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ABSTRACT

Insurance companies and pension funds must value liabilities using mortality
rates that are appropriate for their portfolio. These can only be estimated in a
reliable way from a sufficiently large historical dataset for such portfolios, which
is often not available. We overcome this problem by introducing a model to esti-
mate portfolio-specific mortality simultaneously with population mortality. By
using a Bayesian framework, we automatically generate the appropriate weight-
ing for the limited statistical information in a given portfolio and the more ex-
tensive information that is available for the whole population. This allows us
to separate parameter uncertainty from uncertainty due to the randomness in
individual deaths for a given realization of mortality rates. When we apply our
method to a dataset of assured lives in England andWales, we find that different
prior specifications for the portfolio-specific factors lead to significantly differ-
ent posterior distributions for hazard rates. However, in short-term predictive
distributions for future numbers of deaths, individual mortality risk turns out to
be more important than parameter uncertainty in the portfolio-specific factors,
both for large and for small portfolios.

KEYWORDS
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1. INTRODUCTION

Life insurance companies and pension funds need to value their liabilities using
mortality rates appropriate for their portfolio. For many countries, projections
of mortality rates are available for the entire population, but substantial hetero-
geneity in mortality rates exists between individuals within a population, which
is caused among others by differences in socioeconomic classes, see Villegas and
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Haberman (2014). Lantz et al. (1998) argue that individuals with a higher edu-
cation tend to live more healthily, which may help to explain these differences
in mortality.

Heterogeneity in mortality also exists between individuals since they may
have different motivations to buy insurance. Finkelstein and Poterba (2002)
show that differences in mortality even exist between individuals with volun-
tary annuities, compulsory annuities or without annuities. Pitacco et al. (2009)
discuss the presence of select mortality when individuals are subject to medical
tests when starting a life insurance policy. Policyholders with a longer duration
since the test may experience higher mortality than policyholders that have been
accepted more recently.

Therefore, an insurance company or pension fund cannot use mortality pro-
jections for the whole population without making any adjustments. The differ-
ence between mortality in a population and a portfolio is often called basis risk,
see, for example, Barrieu et al. (2012).

In current practice, portfolio-specific mortality rates are often constructed
by multiplying projections of country-wide mortality rates with portfolio-
specific factors. These portfolio-specific factors, also called experience factors,
thus represent the relative difference between the mortality rates of the popula-
tion and the portfolio under consideration. In Solvency II, insurance companies
are obliged to derive portfolio-specificmortality rate projections and analyze the
uncertainty in these projections.

We propose a model to estimate population and portfolio-specific mortality
simultaneously. To account for yearly fluctuations in small portfolios, we use a
Poisson distribution tomodel individual deaths for a given realization of hazard
rates, as in Brouhns et al. (2002). We view the portfolio as part of the population
and use a baseline mortality trend for the population. The larger dataset for the
population allows us to generate reliable estimates for the dynamics of mortal-
ity in the wider population. The relative difference between the population and
the portfolio is modeled using a portfolio-specific and age-dependent random
effect. Such random effects reflect the remaining heterogeneity among policy-
holders which is not captured by the observable risk factors. See Denuit et al.
(2007) andAntonio and Zhang (2014) for similar examples in pricingmodels for
non-life insurance, where policy(holder)-specific behavior is captured by such a
random effect.

We use the Lee–Carter model for population mortality. In our Bayesian
setting, we consider two prior distributions for the portfolio-specific factors.
The first prior distribution assumes independent factors for different ages and
independence between groups (portfolio and rest). The second prior distri-
bution is an autoregressive smoothing prior which implies dependence be-
tween ages but independence between the factor for our own portfolio and
the factor for the rest of the population. We describe population mortality
and portfolio-specific mortality simultaneously, in contrast to the multi-step
method that is required in a frequentist approach. This helps to distinguish
volatility in the time series for the population, parameter uncertainty in the
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FIGURE 1: Observed portfolio-specific factors (the ratio of death rates in a portfolio and death rates in the
whole country) for the CMI portfolio of assured male lives in England and Wales. (Color online)

model for the population, and parameter uncertainty in the portfolio-specific
factors.

To illustrate this point, Figure 1 shows observed portfolio-specific factors for
the CMI dataset on assured lives in England and Wales.1 These factors are the
ratio of death rates in the CMI portfolio and death rates in the whole of Eng-
land and Wales, for different years and ages. The observations are very volatile
when considered as a function of age and they can fluctuate wildly over consec-
utive years. These fluctuations are mainly due to the randomness in the number
of individual deaths for a given fixed mortality rate. In order to take this into
account, we will explicitly model the noise in the outcomes that we can actu-
ally observe (the number of deaths), by specifying that these follow a Poisson
distribution when conditioned on the unobserved hazard rates that contain the
unknown portfolio-specific factors that we are ultimately interested in. In a case
study based on this dataset for England andWales, we will show that parameter
uncertainty in portfolio-specific factors can be substantial but that its impact on
mortality projections is relatively small compared to the impact of the Poisson
noise in individual deaths.

In Section 2, we give an overview of existing approaches to model portfolio-
specific mortality. In Section 3, we introduce our own method and describe the
prior distributions that are used in our Bayesian setting. Section 4 contains the
illustration of our approach using the dataset on assured male lives from Eng-
land and Wales, and Section 5 concludes.

2. LITERATURE OVERVIEW

General population mortality. Let dt,x be the observed number of deaths in
a population at age x in calendar year t, and let Et,x be the corresponding
exposure. The observed death rate is defined as mt,x = dt,x

Et,x
. Under the as-

sumption of a constant force of mortality or hazard rate μt,x on the interval
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[t, t+1)× [x, x+1), and in the absence of any further model structure, the max-
imum likelihood estimate μ̂t,x of the force of mortality μt,x equals the observed
death rate mt,x. The mortality rate qt,x is the probability that a person aged ex-
actly x at the beginning of calendar year t dies within the next year, and under
the assumption of a constant force of mortality it equals qt,x = 1 − exp[−μt,x].

Lee and Carter (1992) introduce the seminal mortality model to explain ob-
served death rates:

lnmt,x = αx + βxκt + ηt,x, (1)

with the ηt,x iid stochastic variables with mean zero. Lee and Carter apply least
squares estimation to this model, which is equivalent tomaximum likelihood es-
timation under the assumption of normality and homoscedasticity for the ηt,x’s.
Since this model is a single-factor model, mortality improvements for all ages
are assumed to be perfectly correlated. First, they estimate the parameters αx, βx
and κt using a Singular Value Decomposition, and then they model the period
effect κt as a random walk with drift to generate mortality projections:

κt = κt−1 + δ + εt, εt
iid∼ N(0, σ 2

ε ), (2)

for independent ηt,x and εt. Brouhns et al. (2002) model the force of mortality
instead of the death rate mt,x and specify that the observed dt,x are realizations
of stochastic variables Dt,x with the following structure:

Dt,x|μt,x ∼ Poisson(Et,xμt,x), with lnμt,x = αx + βxκt. (3)

Whereas the error terms in (1) have the same variance for all ages and year, this
assumption is relaxed through the specification in (3). Pitacco et al. (2009) show
that a likelihood based on yearly individual survival observations is propor-
tional to the likelihood of a Poisson distribution as specified above. Therefore,
the model specification using a Poisson distribution is appropriate for small and
large portfolios.

For an overview of extensions to the Lee–Cartermodel in a single population
setting, we refer to Cairns et al. (2009), Haberman and Renshaw (2011) and van
Berkum et al. (2016).

Multiple population mortality models. Mortality developments in a population
can be strongly time varying. Periods of small mortality improvements may be
followed by periods of larger ones, and a rapidly changing mortality trend is
difficult to project. Therefore, extensions to the Lee–Carter model have been
proposed to incorporate information from different but comparable popula-
tions in the estimation process. This can lead to a more stable, global mor-
tality trend, which also provides insight in population-specific deviations from
the general pattern. A disadvantage is that a sufficiently large historical data is
needed to analyze such population-specific deviations. If there is only limited
historical data available for a portfolio, application of the multiple population
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approach to portfolio data must contain a careful analysis of the uncertainty in
the estimates.

Li andLee (2005) propose the augmented common factormodel formultiple
populations (indexed by i )

lnmi
t,x = αix + BxKt + β i

xκ
i
t + εt,x,i , εt,x,i

iid∼ N(0, σ 2
i ). (4)

The term BxKt represents the common factor for the different populations,
αix is the average mortality for age x in population i over time, and the term
β i
xκ

i
t is a population-specific, age-dependent mortality development. Li and Lee

(2005) estimate this model using Singular Value Decomposition, whereas Anto-
nio et al. (2015) use a Bayesian framework. For a related alternative where differ-
ent groups have a common age effect for mortality improvements, see Kleinow
(2015).

