ∈ γq = {(0, c, t)|t ∈ [0, ∞)}.
This completes the proof of Lemma 6.5 only on the flow ray γq , where q = (0, c, 0).

To deal with the other flow rays in the yt-plane, we do the following: consider a family of
maps

μa : M̃ → M̃ , μa(x, y, t) = (λax, λ−ay, t + a),

where a is an arbitrary real number. It is easy to see that any μa is an isometry of the Solv
metric dS. In addition, we choose the original torus T0 transverse to the flow so that μa
leaves invariant the fixed lift T̂0 of T0 to M̃ for any a ∈ R. Notice that μa also fixes the yt
plane. In the yt plane, μa sends flow lines to flow lines. If p = μa(q), then p is also in T̂0.
Now for any p′ in the forward flow line of p, one obtains equation (6.8) for p′ as well, since
μa is an isometry of the Solv metric. This obtains all flow lines in the yt-plane, except for
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(a) (b)

FIGURE 3. (a) Foliation F̂ in a lift of a torus; (b) leaf of F̂ through q intersects D1 at q̄. The shaded region
represents the ‘bad region’.

the flow line through (0, 0, 0), but this one does not intersect T̂0. Now use Remark 6.4 to
finish the proof of Lemma 6.5.

Now we are ready to prove Proposition 6.3.

Proof of Proposition 6.3. The maximal invariant set of the semiflow ψ1
t is a hyperbolic

set A in M1, which is a two-dimensional attractor. Consider the weak-stable foliation Lws
of A associated with the semiflow ψ1

t inM1. Every point inM1 is in Lws , as every point in
M1 is attracted to A. The foliation Lws intersects the boundary ∂M1 in a one-dimensional
foliation which has two Reeb components [FW80]; we denote this foliation on ∂M1 by
F . As described before, the circular leaves of F are denoted by C1 and C2. They are the
common boundary circles of the Reeb annuli of F .

Suppose F̂ is the lift of F on T̂0. The intersection of the yt-plane and T̂0 has two
components, say D1 and D2, as shown in Figure 3. Here, Ĉ1 and Ĉ2 are on two different
sides of the yt-plane. As any leaf L of F̂ (except Ĉ1 and Ĉ2) is asymptotic to both Ĉ1 and Ĉ2,
it must intersect the yt-plane in a single point either onD1 or onD2, as shown in Figure 3.

Consider q ∈ T̂0 \ {Ĉ1, Ĉ2} and the leaf Lq of F̂ passing through q. As described above,
Lq intersects either D1 or D2 at a single point, without loss of generality we assume that
Lq intersects D1 and let q̄ = D1 ∩ Lq , as shown in Figure 3. Note that q and q̄ lie on the
same leaf of the weak stable foliation of Â, and hence there exists s ∈ R such that ψ̂1

s (q)

and q̄ lie on the same strong stable leaf of ψ̂1
t . It follows that

dĜ1
(ψ̂1

t+s(q), ψ̂1
t (q̄)) → 0 as t → ∞.
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Let s1 = dĜ1
(q, q̄). Fix δ1 > 0, δ1 << 1, δ1 < s1. By the above limit, we can find

s2 > 0 such that dĜ1
(ψ̂1

t+s(q), ψ̂1
t (q̄)) ≤ δ1 whenever t > s2.

For any t ′ > s2, consider the four points q, qt ′ = ψ̂1
t ′+s(q), q̄ and q̄t ′ = ψ̂1

t ′(q̄). By the
triangle inequality,

dĜ1
(q, qt ′) ≤ dĜ1

(q, q̄)+ dĜ1
(q̄, q̄t ′)+ dĜ1

(q̄t ′ , qt ′). (6.9)

Note that dĜ1
(q, qt ′) = �Ĝ1

(qt ′) as q and qt ′ lie on the same flow ray and by Lemma 5.5,
flow segments are length minimizing in M̂ with respect to the path metric of Ĝ1, similarly
d(q̄, q̄t ′) = �Ĝ1

(qt ′). Moreover, by our assumption, dĜ1
(q, q̄) = s1, dĜ1

(qt ′ , q̄t ′) < δ1.
Replacing in the above inequality (6.9), we get

�Ĝ1
(qt ′) ≤ dĜ1

(q, q̄)+ dĜ1
(q̄, q̄t ′)+ dĜ1

(q̄t ′ , qt ′)

