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Groups acting simply transitively on vertex sets of
hyperbolic triangular buildings
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Abstract

We construct and classify all groups given by triangular presentations associated to the smallest
thick generalized quadrangle that act simply transitively on the vertices of hyperbolic triangular
buildings of the smallest non-trivial thickness. Our classification yields 23 non-isomorphic torsion-
free groups (which were obtained in an earlier work) and 168 non-isomorphic torsion groups
acting on one of two possible buildings with the smallest thick generalized quadrangle as the
link of each vertex. In analogy with the Ã2 case, we find both torsion and torsion-free groups
acting on the same building.

1. Introduction

Intensive study of groups acting simply transitively on the vertices of Euclidean buildings was
initiated in [8, 9]. This work has had considerable impact in several directions; for instance, it
led to new examples of fake projective planes [18] and, finally, to their full classification [10]. In
the Ã2 case, there are two non-isomorphic buildings of minimal non-trivial thickness admitting a
simply transitive action, and eight isomorphism classes of groups acting on the vertices of these
two buildings simply transitively and in a type-preserving manner. Within this isomorphism
class, five groups are torsion-free and three have torsion [9].

In this paper we study groups acting simply transitively on vertex sets of hyperbolic buildings
with the smallest thick generalized quadrangle as the link of each vertex. The torsion-free
groups acting simply transitively on such buildings were classified in [16]. Here we classify
triangle presentations associated to the smallest thick generalized quadrangle, as well as groups
with torsion coming from these presentations. Together with [16], this gives us a complete
classification of groups acting simply transitively on the vertices of hyperbolic triangular
buildings of the smallest non-trivial thickness, since simply transitive action on vertices is
an analogue of a triangle presentation (see [8]). We replace a finite projective plane considered
in [8] with a generalized quadrangle. Minimal non-trivial thickness is 3. It is enough to consider
quadrangles, since there are no three-valent generalized hexagons or octagons, and thus for
generalized hexagons and octagons we cannot have a simply transitive action on vertices. We
wish to emphasize that our groups act simply transitively on vertices of hyperbolic buildings,
whereas other authors have considered groups acting on, for example, chambers (see [17]) or
panels (see [12]).

It is known [21] that up to isomorphism, there are only two possible triangular hyperbolic
buildings with the smallest generalized quadrangle as the link of each vertex that admit a
simply transitive action. We note that in the formulation of the main theorem in [21], the
appropriate polygonal complexes are required to be symmetric, but the proof works also for
buildings admitting simply transitive actions.

In [16] the authors constructed, for any n, torsion-free groups acting cocompactly on
hyperbolic buildings with n-gonal chambers. Our strategy in this paper is to modify the
construction in [16] to include the torsion case as well.
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Our classification gives 168 non-isomorphic torsion groups acting on vertices of one of two
possible buildings with the smallest thick generalized quadrangle as the link of each vertex.
In analogy with the Ã2 case, we find both torsion and torsion-free groups acting on the same
building. These groups are listed in the Appendix. The two possible buildings are denoted
by (1) and (2) in the Appendix.

The link of order 2 (defined in Section 2) for a Kac–Moody building with the minimal
generalized quadrangle as the link of each vertex and equilateral triangular chambers was
computed in an unpublished paper by the first author and Cartwright and Steger [5], using
an invariant for links of order 2 developed by Steger. The Kac–Moody building coincides with
our building number (2).

By [21], there are only two possible isomorphism classes of buildings with the smallest thick
generalized quadrangle as the link of each vertex, and by the results of the present paper at
least two of these are non-isomorphic. Thus all the groups from the Appendix with building
number (2) are cocompact lattices in the automorphism group of the corresponding Kac–
Moody building. It remains to determine whether it is possible to embed these lattices into the
corresponding Kac–Moody group.

The existence of cocompact lattices in certain Kac–Moody groups has already been
established. In [7], the authors generalized Lubotzky’s construction of Schottky groups of
automorphisms in SL2 over a non-Archimedean local field to give torsion-free cocompact lattices
in any rank 2 locally compact Kac–Moody group over a finite field Fq. In [4], Capdebosq and
Thomas classified cocompact lattices with torsion and with quotient a simplex in rank 2 Kac–
Moody groups corresponding to symmetric generalized Cartan matrices. In [6], the first author
and Cobbs showed that over the field with two elements, rank 3 Kac–Moody groups of non-
compact hyperbolic type whose Weyl groups are a free product of copies of Z/2Z contain a
cocompact lattice that also acts discretely and cocompactly on a simplicial tree. In [2, 3],
Bourdon constructed a family of cocompact lattices in the automorphism groups of certain
hyperbolic Kac–Moody buildings. In [20], Rémy and Ronan showed that Bourdon’s cocompact
lattices Γr,q+1, with r > 5 and q > 3, can be embedded into the closure of right-angled
Kac–Moody groups in the automorphism groups of their buildings, Ir,q+1 for q a prime power.

In all of the above cases, the Kac–Moody buildings are right-angled. The groups we construct
here are the first examples of cocompact lattices acting simply transitively on vertices of
hyperbolic triangular Kac–Moody buildings that are not right-angled.

From [24] it is known that groups acting cocompactly on hyperbolic buildings in such a
way that the chamber is a polygon with at least six sides are residually finite. But whether
or not groups acting cocompactly on triangular hyperbolic buildings are residually finite
remains an open question. Our hyperbolic groups acting simply transitively on triangular
hyperbolic buildings are possible candidates for such groups that are not residually finite. The
commutator subgroups of many of our examples are perfect groups (that is, they have trivial
abelianizations), and an extensive computer search (which was carried out since the paper [16]
was completed) did not find any normal subgroups of these commutator subgroups.