Dowd et al. (2011) investigate mortality in two populations using a gravity
model

lnmi
t,x = αix + κ it + γ i

t−x, i = 1, 2, (5)

with γ i
t−x a term representing a cohort effect. For forecasting purposes, the co-

hort effect must be projected in a similar way as the variables κ it , but for γ i
t−x this

often proves to be more difficult because of its volatile behavior, see Haberman
and Renshaw (2011). The first population is defined as the dominant popula-
tion and the second population is of smaller size and is therefore considered
to be the subordinate population. In a related model of Dowd et al. (2011), the
time series of the subordinate population depends on the difference in mortality
between the two populations, which is called the “spread”. Cairns et al. (2011)
estimate parameters for this model using a Bayesian approach. By defining the
dependence between the two populations slightly differently, they arrive at a
specification that can be used for a combination of a dominant and a subordi-
nate population, but also for a combination of two equal-sized populations. This
makes it suitable to model mortality in different countries but also for mortality
in a country and in a large pension fund.

Villegas and Haberman (2014) consider mortality of five different socioeco-
nomic classes in England. Mortality for the reference population is described
using an extension of the Lee–Carter model, and mortality for different socioe-
conomic classes is modeled relative to the population. Haberman et al. (2014)
use a similar approach tomodel mortality in an insurance book, but a wider col-
lection of mortality models is considered. For books with large exposures and
sufficient historical observations, a variant of the model introduced in Cairns
et al. (2006) is suggested.

Portfolio-specific mortality models. Apart from the multiple population ap-
proach, other methods have been suggested to characterize portfolio-specific
mortality. Often, population mortality is assumed given, or a (smooth) base-
line mortality rate is estimated beforehand. Even when these models are able to
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explain historical observations well, they may be less appropriate for projection
purposes when population and portfolio-specific mortality are not estimated
simultaneously. Below we discuss several approaches to modeling portfolio-
specific factors. In Section 3.1, we combine these ideas with the multiple popu-
lation approach and introduce a new method to simultaneously estimate popu-
lation and portfolio-specific mortality.

Plat (2009) considers realized portfolio-specific factors defined by

Pt,x = mA
t,x

mpop
t,x

, (6)

wheremA
t,x is the observed death rate in the portfolio based on insured amounts,

and mpop
t,x is the observed death rate in the population. As an example, a linear

age effect is assumed, using

Pt,x = at + btx+ εt,x, εt,x
iid∼ N(0, σ 2

ε ). (7)

The parameters at and bt are estimated using regression techniques, and
portfolio-specific factors for future years are obtained by projecting at and bt
using time series models.

Using only 5 years of historical data, Gschlössl et al. (2011) do not include
time dynamics in their model for portfolio-specific mortality. First, they esti-
mate a baseline force of mortality on portfolio data which is a smooth func-
tion of age. Remaining heterogeneity is then captured by observable risk factors
in a Poisson GLM framework. Richards et al. (2013) model the force of mor-
tality using a time-varying version of the Makeham–Beard law and estimate
the parameters on 5 years of historical portfolio data for individual lives. Their
approach can, therefore, not be used when only aggregated portfolio data are
available.

Olivieri (2011) considers a Bayesian setting of the form

Dt,x ∼ Poisson(Et,xq∗
t,xZt,x), (8)

where q∗
t,x is a best estimate mortality rate published by an independent insti-

tution, and Zt,x ∼ Gamma(αt,x, βt,x) is a random adjustment. Starting with
values for α0,x and β0,x, subsequent values of αt,x and βt,x can be computed
in closed form when new mortality observations become available, since the
Gamma distribution is the conjugate of the Poisson distribution. Kan (2012)
considers a similar framework, but a different method is used to estimate the
population mortality rate.

3. BAYESIAN PORTFOLIO-SPECIFIC MORTALITY

As Section 2 illustrates, different approaches to modeling portfolio-specific fac-
tors exist, which are suitable for different types of datasets. We consider the
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FIGURE 2: Illustration of Opf and Opop.

situation where only limited historical portfolio data is available, which hinders
reliable estimation of mortality developments if only portfolio data would be
used. We, therefore, simultaneously estimate mortality in the population and
the portfolio-specific factors.

Let the observed number of deaths for group i during calendar year t for
ages in [x, x+ 1) be dit,x, and denote the exposure in this group for that period
by Ei

t,x. The groups we consider are the entire population of a country (pop),
the portfolio under investigation (pf), and the part of the population which is
not included in the portfolio under consideration (hereafter referred to as the
“rest”), so i ∈ {pop, pf, rest}. The observed portfolio and the rest thus form the
total population and we have that dpft,x + drestt,x = dpopt,x and Epf

t,x + Erest
t,x = Epop

t,x .
We need to define the rest group explicitly, to ensure that we always consider all
information available in the population.

To estimate parameters, we extend the portfolio dataset with observations of
the total population. In the dataset of the portfolio, we consider X ages and S
years, and in the population X ages and T years. We define the set of cells (t, x)
for which we have observations from both our portfolio and the rest (the light
gray cells in Figure 2) as Opf = S × X with S = {s1, s1 + 1, . . . , sS} and X =
{x1, x1+1 . . . , xX}.We can onlymeasure the heterogeneity between the portfolio
and the rest on this set of observations. The set for which we have observations
from the population but not separately for our portfolio and the rest (the dark
gray cells in Figure 2) is defined by Opop = T × X , with T = {t1, t1 + 1 . . . , tT}
and t1 ≤ tT < tT + 1 = s1 ≤ sS, and by construction Opop ∩ Opf = ∅.2 In total,
T∗ = T + S years are included in the dataset.

We introduce indicator variables that will turn out to be useful whenworking
with likelihoods:

Ipft,x = Irestt,x =
{
1 if (t, x) ∈ Opf

0 otherwise,
Ipopt,x =

{
1 if (t, x) ∈ Opop

0 otherwise.
(9)
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3.1. Model formulation and implementation

We assume that people in our own portfolio and the rest of the population share
a baseline force of mortality which is denoted by μt,x. Heterogeneity between
groups is captured by a random effect �i

x which depends on age. This leads to
the following specification:

Dpop
t,x |μt,x ∼ Poisson(Epop

t,x μt,x), for (t, x) ∈ Opop, (10)

and

Dpf
t,x|(μt,x, �

pf
x ) ∼ Poisson(Epf

t,xμt,x�
pf
x ), for (t, x) ∈ Opf (11)

Drest
t,x |(μt,x, �

rest
x ) ∼ Poisson(Erest

t,x μt,x�
rest
x ), (12)

with the Lee–Carter model for the baseline

lnμt,x = αx + βxκt. (13)

This implies that we consider all deaths in the population for every cell (t, x),
by either using Dpop

t,x or both Dpf
t,x and Drest

t,x .
3

The random effects �i
x are independent between groups i , but there may

be dependence for different ages x.4 In Section 3.2, we will consider two prior
specifications for �i

x, a Gamma prior and a lognormal prior. In the first one, we
assume independence between ages x and between groups i , but in the second
one, we assume dependence between ages and independence between groups.
Given the baseline force of mortality μt,x and the portfolio-specific factors �i

x,
the Poisson distributed numbers of deaths are independent between ages, calen-
dar years and groups.

To project mortality into the future, we need to impose a time series model
on the period effect κt. Two time series specifications that are often used for
projecting the period effect in the Lee–Carter model are a trend stationary and
a difference stationary model (also known as a random walk with possibly a
drift). As discussed in van Berkum et al. (2016), we believe a difference station-
ary model to be more appropriate to model the period effect for a single country
so that is what we will use in this paper.

In order to generate samples of posterior distributions, we use the Markov
chain Monte Carlo method (MCMC) with a burn-in period which allows the
chain to move toward the desired distribution before we start taking samples.
Since the MCMC algorithm requires Metropolis(-Hastings) sampling for our
model, the burn-in period is also used to calibrate scale parameters for the dis-
tribution to propose new samples. We calibrate the scale parameters such that
the acceptance probabilities are within the interval [20%, 30%]. Only samples
that are found after the burn-in period are used for inference on parameters
and for prediction purposes.

https://doi.org/10.1017/asb.2017.17 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.17


BAYESIAN PORTFOLIO-SPECIFIC MORTALITY 689

In a frequentist setting, parameter constraints are needed to uniquely iden-
tify the Lee–Carter model, since linear transformations can be applied which
change the value of the parameters αx, βx and κt without changing the forces of
mortality. In a Bayesian framework, parameters are random variables so there is
no identifiability problem due to the introduction of priors. However, the pres-
ence of identification problems in a frequentist setting suggests that we may also
encounter convergence problems for theMCMCalgorithm in a Bayesian imple-
mentation of the same model. We, therefore, apply two parameter constraints:

κt1 = 0 and ‖β‖2 =
∑
x∈X

β2
x = 1, (14)

through the specification of the prior distributions. Further, for t ≥ s1, we have
more information: two observations per cell (t, x). As a result, in a frequentist
setting, the forces of mortality for the portfolio and the rest group are invariant
to the following transformation:

�pf
x → �pf

x · exp(cβx), �rest
x → �rest

x · exp(cβx) and κt → κt − cI[t∈S].