≤ s1 + �Ĝ1
(q̄t ′)+ δ1

= �Ĝ1
(q̄t ′)+ 2s1 for any t ′ > s2. (6.10)

As q̄ ∈ T̂0 ∩ {yt}−plane, by Lemma 6.5, we know there are global K , k > 0, so that
�Ĝ1

(q̄t ′) ≤ KDĜ1
(q̄t ′ , T̂0)+ k. Applying it in equation (6.10), we have

�Ĝ1
(qt ′) ≤ �Ĝ1

(q̄t ′)+ 2s1 ≤ KDĜ1
(q̄t ′ , T̂0)+ k + 2s1 when t ′ > s2. (6.11)

Finally, suppose a ∈ T̂0 is a point in T̂0 that is closest to qt ′ , that is, dĜ1
(qt ′ , a) =

DĜ1
(qt ′ , T̂0). By the triangle inequality, we get dĜ1

(q̄t ′ , a) ≤ dĜ1
(qt , a)+ dĜ1

(qt ′ , q̄t ′).
Moreover, DĜ1

(q̄t ′ , T̂0) ≤ dĜ1
(q̄t ′ , a) as a ∈ T̂0. Combining all these facts, we conclude

that when t ′ > s2,

DĜ1
(q̄t ′ , T̂0) ≤ dĜ1

(q̄t ′ , a) ≤ dĜ1
(qt ′ , a)+ dĜ1

(q̄t ′ , qt ′)

= DĜ1
(qt ′ , T̂0)+ d(q̄t ′ , qt ′) as dĜ1

(qt ′ , a) = DĜ1
(qt ′ , T̂0)

= DĜ1
(qt ′ , T̂0)+ s1 as dĜ1

(q̄t ′ , qt ′) = s1 by assumption. (6.12)

Combining equations (6.11) and (6.12), we get

�Ĝ1
(qt ′) ≤ KDĜ1

(q̄t ′ , T̂0)+ k + 2s1 ≤ KDĜ1
(qt ′)+Ks1 + k + 2s1 when t ′ > s2.

(6.13)

The above inequality proves Proposition 6.3 for t ′ > s2. If t ′ ≤ s2, then �(qt ′) = t ′ < s2.
Adding the case when t ′ ≤ s2 in inequality (6.13), we conclude

�Ĝ1
(qt ′) ≤ KDĜ1

(qt ′)+Ks1 + k + 2s1 + s2 for all t ′ ∈ [0, ∞). (6.14)

By renaming C = K and c = Ks1 + k + 2S1 + s2, we rewrite the above inequality
(6.14) as

�Ĝ1
(qt ′) ≤ CDĜ1

(qt ′)+ c for all t ′ ∈ [0, ∞),

which completes the proof of Proposition 6.3 for the point q.
We still need to argue why we can find constants C > 1 and c > 0 which work for all

q ∈ T̂0 \Nδ(Ĉ1 ∪ Ĉ2). We need to find s1 and s2 big enough, such that inequality (6.14)
holds for all flow rays intersecting T̂0 \Nδ(Ĉ1 ∪ Ĉ2).
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Consider a fundamental domain in T̂0 which quotient downs on the torus inM1. Without
loss of generality, we assume that the fundamental domain is bounded by the planes t = 0
and t = 1, and we call it T 0,1. Next, we consider the compact set S which is the closure of
the set T̂0,1 \Nδ(Ĉ1 ∪ Ĉ2).

As S is compact, it has finite radius with respect to the metric dĜ1
. Recall the definition

of s1. It is s1 = dĜ1
(q, q̄). Here, q̄ = (D1 ∪D2) ∩ Lq , where Lq is a leaf of F̂ and D1 ∪

D2 are the intersections of the yt-plane with T̂0. Since q is in a compact set S, it follows
that q̄ is also in a compact set. It follows that s1 is globally bounded.

Now we consider s2. Given q, the value s was defined so that ψ̂1
s (q) and q̄ lie in the

same strong stable leaf of ψ̂1
t . Again, since S is compact and q̄ is in a compact set, it

follows that the values of s as a function of q are also globally bounded in S. Then, there
is a global s2 > 0 so that dĜ1

(ψ̂1
t+s(q), ψ̂1

t (q̄)) < δ1 for all t > s2.
This shows that s1, s2 can be chosen globally bounded for q in the fundamental domain

S. Since it is a fundamental domain, this shows that s1, s2 can be chosen globally bounded.
This finishes the proof of Proposition 6.3.