To prove our main theorem, we used a program written in Fortran to determine the
equivalence classes of triangular presentations. We used Magma to determine isomorphism
classes of dual graphs of polyhedra and hence of triangle presentations.

2. Definitions and main results

Recall that a generalized m-gon is a connected, bipartite graph of diameter m and girth (the
length of shortest circuit) 2m, in which each vertex lies on at least two edges.

By a polyhedron we mean a two-dimensional complex which is obtained from several oriented
p-gons (Euclidean or hyperbolic) with words on the boundary, by identification of sides with
the same labels, respecting orientation. We assume that each side of our polygons has length 1.
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GROUPS ACTING SIMPLY TRANSITIVELY ON VERTEX SETS 103

Consider a sphere of a radius 0< ε < 1 at a vertex of the polyhedron. The intersection of the
sphere with the polyhedron is a graph, which is called the link at that point. Consider now a
sphere of radius 1 + ε, 0< ε < 1, at a vertex of the polyhedron. The intersection of this sphere
and the polyhedron will be called a link of order 2.

We will use the definition of a hyperbolic building given in [15], where an infinite series of
examples of hyperbolic buildings, with prescribed local structure, were constructed and studied.

Definition 2.1. Let P(p, m) be a tessellation of the hyperbolic plane by regular polygons
with p sides, with angles π/m in each vertex where m is an integer. A hyperbolic building is a
polygonal complex X, which can be expressed as the union of subcomplexes called apartments
in such a way that:

(i) every apartment is isomorphic to P(p, m);
(ii) for any two polygons of X, there is an apartment containing both of them;

(iii) for any two apartments A1, A2 ∈X containing the same polygon, there exists an
isomorphism A1→A2 fixing A1 ∩A2.

Let Cp be a polyhedron whose faces are p-gons and whose links are generalized m-gons
with mp > 2m+ p. We equip every face of Cp with the hyperbolic metric such that all sides
of the polygons are geodesics and all angles are π/m. Then the universal covering of such a
polyhedron is a hyperbolic building (see [13]).

Therefore, to construct hyperbolic buildings with cocompact group actions, it is sufficient to
construct finite polyhedra with appropriate links.

We recall also the definition of a polygonal presentation introduced in [23].

Definition 2.2. Suppose we have n disjoint connected bipartite graphs G1, G2, . . . , Gn.
Let Pi and Li be the sets of black and white vertices, respectively, in Gi, for i= 1, . . . , n; let
P =

⋃
Pi and L=

⋃
Li, where Pi ∩ Pj = ∅ and Li ∩ Lj = ∅ for i 6= j, and let λ be a bijection

λ : P → L.
A set K of k-tuples (x1, x2, . . . , xk), xi ∈ P , will be called a polygonal presentation over P

compatible with λ if:
(i) (x1, x2, x3, . . . , xk) ∈ K implies that (x2, x3, . . . , xk, x1) ∈ K;
(ii) given x1, x2 ∈ P , then (x1, x2, x3, . . . , xk) ∈ K for some x3, . . . , xk if and only if x2 and

λ(x1) are incident in some Gi;
(iii) given x1, x2 ∈ P , then (x1, x2, x3, . . . , xk) ∈ K for at most one x3 ∈ P .

If there exists such K, we will call λ a basic bijection.

Remark 1. The polygonal presentations with k = 3, n= 1 and G1 being the smallest
generalized 3-gon have been listed in [8, 11].

We use the following definition of equivalence, which is similar to the one in [9].

Definition 2.3. Let K1 and K2 be two polygonal presentations with k = 3 and n= 1 and
for which the graph G1 is a generalized 4-gon. Then K1 and K2 are equivalent if there exists an
automorphism of the generalized 4-gon which transforms the 4-gon of K1 to the 4-gon of K2.

Here we classify all polygonal presentations for k = 3, n= 1 and G1 being the smallest thick
generalized quadrangle (4-gon). Figure 1 shows the graph G1.

In [16], the authors classified all polygonal presentations for the case where k = 3, n= 1 and
G1 is the smallest thick generalized quadrangle, when at least two labels in each triangle are
different. This corresponds to the case of torsion-free groups acting simply transitively on the
building.
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Figure 1. The graph G1.

Theorem 2.4 [16]. There are 45 non-equivalent torsion-free triangle presentations
associated to the smallest thick generalized quadrangle. These give rise to 23 non-isomorphic
torsion-free groups acting simply transitively on vertices of triangular hyperbolic buildings of
smallest non-trivial thickness.

It turns out that if we allow torsion in the groups acting simply transitively on hyperbolic
triangular buildings, the number of non-equivalent presentations and the number of non-
isomorphic groups will become much larger.

Theorem 2.5. There are 7159 non-equivalent triangle presentations corresponding to
groups with torsion associated to the smallest generalized quadrangle. These give rise to
168 non-isomorphic groups acting on vertices of one of two possible triangular hyperbolic
buildings with the smallest thick generalized quadrangle as the link of each vertex (listed in
the Appendix).

We can associate a polyhedron X on n vertices with each polygonal presentation K as
follows. For every cyclic k-tuple (x1, x2, x3, . . . , xk), we take an oriented k-gon, on the
boundary of which the word x1x2x3 . . . xk is written. To obtain the polyhedron, we identify
the corresponding sides of the polygons, respecting orientation. We say that the polyhedron X
corresponds to the polygonal presentation K.