We observed that we may encounter convergence problems in κt and �i
x if no

additional constraint is imposed, and therefore we impose

κs1 = κtT . (15)

With this constraint, we further ensure that the parameters αx and βx can be
used for both Opop and Opf. The parameter constraint in (15) is appropriately
taken into account in the prior specification and in the derivation of the poste-
rior distributions, and this has no impact on the random walk specification.

3.2. Prior distributions

We will now describe the prior distributions for parameters and hyperparame-
ters, to complete the Bayesian specification of the model.

3.2.1. Population mortality parameters.

Prior distribution for αx. Following Czado et al. (2005) and Antonio et al.
(2015), we use the following prior for αx with x = x1, . . . , xX:

ex = exp(αx)
iid∼ Gamma(ax, bx). (16)

Prior distribution for βx. For the vector of parameters β = {βx1, . . . , βxX}, we
choose a prior distribution that automatically satisfies the constraint in (14):
the Von Mises–Fisher distribution, which has its origins in directional statistics
(vonMises, 1918; Fisher, 1953). To the best of our knowledge, Antoniadis et al.
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(2004) were the first to use this distribution as a prior in Bayesian analysis. The
prior distribution for β is denoted by

β ∼ vMF(μβ, cβ), (17)

for constants μβ (the mean direction vector) and cβ (the concentration param-
eter) with ‖μβ‖ = 1 and cβ > 0. The probability density function is given by

fX(β|μβ, cβ) = CX(cβ) exp
(
cβμT

β β
)
, (18)

where the normalization constant CX(c) equals

CX(c) = cX/2−1

(2π)X/2 IX/2−1(c)
, (19)

with Iv the modified Bessel function of the first kind of order v. See Hoff (2009)
for details on how to sample from this distribution.

Note that our approach differs from what is usually done in the actuarial
literature (see, for example, Czado et al. (2005), Li (2014), Antonio et al. (2015)),
in the sense that often transformations are applied in a Metropolis–Hastings
step after a sample has been accepted. In our approach, every proposed sample
already satisfies the necessary constraints because of our choice of the priors.

Prior specification for κt. In line with van Berkum et al. (2016), we assume a
randomwalkwith drift for the period effect κt. The prior distribution is specified
by

δ ∼ N(μδ, σ
2
δ ), (20)

σε ∼ Uniform(0, Aε), (21)

κt = κt−1 + δ + εt, with εt
iid∼ N(0, σ 2

ε ) for t > t1 and t �= s1

and κt1 = 0, κs1 = κtT . (22)

For variance hyperparameters, Gelman (2006) suggests using a Uniform(0, A)

prior on σ instead of an Inverse-Gamma(ε, ε) prior on σ 2, because if the esti-
mate of σ is close to zero, the posterior density will be sensitive to the choice of
ε. Therefore, we use a uniform prior on σ .

3.2.2. Portfolio-specific factors. The portfolio-specific factor�i
x represents the

ratio of the hazard rate for group i at age x and the hazard rate for the whole
population at age x, where i ∈ {pf, rest}. We do not want to make a priori
assumptions onwhethermortality in a group is higher or lower than the baseline
mortality, and therefore we impose E(�i

x) = 1 (∀x, ∀i ). We consider two prior
distributions for �i

x, an independent (Gamma) prior and a lognormal prior.
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Gamma prior. The Gamma prior on the age-dependent factors for group i is
given by

�i
x ∼ Gamma(cix, c

i
x), for x1 ≤ x ≤ xX. (23)

The factors are independent over ages x and between groups i . By choosing
equal values for the two parameters in the Gamma distribution, we ensure that
E(�i

x) = 1 for all x and i , and the variance of the prior can be controlled by the
choice of cix.

Lognormal prior. In this specification, we assume a mean reverting process
(AR(1)) for the logarithm of the age-dependent factors. This ensures that the
factors are non-negative. The lognormal prior on the age-dependent factors for
group i is given by

logit (ρi ) ∼ N(μρi , σ
2
ρi
), (24)

σi ∼ Uniform(0, Ai ), (25)

ln�i
x = μi+ρi ln�i

x−1 + ηix, with ηix
iid∼ N(0, σ 2

i (1 − ρ2
i )) for x1<x ≤ xX,

(26)
and ln�i

x1

iid∼ N(− 1
2σ

2
i , σ 2

i ),

and all the ln�i
x1 and ηix are independent. Note that this implies that there may

be dependence between group-specific mortality factors for different ages x,
while factors for different groups i are independent. Due to the autoregressive
structure in (26), this prior is also often referred to as an autoregressive smooth-
ing prior.

The prior for ρi is chosen such that it is restricted to the interval (−1, 1),
and the prior for σi is chosen in line with the other variance prior specifications.
The mean parameter is chosen to be μi = − 1

2 (1 − ρi )σ
2
i and the prior for �i

x1
is chosen such that E(�i

x) = 1 for all x and i , see Denuit et al. (2005).
In the next section, we specify the constants that are needed to finalize the

specification of the prior distributions for the parameters and hyperparameters.
With the definition of the prior distributions, our model is completely speci-
fied, and posterior distributions can thus be calculated. They can be found in
Appendix A.

4. EMPIRICAL STUDY

In this section, we apply our model to data from the Continuous Mortality In-
vestigation (CMI), which contains mortality statistics of assured male lives in
England and Wales. We use the years s ∈ S = {s1 = 1990, . . . , sS = 2000} and
the ages x ∈ X = {x1 = 40, . . . , xX = 90}. Dowd et al. (2011) also use the CMI
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FIGURE 3: The relative size of the portfolio in terms of observed deaths and observed exposures. For each
age, the relative size is computed as

∑
t d

pf
t,x/
∑

t d
pop
t,x and

∑
t e

pf
t,x/
∑

t e
pop
t,x , where each summation

is over t ∈ S.

dataset in estimating a two-population mortality model, but they use the years
1961–2005 and the ages 60–84.

We extend the dataset with mortality data on the England and Wales pop-
ulation for the years t ∈ T = {t1 = 1950, . . . , tT = 1989} and the same
ages x ∈ X to ensure we obtain mortality forecasts consistent with population
mortality forecasts.5 We use population mortality data for t ∈ S to construct
the rest group by subtracting portfolio deaths and exposures from the popu-
lation deaths and exposures in those cells (t, x) for which portfolio data are
available.

The size of the portfolio as a portion of the population, measured in ob-
served deaths and observed exposures, is shown in Figure 3. In total, there were
around 28.5 million years of exposure and 159,029 observed deaths. If mortality
in the portfolio were similar to that in the population, we would expect the ob-
served deaths and observed exposures to be of similar relative size. However, the
observed deaths and observed exposures clearly differ, and we see that mortality
in the portfolio is lower than in the population as whole.

We estimate four different models:6

1. The Lee–Carter model is used for population mortality for the England and
Wales population for t ∈ {T ,S} and x ∈ X , and parameters are estimated
using maximum likelihood. This method is referred to as POP(f).

2. The Lee–Carter model is used for population mortality for the England and
Wales population for t ∈ {T ,S} and x ∈ X , and parameters are estimated
in a Bayesian framework. This method is referred to as POP(B).
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3. The model described in Section 3.1 is used, with a Gamma prior for �i
x.

Population and group-specific mortality are estimated simultaneously in a
Bayesian framework. This method is referred to as PF(B-G).

4. The model described in Section 3.1 is used, with a logNormal prior for �i
x.

Population and group-specific mortality are estimated simultaneously in a
Bayesian framework. This method is referred to as PF(B-logN).

4.1. CMI assured lives — original dataset

In this section, we consider the original CMI dataset, and we use the ages and
years as described above. In the next section, we reduce the size of the CMI
dataset to investigate the effect of portfolio size on the posterior distribution of
the parameters.

Prior distributions. To complete the specifications of the prior distributions,
we have to choose the constants used in these specifications. We do this in such
a way that the priors contain little information about our prior beliefs, i.e. such
that the prior variance is large.

We run four MCMC chains in parallel. For the population mortality pa-
rameters αx, βx and κt, we use frequentist estimates α̂x, β̂x and κ̂t as starting
points, but in each chain, we add some randomGaussian noise to obtain differ-
ent starting values. Using the starting values for βx and κt, we obtain maximum
likelihood estimates in each chain for σ 2

β , δ and σ 2
ε , and we use these as initial

values for the hyperparameters. For the portfolio-specific factors �i
x, we take

the initial draw of the MCMC simulations equal to 1. For the hyperparameters
of �i

x, we start with ρi = 0.8 and σ 2
i = 1. The constants that complete the

specification of the prior distributions and the sampling variances used in the
Gibbs and Metropolis(–Hastings) sampling algorithms are chosen as follows:

• To ensure the prior does not contain much information, we use ax = bx ·
exp(α̂x) and bx = 0.01, see Antonio et al. (2015). This way, E[exp(αx)] =
exp(α̂x) with large variance.

• For β, we use μβ = 1√
X

· 1X with 1X a vector with ones of length X, and
cβ = 0.01.