Remark 6.8. The reason behind considering the δ-neighborhood of C1 ∪ C2 is to use the
compactness of the set S, the compactness is used to determine the universality of the
constants s1 and s2. Here, T̂0,1 \ Ĉ1 ∪ Ĉ2 is not compact.

Now we extend Proposition 6.3 in the universal cover of M̃1 with respect to the lifted
Riemannian metric G̃1. Note that ∂M̃1 is the lift of the torus ∂M1, and it is a collection of
infinitely many planes homeomorphic to R2. We first re-define the notation as follows.

For a point q ∈ M̃1, suppose the flow line through q intersects a component of ∂M̃ , say
T̃q , then:
• DG̃1

(q, T̃q) denotes the distance between q and T̃q with respect to the path metric
induced by G̃1 on M̃1;

• �G̃1
(q) is the length of the flow line segment connecting q and T̃q with respect to G̃1.

Consider the lift of the neighborhood Nδ(C1 ∪ C2) in M̃1, we denote it as Nδ(C̃1 ∪ C̃2). We
can restate Lemma 6.3 in M̃1 as follows.

LEMMA 6.9. There exists C > 1 and c > 0 satisfying the following. Let q ∈ M̃1 such that
the flow ray through q intersects ∂M̃1, say at the boundary component T̃q . If γq intersects
T̃q on the region T̃q \Nδ(C̃1 ∪ C̃2), then

�G̃1
(q) ≤ CDG̃1

(q, T̃q)+ c.

Proof. Note that M̂1 is an intermediate cover of M1, and hence M̃1 is the universal cover
of M̂1. For any two points b1 and b2 in M̃1, if b̄1, b̄2 denotes the projection of b1, b2 in M̂1,
then

dĜ1
(b̄1, b̄2) ≤ dG̃1

(b1, b2).

As M̃1 is the universal cover of a compact manifold, for any point q ∈ M̃1, there exists a
point q∗ ∈ T̃q such that DG̃1

(q, T̃0) = dG̃1
(q, q∗). In addition, there is a path in M̃1 from

q to q∗ which realizes this distance. This implies that if q̄ ∈ M̂1 is the projection of the

https://doi.org/10.1017/etds.2024.89 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.89


New classes of quasigeodesic Anosov flows in 3-manifolds 29

point q ∈ M̃1, then DĜ1
(q̄, T̂q) ≤ DG̃1

(q, T̃q). Moreover, the t-directions are unchanged
in M̂1 and M̃1, and hence �Ĝ1

(q̄) = �G̃1
(q). Combining all the information, we get

�G̃1
(q) = �Ĝ1

(q̄) ≤ CDĜ1
(q̄, T̂q̄ )+ c ≤ CDG̃1

(q, T̃q)+ c.

Now we extend Lemma 6.9 to M1 = M1 ∪ (∂M1 × [0, 1]). The manifold N is the
union of the collection of {(M1, �1

t , G1); (M2, �2
t , G2); (M3, �3

t , G3); · · · ; (Mn, �nt ,
Gn)}, where the plugs intersect each other along their boundary components. As described
in §4, we extend Riemannian metrics Gi from Mi to Mi and the extended metric is Gi .
The induced Riemannian metric in N is G. In particular,

G|Mi
= Gi |Mi

.

In the rest of the article, we consider the path metric dG̃ induced from the Riemannian
metric G̃ on the whole manifold Ñ . For two points p1, p2 ∈ Ñ ,

dG̃(p1, p2) = minimum{ length σ | σ is a path connecting p1, p2 ∈ Ñ }.
We extend the flow ψit from Mi to Mi = Mi ∪ (∂Mi × [0, 1]) as a product flow

(topologically) on ∂M1 × [0, 1], and the extended flow is denoted by �it . It is clear that
the foliation Lws(Ai ) ∩ ∂Mi on ∂Mi also extends to ∂Mi × [0, 1], and hence to ∂Mi . The
neighborhoodNδ(C̃1 ∪ C̃2) is also carried by the extended flow on the new boundary ∂M̃1.
In the universal cover Ñ , we denote this new set by N ′

δ(C̃1 ∪ C̃2).
As before, we have the following definition.

Definition 6.10. Suppose q ∈ M̃1 such that the flow line γq through q intersects ∂M̃1 at
the boundary component T̃q . Then, let:
• DG̃(q, T̃q) denote the distance between q and T̃q with respect to the path metric

induced by G̃1;
• LG̃(q) = LG̃1

(q) denote the length of the flow line segment connecting q and T̃q with
respect to G̃.