The following lemma was proved in [23].

Lemma 2.6. A polyhedron X which corresponds to a polygonal presentation K has graphs
G1, G2, . . . , Gn as vertex-links.

Polyhedra corresponding to the polygonal presentations from Theorem 2.4 have generalized
4-gons as vertex-links and regular hyperbolic triangles with angles π/4 as faces. The universal
covering of such a polyhedron is a hyperbolic building (see [13]). Moreover, with the metric
introduced in [1, p. 165], this building is a complete metric space of non-positive curvature in the
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sense of Alexandrov and Busemann [14]. Examples of hyperbolic buildings with right-angled
triangles were constructed in [2] and in [13].

Remark. If we have a group with torsion, we may use the method of [13, p. 176,
Corollary 2.6], which applies to torsion-free groups after making the following modification.
An index 3 subgroup is torsion-free, since it is a fundamental group of a CAT(0) space (a
polyhedron with three vertices). Therefore, we pass to an index 3 subgroup, which we obtain
in a canonical way by changing alphabets. We form a polyhedron with three vertices, go to
the universal cover carrying the labels, and then remove the labels. See Section 4 for details
on how to construct such polyhedra.

3. Proof of Theorem 2.5

We construct all polygonal presentations with k = 3 and n= 1 and for which the graph G1 is a
generalized 4-gon. The 23 torsion-free groups were listed in [16]. Here we give the groups with
torsion. Our strategy is to go through all possible incidence tableaus for G1 and determine
whether they can be interpreted as triangle presentations.

Let P be the set of black vertices and L the set of white vertices in G1. We denote the
elements of P by xi and the elements of L by yi, for i= 1, 2, . . . , 15. In all cases, we define the
basic bijection λ : P → L by λ(xi) = yi.

By [22], the smallest thick generalized 4-gon can be presented in the following way: its ‘points’
are pairs (i, j) where i, j = 1, . . . , 6 and i 6= j, and ‘lines’ are triples (i1, j1), (i2, j2), (i3, j3) of
those pairs where i1, i2, i3, j1, j2 and j3 are all different. Therefore, we build a tableau as follows.
For each row we take three pairs (i1, j1), (i2, j2) and (i3, j3), where i1, i2, i3, j1, j2 and j3 are
all different and in {1, 2, . . . , 6}. These are our points: x1 = (1, 2), x2 = (1, 3), . . . , x15 = (5, 6).

Next, we label the rows in Table 1 by y1, . . . , y15 in such a way that the result is an incidence
tableau that gives a triangle presentation with the basic bijection λ. To obtain groups with
torsion, we demand that at least one of the triangles is of the form (xi, xi, xi). For example,
labeling the rows from top to bottom by y1, y2, y6, y5, y14, y10, y7, y8, y12, y3, y4, y9, y15,
y13 and y11 gives rise to the presentation T24 with the following 17 triangles: (x1, x1, x1),
(x10, x2, x1), (x15, x6, x1), (x11, x5, x2), (x14, x14, x2), (x4, x7, x3) (x6, x12, x3), (x14, x8, x3),
(x4, x4, x4), (x12, x9, x4), (x7, x15, x5), (x15, x13, x5), (x13, x7, x6), (x8, x8, x8), (x12, x11, x8),
(x9, x10, x9) and (x13, x11, x10).

The labeling of rows in Table 1 defines the triangles uniquely: since the last row x5, x8, x10

has label y11, we know that there are triangles (x11, x5, xa), (x11, x8, xb) and (x11, x10, xc) for
some points xa, xb and xc. For the first of these triangles the missing point is xa = x2, since the

Table 1. Table of points for incidence tableau.

x1 x10 x15

x1 x11 x14

x1 x12 x13

x2 x7 x15

x2 x8 x14

x2 x9 x13

x3 x6 x15

x3 x8 x12

x3 x9 x11

x4 x6 x14

x4 x7 x12

x4 x9 x10

x5 x6 x13

x5 x7 x11

x5 x8 x10
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line y5 has points x2, x7 and x15 and from the lines with those numbers only y2 has the point
x11; that is, line y11 has point x5, line y5 has point x2 and line y2 has point x11, and this gives
the triangle (x11, x5, x2). Similarly, we must have xb = x12 and xc = x13. Going through all the
rows, we get the triangles for this presentation. The number of triangles in each presentation
is either 17 or 19, depending of whether there are 3 or 6 triangles of the form (xi, xi, xi).

The presentations are searched by a computer program. The program is written in Fortran
in order to keep it fast and simple. It goes through all 15! ways to label the rows of the
given tableau, and decides which of these give an incidence tableau of a triangle presentation
with torsion. The program outputs one representative of each equivalence class of triangle
presentations. We obtain in this way 7159 different equivalence classes of presentations.

For a polygonal presentation T , take N (where N = 17 or 19) oriented regular hyperbolic
triangles with angles π/4, write words from the presentation on their boundaries and glue
together sides with the same letters, respecting orientation. The result is a hyperbolic
polyhedron with one vertex and N triangular faces, and its universal covering is a triangular
hyperbolic building. We can draw the link, which is a generalized 4-gon, for any of these
buildings: for every triple (xi, xj , xk) the points yi and xj , as well as yj and xk and yk and
xi, are incident in it. The fundamental group Γ of the polyhedron acts simply transitively on
vertices of the building. The group Γi has 15 generators and N relations, which come naturally
from the polygonal presentation T .