• We use μδ = δ̂ (the Maximum Likelihood estimate of the drift, as obtained
from the frequentist estimates of the κt) and σ 2

δ = 0.52. For the variance
hyperparameter, we use Aε = 10.

• For the Gamma prior on the portfolio-specific factors, we use cix = 1 for all
x and for i ∈ {pf, rest}. As a result, the prior 95% confidence interval for �i

x
is approximately (0, 4).

• For the logNormal prior on the portfolio-specific factors, we use μρi = 0 and
σ 2

ρi
= 1, and for the variance hyperparameterwe use Ai = 10 for i ∈ {pf, rest}.
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FIGURE 4: Parameter estimates for the CMI and England and Wales datasets using portfolio data for
1990–2000 and ages 40–90. For the frequentist method (POP(f)), we show the Maximum Likelihood

estimates, and for the Bayesian methods (POP(B), PF(B-G) and PF(B-logN)) we show the 95% credible
interval (equal tailed) of the posterior distributions. (Color online)

• For the scale parameters used in the proposal densities, we start with dβ =
105, s2κt = 0.052, s2

�i
x

= 22, s2ρi = 0.052 and s2
σ 2
i

= 0.52. For the definition of

scale parameters, we refer to Appendix A.

Convergence diagnostics. We run 1,100,000 iterations in each chain of the
MCMC algorithm. We save every 500th iteration, and during the first 100,000
iterations, we calibrate the scale parameters of the proposal distributions every
100th iteration.7 Our trace plots show good mixing properties, the calculated
Gelman and Rubin statistics converge rapidly toward 1, and density plots of the
parameters in different chains overlap almost perfectly.8 Our final sample size
is 8,000.

Estimation results. Figure 4 shows frequentist andBayesian estimation results
for the population mortality parameters. The parameter estimates for POP(f)
are represented by dashed black lines, and the median and the 95% equal-tailed
credible intervals derived from the posterior distributions forPOP(B),PF(B-G)
and PF(B-logN) by, respectively, green, blue and red lines and areas.

The estimates forPOP(f) andPOP(B) overlap whichmeans that estimating
the Lee–Cartermodel and the time series model simultaneously gives practically
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FIGURE 5: Parameter estimates for �
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x and �rest

x using the original CMI portfolio. (Color online)
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FIGURE 6: Parameter estimates for �
pf
x and �rest

x when the CMI portfolio is reduced by a factor
of 100. (Color online)

the same best estimates as a two-step frequentist approach. The specification of
the hyperparameters therefore seems to have a limited effect on the posterior
distributions of the parameters. In models PF(B-G) and PF(B-logN), we also
include portfolio data. The credible intervals for αx and κt are similar to the
ones found for POP(B). For βx, we observe differences for all ages. The prior
specification for �i

x (Gamma versus lognormal) does not have a large effect on
the credible interval for βx. The posterior distributions for the hyperparameters
δ and σ 2

ε are also similar for all model specifications.
Figure 5 shows estimates for the portfolio-specific factors using the different

methods. The black line represents a frequentist method that corresponds to
methods used in practice. First, the Lee–Carter model is estimated on popula-
tion mortality. A Poisson GLMwith age-dependent factors is then estimated in
which the deaths in the portfolio are explained using the portfolio exposure and
the fitted population mortality rate as offset:

Di
t,x ∼ Poisson(Ei

t,xμ̂
LC
t,x · �i

x). (27)

The blue and red areas again correspond to the 95% equal-tailed credible inter-
vals for PF(B-G) and PF(B-logN).

The factors for the portfolio are all below 1, implying that mortality in the
portfolio is lower than the baseline mortality rate, and in the rest group, the
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factors are generally above 1. The baseline mortality rate μt,x in our model is
estimated using Opop ∪ Opf. Therefore, �

pf
x < 1 does not automatically imply

�rest
x > 1 or vice versa, since both �

pf
x and �rest

x apply only to Opf. Estimated
portfolio factors below 1 are in line with the results in Dowd et al. (2011) where
mortality for the CMI dataset is shown to be significantly lower than for the
England and Wales population.

The estimated factors from PF(B-G) show equally irregular behavior as the
frequentist estimates for the factors. We find different estimated Lee–Carter pa-
rameters for POP(f) on the one hand and PF(B-G) or PF(B-logN) on the
other hand. This leads to different baseline hazard rates μt,x which explains
why the frequentist portfolio-specific factor estimates differ slightly from their
Bayesian counterparts. The estimated factors for PF(B-logN), which incorpo-
rate dependence between ages within a group, are much smoother than the ones
for PF(B-G), where we assume independence.

The posterior means of the mean reversion coefficients for the logNormal
prior specification of �i

x are ρθpf = 0.997 and ρθ rest = 0.999.9 We see in Figure
5 that the posterior distributions of �

pf
x have smaller credible intervals than the

posterior distributions of �rest
x for most ages. This can be explained by the fact

that the portfolio is apparently more homogeneous than the remainder of the
population for those ages.

We have investigated different constants for the prior distributions, but the
estimated effects are hardly affected. Therefore, we conclude that any differences
in parameter estimates are caused by differences inmodel and prior specification
rather than prior constants.

Forecasting mortality. Figure 7 shows projections of mortality rates from (1)
a combination of POP(f) and frequentist estimates of portfolio-specific fac-
tors (hereafter indicated by PF(f)), (2) PF(B-G)and (3) PF(B-logN).10 In these
graphs, we only show fitted mortality rates for observations that are included
in the likelihood, which means we consider the population for t < 1990 and
the portfolio and the rest group for t ≥ 1990. Projected mortality rates for the
portfolio are less uncertain than the ones for the rest group in absolute terms,
but not when the uncertainty is expressed as a percentage of the best estimate.

Projections of mortality rates in a Bayesian setting using the two different
prior distributions for �i

x show little difference; both the medians and standard
deviations of the projections are similar.

We further observe that the prediction intervals from PF(B-G) and PF(B-
logN) are similar to those from PF(f), though only the first two include param-
eter uncertainty. Our projections include uncertainty in the variance parameter
σ 2

ε in the time seriesmodel, and a higher variance leads towider prediction inter-
vals whereas a lower variance leads to narrower prediction intervals. Including
the uncertainty in the variance parameter, therefore, does not necessarily lead
to wider prediction intervals. The slightly wider prediction intervals further in
the future are mainly caused by uncertainty in the drift parameter δ.
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FIGURE 7: Estimated and projected mortality rates from POP(f) in combination with frequentist estimates of
group-specific factors (red lines and areas), and from PF(B-G) and PF(B-logN) (blue and gray areas,

respectively) using the original CMI portfolio. (Color online)

4.2. CMI assured lives — reduced portfolio size

The CMI dataset is much larger than any portfolio for a single insurance com-
pany. Haberman et al. (2014) consider a minimum annual exposure of 25,000
life years and a minimum of 8 years of observations sufficient to estimate a
mortality model on the portfolio book itself. To assess how well our model per-
forms on smaller datasets, we artificially reduce the size of the CMI portfolio.
We divide observed deaths and exposures by a factor of 100, and the result-
ing deaths are subsequently rounded to the nearest integer. This ensures that
the crude portfolio-specific factors remain largely the same as in the original
dataset, which facilitates a comparison of the outcomes. The resulting dataset
has on average 25,000 life years annually. We have again defined the rest group
in such a way that the population is the disjoint union of the portfolio and the
rest group for (t, x) ∈ Opf.

We use the same constants to define the prior distributions and the same
initial values and settings in the MCMC algorithm as in the previous subsec-
tion. Convergence diagnostics again show good behavior; they have been made
available in an online appendix.
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FIGURE 8: Estimated and projected mortality rates from POP(f) in combination with frequentist estimates of
group-specific factors (black lines and gray areas), and from PF(B-G) and PF(B-logN) (blue and red areas,

respectively) using the reduced CMI portfolio. (Color online)

Estimation results. The posterior distributions for the Lee–Carter parameters
are similar to those in Figure 4, so we do not show these. Figure 6 shows the
portfolio-specific factors when estimated for the reduced portfolio. Since there
are now fewer lives in our dataset, the observed portfolio death rates showmore
volatile behavior over the years.

The right graph of Figure 6 shows the estimated factors for the rest group,
�rest
x . Now that the portfolio has become smaller, this group constitutes a larger

part of the general population. As a result, the posterior means are, in general,
closer to 1 and the posterior credible intervals are slightly smaller. In the left
graph, we observe how this results in frequentist estimates for �

pf
x which fluc-

tuate more over the years (see the black line). The estimates for �
pf
x are also

more volatile in the PF(B-G) model (in blue) when compared with the original
portfolio, and the corresponding posterior credible interval is much wider. In
the PF(B-logN) model (in red), the estimates are smoother than in Figure 5
while the posterior credible interval is again wider than before, but much less so
than for PF(B-G). This is due to the smoothing characteristic of PF(B-logN):
information from ages near x influences the estimates for �i

x. The PF(B-logN)
prior is more parsimonious than the one for PF(B-G) (it is a “shrinkage prior”)
and the effect of the prior specification on the posterior distribution is stronger
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if less data is available. We believe it is reasonable to assume that portfolio-
specific factors for ages close to each other are related, which makes the pos-
terior credible intervals from PF(B-logN) more plausible than those from
PF(B-G).