LEMMA 6.11. Let q ∈ M̃1 such that the flow line through q intersects ∂M̃1 at the
boundary component T̃q . If γq intersects T̃q on the region T̃q \N ′

δ(C̃1 ∪ C̃2), then there
exists C1 > 1 and c1 such that

LG̃(q) ≤ C1DG̃(q, T̃q)+ c1.

Moreover, the constants C1 and c1 do not depend on q or T̃q .

Proof. Again, we will prove the lemma only for a component of ∂M̃1, which we will
denote by T̃0. The same result holds for all other components of ∂M̃i .

Since the flow is a product in ∂M1 × [0, 1], then up to changing c1 to a bigger constant,
we can assume that q ∈ M̃1.

If γ intersects T̃0, then it also intersects a component T̃0 of ∂M̃1, because the flow �1
t

is a product in ∂M1 × [0, 1]. As the distances are measured as minimum lengths of paths
for both G̃1 and G̃, and G̃|M̃1

= G̃1, we conclude

DG̃1
(q, T̃0) < DG̃(q, T̃0).
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Notice we are assuming that q is in M̃1. By the compactness of ∂M1 × [0, 1], we can
find ε3 > 0 (same as in Lemma 5.8) such that for all γ which intersect T̃0, lengthG̃(γ ∩
( ˜̂T0 × [0, 1])) ≤ ε3.

Fix a flow ray γ , suppose γ intersects T̃0 at q1 and T̃0 at q2. Then, for any p ∈ γ , as
G̃1|M̃1

= G̃|M̃1
,

LG̃(q) = �G̃1
(q)+ lengthG̃(γ[q1,q2]).

By Lemma 6.9, we know �G̃1
(q) ≤ KDG̃1

(q, T̃0)+ k and we have DG̃1
(q, T̃0) <

DG̃(q, T̃0). By the definition of ε3, lengthG̃(γ[q1,q2]) ≤ ε3. Hence, we conclude

LG̃(q) = �G̃1
(q)+ lengthG̃(γ[q1,q2])

≤ �G̃1
(q)+ ε as lengthG̃(γ[q1,q2]) ≤ ε3

≤ CDG̃1
(q, T̃0)+ c + ε3 by Lemma 6.9

≤ CDG̃(q, T̃0)+ c + ε3 as DG̃1
(q, T̃0) ≤ DG̃(q, T̃0)). (6.15)

As all the constants C, c, and ε are independent of the flow line, we conclude that, for
all q in γ such that γ intersects T̃q \N ′

δ(C̃1 ∪ C̃2),

LG̃(q) ≤ C1DG̃(q, T̃q)+ c1,

where C1 = C and c1 = d + ε3 as defined above.

Remark 6.12. Lemma 6.9 says that every flow line which intersects the boundary
components of M̃1 outside the ‘bad region’ goes away from the boundary component at a
uniformly efficient rate as t → ∞.

All other hyperbolic plugs, irrespective of ‘attracting’ or ‘repelling’, have the same type
of property that if a flow ray intersects a boundary component outside the ‘bad region’,
it goes ‘away’ at a uniformly efficient rate from the boundary component when t → ∞
(in the case of attracting plugs) or t → −∞ (in the case of repelling plugs). Moreover, by
taking the maximum over all the constants, we can fix global additive and multiplicative
constants which work for all of the hyperbolic plugs.

We conclude this section with two remarks on the separating tori at the boundaries of
the hyperbolic plugs, these tori play an important role in this article.

Remark 6.13.
(1) As remarked before, the boundary tori are incompressible, that is, they are two-sided

and injectively included in the fundamental group π1(N ).
(2) If T̃ is a component of the lift of some ∂M̃i , then by [KL98, Theorem 1.1], see

also [Ngu19. §4.1], the following happens: T̃ is quasi-isometrically embedded in
the universal cover Ñ . We make it more precise as follows. Consider the lift of a
separating torus, say T̃ . By restricting the Riemannian metric on T̃ , we can consider
the path metric on T̃ induced by the restriction, we call it dT̃ . Then, there exists k0, k1

such that the inclusion map i : (T̃ , dT̃ ) → (Ñ , dG̃) is a (k0, k1)-quasi-isometric
embedding. We can choose k0, k1 so that it works for any such T̃ .
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6.2. Quasigeodesic behavior in the whole manifold. Now we are ready to prove the main
theorem, that is, the flow lines of �̃t are uniform quasigeodesics in Ñ with respect to dG̃ ,
the path metric induced by G̃. As before, we assume that N is made of the collection of
hyperbolic plugs {M1, M2, . . . , Mn}. Each M̃i is a manifold with boundary such that
∂M̃i is a collection of separating planes homeomorphic to R2 and properly embedded
into Ñ .