To distinguish groups Γi, i= 1, . . . , 7159, it is sufficient to distinguish the isometry classes
of polyhedra, according to the Mostow-type rigidity for hyperbolic buildings which was shown,
for example, in [25].

Therefore, we consider dual graphs of index 3 subgroups in order to see which of these
presentations give rise to isometric polyhedra. First, we calculate the index 3 subgroups. We
replace each triple of the form (xi, xi, xi) in the presentation by (x1

i , x
2
i , x

3
i ), each (xi, xj , xk) by

three triplets (x1
i , x

2
j , x

3
k), (x2

i , x
3
j , x

1
k) and (x3

i , x
1
j , x

2
k), and similarly each (xi, xj , xj) by three

triplets (x1
i , x

2
j , x

3
j ), (x2

i , x
3
j , x

1
j ) and (x3

i , x
1
j , x

2
j ). We then have 45 triangles, which represent

the generators of the index 3 subgroup of Γ.
We next construct the dual graph for each of these as follows. We take 90 vertices such that

the first 45 of them (numbered 1–45) correspond to the edges of the triangles and the second
45 edges (numbered 46–90) correspond to the faces of the triangles. We add an edge between
vertices i (from 1–45) and j (from 46–90) if edge i was on the boundary of face j in a triangle.
Thus we obtain trivalent bipartite graphs with 90 vertices.

With the help of the computational algebra system Magma, we compared the dual graphs of
the index 3 subgroups and found that most of them are isomorphic to some other graph: there
are only 168 non-isomorphic dual graphs. Thus we have 168 triangle presentations which give
rise to non-isometric polyhedra. We then compute links of order 2 in buildings defined by our
168 torsion groups and the 23 torsion-free groups from [16]. There are only two non-isomorphic
links of order 2 and, in this case, they are complete invariants of buildings.

The 168 triangle presentations are listed in the Appendix together with a number, (1) or
(2), indicating the type of building.

This completes the proof of Theorem 2.5.

4. Construction of polyhedra with m-gonal faces using torsion groups

In [16] the authors described how to construct buildings with m-gonal faces, for arbitrary m,
starting from torsion-free groups acting on triangular buildings with the smallest possible link.
We modify this construction to allow torsion groups and an arbitrary generalized polygon as
the link of each vertex.

Given a generalized polygon G, we shall denote by G′ the graph that arises from calling
black vertices of G white vertices of G′ and white vertices of G black vertices of G′.

https://doi.org/10.1112/S1461157012000083 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012000083


GROUPS ACTING SIMPLY TRANSITIVELY ON VERTEX SETS 107

Consider a bipartite graph G with black vertices P = {x1, . . . , , xk} and white vertices
L= {y1, . . . , yk} and a subset K ⊂ P × P × P that defines the triangles. Starting from this
triangular presentation K, we construct a polyhedron whose faces are m-gons and whose m
vertices have links G or G′.

Let w = z1 . . . zm be a word of length m in three letters a, b and c. Assume that z1 = a,
z2 = b and z3 = c and that w does not contain proper powers of the letters a, b and c; that is,
zm 6= a and zt 6= zt+1 for all t= 1, . . . , m− 1.

For each of the triples (xi, xj , xk) in K we take three triples (x1
i , x

2
j , x

3
k), (x2

i , x
3
j , x

1
k)

and (x3
i , x

1
j , x

2
k) if at least two of xi, xj , xk are different, and we take just one, (x1

i , x
2
i , x

3
i ),

if i= j = k. The triples are cyclic, so we can write them as (x1
i , x

2
j , x

3
k), (x1

k, x
2
i , x

3
j ) and

(x1
j , x

2
k, x

3
i ). By gluing together triangles with these words on the boundary, we obtain a

polyhedron with triangle faces and three vertices, each of them with the graph G as the link
of each vertex.

We construct m-tuples, one corresponding to each of these new triples: for triple (x1
α, x

2
β , x

3
γ)

we define an m-tuple which corresponds to a word w with a= x1
α, b= x2

β and c= x3
γ . We have

m-tuples whose coordinates start with one of the triples, and then continue with m− 3 letters
in some order defined by the word w in the letters a, b and c.

If we glue together the m-gons with these words on the boundary by their sides labelled
with same letters, respecting orientation, we obtain a polyhedron with m-gonal faces and m
vertices, which all have the link G or G′. The type of the link can be seen from the letters of
the edges meeting at that vertex. Set

Sign(ab) = Sign(bc) = Sign(ca) = 1

and
Sign(ba) = Sign(cb) = Sign(ac) =−1.

Then, for vertex t= 1, . . . , m− 1, the group Gt of the link is G if Sign(zt, zt+1) = 1 and
G′ if Sign(zt, zt+1) =−1. For the last vertex, we have Gm =G if Sign(zm, a) = 1 and G′ if
Sign(zm, a) =−1.

We denote the set of m-tuples by Tm. Thus we have the following result.

Theorem 4.1. The subset Tm ⊂ P × . . .× P constructed above is a polygonal presentation.
It defines a polyhedron X whose faces are m-gons and whose m vertices have links G or G′.
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Appendix. Tables of groups

The torsion-free cases T1, . . . , T23 have been listed in [16], so for those we only note here in
Table A.1 whether the link of order 2 is isomorphic to that of T1 (case 1) or T2 (case 2).
Then, in Table A.2, we list the labelings of the rows of Table 1 which give rise to the triangle
presentations with torsion, denoted by T24, . . . , T191. After the name of each presentation in
Table A.2 is the number (1) or (2), indicating whether the resulting building is isomorphic to
that of T1 or T2, respectively.

https://doi.org/10.1112/S1461157012000083 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012000083


108 L. CARBONE ET AL.

Table A.1. List of torsion-free cases by isomorphism type of the 2-link.