Forecasting mortality. Figure 8 shows projections of mortality rates from
PF(f), PF(B-G) and PF(B-logN) using the reduced CMI portfolio, which can
be compared to the mortality rate projections in Figure 7 where the whole CMI
portfolio is used.

The credible intervals and prediction intervals from PF(B-G) for mortal-
ity rates in the reduced CMI portfolio are much wider which is caused by the
wider credible intervals for�

pf
x , see Figure 6. The intervals formortality rates for

PF(B-logN) are a bit wider when the smaller CMI portfolio is used, but much
less so than the ones for PF(B-G). Based on Figures 6 and 8, we thus conclude
that parameter uncertainty in portfolio-specific factors can be substantial for
small portfolios, and that the amount of uncertainty may strongly depend on
the prior specification for the portfolio-specific factors.

Hoem (1973) already identified different sources of uncertainty in mortality
predictions but no quantification was given for the relative impact of the dif-
ference sources of uncertainty. In Table 1, we investigate the relative impacts by
showing themean and standard deviation of the predicted numbers of deaths for
future times t ∈ {2001, 2010, 2025} based on observations until sS = 2000, for
x = {45, 65, 85} and for all ages combined. To get the appropriate comparison,
we use the exposures at time sS for later times as well, so we take Epf

t,x = Epf
sS,x

for t ≥ sS. The mortality scenarios correspond to the ones used in Figures 7
and 8, and the figures presented in Table 1 are constructed using four different
methods as follows:

• Using PF(f), we predict mortality rates μ
pf
t,x, taking into account uncertainty

in the projection of the time series κt (but not parameter uncertainty). These
mortality rates are then multiplied by the exposures Epf

t,x = Epf
T,x to generate

the expected number of deaths, given the scenario for mortality rates E[Dpf
t,x |

μ
pf
t,x] (first column with intervals).

• Using PF(f), we predict mortality rates μ
pf
t,x, taking into account uncertainty

in the projection of κt. We still do not include parameter uncertainty but for
each generated mortality scenario, we include Poisson randomness by draw-
ing random numbers of deaths Dpf

t,x ∼ Poisson(Epf
t,xμ

pf
t,x) (second column).

• Using PF(B-G), we predict mortality rates μ
pf
t,x, taking into account uncer-

tainty in the projection of κt. Parameter uncertainty is now included, since
we use the MCMC samples. For each generated mortality scenario, we draw
random numbers of deaths Dpf

t,x ∼ Poisson(Epf
t,xμ

pf
t,x) (third column).

• For PF(B-logN), our approach is similar to that for PF(B-G) (fourth col-
umn).
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TABLE 1

PREDICTIVE MEAN AND STANDARD DEVIATION FOR FUTURE NUMBERS OF DEATHS FOR DIFFERENT
PROJECTION HORIZONS, SELECTED AGES AND FOR THE SUM OVER ALL AGES, FOR DIFFERENT MODELS THAT
INCLUDE DIFFERENT SOURCES OF UNCERTAINTY AND FOR THE ORIGINAL AND REDUCED PORTFOLIO SIZE.

Original Portfolio Size

Year
PF(f) PF(f) PF(B-G) PF(B-logN)

TS TS + Pois TS + Pois + PU TS + Pois + PU

x = 45 2001 (58.1 ; 1.9) (58.1 ; 7.9) (54.4 ; 7.8) (54.6 ; 7.8)
2010 (51.4 ; 5.4) (51.4 ; 9.0) (47.2 ; 9.5) (47.3 ; 9.6)
2025 (41.9 ; 7.0) (41.9 ; 9.5) (37.4 ; 11.1) (37.4 ; 11.2)

x = 65 2001 (277.5 ; 9.2) (277.5 ; 19.0) (270.7 ; 19.5) (274.1 ; 19.4)
2010 (245.4 ; 25.8) (245.4 ; 30.2) (238.5 ; 32.8) (241.7 ; 33.2)
2025 (199.9 ; 33.4) (199.9 ; 36.2) (194.1 ; 44.0) (196.6 ; 44.8)

x = 85 2001 (190.4 ; 3.6) (190.4 ; 14.3) (187.7 ; 14.8) (189.6 ; 14.6)
2010 (177.1 ; 10.7) (177.1 ; 17.1) (174.0 ; 18.4) (175.6 ; 18.5)
2025 (157.0 ; 15.1) (157.0 ; 19.6) (153.7 ; 23.1) (154.8 ; 23.5)

40 − 90 2001 (10302.8 ; 307.8) (10302.9 ; 324.1) (10077.4 ; 334.0) (10077.1 ; 332.7)
2010 (9225.2 ; 868.2) (9225.2 ; 873.5) (8995.6 ; 970.7) (9002.3 ; 972.8)
2025 (7682.1 ; 1134.5) (7682.1 ; 1137.9) (7484.7 ; 1416.9) (7493.6 ; 1425.5)

Reduced Portfolio Size

Year
PF(f) PF(f) PF(B-G) PF(B-logN)

TS TS + Pois TS + Pois + PU TS + Pois + PU

x = 45 2001 (0.6 ; 0.0) (0.6 ; 0.8) (0.6 ; 0.8) (0.6 ; 0.8)
2010 (0.6 ; 0.1) (0.6 ; 0.7) (0.6 ; 0.8) (0.5 ; 0.7)
2025 (0.4 ; 0.1) (0.4 ; 0.7) (0.5 ; 0.7) (0.4 ; 0.6)

x = 65 2001 (2.7 ; 0.1) (2.7 ; 1.7) (2.7 ; 1.7) (2.9 ; 1.7)
2010 (2.4 ; 0.3) (2.4 ; 1.6) (2.4 ; 1.6) (2.5 ; 1.6)
2025 (2.0 ; 0.3) (2.0 ; 1.4) (2.0 ; 1.5) (2.1 ; 1.5)

x = 85 2001 (2.1 ; 0.0) (2.1 ; 1.4) (2.1 ; 1.5) (1.7 ; 1.3)
2010 (1.9 ; 0.1) (1.9 ; 1.4) (1.9 ; 1.5) (1.6 ; 1.3)
2025 (1.7 ; 0.2) (1.7 ; 1.3) (1.7 ; 1.4) (1.4 ; 1.2)

40–90 2001 (103.2 ; 3.1) (103.2 ; 10.6) (104.7 ; 11.1) (102.3 ; 10.9)
2010 (92.4 ; 8.7) (92.4 ; 12.9) (94.3 ; 14.2) (92.0 ; 14.0)
2025 (77.0 ; 11.3) (77.0 ; 14.3) (79.3 ; 17.5) (77.5 ; 17.4)

If only uncertainty in the evolution of the time series κt is taken into account, the
uncertainty in the conditional expectation of Dpf

t,x givenμ
pf
t,x can be very small for

small portfolios, see the first column in the bottom panel of Table 1. For larger
portfolios, the uncertainty is much larger due to the higher exposures, as shown
in the top panel of that table. The uncertainty also becomes larger if uncertainty
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in the individual number of deaths (Poisson noise) is added. This is shown in the
second column, and the effect is of course stronger for the smaller portfolio.

If we compare the results with parameter uncertainty (third and fourth col-
umn) and without parameter uncertainty (second column), we conclude that
the impact on the predicted numbers of deaths is negligible compared to the
impact of the Poisson noise due to individual deaths. The mortality prediction
intervals for the smaller portfolio size with the Gamma prior are very wide, as
shown in Figure 8. However, the uncertainty in the future numbers of deaths is
similar to the cases where we only include time series and Poisson uncertainty.
Therefore, we conclude that for the time horizons considered here, the Poisson
noise due to individual deaths is more important than parameter uncertainty in
the portfolio-specific factors, and this turns out to be true for the smaller but
also for the larger portfolio.11

Given fixed mortality rates, death numbers at different ages are independent
(but of course not identically distributed). Therefore, one might expect that the
relevance of Poisson randomness disappears if we consider a whole insurance
portfolio and thus look at the sum of random death numbers over all ages. Pre-
dicted means and standard deviations for this sum over all ages are shown in the
bottom rows in both panels in Table 1. We observe that for the small portfolio
including Poisson uncertainty leads to larger uncertainty even at the portfolio
level, but this is not true for large portfolios. From comparing the second to the
third and fourth column, we further see that parameter uncertainty has little
impact on the short horizon, but the effect of parameter uncertainty increases
with the projection horizon, regardless of portfolio size. This is explained by the
uncertainty in the mortality trend parameter δ which has an effect on mortality
rates that increases over time. We conclude the following:

• For large portfolios, individual mortality risk (modeled through Poisson
noise) is important for individual ages, but not at the portfolio level. For small
portfolios, individual mortality risk is important both for individual ages and
at the portfolio level.