We first prove that if a flow line or flow ray is fully contained in the universal lift of a
single plug Mi , then it is a quasigeodesic.

LEMMA 6.14. There exists a3 > 1 and a4 > 0 such that if γ is a flow ray or flow line fully
contained in a single hyperbolic plug M̃i , then it is an (a3, a4)-quasigeodesic with respect
to the metric dG̃ .

Proof. As before, without loss of generality, we prove the result only on M̃1.
In Lemma 5.8, we have proved that the flow lines or flow rays are quasigeodesic with

respect to dG̃1
, the path metric of the restriction of G̃ on M̃1. In this lemma, we need to

extend the result on the whole manifold Ñ with respect to dG̃ .
Consider two points p1 and p2 on a flow ray or flow line γ ⊂ M̃1. Suppose σ :

[0, 1] → Ñ is a minimal path with respect to G̃ in Ñ connecting p1 and p2. In other
words, length(σ ) = dG̃(p1, p2). We argue that the length of σ can be approximated by a
curve fully contained in M̃1, without too much increase in length. Suppose σ exits M̃1

through a boundary component T̃ at 0 < v1 < 1, that is, σ(v1) ∈ T̃ . As T̃ is a separating
plane in Ñ , σ must re-enter M̃1 at some first v2 with 0 < v1 < v2 < 1.

By Remark 6.13, T̃ is (k0, k1)-quasi-isometrically embedded in Ñ , and hence we can
find a path σ̄ : [v1, v2] → T̃ such that

1
k0

lengthG̃(σ̄[v1,v2])− k1 ≤ lengthG̃(σ |[v1,v2]) ≤ k0 lengthG̃(σ̄[v1,v2])+ k1.

In the definition of σ , we can replace σ |[v1,v2] with σ̄ |[v1,v2]. Now fix a6 > 0, a6 << 1
so that any segment in the image of σ with endpoints in ∂M̃1 and interior outside M̃1,
and length < a6 can be pushed into ∂M̃1 to a segment of length at most 2a6. On [0, 1],
there can exist only finitely many closed intervals on which σ goes out of M̃1 and with
length> a6. Also replace all of these intervals with minimal curve on respective boundary
components as described before, using the quasi-isometry constants k0, k1. Choosing
k0 > 2, then we get a curve σ ′ : [0, 1] → M̃1 ⊂ Ñ with the same endpoints as σ , and
such that

1
k0

lengthG̃(σ
′)− k1 ≤ lengthG̃(σ ) ≤ k0 lengthG̃(σ

′)+ k1.

Note that G̃1 = G̃|M̃1
. In particular, as σ ′ is a path contained in M̃1 and connecting p1

and p2, then

dG̃1
(p1, p2) ≤ lengthG̃1

(σ ′) = lengthG̃(σ
′).
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Hence, combining Lemma 5.8 and the above inequality,

lengthG̃1
(γ[p1,p2]) ≤ εdG̃1

(p1, p2)+ ε′

≤ εlengthG̃1
(σ ′)+ ε′

= εlengthG̃(σ
′)+ ε′

≤ ε[k0lengthG̃(σ )+ k0k1] + ε′

= εk0dG̃(p1, p2)+ εk0k1 + ε′.

As G̃1 = G̃|M̃1
, lengthG̃1

γ[p1,p2] = lengthG̃1
γ[p1,p2]; by renaming a3 = εk0 and

a4 = εk0k1 + ε′, we conclude the proof of the lemma.

The following is the main result of this article.

THEOREM 6.15. There exists C0 > 1 and c0 > 0 such that each flow line of �̃t in Ñ is a
(C0, c0)-quasigeodesic with respect to the metric G̃.

Proof. There exists exactly two types of flow lines γ of �̃t in Ñ :
(1) either γ is contained in one of M̃i . In this case, γ is contained in the attractor (or

repeller) inside M̃i ;
(2) or γ intersects the boundary of one of M̃i . As every boundary component is shared

by exactly two plugs, γ intersects two adjacent plugs, say M̃i and M̃j . In this case,
γ is subdivided in two rays and each of M̃i and M̃j contains exactly one subray,
say γ+ and γ−.