(1) T1, T4, T5, T8, T9, T11, T13, T15, T17, T18, T19, T23

(2) T2, T3, T6, T7, T10, T12, T14, T16, T20, T21, T22

Table A.2. List of labelings giving triangle presentations with torsion.

T24 (1) y1, y2, y6, y5, y14, y10, y7, y8, y12, y3, y4, y9, y15, y13, y11

T25 (2) y1, y2, y9, y10, y3, y5, y14, y8, y15, y13, y7, y4, y6, y12, y11

T26 (2) y1, y2, y6, y3, y15, y7, y8, y14, y9, y10, y11, y12, y4, y5, y13

T27 (1) y1, y2, y14, y13, y10, y4, y3, y6, y8, y15, y11, y9, y5, y7, y12

T28 (2) y1, y2, y3, y5, y14, y15, y8, y9, y10, y6, y7, y12, y11, y4, y13

T29 (1) y1, y4, y12, y3, y9, y6, y11, y5, y7, y14, y15, y10, y13, y2, y8

T30 (2) y1, y2, y4, y9, y6, y10, y11, y13, y14, y3, y15, y7, y5, y12, y8

T31 (2) y2, y6, y13, y14, y3, y8, y7, y1, y9, y15, y4, y5, y12, y11, y10

T32 (2) y1, y2, y6, y8, y10, y4, y15, y14, y13, y11, y9, y7, y5, y12, y3

T33 (1) y1, y2, y7, y3, y14, y15, y9, y11, y13, y5, y6, y4, y12, y10, y8

T34 (2) y2, y7, y8, y4, y6, y5, y1, y3, y9, y14, y15, y12, y13, y11, y10

T35 (2) y4, y9, y12, y11, y8, y15, y1, y3, y2, y6, y13, y10, y5, y7, y14

T36 (1) y1, y10, y11, y2, y8, y5, y14, y7, y6, y9, y12, y3, y13, y4, y15

T37 (2) y1, y2, y3, y15, y9, y4, y7, y12, y10, y11, y5, y14, y6, y13, y8

T38 (1) y1, y2, y4, y15, y13, y6, y11, y5, y12, y8, y3, y10, y14, y7, y9

T39 (1) y1, y2, y8, y4, y6, y10, y13, y7, y3, y14, y12, y5, y11, y9, y15

T40 (2) y1, y2, y4, y15, y14, y3, y5, y11, y9, y10, y12, y8, y6, y7, y13

T41 (2) y1, y2, y6, y4, y14, y10, y3, y12, y13, y11, y7, y5, y15, y8, y9

T42 (1) y1, y2, y6, y10, y13, y3, y5, y8, y11, y15, y7, y4, y14, y9, y12

T43 (1) y1, y2, y8, y13, y15, y3, y6, y11, y7, y9, y4, y5, y14, y12, y10

T44 (1) y1, y2, y4, y5, y3, y15, y6, y11, y7, y8, y12, y10, y9, y14, y13

T45 (2) y1, y2, y4, y8, y11, y10, y13, y9, y7, y6, y12, y15, y5, y14, y3

T46 (1) y1, y2, y6, y3, y8, y10, y15, y5, y11, y9, y13, y12, y7, y4, y14

T47 (2) y1, y2, y8, y15, y4, y6, y7, y5, y3, y14, y11, y12, y13, y9, y10

T48 (2) y1, y2, y8, y15, y6, y7, y13, y4, y9, y12, y14, y5, y11, y3, y10

T49 (2) y1, y2, y3, y5, y4, y15, y6, y10, y8, y9, y7, y11, y12, y14, y13

T50 (2) y1, y2, y3, y6, y12, y10, y8, y11, y15, y14, y4, y5, y9, y13, y7

T51 (2) y1, y2, y4, y12, y3, y15, y5, y9, y14, y7, y11, y10, y6, y13, y8

T52 (2) y1, y2, y6, y3, y14, y15, y10, y13, y11, y12, y8, y7, y4, y5, y9

T53 (1) y1, y2, y6, y9, y12, y10, y15, y4, y3, y5, y14, y11, y8, y13, y7

T54 (2) y1, y2, y12, y15, y9, y11, y7, y8, y5, y6, y10, y3, y4, y14, y13

T55 (2) y1, y2, y13, y12, y15, y7, y9, y11, y4, y3, y14, y8, y10, y6, y5

T56 (1) y2, y9, y15, y12, y8, y5, y6, y1, y3, y11, y7, y4, y13, y10, y14

T57 (2) y1, y2, y4, y5, y3, y15, y11, y7, y9, y6, y10, y8, y12, y14, y13

T58 (2) y1, y2, y6, y5, y14, y15, y10, y3, y7, y4, y8, y12, y11, y13, y9

T59 (1) y1, y2, y4, y8, y11, y15, y6, y9, y7, y10, y12, y5, y13, y14, y3

T60 (1) y1, y2, y12, y15, y9, y4, y7, y10, y13, y3, y11, y14, y8, y6, y5

T61 (2) y1, y2, y12, y5, y14, y15, y8, y13, y3, y6, y10, y7, y11, y4, y9

T62 (1) y1, y2, y5, y6, y4, y15, y9, y8, y13, y14, y12, y11, y10, y3, y7

T63 (1) y1, y3, y4, y8, y11, y9, y15, y6, y2, y10, y7, y5, y14, y13, y12

T64 (2) y1, y2, y6, y7, y15, y3, y11, y9, y12, y10, y8, y13, y4, y14, y5

T65 (2) y1, y2, y3, y8, y6, y10, y15, y9, y7, y14, y5, y12, y4, y13, y11

T66 (2) y1, y2, y3, y4, y14, y10, y15, y5, y7, y6, y9, y11, y8, y13, y12

T67 (1) y1, y2, y7, y10, y14, y8, y3, y11, y4, y13, y6, y12, y9, y15, y5

T68 (1) y1, y2, y7, y15, y5, y4, y13, y12, y8, y11, y3, y6, y9, y10, y14
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T69 (2) y1, y2, y3, y10, y14, y8, y5, y4, y15, y13, y6, y9, y12, y7, y11