• For both large and small portfolios, parameter uncertainty in portfolio-
specific factors is not relevant since it is overshadowed by Poisson noise.

• For both large and small portfolios, parameter uncertainty in the mortality
trend is not relevant in the short term, but of increasing importance if the
projection horizon increases.

The results regarding trend uncertainty are in line with the results for small port-
folios in Haberman et al. (2014). However, we show that even at the portfolio
level, Poisson and trend uncertainty cannot be ignored.

5. CONCLUSION

Proper risk management for portfolios in life insurance companies or pen-
sion funds requires a reliable method to estimate the distribution of future
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deaths in such portfolios. This involves the modeling of population-wide
mortality trends, a specification of portfolio-specific deviations from this
trend, and the conditional distribution for the individual deaths in a port-
folio, given its mortality rates. In this paper, we use Bayesian inference
to analyze these three sources of uncertainty in life insurance portfolio
data. This may help to generate scenarios for survival in a portfolio in
which these three different components in the predictions can be explicitly
distinguished.

The law of large numbers implies that the last component will be rela-
tively small for very large portfolios. But when the portfolio under consid-
eration is small or when observations have only been available for a limited
number of years, it may be difficult to know a priori what part of the fluc-
tuations in the observations over age and time should be assigned to genuine
changes in mortality over time, to noise in the observations and to parame-
ter uncertainty. For those cases, we believe that our method may turn out to
be a useful alternative to what has been proposed in the actuarial literature
so far.

By using both the CMI dataset of assured male lives and a scaled ver-
sion of that dataset, we show that estimates of the difference between country-
wide and portfolio-specific hazard rates strongly depend on a priori assump-
tions about the age dependence of that difference. Assuming that there is no
dependence for different ages can give unrealistically large posterior credible
intervals for portfolio-specific factors in small portfolios, while an alterna-
tive based on a autoregressive smoothing prior gives much more satisfactory
results.

However, the impact of uncertainty in the portfolio-specific factors on the
predictive distributions of future number of deaths in the portfolio is negligible
compared to the Poisson noise that is added by individual deaths, regardless
of the projection horizon. As the projection horizon increases, the effect of pa-
rameter uncertainty on predictive distributions becomes increasingly relevant,
which is solely caused by uncertainty in the mortality trend. This reinforces our
conclusion that a full analysis for small portfolios must always be based on an
explicit description of the different sources for uncertainty in the predictive dis-
tributions of future deaths.
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NOTES

1. See Section 4 for a description of the CMI dataset on assured lives. Colored versions of all
figures can be found online.

2. We could use a wider age range for the population, but we choose to use the same set of ages
in the population as we have available for the portfolio. This way, we ensure the parameters αx, βx
and κt are most appropriate for projection of mortality for the portfolio.

3. We use the Lee–Carter model to specify the baseline mortality, but our model can easily
be extended to include e.g. a cohort effect as in Renshaw and Haberman (2006). Also, note that
our model differs from the augmented common-factor model as in (4) since we do not include an
extra dynamic factor whenmodeling subpopulations. The absence of such a termmakes our model
similar to the common factor model also discussed in Li and Lee (2005).

4. We use time-independent portfolio factors, because estimating time dynamics on a few his-
torical years can lead to spurious forecasting results. As a result, mortality improvements are
perfectly correlated between groups, and our model is less appropriate for assessing basis risk in
longevity hedging as in Haberman et al. (2014).

5. Population mortality data is obtained from the Human Mortality Database. The Hu-
man Mortality Database is a joint project of the University of California, Berkeley (USA)
and the Max Planck Institute for Demographic Research (Germany). Data are available at
http://www.mortality.org.

6. For POP(f) and POP(B) , we only apply the parameter restrictions in (14), and for PF(B-G)
and PF(B-logN) we apply the parameter restrictions in (14) and (15).

7. The large number of required iterations may be due to the high dimension of our model.
However, since our Metropolis–Hastings algorithm for β consists of only one step, instead of the
usual loop over all ages (see e.g. Czado et al. (2005) and Antonio et al. (2015)), using the Von
Mises–Fisher distribution as proposal density speeds up the algorithm considerably.

8. Convergence diagnostics are available in an online appendix.
9. Parameters ρi close to 1 imply that a random walk (with drift) model might be more appro-

priate for log�i
x. For this alternative approach, see Congdon (2009). However, since the estimates

of the parameters ρi are already close to 1, we expect that the posterior distributions for other
parameters will not differ significantly for a random walk specification.
10. Thesemortality projections are constructed as follows. For eachMCMCsample, we generate

100 scenarios for future κt ’s using κT , δ and σ 2
ε . The mortality rates are then constructed using the

other parameters αx, βx and �i
x from that sample. Hence, a total of 800,000 scenarios are used to

construct the prediction intervals in Figure 7.
11. When sampling the individual deaths in practice (e.g. for portfolio valuation purposes), one

may prefer to use the Bernoulli distribution. Here we use the Poisson distribution to remain con-
sistent with the approach used for estimation.

REFERENCES
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GSCHLÖSSL, S., SCHOENMAEKERS, P. and DENUIT, M. (2011) Risk classification in life insurance:
Methodology and case study. European Actuarial Journal, 1, 23–41.

HABERMAN, S., KAISHEV, V., MILLOSSOVICH, P., VILLEGAS, A., BAXTER, S., GACHES, A.,
GUNNLAUGSSON, S. and SISON, M. (2014) Longevity basis risk: A methodology for as-
sessing basis risk. Technical report, Institute and Faculty of Actuaries. Available online at:
www.actuaries.org.uk/events/pages/sessional-research-programme.

HABERMAN, S. and RENSHAW, A. (2011) A comparative study of parametric mortality projection
models. Insurance: Mathematics and Economics, 48(1), 35–55.

HOEM, J. (1973) Levels of error in population forecasts.Artikler fra Statistisk Sentralbyrå, 61, 1–46.
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APPENDIX

A. POSTERIOR DISTRIBUTIONS

We derive the posterior distribution for all parameters in the model. For convenience, we
define the following variables:
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D = {Dpop, Dpf, Drest}, E = {Epop, Epf, Erest},
α = {αx1 , . . . , αxX}, β = {βx1 , . . . , βxX}, κ = {κt1 , . . . , κtT },
Θ = {Θpf,Θrest}, ρθ = {ρpf, ρrest}, σ2

θ = {σ 2
pf, σ

2
rest},

with (Dpop
t,x , Epop

t,x ) defined on (t, x) ∈ Opop and (Di
t,x, E

i
t,x) defined on (t, x) ∈ Opf for i ∈

{pf, rest}. See Section 3 for the definition of Opop and Opf.
We further define the set Λ that contains both data and parameters:

Λ = {D, E,α, β, κ, δ, σ 2
ε ,Θ, ρθ , σ

2
θ },

and remark that ρθ and σ2
θ are not needed when we use a Gamma prior for the portfolio-

specific factors.

A.1. Age parameters for population mortality

A.1.1. Gibbs sampling for αx. The individual αx’s are independent. Therefore, the posterior
distribution for a single ex = exp(αx) with x1 ≤ x ≤ xX is given by

f (ex|Λ\{ex}) ∝ f (D|E, e,β,κ,Θpf,Θrest) f (ex) (A1)

∝
∏
t∈T

⎛⎝e−Epf
t,xex exp[βxκt ]�

pf
x

(
Epf
t,xex exp[βxκt]�pf

x

)Dpf
t,x

Dpf
t,x!

⎞⎠Ipft,x

×
∏
t∈T

⎛⎝e−Erest
t,x ex exp[βxκt ]�

rest
x

(
Erest
t,x ex exp[βxκt]�

rest
x

)Drest
t,x

Drest
t,x !

⎞⎠Irestt,x

×
∏
t∈T

⎛⎝e−Epop
t,x ex exp[βxκt ]

(
Epop
t,x ex exp[βxκt]

)Dpop
t,x

Dpop
t,x !

⎞⎠Ipopt,x

× baxx
�(ax)

eax−1
x exp[−bxex]

∝ exp[−(bx + dx)ex] · eax+D•x−1
x ,

with

dx =
∑
t∈T

{
Ipft,x
(
Epf
t,x exp[βxκt]�

pf
x

)
+ I restt,x

(
Erest
t,x exp[βxκt]�rest

x

)+ Ipopt,x

(
Epop
t,x exp[βxκt]

)}
and

D•x =
∑
t∈T

{
Ipft,x · Dpf

t,x + I restt,x · Drest
t,x + Ipopt,x · Dpop

t,x

}
=
∑
t∈T

Dpop
t,x .

The last line in (A1) is proportional to a Gamma(ax + D•x, bx + dx) distribution. Therefore,
we can use Gibbs sampling to draw a new value of ex, which can subsequently be transformed
into a new value of αx.
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A.1.2. Metropolis sampling for βx. The posterior distribution for β is given by

f (β|Λ\{β}) ∝ f (D|E,α, β, κ,Θpf,Θrest) f (β) (A2)

∝
∏
x∈X

∏
t∈T

⎛⎝e−Epf
t,xex exp[βxκt ]�

pf
x

(
Epf
t,xex exp[βxκt]�pf

x

)Dpf
t,x

Dpf
t,x!