By Lemma 6.14, we know that each flow line which is entirely contained in one of M̃i

is uniform quasigeodesic, that is, all of the first type of flow lines in the above list are
(a3, a4)-quasigeodesics.

If γ intersects a common boundary component of M̃i and M̃j , Lemma 6.14 says that
both of the forward subray γ+ and the backward subray γ− are quasigeodesics. However,
concatenation of two quasigeodesics is not necessarily a geodesic and that is the main
obstacle in this proof. Next, we show that, in our case, concatenation of two quasigeodesic
flow rays is a quasigeodesic and the key ingredient of the proof is Lemma 6.11.

LEMMA 6.16. Every flow line which intersects a boundary component of a hyperbolic
plug is a quasigeodesic.

Proof. Up to reindexing the M̃i , we can assume that there are lifts M̃1, M̃2 of M1, M2,
respectively, so that γ intersects ∂M̃1 at the boundary component T̃0 and suppose T̃0 is a
common boundary component of M̃1 and M̃2. We can assume that M̃1 is an attracting
plug, so it contains the forward ray γ+ and M̃2 must be a repelling plug and contains the
backward flow ray γ−.

CLAIM 6.17. At least one of γ+ or γ− intersects T̃0 outside the ‘bad region’. More
precisely, at least one of the following is true:
• for all q ∈ γ+ ⊂ M̃1,

LG̃(q) ≤ C1DG̃(q, T̃0)+ c1;
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• or, γ− satisfies the same property, that is, for all q ∈ γ− ⊂ M̃2,

LG̃(q) ≤ C1DG̃(q, T̃0)+ c1.

It is possible that both of the flow rays γ+ and γ− satisfy the property.

Proof. We can view T̃0 as a boundary component of M̃1, and we denote it by TM̃1
to

emphasize this. In the same way, we can view T̃0 as a boundary component of M̃2, which
we denote by TM̃2

. These boundary components are attached to each other by a map
�̃ : T̃M̃1

→ T̃M̃2
.

Consider the neighborhood N ′
δ(C̃1 ∪ C̃2) on T̃M̃1

as described in Lemma 6.11, let us
rename it Nδ , this is the ‘bad region’ on T̃M̃1

. Similarly, there is another bad region, say
Nδ′ on T̃M̃2

.
Note that we can choose δ (and δ′) in Proposition 6.3 small enough, so that �̃(Nδ) ∩

Nδ′ = ∅. In other words, every flow line γ which intersects T̃0 = T̃M̃1
� T̃M̃2

/ ∼
intersects at least one of the regions T̃M̃1

\ Nδ or T̃M̃2
\ Nδ′ . If γ intersects T̃M̃1

\ Nδ ,
then the subray γ+ satisfies the claim by Lemma 6.11, and similarly if γ intersects
T̃M̃2

\ Nδ′ , the subray γ− satisfies a similar property.

Continuation of the proof of Lemma 6.16. As before, let γ+ ⊂ M̃1 and γ− ⊂ M̃2. We
assume, without loss of generality, that γ+ ⊂ M̃1 satisfies Claim 6.17.

Take two points q, q ′ ∈ γ . As each of the subrays of γ+ and γ− are uniform
quasigeodesics by Lemma 6.14, we can conclude that the flow segment joining q and q ′ is a
quasigeodesic if either q, q ′ ∈ γ+ or q̄, q ′ ∈ γ−. Hence, we assume q ∈ γ+ and q ′ ∈ γ−.

As T̃0 is a separating plane on Ñ , γ must intersect T̃0. We can conclude that for fixed
q ′ ∈ γ−,

DĜ(q, T̂0) < dĜ(q, q ′) for all q ∈ γ+.

Let γ intersect T̃0 at q1. Now fix q ∈ γ+. We break the flow segment γ[q,q ′] as γ[q,q ′] =
γ[q,q1] ∗ γ[q1,q ′]. There are two possible cases.

Case I: Suppose lengthG̃(γ[q,q1])≥ lengthG̃(γ[q1,q ′]). Note thatLG̃(q)= lengthG̃(γ[q,q1]).
By our assumption,

lengthG̃(γ[q,q ′]) ≤ 2lengthG̃(γ[q,q1]) = 2LG̃(q).