T70 (2) y1, y2, y4, y6, y9, y15, y14, y8, y12, y5, y10, y11, y13, y7, y3

T71 (2) y1, y2, y11, y15, y12, y6, y7, y4, y8, y14, y9, y3, y5, y10, y13

T72 (1) y1, y2, y12, y5, y9, y10, y7, y15, y11, y13, y4, y6, y8, y3, y14

T73 (2) y2, y6, y13, y15, y3, y8, y4, y1, y9, y14, y11, y7, y12, y5, y10

T74 (2) y1, y2, y4, y9, y8, y10, y7, y3, y14, y5, y12, y15, y6, y13, y11

T75 (1) y1, y10, y11, y5, y14, y13, y6, y7, y2, y3, y12, y15, y9, y4, y8

T76 (1) y1, y2, y12, y10, y14, y5, y9, y13, y7, y6, y15, y4, y8, y11, y3

T77 (2) y1, y2, y4, y7, y10, y9, y5, y3, y13, y15, y6, y11, y12, y14, y8

T78 (1) y1, y2, y5, y8, y12, y10, y4, y7, y3, y13, y11, y9, y6, y15, y14

T79 (1) y1, y2, y4, y3, y14, y15, y5, y11, y9, y10, y12, y8, y6, y7, y13

T80 (2) y1, y2, y5, y12, y14, y10, y13, y11, y6, y4, y8, y9, y3, y7, y15

T81 (2) y1, y2, y8, y4, y14, y15, y12, y6, y7, y13, y9, y11, y3, y5, y10

T82 (1) y1, y2, y4, y9, y15, y11, y7, y12, y14, y10, y8, y3, y6, y5, y13

T83 (1) y1, y2, y4, y13, y15, y8, y6, y5, y12, y3, y7, y10, y14, y9, y11

T84 (2) y1, y2, y8, y6, y4, y15, y9, y3, y13, y11, y5, y12, y14, y7, y10

T85 (1) y1, y2, y11, y15, y14, y13, y7, y3, y10, y5, y4, y6, y9, y8, y12

T86 (2) y1, y6, y8, y11, y9, y13, y15, y12, y4, y14, y7, y5, y2, y3, y10

T87 (1) y1, y2, y4, y3, y6, y15, y5, y11, y9, y10, y12, y8, y14, y7, y13

T88 (2) y1, y2, y14, y15, y5, y13, y3, y4, y7, y10, y6, y8, y9, y11, y12

T89 (1) y1, y2, y3, y10, y13, y5, y7, y8, y15, y4, y9, y6, y14, y12, y11

T90 (2) y1, y2, y4, y5, y14, y15, y8, y12, y7, y3, y6, y10, y13, y11, y9

T91 (2) y1, y2, y4, y6, y15, y12, y8, y14, y13, y11, y9, y10, y5, y3, y7

T92 (1) y1, y2, y6, y10, y9, y4, y15, y12, y14, y8, y5, y11, y13, y7, y3

T93 (1) y1, y2, y9, y14, y10, y7, y12, y4, y3, y11, y5, y15, y6, y13, y8

T94 (2) y1, y2, y11, y10, y3, y12, y14, y8, y15, y7, y5, y4, y13, y6, y9

T95 (2) y2, y14, y13, y6, y3, y4, y15, y8, y11, y5, y12, y10, y1, y9, y7

T96 (2) y1, y3, y14, y9, y15, y2, y10, y12, y11, y4, y5, y13, y6, y7, y8

T97 (2) y2, y3, y13, y15, y4, y8, y6, y12, y5, y14, y1, y9, y7, y11, y10

T98 (1) y2, y10, y15, y13, y9, y1, y6, y8, y11, y4, y7, y3, y12, y14, y5

T99 (2) y2, y11, y15, y8, y1, y9, y6, y12, y14, y13, y7, y10, y5, y3, y4

T100 (1) y2, y14, y15, y12, y7, y5, y6, y8, y9, y4, y1, y3, y13, y11, y10

T101 (1) y2, y4, y15, y8, y13, y1, y3, y12, y5, y14, y7, y9, y6, y11, y10

T102 (2) y1, y10, y11, y7, y5, y9, y13, y2, y3, y14, y12, y15, y8, y4, y6

T103 (2) y2, y4, y13, y7, y6, y9, y8, y14, y12, y3, y5, y10, y1, y15, y11

T104 (1) y2, y10, y12, y15, y1, y14, y6, y4, y11, y7, y8, y13, y5, y9, y3

T105 (1) y2, y6, y11, y8, y13, y7, y9, y12, y14, y5, y15, y4, y1, y3, y10

T106 (1) y3, y6, y13, y9, y2, y4, y7, y10, y8, y14, y1, y15, y12, y11, y5

T107 (2) y2, y3, y13, y8, y15, y7, y10, y9, y11, y6, y12, y4, y5, y1, y14

T108 (1) y2, y3, y10, y13, y8, y12, y11, y15, y4, y6, y1, y9, y5, y14, y7

T109 (1) y2, y7, y13, y6, y3, y9, y15, y5, y12, y1, y8, y10, y14, y4, y11

T110 (1) y1, y2, y4, y15, y13, y12, y3, y8, y7, y9, y14, y10, y11, y5, y6

T111 (1) y1, y2, y3, y8, y9, y10, y15, y6, y11, y12, y5, y7, y4, y13, y14

T112 (2) y1, y2, y3, y10, y14, y8, y6, y5, y15, y13, y7, y4, y9, y12, y11

T113 (2) y1, y2, y4, y15, y6, y3, y5, y14, y12, y11, y9, y10, y8, y13, y7

T114 (2) y1, y2, y4, y15, y13, y5, y9, y3, y7, y10, y12, y8, y14, y11, y6

T115 (1) y1, y2, y4, y15, y13, y11, y12, y7, y14, y8, y6, y10, y3, y5, y9

T116 (1) y1, y2, y4, y15, y14, y6, y8, y13, y9, y3, y10, y5, y11, y12, y7

T117 (1) y1, y2, y6, y8, y13, y15, y10, y4, y3, y7, y5, y9, y14, y12, y11

T118 (1) y1, y6, y11, y3, y9, y12, y15, y5, y10, y4, y14, y7, y13, y2, y8

T119 (2) y1, y2, y4, y10, y9, y11, y13, y8, y3, y6, y15, y5, y7, y14, y12

T120 (1) y1, y2, y6, y10, y3, y5, y9, y8, y14, y7, y12, y13, y15, y11, y4
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T121 (2) y1, y2, y8, y4, y7, y10, y9, y3, y12, y11, y14, y5, y6, y13, y15