⎞⎠Ipft,x

×
∏
x∈X

∏
t∈T

⎛⎝e−Erest
t,x ex exp[βxκt ]�

rest
x

(
Erest
t,x ex exp[βxκt]�

rest
x

)Drest
t,x

Drest
t,x !

⎞⎠Irestt,x

×
∏
x∈X

∏
t∈T

⎛⎝e−Epop
t,x ex exp[βxκt ]

(
Epop
t,x ex exp[βxκt]

)Dpop
t,x

Dpop
t,x !

⎞⎠Ipopt,x

× exp(cβμT
β β).

Given a current value β̃ and scaling parameter dβ , we sample a proposal β̂ from the distri-
bution vMF(β̃, dβ). The proposal distribution is symmetric, and the acceptance probability
is thus given by

φ = min

{
f (β̂; |Λ\{β̂})
f (β̃|Λ\{β̃}) ; 1

}
.

A.2. Period parameters for population mortality

A.2.1. Metropolis sampling for κt . Define κ−t = {κt1 , . . . , κt−1, κt+1, . . . , κsS}. The posterior
distribution of κt for t1 < t < tT and s1 < t ≤ sS is given by

f (κt|Λ\{κt}) ∝ f (D|E, α, β, κ,Θpf,Θrest) f (κ|κt1 , δ, σ 2
ε ) (A3)

∝
∏
x∈X

[
exp

(
−Epf

t,x exp[αx + βxκt]�pf
x

)
exp

(
Dpf
t,xβxκt

)]Ipft,x
×
∏
x∈X

[
exp

(−Erest
t,x exp[αx + βxκt]�rest

x

)
exp

(
Drest
t,x βxκt

)]Irestt,x

×
∏
x∈X

[
exp

(−Epop
t,x exp[αx + βxκt]

)
exp

(
Dpop
t,x βxκt

)]Ipopt,x

× f (κt|κ−t, δ, σ 2
ε ),

in which the expression in the last line can be simplified:

• for t1 < t < tT and s1 < t < sS:

f (κt|κ−t, δ, σ 2
ε ) ∝ f (κt|κt−1, δ, σ

2
ε ) f (κt+1|κt, δ, σ 2

ε )

∼ N
(
1
2
(κt−1 + κt+1),

1
2
σ 2

ε

)
,
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• for t = sS:

f (κt|κ−t, δ, σ 2
ε ) ∝ f (κt|κt−1, δ, σ

2
ε )

∼ N
(
κt−1 + δ, σ 2

ε

)
.

For κtT and κs1 , we derive the joint posterior distribution, since we have applied the restriction
κtT = κs1 . It is given by

f (κtT , κs1 |Λ\{κtT , κs1 }) ∝ f (D|E, α, β,κ,Θpf,Θrest) f (κ|κt1 , δ, σ 2
ε ) (A4)

∝
s1∏

t=tT

∏
x∈X

[
exp

(
−Epf

t,x exp[αx + βxκt]�pf
x

)
exp

(
Dpf
t,xβxκt

)]Ipft,x
×

s1∏
t=tT

∏
x∈X

[
exp

(−Erest
t,x exp[αx + βxκt]�rest

x

)
exp

(
Drest
t,x βxκt

)]Irestt,x

×
s1∏

t=tT

∏
x∈X

[
exp

(−Epop
t,x exp[αx + βxκt]

)
exp

(
Dpop
t,x βxκt

)]Ipopt,x

× f (κtT , κs1 |κ−{tT ,s1}, δ, σ
2
ε ),

in which the expression in the last line can be simplified:

f (κtT , κs1 |κ−{tT ,s1}, δ, σ
2
ε ) = f (κtT |κ−{tT ,s1}, δ, σ

2
ε )

∝ f (κtT |κtT−1, δ, σ
2
ε ) f (κs1+1|κs1 , δ, σ 2

ε )

∼ N
(
1
2
(κtT−1 + κs1+1),

1
2
σ 2

ε

)
.

Given a current value κ̃t andMetropolis sampling variance s2κt , we sample a proposal κ̂t from
the distribution N(κ̃t, s2κt ). This proposal distribution is symmetric, and the acceptance prob-
ability is thus given by

φ = min
{
f (κ̂t|Λ\{κ̂t})
f (κ̃t|Λ\{κ̃t}) ; 1

}
.

A.2.2. Gibbs sampling for δ. Define �κt = κt − κt−1. Note that we have applied the restric-
tion κs1 := κs1−1 = κtT , and that summations are therefore not simply over all t. The posterior
distribution of δ is given by

f (δ|Λ\{δ}) ∝ f (κ|κ1, δ, σ 2
ε ) f (δ) (A5)

∝ exp

⎡⎣−
tT∑

t=t1+1

[�κt − δ]2

2σ 2
ε

−
sS∑

t=s1+1

[�κt − δ]2

2σ 2
ε

⎤⎦ · exp
[
− [δ − μδ ]2

2σ 2
δ

]

∝ exp
[
− 1
2aδ

(
δ2 − 2δbδ

)]
∼ N (bδ, aδ) ,
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with

aδ = σ 2
ε

(T∗ − 2) + σ 2
ε /σ 2

δ

,

and

bδ = (T∗ − 2)

(T∗ − 2) + σ 2
ε /σ 2

δ

·
⎛⎝ 1

(T∗ − 2)

⎧⎨⎩
tT∑

t=t1+1

�κt +
sS∑

t=s1+1

�κt

⎫⎬⎭
⎞⎠+ σ 2

ε /σ 2
δ

(T∗ − 2) + σ 2
ε /σ 2

δ

· μδ.

We can use Gibbs sampling to draw a new value for δ.

A.2.3. Gibbs sampling for σ 2
ε . The posterior distribution of σ 2

ε is given by

f (σ 2
ε |Λ\{σ 2

ε }) ∝ f (κ|κ1, δ, σ 2
ε ) f (σ 2

ε ) (A6)

=
tT∏

t=t1+1

1√
2πσ 2

ε

exp
[
− [�κt − δ]2

2σ 2
ε

]
·

sS∏
t=s1+1

1√
2πσ 2

ε

exp
[
− [�κt − δ]2

2σ 2
ε

]
× σ−1

ε · 1[0≤σε≤Aε ]

∝ (σ−2
ε )

T∗−1
2 exp

⎡⎣−(σ−2
ε ) · 1

2

⎛⎝ tT∑
t=t1+1

(�κt − δ)2 +
sS∑

t=s1+1

(�κt − δ)2

⎞⎠⎤⎦ .

Therefore, we know that the posterior distribution of σ−2
ε is

f (σ−2
ε |Λ\{σ 2

ε }) ∝ (σ−2
ε )

T∗−1
2 −1−1 · exp

⎡⎣−(σ−2
ε ) · 1

2

⎛⎝ tT∑
t=t1+1

(�κt − δ)2 +
sS∑

t=s1+1

(�κt − δ)2

⎞⎠⎤⎦
∼ Gamma

⎛⎝T∗ − 3
2

,
1
2

⎧⎨⎩
tT∑

t=t1+1

(�κt − δ)2 +
sS∑

t=s1+1

(�κt − δ)2

⎫⎬⎭
⎞⎠ .

We can use Gibbs sampling to draw new values of σ−2
ε which can be transformed to σ 2

ε .

A.3. Portfolio-specific mortality — Gamma prior

The posterior distribution of �i
x for i ∈ {pf, rest} and y1 ≤ x ≤ yY is given by

f (�i
x|Λ\{�i

x}) ∝ f (D|E,Θpf,Θrest, α, β, κ) f (�i
x) (A7)

∝
∏
t∈S

(
e−Eit,x exp[αx+βxκt ]�i

x
(Ei

t,x exp[αx + βxκt]�i
x)

Dit,x

Di
t,x!

)Iit,x

× (cix)
cix

�(cix)
(�i

x)
cix−1 exp[−cix�i

x]

∝ exp[−(cix + f ix)�
i
x] · (�i

x)
cix+Di•x−1,
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with

f ix =
∑
t∈S

Iit,x · Ei
t,x exp[αx + βxκt] and Di

•x =
∑
t∈S

Iit,x · Di
t,x.

The last line in (A7) is proportional to a Gamma(cix + Di
•x, c

i
x + f ix) distribution and we can,

therefore, use Gibbs sampling to obtain new values for �i
x. Note that the posterior mean can

be written as

cix
cix +∑t∈S I

i
t,x · Ei

t,xμt,x
· 1 +

∑
t∈S I

i
t,x · Ei

t,xμt,x

cix +∑t∈S I
i
t,x · Ei

t,xμt,x
·
∑

t∈S I
i
t,x · Di

t,x∑
t∈S I

i
t,x · Ei

t,xμt,x
.