As we have assumed that γ+ satisfies Claim 6.17,

lengthG̃(γ[q,q ′]) ≤ 2LG̃(q) ≤ 2C1DG̃(q, T̃0)+ 2c1. (6.16)

We have observed that dG̃(q, q ′) > DG̃(q, T̃0) as any curve joining q and q ′ also intersects
T̃0. Hence, replacing in the previous inequality (6.16), we conclude that if q, q ′ ∈ γ and
lengthG̃(γ[q,q1]) ≥ lengthG̃(γ[q1,q ′]), then

lengthγ[q,q ′] < 2LG̃(q) ≤ 2C1DG̃(q, T̃0)+ 2c1 ≤ 2C1dG̃(q, q ′)+ 2c1. (6.17)

This finishes the proof of uniform quasigeodesic behavior in this case.
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FIGURE 4. Situation in the universal cover. The curve with arrows in it is the flow line segment from q to q ′. The
other two curves from q to q ′ and from q to q ′ are curves realizing the distance between these pairs of points.

Case II: Now we assume lengthG̃(γ[q,q1]) < lengthG̃(γ[q1,q ′]).
We first break γ[q,q ′] as γ[q,q1] ∗ γ[q1,q ′′] ∗ γ[q ′′,q ′] such that lengthG̃(γ[q,q1]) =

lengthG̃(γ[q1,q"]) as in Figure 4.
Then by equation (6.17) in Case I, we conclude

dG̃(q, q ′′) ≤ lengthG̃(γ[q,q ′′]) ≤ 2C1DG̃(q, T̃0)+ 2c1. (6.18)

Consider the points q, q ′, and q ′′. The flow segment γ[q ′′,q ′] is an (a3, a4) quasigeodesic
segment by Lemma 6.14 as it is contained in a single plug M̃2. Hence,

lengthG̃(γ[q ′′,q ′]) ≤ a3dG̃(q
′, q ′′)+ a4.

By the triangle inequality, we get dG̃(q
′, q ′′) ≤ dG̃(q

′, q)+ dG̃(q, q ′′). For the flow
segment γ[q ′′,q ′], we conclude

lengthG̃(γ[q ′′,q ′]) ≤ a3dG̃(q
′, q ′′)+ a4

≤ a3[dG̃(q
′, q)+ dG̃(q, q ′′)] + a4 by the triangle inequality

≤ a3dG̃(q, q ′)+ a3[2C1DG̃(q, T̃0)+ 2c1] + a4 by (6.18)

= a3dG̃(q, q ′)+ 2a3C1DG̃(q, T )+ 2a3c1 + a4. (6.19)

Finally, adding equations (6.18) and (6.19), we conclude

length(γ[q,q ′′])+ length(γ[q ′′,q ′]) ≤ 2C1DG̃(q, T̃0)+ 2c1+
a3dG̃(q, q ′)+ 2a3C1DG̃(q, T̃0)+ 2a3c1 + a4. (6.20)

As every path connecting q and q ′ intersects T̃0, we get DG̃(q, T̃0) ≤ dG̃(q, q ′).
Replacing in the previous equation, we conclude

lengthG̃(γ[q,q ′]) ≤ 2C1dG̃(q, q ′)+ 2a3C1dG̃(q, q ′)+ a3dG̃(q, q ′)+ 2c1 + 2a3c1 + a4

= (2C1 + 2a3C1 + a3)dG̃(q, q ′)+ 2c1 + 2a3c1 + a4. (6.21)
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We rename C0 = 2C1 + 2a3C1 + a3 and c0 = 2c1 + 2a3c1 + a4, and equations (6.17)
and (6.21) together imply that for any two points q and q ′ on γ ,

lengthG̃γ[q,q ′] ≤ C0dG̃(q, q ′)+ c0.

As γ was chosen arbitrarily, this completes the proof that any flow line which intersects
the common boundary component T̃0 between M̃1 and M̃2 is a quasigeodesic. Moreover,
the same multiplicative and additive constants work for all flow lines intersecting T̃0.

In the beginning of the proof, we fixed M̃1 and M̃2 and their common boundary com-
ponent T̃0, but the same method works for all other plugs which intersect along boundaries.
The quasigeodesic constants differ for different choices of boundary components. Finally,
as there are only finitely many plugs in N , we can take maximums over all possibilities of
boundary components in Ñ and we can choose global quasigeodesic constants for the flow
lines which intersect any of the boundary components.

This ends the proof of Lemma 6.16.