T122 (2) y1, y2, y3, y9, y15, y8, y10, y5, y6, y7, y4, y14, y13, y12, y11

T123 (1) y1, y2, y6, y3, y10, y8, y5, y14, y11, y15, y9, y13, y4, y7, y12

T124 (2) y1, y2, y8, y13, y7, y10, y3, y12, y5, y9, y6, y4, y14, y11, y15

T125 (2) y1, y2, y4, y10, y8, y9, y12, y5, y7, y15, y6, y11, y3, y13, y14

T126 (2) y1, y2, y6, y3, y10, y7, y15, y13, y14, y5, y8, y4, y12, y11, y9

T127 (2) y10, y11, y13, y2, y5, y12, y14, y7, y1, y8, y4, y9, y3, y6, y15

T128 (1) y1, y4, y7, y15, y11, y8, y6, y3, y13, y12, y14, y10, y2, y9, y5

T129 (1) y1, y2, y6, y15, y5, y9, y7, y8, y13, y3, y4, y11, y10, y12, y14

T130 (1) y8, y14, y15, y7, y11, y6, y3, y12, y9, y4, y1, y2, y5, y10, y13

T131 (2) y1, y2, y13, y15, y9, y3, y12, y14, y8, y6, y7, y11, y10, y5, y4

T132 (1) y1, y2, y3, y4, y10, y13, y7, y15, y9, y14, y12, y6, y11, y8, y5

T133 (2) y1, y2, y4, y15, y3, y6, y11, y12, y13, y10, y8, y9, y14, y7, y5

T134 (1) y1, y2, y8, y15, y6, y9, y4, y12, y11, y14, y7, y5, y13, y3, y10

T135 (2) y1, y2, y12, y15, y8, y3, y7, y10, y11, y6, y4, y13, y5, y9, y14

T136 (1) y1, y2, y13, y3, y14, y15, y12, y11, y9, y4, y7, y8, y10, y6, y5

T137 (1) y1, y4, y12, y2, y13, y7, y14, y8, y9, y5, y15, y10, y6, y3, y11

T138 (1) y1, y2, y12, y10, y4, y9, y7, y15, y11, y14, y5, y6, y13, y3, y8

T139 (1) y1, y2, y3, y4, y10, y13, y15, y8, y9, y11, y7, y6, y14, y5, y12

T140 (2) y1, y2, y4, y3, y14, y10, y13, y9, y11, y5, y6, y15, y7, y12, y8

T141 (2) y1, y2, y4, y8, y14, y10, y13, y9, y7, y11, y6, y15, y5, y12, y3

T142 (1) y1, y2, y13, y5, y10, y15, y14, y8, y7, y4, y6, y12, y9, y11, y3

T143 (2) y1, y2, y12, y6, y14, y15, y11, y10, y8, y9, y7, y5, y4, y13, y3

T144 (2) y1, y2, y4, y15, y13, y6, y11, y3, y12, y10, y8, y9, y14, y7, y5

T145 (1) y1, y2, y6, y10, y5, y9, y7, y8, y12, y15, y13, y14, y11, y4, y3

T146 (2) y1, y2, y9, y15, y14, y8, y5, y12, y6, y13, y3, y10, y7, y4, y11

T147 (2) y1, y2, y4, y5, y12, y10, y3, y14, y13, y15, y8, y9, y6, y7, y11

T148 (1) y1, y2, y5, y15, y12, y4, y6, y11, y13, y7, y9, y14, y8, y10, y3

T149 (2) y1, y10, y11, y3, y14, y7, y13, y8, y4, y12, y5, y15, y9, y6, y2

T150 (1) y5, y14, y15, y3, y8, y9, y11, y12, y7, y6, y2, y4, y10, y13, y1

T151 (1) y6, y8, y10, y3, y14, y15, y4, y2, y12, y1, y7, y9, y13, y11, y5

T152 (1) y4, y11, y12, y15, y6, y13, y7, y8, y9, y10, y2, y14, y3, y5, y1

T153 (2) y6, y11, y14, y10, y8, y2, y15, y9, y5, y7, y12, y4, y3, y1, y13

T154 (2) y2, y5, y11, y13, y8, y9, y12, y4, y15, y14, y3, y7, y10, y6, y1

T155 (1) y1, y8, y12, y11, y14, y13, y6, y2, y5, y3, y15, y9, y4, y7, y10

T156 (2) y1, y6, y12, y2, y3, y13, y10, y15, y5, y4, y9, y14, y7, y11, y8

T157 (2) y8, y1, y5, y3, y14, y10, y15, y9, y7, y12, y2, y4, y13, y11, y6