If cix is chosen small relative to
∑

t∈S I
i
t,x ·Ei

t,xμt,x, the posterior mean is close to
∑

t∈S Iit,x·Dit,x∑
t∈S Iit,x·Eit,xμt,x

which is often used in practice to determine portfolio-specific factors.

A.4. Portfolio-specific mortality — lognormal prior

Define Θi = {�i
y1

, . . . , �i
yY

}. The mean reverting process on the log of the portfolio-specific
factors in (26) can also be written as a multivariate lognormal distribution (Purcaru et al.,
2004, Section 3.3.2):

Θi ∼ lognormal(μ̃i ,Σi ), (A8)

with μ̃i = − 1
2σ

2
i 1Y where 1Y is a column vector of ones of length Y and (Σi )xy = ρ

|x−y|
i σ 2

i .
Before we derive the posterior distribution for �i

x and the hyperparameters, we define the
following variables and relations:

Σi = σ 2
i · Γ(ρi )

Σ−1
i = 1

σ 2
i

· Γ−1(ρi ) = 1

σ 2
i

1

1 − ρ2
i

· ˜Γ−1(ρi )

|Σi | = ∣∣σ 2
i · Γ(ρi )

∣∣ = (σ 2
i )Y · (1 − ρ2

i )
Y−1

Ψi = lnΘi − μ̃i = lnΘi + 1
2
σ 2
i 1Y,

with

Γ(ρ) =

⎛⎜⎜⎜⎜⎜⎝
1 ρ · · · ρY−2 ρY−1

ρ 1 · · · ρY−3 ρY−2

...
...

. . .
...

...

ρY−2 ρY−3 · · · 1 ρ

ρY−1 ρY−2 · · · ρ 1

⎞⎟⎟⎟⎟⎟⎠, ˜Γ−1(ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −ρ 0 . . . 0

−ρ 1 + ρ2 −ρ
. . . 0

0 −ρ
. . .

. . . 0
...

...
. . . 1 + ρ2 −ρ

0 0 · · · −ρ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A.4.1. Metropolis–Hastings sampling for �i
x. Define Θi

− j =
{�i

y1
, . . . , �i

j−1, �
i
j+1, . . . , �

i
yY

}. The posterior distribution of �i
x for i ∈ {pf, rest} and
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y1 ≤ x ≤ yY is given by

f (�i
x|Λ\{�i

x}) ∝ f (D|E,Θpf,Θrest, α,β,κ) f (Θi |ρi , σ 2
i ) (A9)

∝
∏
t∈S

(
e−Eit,x exp[αx+βxκt ]�i

x(�i
x)

Dit,x
)Iit,x

× f (�i
x|Θi

−x, ρi , σ
2
i ).

In this last equation, we can simplify f (�i
x|Θi

−x, ρi , σ
2
i ) for different x:

• for x = y1:

f (�i
x|Θi

−x, ρi , σ
2
i ) ∝ f (�i

x|ρi , σ 2
i ) · f (�i

x+1|�i
x, ρi , σ

2
i )

= 1

�i
x

√
2πσ 2

i

· exp
[
− (ln�i

x + 1
2σ

2
i )2

2σ 2
i

]

× 1

�i
x+1

√
2πσ 2

i (1 − ρ2
i )

· exp
[
− (ln�i

x+1 + 1
2σ

2
i (1 − ρi ) − ρi ln�i

x)
2

2σ 2
i (1 − ρ2

i )

]

∝ 1

�i
x

√
2πσ 2

i (1 − ρ2
i )

· exp
[
− 1

2σ 2
i (1 − ρ2

i )

(
ln�i

x + 1
2
σ 2
i − ρi (ln�i

x+1 + 1
2
σ 2
i )

)2
]

∼ logN
(

−1
2
σ 2
i + ρi (ln�i

x+1 + 1
2
σ 2
i ), σ 2

i (1 − ρ2
i )

)
,

• for y1 < x < yY:

f (�i
x|Θi

−x, ρi , σ
2
i ) ∝ f (�i

x|�i
x−1, ρi , σ

2
i ) · f (�i

x+1|�i
x, ρi , σ

2
i )

∼ logN
(

−1
2
σ 2
i + ρi

1 + ρ2
i

(
ln�i

x−1 + ln�i
x+1 + σ 2

i

)
, σ 2

i

(1 − ρ2
i )

(1 + ρ2
i )

)
,

• for x = yY:

f (�i
x|Θi

−x, ρi , σ
2
i ) ∝ f (�i

x|�i
x−1, ρi , σ

2
i )

∼ logN
(

−1
2
σ 2
i + ρi (ln�i

x−1 + 1
2
σ 2
i ), σ 2

i (1 − ρ2
i )

)
.

Given a current �̃i
x and Metropolis–Hastings sampling variance s2

�i
x
, we draw a proposal �̂i

x

from the distribution ln �̂i
x ∼ N(ln �̃i

x − 1
2 s

2
�i
x
, s2

�i
x
). Using this proposal distribution ensures

that E[�̂i
x] = exp[ln �̃i

x− 1
2 s

2
�i
x
+ 1

2 s
2
�i
x
] = �̃i

x. The proposal distribution is not symmetric and
the acceptance probability is thus given by

φ = min
{
f (�̂i

x|Λ\{�̂i
x})

f (�̃i
x|Λ\{�̃i

x})
· g(�̃

i
x|�̂i

x)

g(�̂i
x|�̃i

x)
; 1
}

.

Here, g(.|�x) is the lognormal density which gives the logarithm of the stochastic variable
mean ln�x − 1

2 s
2
�x

and variance s2�x
.
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A.4.2. Metropolis–Hastings sampling for ρi . The posterior distribution of ρi for i ∈
{pf, rest} is given by

f (ρi |Λ\{ρi }) ∝ f (Θi |σ 2
i , ρi ) · f (ρi ) (A10)

= 1
(2π)Y/2�i

y1
· · · �i

yY
· |Σi |1/2

× exp
[
−1
2
(lnΘi − μi )Σ−1

i (lnΘi − μi )
′
]

× 1√
2πσ 2

ρi

· exp
[
− (logit (ρi ) − μρi )

2

2σ 2
ρi

]
· 1
ρi (1 − ρi )

∝ 1

ρi (1 − ρi )(1 − ρ2
i )

Y−1
2

× exp

⎡⎣− aiρ
2σ 2

i (1 − ρ2
i )

(
ρi − biρ

aiρ

)2
⎤⎦ · exp

[
− (logit (ρi ) − μρi )

2

2σ 2
ρi

]
,

with aiρ = ∑yY−1
x=y1+1(�

i
x)

2 and biρ = ∑yY
x=y1+1 � i

x−1�
i
x. This final expression will be

used in the Metropolis–Hastings sampling algorithm. For a given current value ρ̃i and
Metropolis–Hastings sampling variance s2ρi , we draw a proposal ρ̂i from the distribution
ρ̂i ∼ TN(ρ̃i , s2ρi |0, 1), with TN(a, b|c, d) a truncated normal distribution with mean a, vari-
ance b, lower and upper bound c and d, respectively.We use the truncated normal distribution
to ensure the proposal is between 0 and 1. The proposal distribution is not symmetric and
the acceptance probability is thus given by

φ = min
{
f (ρ̂2

i |Λ\{ρ̂2
i })

f (ρ̃2
i |Λ\{ρ̃2

i })
· g(ρ̃

2
i |ρ̂2

i )

g(ρ̂2
i |ρ̃2

i )
; 1
}

,

where g is the density for the truncated normal distribution as described above.

A.4.3. Metropolis–Hastings sampling for σ 2
i . The posterior distribution of σ 2

i is given by

f (σ 2
i |Λ\{σ 2

i }) ∝ f (Θi |σ 2
i , ρi ) · f (σ 2

i ) (A11)

= 1
(2π)Y/2�i

y1
· · · �i

yY
|Σi |1/2 · exp

[
−1
2
(lnΘi − μi )

′Σ−1
i (lnΘi − μi )

]
× σ−1

i

∝ 1

σY+1
i

· exp
[
−σ−2

i

1
2
(lnΘi − μi )

′Γ−1(ρi )(lnΘi − μi )

]
.

We use the final expression for the Metropolis–Hastings sampling algorithm. Given a cur-
rent value σ̃ 2

i and Metropolis–Hastings sampling variance s2
σ 2
i
, we draw a new candidate σ̂ 2

i

from the proposal distribution ln σ̂ 2
i ∼ N(ln σ̃ 2

i − 1
2 s

2
σ 2
i
, s2

σ 2
i
). The proposal distribution is not
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symmetric and the acceptance probability is thus given by

φ = min
{
f (σ̂ 2

i |Λ\{σ̂ 2
i })

f (σ̃ 2
i |Λ\{σ̃ 2

i }) · g(σ̃
2
i |σ̂ 2

i )

g(σ̂ 2
i |σ̃ 2

i )
; 1
}

.

Here, g(.|σ 2
i ) is the lognormal density which gives the logarithm of the stochastic variable

mean ln σ 2
i − 1

2 s
2
σ 2
i
and variance s2

σ 2
i
.
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