Lemmas 6.14 and 6.16 together imply that any flow lines of �̃t in Ñ are uniformly
quasigeodesic.

This completes the proof of Theorem 6.15.

Remark 6.18. In the proof of the final theorem in §5.2, we used two key ideas:
(1) every flow ray of a flow line contained in a single plug is quasigeodesic;
(2) every flow ray which intersects a boundary component outside a narrow region even-

tually goes away uniformly efficiently from the boundary component it intersects.
This suggests that the same general techniques used in this proof can be applied to study
quasigeodesic behavior of flows in different contexts where these two properties hold.

7. Comments on the Franks–Williams manifolds N and a question
As before, we consider the decomposition of N as the union

N = M1 ∪ M2 ∪ · · · ∪ Mn,

where the components Mi intersect each other along their boundaries and the boundary
components of Mi are homeomorphic to tori. We denote the collection of boundary
components as {Tj |j ∈ J }, where each Tj is a common boundary of two plugs from the
collection M1, M2, . . . , Mn. Now, we again emphasize some properties of the manifold
N and the collection of torus {Tj |j ∈ J }.
(1) N is irreducible: as N supports an Anosov flow, it supports a taut foliation (take

the weak-stable or the weak-unstable foliation). Then, by Novikov’s theorem, N is
an irreducible manifold.

(2) JSJ-decomposition of N : every irreducible orientable 3-manifold supports a
JSJ-decomposition, that is, a collection of tori separating the manifold into atoroidal
and/or Seifert fibered pieces. In our case, we can show that the collection {Tj |j ∈ J }
is a minimal JSJ-decomposition on N . The orientability condition can be satisfied by
moving to a finite cover of N (if required). It is easy to check from the construction
of the plugs that each torus Tj is incompressible, that is, closed, 2-sided, and
canonically injects in the fundamental group of N . To see that the collection
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{Tj |j ∈ J } is minimal, we claim that each piece in the decomposition with respect
to {Tj |j ∈ J } is atoroidal, see detail in item 3 below.

(3) N is non-hyperbolic and non-Seifert fibered: as there exists incompressible tori Tj
in N , it follows that N cannot be a hyperbolic manifold. To see that M is also
non-Seifert fibered, we consider the plugs M1, M2, . . . , Mn which are also the
components of the torus decomposition, and we note that each of the plugs are
constructed by removing solid torus neighborhoods from mapping tori of hyper-
bolic maps on T2, that is, T2 × [0, 1]/((x, 1) ∼ (�(x), 0)) for some � : T2 → T2

homotopic to a hyperbolic map on T2. They are mapping tori of pseudo-Anosov
homeomorphisms of a torus minus finitely many disks. Additionally, it is well known
that such mapping tori are atoroidal, and hence non-Seifert fibered. This now implies
that these are the pieces of the JSJ decomposition of N , and all pieces are atoroidal.

(4) Existence of a non-positively curved metric on N : as the manifold N is Haken, that
is, it is irreducible, contains a closed incompressible surface, and it has one atoroidal
piece, we can define a non-positively curved Riemannian metric on M by [Lee95,
Theorem 3.3]. This opens a potentially new direction to explore as described below.

7.1. Future questions. By item (4) above, we can define a non-positively curved
Riemannian metric on N . Then the universal cover Ñ with the path metric induced by the
non-positively curved Riemannian metric is CAT(0). For a CAT(0)-space, we can define
different types of ‘boundaries at infinity’, for example, the Tits boundary or the Morse
boundary and we can define topologies on the boundary at infinity, ∂∞Ñ . For example,
one question to ask is whether the weak-stable or weak-unstable foliations of�t satisfy the
continuous extension property.

Question 7.1. Suppose F ∈ F̃ws or F̃wu of �̃t . It is known that leaves of the weak-stable
or weak-stable foliations of Anosov flows are Gromov hyperbolic and we can define the
Gromov boundary S1(F ) (it is a circle). Then, does the inclusion i : F → Ñ extend
continuously to a map î : F ∪ S1(F ) → Ñ ∪ ∂∞Ñ ?

Similar types of questions have been extensively studied for Anosov flows on hyperbolic
3-manifolds. A big difference in the case of Franks–Williams manifolds is that the Morse
lemma is not true in general, but in some particular cases, there is a possibility that
the quasigeodesic flow rays are boundedly away from actual geodesic rays. Hence, this
question is relevant for quasigeodesic Anosov flow on non-positively curved manifolds.
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