T158 (1) y6, y12, y14, y15, y7, y3, y8, y13, y9, y11, y5, y4, y2, y1, y10

T159 (2) y6, y9, y12, y15, y7, y10, y2, y14, y11, y13, y8, y3, y5, y4, y1

T160 (1) y2, y11, y12, y3, y5, y7, y15, y6, y9, y13, y1, y14, y10, y4, y8

T161 (2) y2, y9, y13, y15, y12, y8, y6, y10, y5, y3, y1, y4, y7, y11, y14

T162 (1) y2, y3, y13, y11, y8, y6, y15, y10, y5, y12, y9, y14, y7, y1, y4

T163 (1) y1, y2, y7, y15, y4, y9, y13, y8, y11, y14, y12, y6, y5, y10, y3

T164 (1) y2, y5, y10, y15, y13, y1, y6, y14, y11, y7, y12, y4, y3, y9, y8

T165 (1) y2, y9, y10, y12, y6, y5, y8, y11, y3, y1, y13, y4, y15, y7, y14

T166 (2) y1, y2, y11, y15, y14, y12, y7, y6, y5, y4, y8, y3, y13, y10, y9

T167 (2) y1, y2, y12, y3, y5, y10, y9, y14, y7, y13, y15, y4, y8, y11, y6

T168 (1) y2, y3, y11, y9, y8, y4, y6, y13, y10, y7, y15, y12, y14, y5, y1

T169 (1) y2, y3, y13, y8, y5, y7, y6, y9, y4, y11, y12, y14, y1, y15, y10

T170 (1) y2, y8, y13, y9, y14, y12, y11, y15, y10, y1, y7, y3, y6, y5, y4

T171 (2) y2, y11, y13, y5, y7, y3, y1, y12, y4, y14, y10, y9, y15, y6, y8

T172 (2) y2, y7, y9, y3, y6, y8, y15, y1, y11, y14, y4, y5, y13, y12, y10
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T173 (1) y1, y2, y4, y9, y15, y11, y7, y12, y14, y10, y5, y3, y6, y8, y13

T174 (2) y1, y2, y13, y4, y7, y15, y12, y5, y6, y8, y11, y9, y10, y14, y3

T175 (1) y1, y2, y4, y6, y10, y12, y14, y7, y3, y9, y11, y15, y8, y13, y5

T176 (2) y1, y6, y7, y2, y5, y13, y9, y11, y4, y3, y12, y14, y15, y10, y8

T177 (2) y1, y2, y6, y15, y9, y11, y10, y12, y5, y8, y3, y4, y13, y14, y7

T178 (1) y1, y6, y8, y4, y2, y13, y9, y12, y11, y14, y7, y5, y15, y3, y10

T179 (1) y1, y2, y3, y9, y15, y11, y10, y7, y14, y12, y13, y8, y6, y4, y5

T180 (1) y1, y2, y6, y4, y10, y12, y15, y14, y9, y5, y11, y3, y13, y8, y7

T181 (1) y2, y10, y12, y15, y1, y14, y6, y8, y4, y7, y13, y9, y3, y11, y5

T182 (1) y1, y2, y6, y13, y10, y11, y7, y3, y9, y15, y8, y12, y4, y14, y5

T183 (2) y1, y2, y3, y8, y9, y15, y5, y11, y10, y6, y7, y14, y4, y13, y12

T184 (1) y2, y5, y10, y15, y1, y14, y6, y12, y11, y7, y13, y4, y3, y9, y8

T185 (1) y1, y2, y12, y8, y14, y15, y4, y9, y5, y11, y10, y13, y7, y3, y6

T186 (1) y1, y2, y4, y10, y12, y6, y7, y5, y3, y14, y11, y15, y8, y13, y9

T187 (1) y2, y14, y13, y15, y3, y4, y10, y8, y11, y1, y12, y5, y6, y9, y7

T188 (2) y1, y3, y4, y9, y14, y6, y15, y2, y11, y10, y5, y8, y12, y7, y13

T189 (1) y1, y2, y7, y10, y12, y4, y6, y14, y3, y11, y8, y5, y9, y15, y13

T190 (2) y1, y2, y4, y15, y12, y6, y7, y5, y3, y14, y11, y10, y8, y13, y9

T191 (2) y1, y2, y3, y4, y14, y15, y10, y7, y6, y13, y12, y11, y8, y5, y9
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